
TECH NICAL
REPORT

ISO/IEC
?R 10167

First edition
1991-11-15

Information technology - Open Systems
Interconnection - Guidelines for the application
of Estelle, LOGOS and SDL

Technologies de l'information - Interconnexion de systèmes ouverts -
Principes directeurs pour l'application d'lfstelle, LOTOS et SDL

Reference number
IÇOiIEC TR 10167:1991(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Contents

List of Figures

Foreword

Introduction

1 scope

2 References

3 Terminology
3.1 Architectural Terms
3.2 FDTTerms

.

.

4 FDT General Characteristics
4.1 Introduction .
4.2 The Nature and Purpose of FDTs

The Purpose of FDTs .
4.2.2 Use in Development .
4.2.3 Assessment of FDTs .

4.3 Estelle .
4.4 LOTOS .
4.5 SDL .
4.6 Benefits of FDTs .
4.7 Tools for FDTs .

4.2.1

5 Guide to the Examples
5.1 Explanation of the Examples .

5.1.1
5.1.2 Examples of Basic Architectural Concepts
5.1.3 Daemon Game .
5.1.4 Sliding Window Protocol .
5.1.5 Abracadabra Service and Protocol
5.1.6 A Transport Protocol .

5.2 How to read the Examples .

Examples of Basic FDT Concepts

ix

xi

xiii

1

1

1
2
2

2
2
2
2

3
3
3
3
3
4
4

5
5
5
5
5
5
5
5
6

O ISOllEC 1991
All rlghts reserved . No part of !his publication may be reproduced or utilized in any form
or by any means. electronic or mechanical. including photocopying and microfilm. without
permission in writing from the publisher .

Printed in Switzerland
ISOIIEC Copyright Office 0 Case Postale 56 CH-1211 Genève 20 Swi!zerland

ii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IE@ TR 10167 : 1991 (E)

6 Examples of Basic FDT Concepts
6.1 Abstraction .

6.1.1 Estelle Representation .
6.1.2 LOTOS Representation .
6.1.3 SDL Representation .

6.2 Information
6.2.1 Estelle Representation .
6.2.2 LOTOS Representation .
6.2.3 SDL Representation .

6.3.1 Estelle Representation
6.3.2 LOTOS Representation .

6.3 Action .

6.3.3 SDL Representation
6.4 Interaction .

6.4.1 Estelle Representation .
6.4.2 LOTOS Representation .
6.4.3 SDL Representation .

6.5 Interaction Point

6.5.2 LOTOS Representation .
6.5.3 SDL Representation .

6.5.1 Estelle Representation

7 Examples of Basic Architectural Concepts
7.1 Service Access Point .

7.1.1 Estelle Representation .
7.1.2 LOTOS Representation .
7.1.3 SDL Representation .

7.2 Endpoint
7.2.1 Estelle Representation
7.2.2 LOTOS Representation .
7.2.3 SDL Representation .

.

7
7
7
7
7
7
7
7
7
7
7
7
7
8

8
8
8
8
8
8
9

9
9
9
9

10
10
10
10
10

7.3 Service Primitive Parameter . 11
7.3.1 Estelle Representation . 11
7.3.2 LOTOS Representation . 11
7.3.3 SDL Representation . 11

7.4 Service Data Unit 11
7.4.1 Estelle Representation . 11
7.4.2 LOTOS Representation . 12
7.4.3 SDL Representation . 12

7.5 Service Primitive 12
7.5.1 Estelle Representation . 12
7.5.2 LOTOS Representation . 12

7.6 Frotocol Entity 12

.

.

7.5.3 SDL Representation 12
.

iii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC Ti? 10167 : 1991 (E)

7.6.1 Estelle Representation .
7.6.2 LOTOS Representation .
7.6.3 SDL Representation .

7.7.1 Estelle Representation .
7.7.2 LOTOS Representation .
7.7.3 SDL Representation .

7.8 Protocol Data Unit .
7.8.1 Estelle Representation .
7.8.2 LOTOS Representation .
7.8.3 SDL Representation .

7.9.1 Estelle Representation .
7.9.2 LOTOS Representation .
7.9.3 SDL Representation .

7.1 O Multiplexing .
7.10.1 Estelle Representation .
7.10.2 LOTOS Representation .
7.10.3 SDL Representation .

7.1 1.1 Estelle Representation .
7.1 1.2 LOTOS Representation .
7.1 1.3 SDL Representation .

7.12 Concatenation .
7.12.1 Estelle Representation .
7.12.2 LOTOS Representation .
7.12.3 SDL Representation .

7.1 3 Segmentation .
7.13.1 Estelle Representation .
7.13.2 LOTOS Representation .
7.1 3.3 SDL Representation .

7.14Service.
7.14.1 Estelle Representation .
7.14.2 LOTOS Representation .
7.14.3 SDL Representation .

