

NFPA No.

91

An American
National
Standard
ANSI Z33.1-1974
February 4, 1974

BLOWER and EXHAUST SYSTEMS 1973

Copyright © 1973

NATIONAL FIRE PROTECTION ASSOCIATION
470 Atlantic Avenue, Boston, MA 02210

2M-1-75-FP (5M)
Printed in U.S.A.

Official NFPA Definitions

APPROVED: means "acceptable to the authority having jurisdiction."

NOTE: The National Fire Protection Association does not approve, inspect or certify any installations, procedures, equipment or materials nor does it approve or evaluate testing laboratories.

In determining the acceptability of installations or procedures, equipment or materials, the authority having jurisdiction may base acceptance on compliance with NFPA or other appropriate standards. In the absence of such standards, said authority may require evidence of proper installation, procedure or use. The authority having jurisdiction may also refer to the listings or labeling practices of nationally recognized testing laboratories, inspection agencies, or other organizations concerned with product evaluations which are in a position to determine compliance with appropriate standards for the current production of listed items, and the satisfactory performance of such equipment or materials in actual usage.

AUTHORITY HAVING JURISDICTION: The "authority having jurisdiction" is the organization, office, or individual responsible for "approving" equipment, an installation, or a procedure.

NOTE: The phrase "authority having jurisdiction" is used in NFPA standards in a broad manner since jurisdictions and "approval" agencies vary as do their responsibilities. Where public safety is primary, the "authority having jurisdiction" may be a federal, state, local, or other regional department or individual such as a fire chief, fire marshal, chief of a fire prevention bureau, labor department, health department, building official, electrical inspector, or others having statutory authority. For insurance purposes, an insurance inspection department, rating bureau, or other insurance company representative may be the "authority having jurisdiction." In many circumstances the property owner or his delegated agent assumes the role of the "authority having jurisdiction"; at government installations, the commanding officer or departmental official may be the "authority having jurisdiction."

LABELED: Equipment or materials to which has been attached a label, symbol or other identifying mark of a nationally recognized testing laboratory, inspection agency, or other organization concerned with product evaluation, that maintains periodic inspection of production of labeled equipment or materials and by whose labeling is indicated compliance with nationally recognized standards or tests to determine suitable usage in a specified manner.

LISTED: Equipment or materials included in a list published by a nationally recognized testing laboratory, inspection agency, or other organization concerned with product evaluation, that maintains periodic inspection of production of listed equipment or materials and whose listing states either that the equipment or material meets nationally recognized standards or has been tested and found suitable for use in a specified manner.

NOTE: The means for identifying listed equipment may vary for each testing laboratory, inspection agency or other organization concerned with product evaluation, some of which do not recognize equipment as listed unless it is also labeled. The authority having jurisdiction should utilize the system employed by the listing organization to identify a listed product.

SHALL: is intended to indicate requirements.

SHOULD: is intended to indicate recommendations or that which is advised but not required.

Copyright and Republishing Rights

This publication is copyrighted © by the National Fire Protection Association. A royalty-free license is granted to public authorities to print and to publish this publication in whole or in part in laws, ordinances, regulations, administrative orders, or similar documents issued by said public authorities, provided due notice of copyright is contained therein. All other rights in the copyrighted publication, including the right to vend, are retained by the National Fire Protection Association. All others desiring permission to reproduce in any form this publication, in whole or in part, shall consult the National Fire Protection Association.

Statement on NFPA Procedures

This material has been developed under the published procedures of the National Fire Protection Association, which are designed to assure the appointment of technically competent Committees having balanced representation. While these procedures assure the highest degree of care, neither the National Fire Protection Association, its members, nor those participating in its activities accepts any liability resulting from compliance or noncompliance with the provisions given herein, for any restrictions imposed on materials or processes, or for the completeness of the text.

NFPA has no power or authority to police or enforce compliance with the contents of this document and any certification of products stating compliance with requirements of this document is made at the peril of the certifier.

**Standard for the Installation of
Blower and Exhaust Systems
for Dust, Stock and Vapor Removal or Conveying**

NFPA No. 91 — 1973

1973 Edition of No. 91

This edition of NFPA No. 91 was adopted at the Annual Meeting in May 1973, and supersedes the 1972 edition. The principal change is a complete revision of Section 400.

Origin and Development of No. 91

The National Fire Protection Association as early as 1899 recognized the hazards of blower and exhaust systems. Since 1900 the NFPA Committees on Blower Systems have given continuing attention to the subject. Following World War II, revisions and additions to the standard were recommended by the NFPA Committee on Blower Systems to cover various new developments in the protection of dust collecting systems and stock and refuse conveying systems, and were adopted by the NFPA at its Annual Meetings in 1946, 1947, 1948 and 1949. Editorially revised editions were published in 1959 and 1961. In 1972 Section 200 was expanded, and a new Section 500, covering systems involving plastic materials, was added.

The 1961 edition of NFPA No. 91 was approved by the American National Standards Institute as ANSI Standard Z33.1 on Oct. 13, 1961. The 1973 edition has been submitted to ANSI for similar approval. The ANSI designation and date of approval will be printed on the front cover of copies of this edition printed after approval has been received.

Committee on Blower Systems

D. P. Congdon, Chairman,
Factory Insurance Assn., 85 Woodland St., Hartford, CT 06102

T. F. Anderson, The Dow Chemical Co.
Robert B. Boyd, Factory Mutual Research Corp.
John G. Degenkolb, The Society of the Plastics Industry, Inc.
Deputy Chief Joseph Dolan, Fire Marshals Assn. of North America
Ray Hunter, American Air Filter Co., Inc.
Jeremiah R. Lynch, American Conference of Governmental Industrial Hygienists

W. E. Smith, Ceilcote Co.
Clarence F. Spindler, Consulting Engineers Council
John H. Stratton, Sheet Metal & Air Conditioning Contractors' National Assn., Inc.
Donald W. Thomsen, Dana Larson Roubal and Associates
R. H. Zelinske, Underwriters' Laboratories, Inc.

Alternates.

