AEROSPACE MATERIAL SPECIFICATION **SAE** AMS7910 REV. C Issued Revised 1992-07 2010-12 Superseding AMS7910B Beryllium Near-Net Preforms Standard Grade Cold Isostatic Pressed, Sintered #### **RATIONALE** AMS7910C results from a Five Year Review and update of this specification. #### 1. SCOPE #### 1.1 Form This specification covers beryllium in the form of bar, rod, tubing, and shapes fabricated from beryllium powder consolidated by cold isostatic pressing (CIP) and sintering. ## 1.2 Application These products have been used typically for parts requiring high strength-to-weight ratio and high modulus of elasticity, but usage is not limited to such applications. # 1.3 Safety - Hazardous Materials While the materials, methods, applications, and processes described or referenced in this specification may involve the use of hazardous materials, this specification does not address the hazards that may be involved in such use. It is the sole responsibility of the user to ensure familiarity with the safe and proper use of any hazardous materials and to take necessary precautionary measures to ensure the health and safety of all personnel involved. ## 1.3.1 WARNING Inhaling dust or fumes containing beryllium may cause chronic beryllium disease, a serious chronic lung disease, in some individuals. Over time, lung disease can be fatal. Read the product specific Material Safety Data Sheet (MSDS) for additional environmental, health and safety information before working with beryllium or beryllium-containing materials. ## 2. APPLICABLE DOCUMENTS The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply. SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user." SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright © 2010 SAE International All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE. TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada) Tel: +1 724-776-4970 (outside USA) Fax: 724-776-0790 Email: CustomerService@sae.org http://www.sae.org SAE values your input. To provide feedback on this Technical Report, please visit http://www.sae.org/technical/standards/AMS7910C #### **SAE Publications** 2.1 Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), www.sae.org. AMS2806 Identification, Bars, Wire, Mechanical Tubing, and Extrusions, Carbon and Alloy Steels and Corrosion and Heat-Resistant Steels and Alloys #### 2.2 **ASTM Publications** Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, www.astm.org. PDF of ams 1910c ASTM E 8 / E 8M Tension Testing of Metallic Materials ASTM E 112 Determining Average Grain Size **ASTM E 1417** Liquid Penetrant Testing **ASTM E 1742** Radiographic Examination #### 2.3 **ASME Publications** Available from American Society of Mechanical Engineers, 22 Law Drive, P.O. Box 2900, Fairfield, NJ 07007-2900, Tel: 973-882-1170, www.asme.org. **ASME B46.1** Surface Texture Dimensioning and Tolerancing C ASME Y14.5M ## 3. TECHNICAL REQUIREMENTS #### Composition 3.1 Shall conform to the percentages by weight shown in Table 1. beryllium oxide shall be determined by gas fusion; aluminum, iron, magnesium, silicon, and other elements by spectrochemical methods; carbon by combustion; and beryllium determined by difference in case of disputes between analyses by different spectrochemical methods, emission spectroscopy shall govern. **TABLE 1 - COMPOSITION** | Element | min | max | |------------------------------|------|------| | Beryllium Oxide | | 1.5 | | Aluminum | | 0.10 | | Carbon | | 0.15 | | Iron | | 0.13 | | Magnesium | | 0.08 | | Silicon | | 0.06 | | Other Elements, each (3.1.1) | | 0.04 | | Beryllium | 98.5 | | Determination is not required for routine acceptance of each lot. 3.1.1 #### 3.2 Condition Cold isostatically pressed (CIP) and sintered with secondary options of flattening, forming or hot isostatically pressing (HIP) and heat treated and/or stress relieved. #### 3.2.1 Surface Finish If surface finish is not specified, the material shall be furnished with an as-sawed, as CIP, as HIP, sintered, heat treated, and/or machined surface Machined surfaces shall have surface finish no greater than 100 Ra (125 microinches rms), determined in accordance with ASME B46.1. ## 3.3 Properties The product shall conform to the following requirements. ## 3.3.1 Tensile Properties Shall be as shown in Table 2, determined at room temperature in accordance with ASTM E 8 / E 8M. TABLE 2 - MINIMUM TENSILE PROPERTIES | Property | Value | |-------------------------------|--------------------| | Tensile Strength | 38.0 ksi (262 MPa) | | Yield Strength at 0.2% Offset | 25.0 ksi (172 MPa) | | Elongation in 4D | 2% | #### 3.3.2 Grain Size Shall average no larger than 25 microns (25 µm), determined in accordance with ASTM E 112 using the intercept method at 500X magnification. ## 3.4 Quality The product, as received by purchaser, shall be uniform in quality and condition, sound, and free from foreign materials and from imperfections detrimental to usage of the product. #### 3.4.1 Soundness - 3.4.1.1 The product shall be free from cracks, determined visually, and, when applicable, by fluorescent penetrant inspection as in 3.4.1.1.1. - 3.4.1.1.1 Fluorescent penetrant inspection shall be performed, when agreed upon between purchaser and vendor, in accordance with ASTME 1417, Level 2. - 3.4.1.2 Density shall be at least 99.0% of theoretical density, determined using the water displacement method. The accuracy of density determination shall be to the second decimal or better. - 3.4.1.2.1 The theoretical density shall be calculated using Equation 1. Theoretical Density (gm/cm 3) = $\frac{100}{\frac{100 - \%Be0}{1.8477 \text{ gm/cm}^3} + \frac{\%Be0}{3.009 \text{ gm/cm}^3}}$ (Eq. 1) ## 3.4.1.3 Radiographic Inspection When specified by purchaser, radiographic inspection to a penetrameter sensitivity of 2% shall be performed in accordance with ASTM E 1742; however, exceptions are taken to the penetrameter contrast requirement and applicable area of penetrameter density ranges of +30% or -15% from the density at penetrameter location(s). The decision to accept or reject may be made directly beneath the IQI/Shim combination. - 3.4.1.3.1 Radiographic indications (voids or inclusions) shall conform to the following requirements: - 3.4.1.3.1.1 Maximum dimension of any indication, measured in the plane of the radiograph, shall not exceed 0.060 inch (1.52 mm). - 3.4.1.3.1.2 Maximum average dimension of any indication shall be the arithmetic average of the maximum and minimum dimensions measured in the plane of the radiograph and shall not exceed 0.040 inch (1.02 mm). - 3.4.1.3.1.3 The total combined volume per cubic inch (16.4 cm³) of all detectable radiographic indications shall not exceed the volume of a 0.060 inch (1.52 mm) diameter sphere (e.g., total spherical volume shall not exceed 1.1×10^{-4} in³ [1.84 mm³]). For calculation purposes, assume all indications are spherical. # 3.4.1.3.1.4 Part Density Uniformity The terms variable density areas, banding, or striations denote relatively large areas of a radiograph, which vary in density as compared to the surrounding area. These areas shall not vary in radiographic density by more than 5% compared to the surrounding area of comparable section thickness. Suspect areas shall be re-radiographed and interpreted with the appropriate penetrameter or beryllium of 5% in thickness placed as follows: - a. Less dense (darker radiograph) areas shall be covered by the penetrameter. The radiograph of the covered area shall appear lighter than that of the adjacent area. - More dense (lighter radiograph) areas shall have the penetrameter placed immediately adjacent to them. The radiograph of the covered area shall appear lighter than that of the suspect more-dense area. - 3.4.1.3.1.5 Discrete high density (light radiograph) indications, or areas in product 1.00 inch (25.4 mm) thick or less, which are 5% or less in radiographic density variation compared to the surrounding material, are acceptable. (Note: The minimum detectable size of voids and inclusions will increase as the section thickness increases.) ## 3.5 Tolerances Shall conform to the dimensions and dimensional tolerances specified in the purchase order or applicable drawings in accordance with ANSI Y14.5M. # 4. QUALITY ASSURANCE PROVISIONS #### 4.1 Responsibility for Inspection The vendor of the product shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchase reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements. #### 4.2 Classification of Tests All technical requirements are acceptance tests and shall be performed on each lot as applicable. # 4.3 Sampling and Testing Shall be in accordance with the following; a lot shall be all product, processed at the same time manufactured from a specific powder lot, using the same standard CIP cycle and the same thermal processing. #### 4.3.1 Composition Not less than one sample from each lot.