. 7.7 Protocol

. 7.9 Connection

. 7.1 1 Splitting

8 Daemon Game Example
8.1 Informal Description .
8.2 Deficiencies in the Informal Description

8.2.1 Presence of Daemon .

Attempt to play before Login
Identification of Players and Games

8.2.5 Player Use of System Signals

. I 8.2.2 Login to a Current Game
8.2.3
8.2.4

13
13
13
13
13
14
14
15
15
15
15
16
16
16
16
16
16
17
17
17
17
18
18
18
18
18
19
19
19
20
20
21
21
21
21

22
22
22
22
22
22
22
22

iv

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

8.2.7 Counting of ‘Bump’ Signals 23
8.3 Estelle Description . 23

8.3.1 Architecture of the Formal Description 23
8.3.2 Explanation of Approach . 23
8.3.3 Formal Description . 23
8.3.4 Alternative Formal Description 25
8.3.5 Subjective Assessment . 26

8.4 LOTOS Description . 26
8.4.1 Architecture of the Formal Description 27
8.4.2 Explanation of Approach . 27
8.4.3 Formal Description . 27
8.4.4 Alternative Formal Description 29
8.4.5 Subjective Assessment . 31

I 8.5 SDL Description . 31
8.5.1 Architecture of the Formal Description 31
8.5.2 Explanation of Approach . 31
8.5.3 Formal Description . 32
8.5.4 Subjective Assessment . 33

8.6 Assessment of the Application of the FDTs 33

9 Sliding Window Protocol Example 38
9.1 Informal Description . 38

9.1.1 Overview . 38
9.1.2 Sequence Numbering . 38
9.1.3 Transmitter Behaviour . 38
9.1.4 Receiver Behaviour . 38

9.2 Deficiencies in the Informal Description 39
9.2.1 Underlying Medium . 39
9.2.2 Window Size . 39
9.2.3 Flow Control . 39
9.2.4 Delivery of Corrupted Messages 39
9.2.5 Value of Time-out Period . 39
9.2.6 Consistent Use of NextRequired 39
9.2.7 Receive Window Size . 39
9.2.8 Sequence of Operations . 39
9.2.9 Transmit Window Size . 39

9.2.1 O Receive Window Size . 39
9.2.1 1 Corruption of Messages . 40
9.2.12 Transfer of Data and Acknowledgements 40
9.2.13 Retransmission on Timeout 40

9.3 Estelle Description . 40
9.3.1 Architecture of the Formal Descriptions 40
9.3.2 Explanation of Approach . 40

V

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC Ti? 10167 : 1991 (E)

9.3.3 Formal Description of the Protocol 40
9.3.4 Formal Description of the Medium 43
9.3.5 Subjective Assessment . 44

9.4 LOTOS Description . 44
9.4.1 Architecture of the Formal Descriptions 44
9.4.2 Explanation of Approach . 47
9.4.3 Formal Description of the Protocol 47
9.4.4 Formal Description of the Medium 54
9.4.5 Subjective Assessment . 56

9.5 SDL Description . 56
9.5.1 Architecture of the Formal Descriptions 56
9.5.2 Explanation of Approach . 56
9.5.3 Formal Description of the Protocol 57
9.5.4 Formal Description of the Medium 57
9.5.5 Subjective Assessment . 57

9.6 Assessment of the Application of the FDTs 57

10.1 Informal Description . 72
10.1.1 Introduction . 72
10.1.2 Service Description . 72

1 O . 1.3 Protocol Description .
10.1.4 Communications Medium Service Description
10.1.5 Model . 73

10.2 Deficiencies in the Informal Description 73
10.2.1 Flow Control . 73

10.2.2 Premature Transmission of DT
10.2.3 Stopping Retransmission on Error
10.2.4 Retransmission Limit and Period
10.2.5 Repeated ConReq . 74

10.2.6 DR when Disconnected .
10.2.7 Connection Refusal . 74
10.2.8 Connection Refusal . 75

10.2.9 Ignoring Out-of-sequence Data
10.3 Estelle Description . 75

10.3.1 Architecture of the Formal Descriptions
10.3.2 Explanation of Approach .
10.3.3 Formal Description of the Service 77

10.3.4 Formal Description of the Protocol
10.3.5 Subjective Assessment . 85

10.4 LOTOS description . 85

10.4.1 Architecture of the Formal Descriptions
10.4.2 Explanation of Approach .
10.4.3 Formal Description of the Service 86

10 Abracadabra Service and Protocol Example 72

72
73

74
74
74

74

75

. 75
76

79

. 85
86

vi

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC Ti? 10167 : 1991 (E)

10.4.4 Formal Description of the Protocol 91
10.4.5 Subjective Assessment . 98

10.5 SDL Description . 98
10.5.1 Architecture of the Formal Descriptions 98
10.5.2 Explanation of Approach . 99
10.5.3 Formal Description of the Service 99
10.5.4 Formal Description of the Protocol 99
10.5.5 Subjective Assessment . 99