Lt. William Carpenter, Boston Fire Dept.
(Alternate to Deputy Chief Joseph Dolan)
Eugene A. Carsey, American Conference of Governmental Industrial Hygienists (Alternate to Jeremiah R. Lynch)

R. P. Day, Factory Insurance Assn. (Alternate to D. P. Congdon)
Robert G. Sandvik, Sheet Metal & Air Conditioning Contractors' National Assn., Inc. (Alternate to John H. Stratton)

This list represents the membership at the time the Committee was balloted on the text of this edition. Since that time, changes in the membership may have occurred.

CONTENTS

	PAGE
INTRODUCTION	91- 4
GENERAL REQUIREMENTS	91- 5
210. Power and Control	91- 7
220. Fans	91- 7
230. Ducts	91- 8
240. Duct Clearances	91-10
250. Protection Against Static Electricity	91-11
260. Fire Extinguishing Apparatus, Manual and Automatic	91-12
SYSTEMS FOR REMOVAL OF FLAMMABLE VAPORS AND RESIDUE	91-12
310. System Design	91-12
320. Ducts	91-13
330. Fire Extinguishing Apparatus, Automatic or Manual	91-14
DUCT SYSTEMS FOR MOVING, CONVEYING OR TRANSPORTING STOCK, VAPOR OR DUST	91-14
410. General	91-14
420. System Design	91-15
430. Construction	91-15
440. System Details	91-17
PLASTIC SYSTEMS FOR REMOVAL OF NONFLAMMABLE CORROSIVE FUMES AND VAPORS	91-18
510. General	91-18
520. Reinforced Thermosetting Plastic Duct	91-25
530. Thermoplastics	91-28

**Standard for the Installation of
Blower and Exhaust Systems
for Dust, Stock and Vapor Removal or Conveying**

NFPA No. 91 — 1973

100. Introduction.

101. This standard is submitted as a guide for the proper installation and safeguarding of these systems, taking into consideration the purpose for which they are intended and the functions that they are designed to perform. The object of this standard is to eliminate or reduce the known fire and explosion hazards inherent in the operation of these systems and to prevent them from becoming the means of spreading fire.

102. The design and installation of systems coming within the scope of this standard should be in the hands of competent engineers and their maintenance and operation should be in charge of reliable and experienced persons.

103. In the standards for specific industries or operations there will be found special requirements not embodied in this standard or modifications of certain of these requirements.

Definitions

BLOWER. A fan used to force air under pressure into a space.

EXHAUSTER. A fan used to withdraw air, gas, or solid materials (dust, refuse and stock) from a space under suction.

FAN. An assembly comprising blades or runners and housings or casings, and being either a blower or exhauster.

DUCTS. Pipes, channels, or other enclosures, used for the purpose of conveying air, gas, dust, refuse or other materials.

FIRE WALL. A wall having adequate fire resistance and structural stability under fire conditions to accomplish the purpose of completely subdividing a building or completely separating adjoining buildings to restrict the spread of fire.

200. General Requirements.

201. These general requirements apply to systems for removal of flammable vapors (including paint spraying residue); corrosive fumes; dust, stock and refuse conveying; except as modified or amplified by the specific rules which follow (Secs. 300 and 400) or by the standards applying to specific industries or operations.

NOTE: The following NFPA standards contain information on the application of blower and exhaust systems to specific industries or operations.

- 30. Flammable and Combustible Liquids Code
- 32. Dry Cleaning Plants
- 33. Spray Finishing
- 34. Dip Tanks
- 35. Organic Coatings
- 36. Solvent Extraction Plants
- 42. Pyroxylin Plastics in Factories
- 47. Lumber Storage Yards
- 48. Storage, Handling and Processing of Magnesium
- 60. Pulverized Fuel Systems
- 61A. Starch Factories
- 61B. Grain Elevators
- 61C. Flour and Feed Mills
- 62. Pulverized Sugar and Cocoa
- 63. Prevention of Dust Explosions in Industrial Plants
- 65. Aluminum Processing and Finishing
- 68. Explosion Venting Guide
- 81. Fur Storage, Fumigation and Cleaning
- 86A. Ovens and Furnaces
- 88. Garages
- 96. Vapor Removal from Commercial Cooking Equipment
- 303. Marinas and Boatyards
- 307. Operation of Marine Terminals
- 409. Aircraft Hangars
- 481. Production, Processing, Handling and Storage of Titanium
- 651. Manufacture of Aluminum Powder
- 652. Handling Magnesium Powder or Dust
- 653. Coal Preparation Plants
- 654. Prevention of Dust Explosions in Plastics Industry
- 655. Prevention of Sulfur Fires and Explosions
- 657. Confectionery Manufacturing Plants
- 664. Woodworking and Wood Flour Manufacturing Plants
- 801. Facilities Handling Radioactive Materials

202. The design of any air moving equipment (AME) shall include adequate consideration of stock to be handled, its physical and chemical properties and its hazard classification. Two or more materials to be handled by the same AME requires further consideration by the designer to determine if the mixture of two or more materials will be compatible, such as one dust with another dust, flammable vapor with a dust, or a dust with limited amounts of flammable vapors.

203. The engineer who designs the blower system shall coordinate his plans with the architect and structural engineer with respect to construction features.

204. Maintenance Responsibility. An adequate maintenance program for all air moving equipment (AME) requires a periodic inspection over its entire length, from entrance to exhaust hood for duct system to point of discharge, including the roof area where air is discharged outdoors.

There shall be an adequate check of the entire AME, including each blower unit, its operating control panel, fume scrubbers, and especially any fire damper for proven tightness when closed, and all flexible connections to determine their tightness.

The responsibility for proper maintenance rests with each plant manager who may assign the daily work to a person trained in this type of work. Such maintenance shall include the determination that a special protection for duct systems are fully operable and that plant automatic sprinkler protection is in service.

205. Approvals, Plans and Specifications

(a) Before new equipment is installed or existing equipment remodeled, complete working plans and specifications shall be submitted for approval to the authority having jurisdiction. Plans shall be drawn to an indicated scale, and show all essential details as to location, construction, ventilation duct work, volume of outside air at standard temperature and pressure introduced for safety ventilation and control wiring diagrams. The plans shall include a list of all equipment giving manufacturer and type number, and show the following data:

Name of owner and occupant

Location, including street address

Point of compass

Ceiling construction

Full height cross section

Location of fire walls

Location of partitions

Materials of duct construction

(b) Any deviation from this standard will require special permission from the authority having jurisdiction.