10.6 Assessment of the Application of the FDTs 116

11 A Transport Protocol Example 117
11.1 Informal Description . 117

11.1.1 Origins . 117
1 1.1.2 Transport Functions . 117
11.1.3 Connection Establishment and Termination Procedures . . . 118
11.1.4 Description of Data Transfer Procedures 118
1 1.1.5 Treatment of Procedure Errors 119
11.1.6 Formats . 119
11.1.7 Invalid TPDUs . 124

11.2 Deficiencies in the Informal Description 125
11.2.1 Service Definitions . 125
11.2.2 Description of Procedures 126
11.2.3 Protocol Classes . 126
11.2.4 Missing Definitions . 126
11.2.5 Unspecified Functions . 127
1 1.2.6 Non-use of Concatenation 127
1 1.2.7 Responding Address . 127
11.2.8 Multiple SAP Connections 127
1 1.2.9 Reaction to Incorrect TCA 127

11.3 Estelle Description . 127
11.3.1 Architecture of the Formal Description 127
1 1.3.2 Explanation of Approach . 128
11.3.3 Formal Description . 129
11.3.4 Subjective Assessment . 138

1 1.4 LOTOS Description . 138
1 1.4.1 Structure of the Formal Description 138
11.4.2 Explanation of Approach . 139
1 1.4.3 Formal Description . 140
11.4.4 Subjective Assessment . 171

1 1.5 SDL Description . 171
11 5.1 Architecture of the Formal Description 171
11.5.2 Explanation of Approach . 172
11 5.3 Formal Description . 172
1 1.5.4 Subjective Assessment . 172

vii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1997 (E)

11.6 Assessment of the Application of FDTs 172

Annexes 196

A Bibliography 196
A.l International Standards . 196
A.2 Documents . 196

B . 1 Specifications and Implementations 196
8.2 Formal Specifications . 196
8.3 Levels of Abstraction . 196
8.4 FDTTerms . 197

8.4.1 Formalisation . 197
8.4.2 Abstraction . 197

Specification, Description. and Implementation 19V
8.4.4 Model . 197
8.4.5 Interpretation . 198
8.4.6 Constructive . 198
8.4.7 Information . 198
8.4.8 Action . 198
8.4.9 Interaction . 198
8.4.1 O Composition . 198
8.4.1 1 Non-Determinism . 198

I

B FDT Characteristics 196

8.4.3

C FDT Objectives 198
C.l Scope of Application . 198
C.2 General Requirements . 198

C.3 Appropriate Level of Abstraction .
C.4 Design Support . 199
C.5 Implementation Support . 199

D Evaluating Formal Descriptions 200
D.l Layer-Independent Checklists . 200

D.l.l General . 200
D.1.2 Service Descriptions . 200
D.1.3 Protocol Descriptions . 200

D.2.1 General . 200
D.2.2 Description of a Single Object 200
0.2.3 Description of Several InterconnectedObjects 200
D.2.4 Different Descriptions of Same Object 200

D.3 Verification Methods and Tools . 201
D.4 Validation Methods and Tools . 201

199

D.2 Layer-Independent and FDT-Dependent Checklists 200

viii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

1 1.1 Receiving Terminal Reaction to TCR Addressing Options 119
11.2 Calling Terminal Reaction to TCA Addressing Options 119
11.3 Parameter Element Coding Structure 120
11.4 General Block Structure . 120
11.6 Transport Connection Request Block 120
1 1.5 Transport Layer Block Types . 121
1 1.7 Extended Addressing . 122
11.8 Transport Data Block Size Parameter 122
1 1.9 Transport Connection Accept Block 122
11 . 10Transport Connection Clear Block 123
11.1 1 Additional Clearing Information Parameter 123
11.12 Transport Block Reject Block . 123
1 1.13 Rejected Block Parameter . 123

4.1 Development through Refinement 3

5.1 Typical Layout of an Example . 6

8.1 Architecture of the Daemon Game in Estelle 23
8.2 Alternative Architecture of the Daemon Game in Estelle 25
8.3 SDL Specification of Daemon Game 34

9.1 Transmitter Window Parameters 38
9.2 Receiver Window Parameters . 38
9.3 Architecture of the Sliding Window Protocol in Estelle 40
9.4 Architecture of the Sliding Window Protocol in LOTOS 45
9.5 Outline Decomposition of the Sliding Window Protocol in LOTOS . 45
9.6 Processes of the Sliding Window Protocol in LOTOS 46
9.7 46
9.8 Processes of Sliding Window Medium in LOTOS 46
9.9 SDL Specification of Sliding Window Protocol 58
9.1 O SDL Specification of Sliding Window Medium 69

Outline Decomposition of Sliding Window Medium in LOTOS

10.1 Relationship between AbracadabraService Primitives 72
10.2 Abracadabra Protocol Data Units 72
10.3 Communications Medium Service Primitives 73
10.4 Abracadabra Service and Protocol Model 74
10.5 Architecture of the Abracadabra Service in Estelle 75
10.6 Architecture of the Abracadabra Protocol in Estelle 75

85
85

10.9 SDL Specification of Abracadabra Service 100
1 O . 1 O SDL Specification of Abracadabra Protocol 107

10.7 Outline Decomposition of the Abracadabra Service in LOTOS
10.8 Outline Decomposition of the Abracadabra Protocol in LOTOS . . .

. . .

ix

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/iEC TR 10167 : 1991 (E)

1 1.1 4 Transport Data Block . 124
11.1 5 Architecture of A Transport Protocol in Estelle

1 1.17 Decomposition of Process TPEConnection 139
11.18 SDL Specification of A Transport Protocol

128
11.16 Constraint-Oriented Decomposition of a Transport Protocol Entity . 139

173

8.1 Domain of Applicability of an FDT 197

a

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

Foreword

I S 0 (the International Organization for Standardization) and IEC (the
International Electrotechnical Commission) form the specialized system
for worldwide standardization. National bodies that are members of I S 0
or IEC participate in the development of international Standards through
technical committees established by the respective organization to deal
with particular fields of technical activity. IS0 and IEC technical com-
mittees collaborate in fields of mutual interest. Other international or-
ganizations, governmental and non-governmental, in liaison with IS0
and IEC, also take part in the work.

In the field of information technology, IS0 and IEC have established a
joint technical committee, ISO/IEC JTC 1.

The main task of technical committees is to prepare International Stan-
dards, but in exceptional circumstances a technical committee may
propose the publication of a Technical Report of one of the following
types:

- type 1, when the required support cannot be obtained for the publi-
cation of an International Standard, despite repeated efforts;

,>

- type 2, when the subject is still under technical development or
where for any other reason there is the future but not immediate
possibility of an agreement on an International Standard;

- type 3, when a technical committee has collected data of a different
kind from that which is normally published as an International Stan-
dard (“state of the art”. for example).

Technical Reports of types 1 and 2 are subject to review within three
years of publication, to decide whether they can be transformed into
International Standards. Technical Reports of type 3 do not necessarily
have to be reviewed until the data they provide are considered to be no
longer valid or useful.

ISO/IEC TR 10167, which is a Technical Report of type 3, was prepared
by Joint Technical Committee ISO/IEC JTC 1, Information technology.

Annexes A, B, C and D of this Technical Report are for information only.

The formal descriptions in this Technical Report have been prepared
with care, and have been checked by tools wherever practicable. How-
ever, the aim of this Technical Report is to be tutorial rather than defin-

ISO/IEC Ti? 10167 : 1991 (E)

xi

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

itive in nature. The emphasis has therefore been on giving timely
guidance on the use of FDTs.

It is therefore possible that some errors remain in the formal de-
scriptions. Readers are encouraged to report these. Errors in SOL de-
scriptions should be reported to:

CCITT Secretariat
(SG X Question X/1 - FDT)
Rue Varembé 2
GENEVA
Switzerland

Errors in Estelle or LOTOS descriptions should be reported to:

ISO/IEC JTC 1/SC 21 Secretariat
(Project 1.21.45)
1430 Broadway
NEW YORK
NY 10018
USA

via the appropriate National Standards Body.

xii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Introduction
Formal Description Techniques have been developed to be used in the formal spec-
ification of OS1 and other telecommunications services and protocols. SDL in par-
ticular has been developed for application in the wider field of telecommunications
systems, but in this Technical Report the focus is on the specification of OS1 services
and protocols.
The purpose of this Technical Report is:

a) to aid the users of the FDTs (Formal Description Techniques) Estelle, LOTOS,

b) to assist and encourage the use of the FDTs for specifying OS1 services and

c) to introduce the FDTs through a carefully chosen set of graded examples; and
d) to assist and encourage the use of the FDTs for defining unambiguous require-

e) to illustrate the errors and ambiguities which can arise with natural language

f) to illustrate how basic architectural ideas may be represented using FDTs.

and SDL; and

protocols; and

ments for implementation and conformance testing; and

descriptions; and

xiii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

TECHNICAL REPORT ISO/IEC TR 10167 : 1991 (E)

Information technology - Open Systems Interconnection -
Guidelines for the application of Estelle, LOTOS and SDL

1 Scope
This Technical Report provides:

a) an introduction to the nature and purpose of FDTs; and
b) formal descriptions in each of the FDTs for selected

examples described in natural language; and
c) guidance to the FDT users as to how to judge and im-

prove the quality of formal descriptions: and
d) management guidance to FDT users as to how to han-

dle the relationship between informal and formal de-
scriptions, and between formal descriptions; and

e) an implicit basis for comparison of the FDTs.

This Technical Report does not provide:

a) tutorials on the FDTs and the OS1 architecture; and
b) a means of formally mapping between descriptions pro-

duced using different FDTs; and
c) an explicit comparison of the FDTs. a -

The definition of each FDT, a tutorial on its usage, and the
definition of the OS1 architecture are indicated in clause 2.
The intended audience for this Technical Report is those
who require to develop formal descriptions, and those who
require to use FDTs generally.