206. Sections 210 through 440 apply to metal systems, while 210, 220, 230, 240, and 500 apply to plastic systems.

210. Power and Control.

211. All electrical equipment shall be installed in accordance with the National Electrical Code.

212. Motors shall be located outside of rooms in which flammable vapors or flammable dust are being generated and removed, unless of the type approved for the particular conditions or hazard. Where necessary to install switches or other electrical apparatus in areas where explosive atmospheres might be created, only such equipment as is approved for the specific conditions obtaining shall be used. See Art. 500 of the National Electrical Code.

213. Remote control of all blower or exhaust fans shall be provided, in addition to any control located close to the equipment.

220. Fans.

221. Fans shall be of noncombustible construction and of adequate capacity to properly perform the functions required. Excess capacity is undesirable as a producer of unnecessary drafts and should be avoided except where justified by the contemplated extension of operations.

222. Fans shall be so located and arranged as to afford ready access for repairing, cleaning, inspection and lubricating. They should be placed on proper foundations or firmly secured to substantial supports.

223. When flammable solid materials or vapors are passed through the fans, the rotating element shall be of non-ferrous or non-sparking material, or the casing shall consist of or be lined with such material. Where there is a possibility of solid foreign material passing through the fan that would produce a spark, both the rotating element and the casing shall be constructed as required above.

224. Housings or casings shall be of substantial construction to prevent distortion and loss of alignment under operating conditions.

225. Blades or impellers and shafting shall be sufficiently strong and designed with adequate clearance to prevent contact with

casings or prevent distortion under conditions of deposit loading or other factors.

226. Exposed openings into housings shall be protected with substantial metal screens or gratings to prevent accidents or the entry of foreign material.

227. Bearings shall be constructed in accordance with the best modern practice and shall be so proportioned, secured and aligned as to prevent overheating. Bearings shall be accessible for lubrication and shall be well designed to prevent leakage of oil and minimize dust infiltration. They shall be located outside of casings and ducts unless proper shielding and dustproofing is provided.

230. Ducts.

231. Except as provided in Section 500, ducts shall be constructed entirely of sheet metal or other noncombustible material, and of adequate strength and rigidity to meet the conditions of service and installation requirements, and shall be properly protected where subject to mechanical injury. Minimum thicknesses for metal ducts are specified in Articles 323, 431 and 432.

232. The entire duct system should be self-contained. No rooms or portions of the building shall be used as an integral part of the system unless constructed of noncombustible material, and such design and arrangement shall be subject to the approval of the authority having jurisdiction.

233. All ducts shall be made reasonably tight throughout and shall have no openings other than those required for the proper operation and maintenance of the system.

234. All ducts, whether inside or outside of buildings, shall be thoroughly braced where required and substantially supported by metal hangers or brackets. Where ducts are used for conveying explosive gases or dust, the supports shall be designed to afford strength and rigidity against disruption. All laps in the piping should be made in the direction of the air flow.

235. Changes in size of ducts shall be by means of a taper transformation piece, the included angle of the taper being not more than 30°.

236. The passing of ducts through fire walls should be avoided wherever possible (see definitions of fire wall, Section 100). When

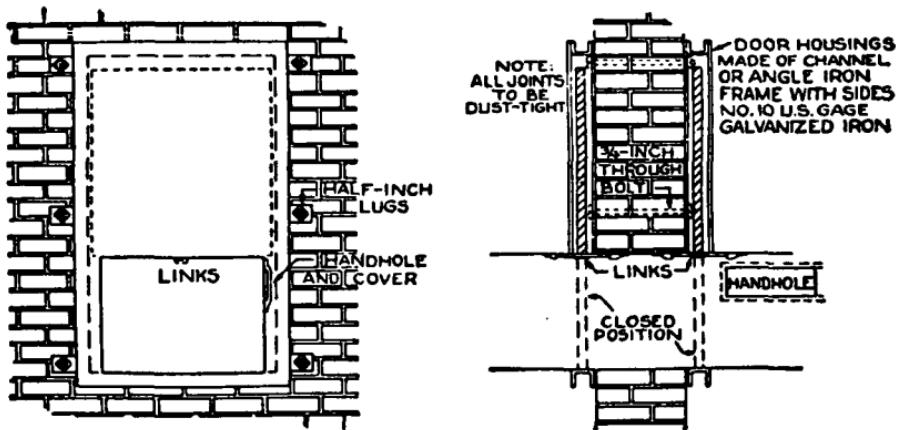


Fig. 1. Suggested type of vertical fire door for duct passing through opening in fire wall.

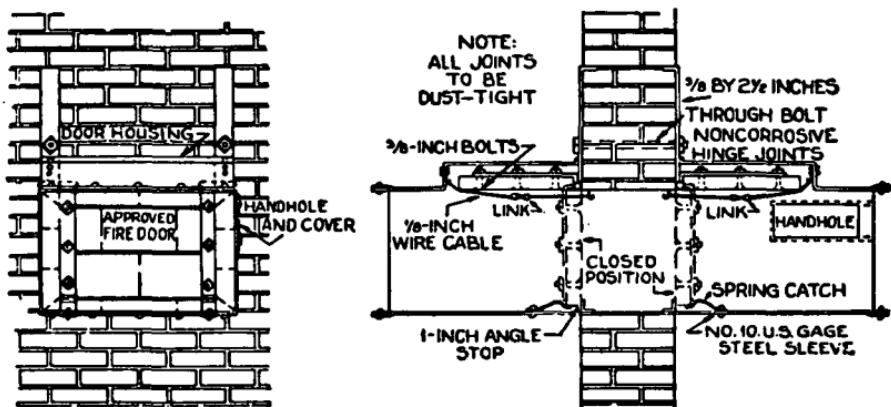


Fig. 2. Suggested type of automatic hinged fire door for duct passing through opening in fire wall.

ducts or the outlets from or inlets to them pass through fire walls, they should be provided with automatic closing fire doors on both sides of the wall through which they pass. (See Figures 1 and 2.)