2 References
The following standards contain provisions that, through
reference in this text, constitute provisions of this Technical
Report. At the time of publication, the editions indicated
were valid. All standards are subject to revision, so parties
to agreements based on this Technical Report are encour-
aged to investigate the possibility of applying the most re-
cent editions of the standards indicated below. Members

'To be published

of IEC and IS0 maintain registers of currently valid Interna-
tional Standards.
A bibliography of related documents is given in Annex A.
IS0 7498 : 1987, information processing systems - Open
Systems Interconnection - Basic Reference Model.
ISOKR 8509 : 1987, Information processing systems -
Open Systems Interconnection - Service conventions.
IS0 8807 : 1989, information processing systems - Open
Systems interconnection - LOTOS - A formal description
technique based on the temporal ordering of observational
behaviour.
IS0 9074 : 1989, Information processing systems - Open
Systems Interconnection - Estelle - A formal description
technique based on an extended state transition model.
ISOKR 10023 : -' , Information processing systems -
Open Systems interconnection - Formal description of IS0
8072 (transport service definition) in LOTOS.
CCllT T.70, Network-Independent Basic Transport Service
for the Telematic Services (Red Book).
CCllT Z. 100, SDL, Specification and Description L anguage
(Blue Book).
CCllT Z. 1 O0 Annex D, SDL User Guidelines (Blue Book).
CCllT Z, 1 O0 Annex F, SOL Formal Definition (Blue Book).
CCllT 2.200, Open Systems Interconnection Basic Refer-
ence Model(Red Book).

3 Terminology
The following terms are referenced within the Technical Re-
port. Where a term is used with a particular meaning (e.g.
an FDT concept, keyword, or variable) it is given in bold
face type.

1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

3.1 Architectural Terms
The following terms are used in accordance with the defini-
tions in IS0 7498 and CClT X.200:

a) (N)-association
b) concatenation
c) (N)-connection
d) (N)-connection-endpoint
e) (N)-entity
f) (N)-facility
g) flow-control
h) (N)-funbtion
i) multiplexing
j) (N)-protocol
k) (N)-protocol-data-unit

I) segmentation
m) (N)-service
n) (N)-sepice-access-point
O) (N)-setvice-data-unit
p) splitting.

The following terms are used in accordance with the defini-
tions in ISO/TR 8509:

q) confirm
r) indication
s) request
t) response
U) (N)-primitive
v) (N)-service-provider
w) (N)-service-user.

For brevity, the above terms are referred to in this Technical
Report without the (N)- prefix (e.g. Service Access Point).

3.2 FbTTerms
The following FDT terms are referenced within this Tech-
nical Report. For those unfamiliar with FDT terminology, a
tutorial introduction is given in Annex B.

a) abstract, abstraction
b) action
c) complosition, decomposition
d) constructive, non-constructive
e) description
1) formal, formalisation
g) implementation
h) information
i) interaction

2

j) interpretation
k) model
I) non-determinism

m) specification.

4 FDT General Characteristics

4.1 Introduction
Formal Description Techniques exhibit different strengths
with respect to their location on the range from abstract
to implementation-oriented descriptions. All FDTs offer the
means for producing unambiguous descriptions of OS1 Ser-
vices and Protocols in a more precise and comprehensive
way than natural language descriptions.
FDTs provide a foundation for analysis and verification of
a description. The target of analysis and verification may
vary from abstract properties to concrete properties.
Natural language descriptions remain an essential adjunct
to formal descriptions, enabling an unfamiliar reader to gain
rapid insight into the structure and function of Services and
Protocols.

4.2 The Nature and Purpose of FDTs
4.2.1 The Purpose of FDTs
ISO/TC97/SC21 has developed International Standards for
two FDTs:

a) Estelle (based on Pascal, with extensions to describe
finite state machines); and

b) LOTOS (based on the mathematical techniques CCS
(Calculus of Communicating systems), CSP (Com-
municating Sequential Processes), and ACT ONE).

CCITT/SGB(has already developed and issued a Recom-
mendation for the FDT

c) SDL (based on an extended finite state machine mo-
del with two concrete syntaxes, one graphical and one
textual).