Such fire doors shall be provided for the protection of openings in fire walls (Class A openings) except that for small openings not exceeding 18 inches in diameter, $\frac{3}{8}$ -inch steel plates may be used in lieu of fire doors, or fire dampers listed by a nationally recognized testing laboratory may be used in accordance with the conditions of their listing.

237. Actuation of fire doors shall be by fusible links or other approved thermal units, such units to be located on both sides of fire wall.

238. Where ducts pass through walls, floors or partitions the space around the duct shall be sealed with rope asbestos, mineral wool or other noncombustible material to prevent the passage of flame and smoke.

239. Hand holes for damper, sprinkler or fusible link inspection or resetting and for residue clean-out purposes, shall be equipped with tight fitting sliding or swinging doors provided with substantial latches, except in the case of vertical sliding doors held in place by gravity.

240. Duct Clearances.

241. All duct systems handling noncombustible materials and operating at approximately room temperature shall have a clearance of at least 6 inches from stored combustible materials, and not less than $\frac{1}{2}$ -inch clearance from combustible construction even though flameproofed, fire-retardant treated or plastered, except as noted in paragraphs 242 and 243.

242. Duct systems handling combustible material shall have a clearance of not less than 18 inches from combustible construction or any combustible material. The clearance to combustible construction may be reduced, provided the combustible construction is protected as described in Table I. If a duct system is equipped with adequate automatic sprinklers, clearance may be as provided in paragraph 241.

243. Duct systems operating at elevated temperatures (above 100°F) shall have clearance from combustible building construction or any combustible material not less than shown in table following:

Duct Gas Temperature	Largest Duct Dimension	Clearance
Up to 600° F. incl.	8 in.	8 in.
	Over 8 in.	12 in.
Over 600°-900° F. incl.	8 in.	18 in.
	Over 8 in.	24 in.
Over 900° F.	All ducts lined with refractories	24 in.

NOTE.—Where experience indicates that fires in duct systems are a fairly common occurrence or there is a likelihood that fires will occur, because of the very nature of the occupancy using such duct systems, a greater clearance may be required as is the case of NFPA No. 33, Spray Finishing Using Flammable Materials; and NFPA No. 96, Vapor Removal from Commercial Cooking Equipment, where a clearance of 18 inches between ducts and unprotected combustible material is required.

Ducts handling materials at temperatures in excess of 900°F shall be lined with refractory material or the equivalent.

The clearance to combustible construction for ducts handling materials not in excess of 900°F may be reduced provided the combustible construction is protected as described in Table I.

TABLE I
Clearances, Inches, with Specified Forms of Protection *

Type of Protection Applied to the Combustible Material. Thicknesses are Minimum	Where the Required Clearance with No Protection is:			
	8 in.	12 in.	18 in.	24 in.
a) $\frac{1}{4}$ -in. asbestos millboard spaced out 1 in.†	3	6	12	18
b) 28-gauge sheet metal on $\frac{1}{4}$ -in. asbestos millboard	3	6	12	16
c) 28-gauge sheet metal spaced out 1 in.†	2	4	9	12
d) 28-gauge sheet metal on $\frac{1}{8}$ -in. asbestos millboard spaced out 1 in.†	2	4	9	12

*All clearances shall be measured from the surface of the duct to combustible material disregarding any intervening protection applied to the combustible material.

†Spacers shall be of noncombustible material.

250. Protection Against Static Electricity.

251. All metal parts of apparatus, used in systems for the removal of flammable gases or vapors, or systems used for conveying com-

bustible or flammable dust, stock or refuse, considered in these requirements, including fans, ducts, etc., as well as shafting in connection therewith, shall be electrically bonded and grounded in an effective and approved manner. (See NFPA No. 77.)

252. When metallic contact is broken at duct joints or at other points on the installation assembly, metallic straps, preferably of copper, shall be installed where necessary to afford effective bonding connections.

253. When systems are used for the handling of flammable gases or vapors or combustible or flammable dust, stock or refuse, static electricity shall be removed from belts by grounded metal combs or other effective means. (See recommendations of NFPA No. 77.)

260. Fire Extinguishing Apparatus, Manual and Automatic.

261. The provision of automatic or special extinguishing equipment for systems handling flammable vapors or combustible materials should be subject to the approval of the authority having jurisdiction. Details of such systems are set forth in following sections covering specific materials being handled.

300. Systems for Removal of Flammable Vapors. (Including Paint Spraying Residue.)

301. Where systems of this class are installed, the following rules and the preceding general rules except as modified herein shall apply.

NOTE.—See paragraph 201.

302. Due to the hazardous nature of the vapors to be removed, it is important that they be withdrawn from the rooms or equipment in which they are generated and taken to the outside of the building in the most direct manner possible. Processes generating such flammable vapor should be located along an outside wall of the building to facilitate efficient vapor removal. No ducts or other portions of any vapor removal system should extend into stories or rooms of a building other than those from which the vapor is being removed. Exhaust outlets to atmosphere should extend above or away from surrounding structures to prevent accumulation of combustible residues on such structures.

310. System Design.

311. In the design of any vapor removal system, control at the point of generation should be provided wherever possible. Such

systems will consist of hoods or enclosures connected to suction ducts. They are more positive and require lower exhaust volumes than general ventilation through remote suction openings.

312. When flammable vapors are so generated that they cannot be readily picked up at the source, general ventilation through a system of suction ducts with inlets to the room or area may be employed. As suction inlets have but little directional effect beyond a few inches from the face of the inlet, such inlets should be located to best produce a sweeping or purging effect that will tend to avoid pockets in which vapors may accumulate. An air supply system properly located with reference to point of vapor generation and exhaust openings will be beneficial in vapor dilution and removal.

313. Where heavier than air vapors or mixtures are handled, exhaust openings located near the floor line will be more effective. This is particularly true when exhaust system is not in operation. Conversely for vapors or mixtures lighter than air, exhaust system inlets should be located near the top of room, hood, or enclosure.