All three FDTs share a common basis, namely labelled tran-
sition systems, for expressing dynamic behaviour. Estelle
uses Pascal data types for data description, while LOTOS
and SDL use Abstract Data Types.
The objectives of FDTs are (in brief):

a) unambiguous, clear and concise specifications; and
b) a basis for determining completeness of specifications;

and
c) a foundation for anaiysing specifications for correct-

ness, efficiency, etc.; and

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

more abstract .. -----
I I I
I I ,v --------
I check I 1 SPEC i 1
I consistency I I _ _ _ _ _ _ _ _ _ _ I
I l I I -
I l _ _ - _ _ l I I
I I I
I refine I I check properties
I _ _ _ _ I I are preserved
I I I I I
I I -v-_-v-l_-
I check I I SPEC i+l I
I consistency I I _ _ _ _ _ _ _ _ _ _ I
I I I
I I _ _ _ _ I
V

more concrete

0 Figure 4.1 : Development through Refinement

d) a basis for determining conformanceof implementations

e) a basis for determining consistencyof specifications rel-

1) a basis for implementation support

to specifications; and

ative to each other: and

The use of an FDT imposes a discipline of attending to rel-
evant details, thus increasing confidence in the resultant
description. Although the development of tools was not
an explicit objective of FDTs, the rigorous nature of FDTs
makes it possible to develop tools which assist in the cre-
ation, analysis, and refinement of formal descriptions.

4.2.2 Use in Development
Each stage in the software (or hardware) development pro-
cess can be pictured as in Figure 4.1.

The development process is a succession of such activities,
beginning with informal requirements and ending up with an
implementation. Different languages, appearing at different
points in the specification-implementation spectrum, may
therefore be appropriate at different stages in the develop-
ment process.

4.2.3 Assessment of FDTs
FDTs are used to represent basic concepts such as ab-
straction, modularity, information-hiding, structuring, and
synchronisation, as well as more complex architectural con-
cepts. Later clauses illustrate these.
It is difficult to assess FDTs, since they differ in their techni-
cal aspects and in the goals of their application. However,
tutorial Annexes are provided to assist in this:

A) bibliography: and
6) characteristics of FDTs; and

ISO/ EC TR 10167 : 1991 (E)

C) criteria for evaluating FDTs; and

D) criteria for evaluating formal descriptions.

4.3 Estelle
Estelle is a formally-defined specification language for de-
scribing distributed or concurrent processing systems, in
particular those which implement OS1 Services and Pro-
tocols. The language is based on widely used and ac-
cepted concepts of communicating non-deterministic state
machines (automata). An Estelle specification defines a
system of hierarchically-structured state machines. The
machines communicate by exchanging messages through
bi-directional channels that connect their communication
ports. These messages are queued at either end of the
channel. The actions of machines are specified in (ex-
tended) Pascal, hence familiarity with Pascal makes Estelle
specifications easily readable.
Estelle mechanisms allow modelling of synchronous and
asynchronous parallelism between the state machines of a
specified system. They also permit dynamic development
of the system configuration.
Estelle specifications can be prepared at different levels of
abstraction, from abstract to quite implementation-oriented.
The latter may be derived from the former with the aid of
supporting tools. Since all Estelle concepts are rigorously
defined, Estelle tools which accurately reflect the language
can be developed.

4.4 LOTOS
LOTOS is a mathematically-defined FDT, d
large, well-established body of theory base
and ACT ONE.
Having a well-defined mathematical foundation, it provides
a solid basis for both analysis and development of reliable
tools, including simulation, compilation, and test sequence
derivation.
The basic constructs of LOTOS allow modelling of sequenc-
ing, choice, concurrency, and non-determinism in an en-
tirely unambiguous way. In addition, LOTOS permits mod-
elling of both synchronous and asynchronous communica-
tion.
LOTOS may be applied to produce a specification of the
allowed behaviours of a system, i.e the set of all behaviours
which may be observed of a conforming implementation.
Furthermore, LOTOS permits the description of allowed be-
haviours without describing how this may be achieved, or
by describing particular mechanisms which achieve the re-
quired behaviour.

4.5 SDL
SDL is based on the extended finite state machine model
supplemented by capabilities for Abstract Data Types based
on the initial algebra model (the same as used in the ACT
ONE part of LOTOS). This combination is supported by a

3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC Ti? 10167 : 1991 (E)

well-defined formal semantics.
SDL provides constructs for representing structures, be-
haviours, interfaces, and communication links. In addition,
it provides constructs for abstraction, module encapsula-
tion, and refinement. All of these constructs were designed
to assist the representation of a variety of telecommunica-
tions system specifications, including aspects of protocols
and services.
SDL is quite widely used in the telecommunications com-
munity, and is well supported by a variety of tools, some of
which are generally available.

4.6 Benefits of FDTs
With a specification written in an FDT, an accurate descrip-
tion of (system) behaviour can be given. Descriptions writ-
ten so far with the FDTs mostly deal with the behaviour
of data communications services and protocols, and with
telecommunications switching systems. Other kinds of be-
haviour can be considered for specification, for instance the
description of the dialogue between a user and a system.
A high-level description says exactly how a system should
behave. It describesonly its behaviour, not the realisation of
that behaviour (implementation details are excluded). The
description is also exact: there are no loose ends or spec-
ification gaps, and behaviour is described for all possible
system inputs. When an input should give an undefined
behaviour, this should be described as well.
The use of an FDT enforces a discipline on the specifier as
to what information should be given and how it should be
presented. Although it might be felt by the specifier that this
discipline is very strict, the result is a much better quality
description than would have resulted if natural language
had been used. This benefit is obtained in addition to the
benefits from using automated analysis tools.
Another problem with natural language descriptions is that
they often jump from one abstraction level to another. An
FDT gives better possibilities for structuring descriptions,
and distinguishing between different abstraction levels.
In a development process which uses a (formal) specifi-
cation language, several specification levels are generally
used. Usually, the starting point is a rough idea of what a
system should do. This idea is then written down in natural
language. From this informal functional description a formal
description is derived (written in a specification language).
In this process, exact requirements must be captured, and
loose ends or fuzzy areas must be detected and resolved.
The resulting high-level description is an accurate repre-
sentation of the functions of the system.
Getting a complete and unambiguous high-level descrip-
tion before most of the design decisions are made is one
of the most important benefits of using an FDT. Even if the
natural language requirements are written very carefully, as
for the examples in this Technical Report, errors and omis-
sions are found. The problems with the ambiguity of natural
language descriptions is best illustrated by the fact that spe-
cialists who agree on the natural language description may

not agree on a formal description: they may interpret the
informal description differently.
A high-level description is the basis for further develop-
ment of the system. An advantage of using an FDT is that,
since the specification language is defined exactly, com-
puters can be used in the development process. From the
high-level description more detailed descriptions can be de-
rived, leading finally to an implementation. At each step in
the design process, implementation decisions and restric-
tions are made more explicit, being postponed as late as
possible.
Each detailed description or the implementation can be ver-
ified (with computer assistance) for conformance to the
specification it is derived from. A further advantage is
the possibility of deriving test sequences with expected re-
sponses for the final implementation; in principle, these can
be derived from the original specification automatically.
A formal description gives the precise relationship between
components of a system. If it is a description of a system
to be built, the formal description is a good basis for project
planning (allocation of resources, scheduling of component
design, unit and integration tests, etc.).
An advantage of using FDTs is that the appropriate level
of abstraction may be used. For example, a high-level de-
scription may be given of what a system should do (its func-
tionality); such an implementation-independent description
would be appropriate in a definitive International Standard.
Implementation-independence can also make descriptions
re-usable for future systems (in a different environment or
with different constraints) and can facilitate description of
re-usable software components. However, it may also be
advantageous to give a more implementation-oriented de-
scription so as to assist the production of conforming imple-
mentations.

0

More detailed tutorial guidance on FDTs and their applica-
tion can be found in the Annexes.

4.7 Tools for FDTs
The availability of tools for FDTs can be an important fac- 0
tor in their application. The nature of these tools follows
from the aspects of the application of FDTs described in the
previous section.
There have to exist good tools for writing and changing
descriptions. These tools could incorporate some kind of
source version-control system to keep track of different ver-
sions. Furthermore, there should exist verification tools:
a description which is not checked for correctness loses
much of its value as an exact description of a system or
an International Standard. When descriptions are written
using a computer system, it would be a waste not to use
that computer system for verification of correctness.
Several tools for FDTs can be considered. These tools can
be divided into two categories, static and dynamic.
Static tools deal only with language aspects of the FDT
used for a description. Into this category fall (graphical)
(syntax-driven) editors, checkers for correct use of the FDT,

4

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

teaching tools, and static report-generators (reporting on
use of language constructs).
When descriptions are written, a style must be chosen that
is appropriate for the system to be described. The ‘best’
style is rarely found at the first attempt. Static tools fa-
cilitate modifications of style, as well as modifications and
extensions of the description.
Dynamic tools deal with the behaviour of the specified sys-
tem. They can be used to verity whether the specified sys-
tem will behave as the specifier wants (e.g. freedom from
(unwanted) deadlock or livelock). Useful tools in this area
are simulators, prototype generators, symbolic executors,
and tools for computer-assisted proving of properties like
absence of deadlock and livelock.
The benefit of these tools is that it is possible, at an early
stage, to experiment with the system, thus giving confidence
in the correct behaviour of the system. If the description
is of a system to be built, dynamic tools help to discover
misunderstandings between the client and the specifier.
There should also be tools to verify whether the implemen-
tation conforms to the specification. It is hard to take large
steps in the design process (e.g. deriving a low-level imple-
mentation from a high-level specification), but when step-
wise refinement techniques are used in the process of going
from the specification to an implementation, verification can
be done for each refinement step. The tools in this cate-
gory include interpreters, simulators/animators, validators,
and test sequence generators. The benefit of these tools is
that they help to avoid the introduction of errors during the
design process.
Other possible tools include (interactive) generators of an
implementation or prototype of the specified system. These
tools ease the burden of straightforward but error-prone
coding, giving the opportunity to concentrate on important
implementation decisions.
The kinds of prototype tools for FDTs that are available or
are being developed include:

a) specialised editors to help produce or modify formal de-
scriptions; and

b) formatters to produce pretty-printed text or graphical
representations of formal descriptions; and

c) verifiers and theorem-provers to analyse specification
properties; and

d) parsers to detect lexical and syntactic errors, and to per-
form checks on static semantics (e.g. type-checking);
and

e) simulators to aid interactive analysis of formal descrip-
tions; and

f) compilers to generate executable code in some target
language; the output of a compiler would vary according
to the intended use of the code (simulation, debugging,
implementation, etc.); and

g) test sequence generators, for checking implementa-
tions against a formal description.