314. Outlets to atmosphere shall be kept clear of and away from any combustible material.

320. Ducts.

321. Ducts installed under this classification shall be independent structures, and not built in the walls. Exhaust ducts should lead to the outside of the building as directly as possible, and never through intermediate rooms.

322. The installation of dampers, valves and shutters in this type of system is not advisable. However, these devices may be necessary at outlets to afford weather protection when the system is shut down or where such devices are used for the final balancing of the exhaust system. In such cases the dampers shall be securely locked to prevent further manipulation, or complete shutoff.

323. Ducts shall be so constructed as to provide structural strength and stability at least equivalent to sheet steel of not less than the following thicknesses:

In Greatest Dimension

Up to 8 in. incl.	No. 24 U. S. gauge
Over 8 in. to 18 in. incl.	No. 22 U. S. gauge
Over 18 in. to 30 in. incl.	No. 20 U. S. gauge
Over 30 in.	No. 18 U. S. gauge

324. Material for duct lining should have a fire hazard classification of 0 when tested in accordance with the Method of Test of Surface Burning Characteristics of Building Materials, NFPA No. 255 or UL 723.

325. No dissimilar matter shall be handled through one exhaust system when the intermingling or contact of one type of material with another would create a fire or explosion hazard in the duct system, collection unit or air flow producing equipment. Operations generating sparks, such as from hot materials or grinding wheels, shall not be consolidated in the same exhaust system that handles flammable or explosive matter.

330. Fire Extinguishing Apparatus, Automatic or Manual.

331. In systems used for the removal of flammable vapors or gases, the installation of an approved fixed pipe system for the application of water, dry chemical, or inert gas is recommended, as conditions warrant. Such systems may be automatically or manually controlled, as required by the authority having jurisdiction. (See Standard for the Installation of Sprinkler Systems, NFPA No. 13, Standard for Water Spray Fixed Systems, NFPA No. 15, Standard for Carbon Dioxide Fire Extinguishing Systems, NFPA No. 12, Standard for Dry Chemical Extinguishing Systems, NFPA No. 17, and Standard on Explosion Prevention Systems, NFPA No. 69.)

400. Duct Systems for Moving, Conveying or Transporting Stock, Vapor or Dust

410. General.

411. The proper design and installation of ducts and system components are necessary for the moving, conveying or transporting of stock, vapors or dust. (Also see Section 300)

412. Except as provided in Section 500, ducts shall be constructed entirely of metal or other noncombustible material and of adequate strength and rigidity to meet the conditions of service and installation requirements. The sheet metal duct system shall be properly protected where subject to mechanical damage.

413. All duct systems shall be installed in a permanent and workmanlike manner.

420. System Design.

421. The construction, workmanship and installation of the duct and system components which conform to the *Industrial Ventilation — A Manual of Recommended Practices* published by the American Conference of Governmental Industrial Hygienists, is acceptable unless otherwise modified by this standard.

422. In systems handling combustible materials or flammable vapors, the A.M.E. shall comply with Section 320 and be located on the clean air side of the collector.

423. Conveying systems for cotton and similar textile materials which are readily ignitable shall be designed so as not to create suction in machines producing the material.

424. Rooms or bins into which readily ignitable material is discharged by a collecting or conveying system shall be of non-combustible or fire-resistive construction. Such rooms or bins shall be provided with explosion vents in accordance with the Guide for Explosion Venting, NFPA No. 68.

425. The use of a trap at the junction of a hood or a branch duct may be permitted by the authority having jurisdiction, provided it is so arranged that it cannot be filled completely with dust or stock.

426. Approved magnetic separators of the permanent magnetic or electromagnetic types shall be installed at those points where combustible materials which contain foreign ferrous particles enter the system. The separators shall be of sufficient size to insure the removal of all ferrous materials passing over them.

427. Where practical, inert gas may be used to create safe atmospheres within the system, especially those handling exceedingly fine particle stock. (See Explosion Prevention Systems, NFPA No. 69.)

430. Construction.

431. Metal ducts shall be constructed of sheet steel of not less than the following gauges:

Diameter of Straight Ducts	U. S. Standard Gauge for Steel Duct		
	Class I	Class II	Class III
Up to 8"	24	22	20
Over 8" to 18"	22	20	18
Over 18" to 30"	20	18	16
Over 30"	18	16	14

Class I: Includes nonabrasive applications such as paint spray, woodworking, pharmaceutical and food products, discharge ducts from dust collectors.

Class II: Includes nonabrasive materials in high concentrations. (Low pressure pneumatic conveying) moderately abrasive materials; and highly abrasive materials in light concentrations. Typical examples are conveying of chemicals and wood dusts; exhaust of foundry shakeouts and sand-handling systems, grain dusts; coal crushing and screening and grinding; buffing and polishing.

Class III: Includes all highly abrasive materials in moderate to heavy concentration and moderately abrasive materials in heavy concentrations such as low pressure conveying of tobacco; exhaust systems from sand and grit blasting, abrasive cleaning operation, rock and ore screening, crushing dryers and kilns; fly ash from boiler stacks.

432. For Class II or Class III materials, all sheet metal elbows, wyes and bends shall be made from materials at least two gauges heavier than is required for straight duct-work of the same diameter except that for No. 14 gauge and heavier, the elbows and straight duct-work may be of the same gauge.

433. For Class II or Class III materials, round sheet metal elbows shall be of at least five piece construction or equivalent for ducts six inches in diameter or less, and of seven piece construction or equivalent for larger ducts with a minimum centerline radius equal to the duct diameter. In place of the long radius elbows specified above, rectangular elbows, venturi-shaped elbows or other bends of equivalent low resistance design may be used.

434. The main suction duct should receive only one branch in a section of same area but in no case shall it receive more than two branches per section unless the duct is designed to accommodate such a condition.

435. Every branch duct shall connect with the main duct at an angle not exceeding 45 degrees, inclined in the direction of the airflow.

436. The main suction and discharge ducts shall be made as short as practicable.

437. Every duct shall be kept open and unobstructed throughout its length and no screen shall be placed in it.

438. Additional branch ducts shall not be added to an existing system without redesigning the system. Branch ducts may not be disconnected nor unused portions of the system be blanked off without providing orifice plates to maintain required airflow.

439. When flexible duct section is necessary, it shall be a type which will not restrict the airflow, will be as short as possible, and number of flexible sections shall be kept to a minimum.

440. System Details

441. A minimum standard for longitudinal seams of ducts is lapped and riveted or spot welded on three-inch centers maximum, except that double-lock seams may be used on Class I ducts.

442. Girth joints of ducts shall be made with the inner lap in direction of airflow, with one-inch lap for diameters 19 inches or less and with one and one-quarter-inch laps for diameters over 19 inches.

443. Hoods shall be free of sharp edges or burrs and reinforced to provide necessary stiffness.

444. The duct connection to a fan inlet shall be made with a split sleeve drawband at least one pipe diameter long, but not less than 12 inches or be an approved flexible connector.

445. Transitions in mains and sub-mains are to be tapered; the taper shall be five inches long for each one-inch change in diameter.

446. Access openings or cleanouts shall be provided as necessary for proper maintenance of equipment near each elbow, change of direction of more than 15 degrees or duct junction in horizontal sections, except for systems with noncorrosive gases and vapors containing no particulate matter.

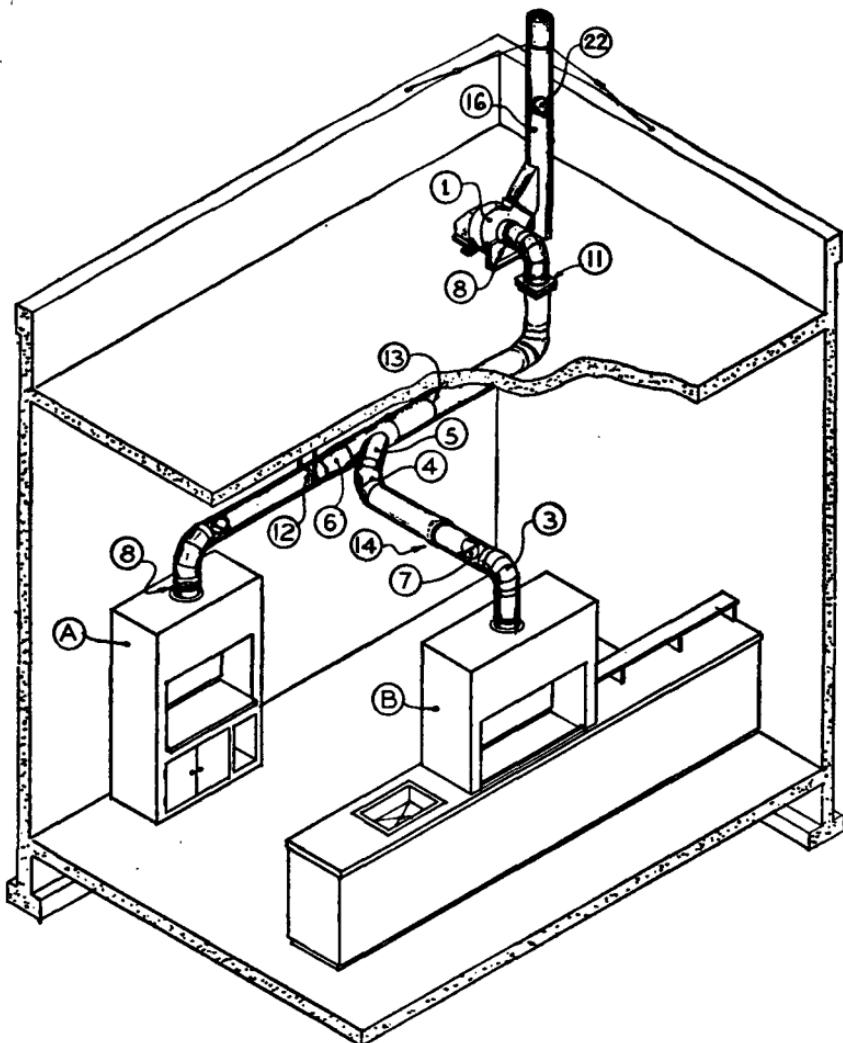
447. Where blast gates are used for adjustment of the system, they shall be located near the connection of the branch to the main. A means of locking the blast gates after adjustments have been made shall be provided. Butterfly dampers shall not be permitted.

448. When transporting stock or dust, rectangular ducts may be used only when clearance prevents the use of round ducts. Rectangular ducts shall be made as nearly square as possible. Construction details are to be equal to round duct construction whose diameter equals the longest side.

500. Plastic Systems for Removal of Nonflammable Corrosive Fumes and Vapors**510. General**

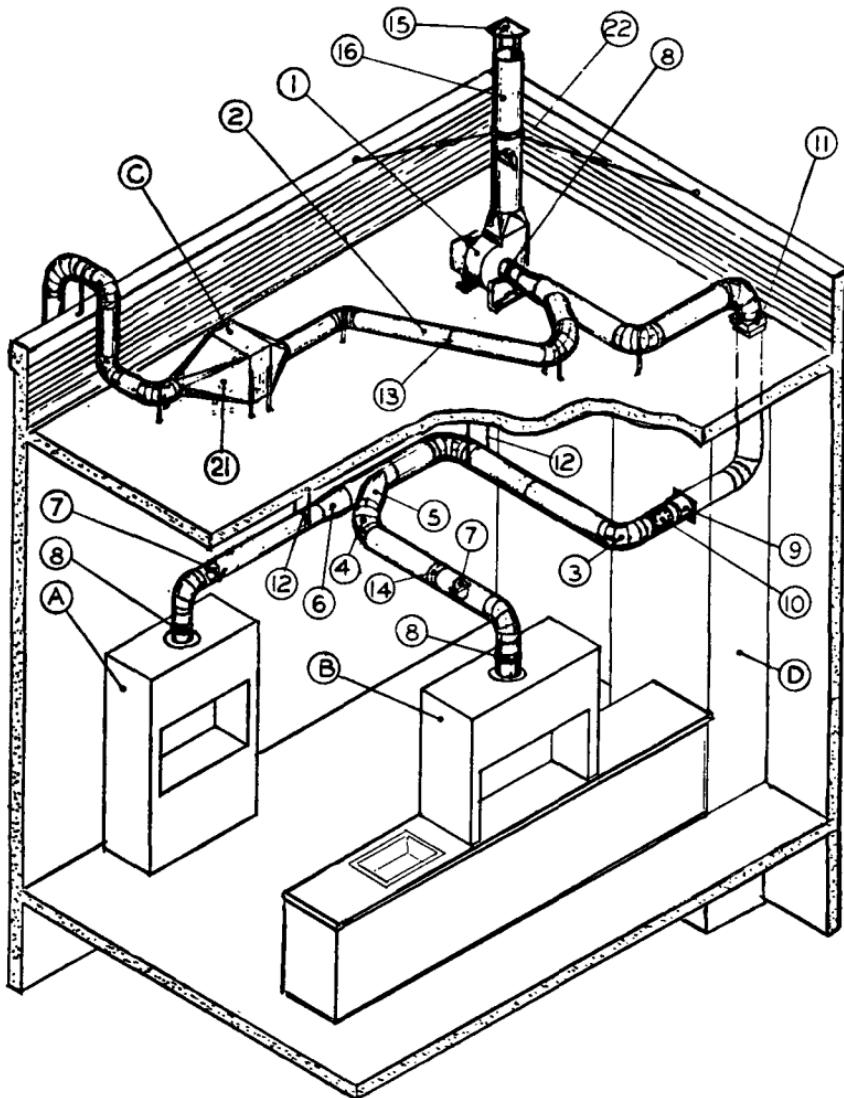
5101. Duct systems of plastic material may be used to handle only nonflammable corrosive fumes and vapors when conventional metal duct systems will not be adequate. The choice of the type material is the responsibility of the design engineer, but contained herein are minimum standards of materials, construction, and workmanship deemed necessary to insure minimum fire hazard in the operation of these systems. All chemical resistant plastics have heat limitations which must be considered when designing a system.

5102. The plastic shall have a flame spread rating of 25 or less as measured in accordance with NFPA No. 255, Standard Method of Test for Surface Burning Characteristics of Building Materials (UL-723, ASTME-84-69).


5103. Plastic duct material used in multistory buildings or which run through concealed spaces other than fire-rated vertical shafts shall have a smoke developed rating of 50 or less, unless the duct system is protected externally by an approved automatic sprinkler system.

5104. **System Components.** In order to avoid misunderstandings caused by different terminology in various parts of the country and within the air handling industry, the following components of a typical industrial exhaust system and a typical laboratory fume hood exhaust system are described by diagrammatical reference to the numbered and lettered components listed below, shown in Figures 5, 6, 7, and 8;

I. Equipment


- A. Cabinet type laboratory fume hood
- B. Bench type laboratory fume hood
- C. Filter box for special or high efficiency filters
- D. Shaft
- E. Horizontal type fume scrubber
- F. Vertical type fume scrubber
- G. Service pit or trench

(continued on page 23)

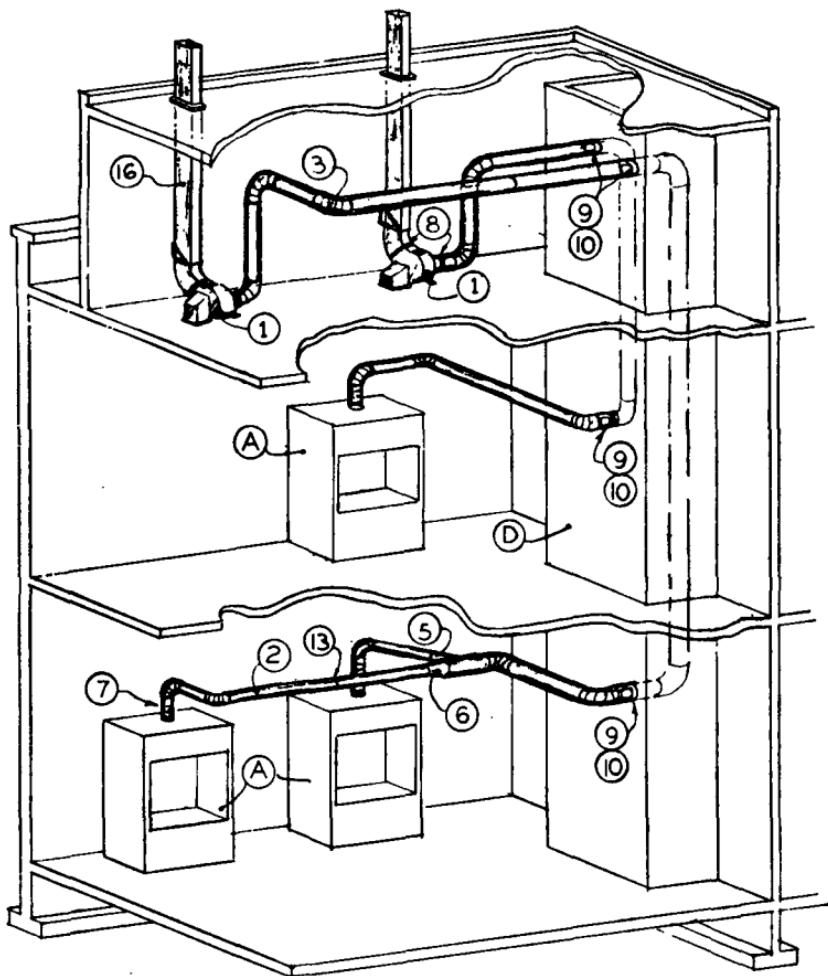
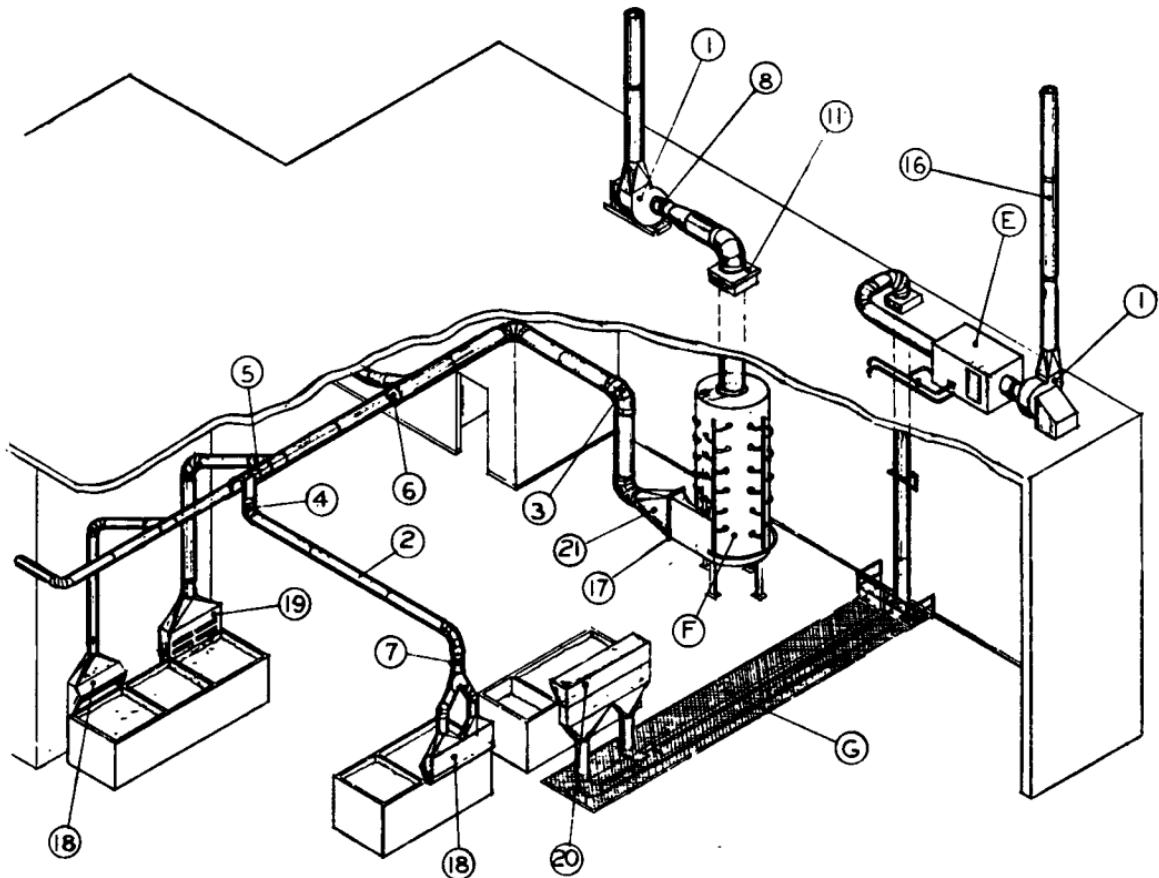

See Legend in Par. 5104.

Fig. 5. Rooftop exhaust system for one-story building occupied by a cabinet type laboratory fume hood and bench type laboratory fume hood.

See Legend in Par. 5104.

Fig. 6. Exhaust system with filter box for multistory building occupied by a cabinet type laboratory fume hood and bench type laboratory fume hood.



See Legend in Par. 5104.

Fig. 7. Internal exhaust system for multistory building occupied by cabinet type laboratory fume hoods.

See Legend in Par. 5104.

Fig. 8. Exhaust system for one-story building occupied by various type fume hoods with vertical type fume scrubber and service trench.

II. System Components

1. Air Moving Equipment (Centrifugal type exhaust fan)
2. Horizontal duct section
3. 90° Elbow
4. Elbow (less than 90°)
5. Lateral Entry
6. Transition
7. Manual Balancing Damper
8. Flexible Connection
9. Fire Damper
10. Access Door
11. Counterflashing
12. Duct Hanger
13. Circumferential Girth Joint (Butt Welded)
14. Bell end duct seam
15. Weather Cap
16. Fan discharge stack
17. Flanged duct connection
18. Open face tank exhaust hood (updraft)
19. Slotted face tank exhaust hood (updraft)
20. Open face tank exhaust hood (downdraft)
21. Round to rectangular (or square) Transitional Fitting
22. Gravity operated back draft damper

5105. Installation. The ducts shall lead to the outside as directly as practicable. They shall not penetrate fire walls or fire rated floors. When penetrating a fire rated shaft wall or fire partition, the opening shall be protected by a fire damper, protected against corrosion from the agent being conveyed.

5106. Manifold systems shall be limited to 50,000 cfm (cubic feet per minute) capacity, except when special process engineering considerations necessitate larger manifolded systems. Such systems shall be designed by a registered professional engineer.

5107. **Flexible Connections.** Vibration isolation between duct-work and air moving equipment can be accomplished by flexible connections at the inlet and discharge of the equipment. Corrosion resistance, smoke developed rating, and flame spread rating of these connections shall be equal to that of the material of the duct system.

5108. All hoods and air moving equipment (AME) which are part of the system shall have flame spread rating equal to the material of the duct system. Design and workmanship shall meet all physical requirements and shall conform to the general sections of this standard.

5109. **Fire Protection.** Automatic protection shall be provided at the duct intake, hood, canopy and the immediate areas thereof to quickly extinguish source fires. (See NFPA Nos. 11, 12, 15, and 17.)

Sensing elements provided at these aforementioned sources shall be arranged to shut down the blower system. This automatic shutdown may be waived if fire control can be improved through continued operation.

5110. **Identification.** Plastic duct components shall be identified as to the manufacturer, type of material, flame spread rating, and smoke-developed rating.

5111. **Maintenance Responsibility.** After a system is installed and turned over to the owner or operator, it is important that the system is maintained in good operating condition. This responsibility entails periodic checks of all components at least twice each year. Check out shall include at least the following parts of the system:

Hood face velocity for all types of hoods

Clean filters in filter boxes

Proper function of fume scrubbers

Proper operation of air moving equipment, including greasing of bearings and replacement of worn belts on drives

Fan discharge stack