The benefits of using such tools fall into three categories:
increasing confidence in the description of a system, reduc-
ing the costs of implementing a formally-described system,
and producing an implementation in a systematic way.
The current trend in tools development for FDTs shows that
particular kinds of tools are likely to be developed for each
FDT. For example, the emphasis with Estelle has been on
the early development of compilers. In the case of LOTOS,
simulators have been developed first. For SDL, graphical
editors and top-down design aids have received priority.

5 Guide to the Examples

5.1 Explanation of the Examples
A careful choice has been made of a graded series of exam-
ples, given in each FDT. The examples have been chosen
with the following aims.

5.1.1 Examples of Basic FDT Concepts
These are examples of concepts which are represented by
all FDTs. They are neutral with respect to any particular
FDT and to architectural concepts. They illustrate how the
FDTs capture some basic ideas of Information Theory.

5.1.2 Examples of Basic Architectural Concepts
These are more complex examples, drawn from concepts
defined in the OS1 Basic Reference Model and elsewhere.
They illustrate more specifically how FDTs can be used to
represent OS1 concepts.

5.1.3 Daemon Game
This illustrates a small self-contained system. Although not
presented as a Service or Protocol example, this is a gentle
lead-in to later, more realistic examples.

5.1.4 Sliding Window Protocol
This illustrates an important fiow-control and error-recovery
technique which is present in many real Protocols. In addi-
tion, it illustrates the description of a Protocol in relation to
its underlying Medium.

5.1.5 Abracadabra Service and Protocol
This illustrates the familiar Alternating Bit Protocol, which
is a precursor to some real Protocols. It also illustrates
the extra features in connection-oriented Protocols. The
example presents the description of a Protocol in relation to
the Service it provides.

5.1.6 A Transport Protocol
This is based on the CCllT T.70 Transport Protocol in order
to illustrate how real Protocols may be formally described.

5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

It is, however, oniy an example and is not definitive with
regard to T.70 as to eiUier the informal or the formal de-
scriptions.

5.2 How to read the Examples
The examples in each FDT have been carefully prepared
by experts in the appropriite FDTs. As far as practicable.
the formal descriptions have been checked wiîh automated
tools. The formal descriptions have also been checked by
their authors for top-level consistency with each other and
with the informal descriptions. This has lead to deficiencies
in the informal descriptions being discmered and corrected.
As a matter of poky, these deficiencies have been noted
separately rather than correcting the original informal de-
scriptions. The reason for this was to point out the kinds of
errors which can arise in writing informal descriptions. The
examples therefore serve a secondary purpose of justifying
the use of FDTs. A reference to the offending clause in the
informal description is given for each deficiency.
However, it should not be forgotten that the examples are
just that. They are illustrative of good style in each FDT
but of course it would be possible to produce different and
equally valid formal descriptions. The examples also re-
flect the individual style of their authors, and are thus not
necessarily completely uniform in their approach. The ex-
amples illustrate the preferences of experienced specifiers,
although in some cases the examples were modified in or-
der to ensure commonality with companion descriptions in
other FDTs. Alternative styles would be valid, and may be
considered superior according to the subjective judgment
of the reader.
The examples may be read in dierent ways:

by FDT all the examples in one FDT could be read
in order to gain insight into how that FDT
may be used; or

by example all the formal descriptions of one example
could be read, in order to gain insight into
how the FDTs differ in their approach; or

for problems the informal descriptions and deficiencies of
one example could be read in order to gain
insight into the kinds of errors and ambigu-
ities which can easily be introduced when
writing informal descriptions.

To facilitate the above, the examples are generally pre-
sented in the form shown in Figure 5.1.
For the smaller examples, this structure is simplified. For
some of the larger examples, the formal description is given
in two parts. In the case of SDL, alternative graphical (GR)
and textual (PR) representations are possible. The graph-
ical representation is given in all cases, but for brevity the
textual representation is given oniy for the Daemon Game
example.

1. Informal Description

2. Deficiencies in the Informal Description
2.1 Deficiency A

etc.

2.1.1 Deficiency
2.1.2 Resolution

3. Estelle Description
3.1
3.2 Explanation of Approach
3.3 Formal Description
3.4 Subjective Assessment

Architecture of the Formal Description

4. LOTOS Description
4.1
4.2 Explanation of Approach
4.3 Formal Description
4.4 Subjective Assessment

Architecture of the Formal Description

5. SDL Description
5.1
5.2 Explanation of Approach
5.3 Formal Description
5.4 Subjective Assessment

Assessment of the Application of FDTs

Figure 5.1 : Typical Layout of an Example

Architecture of the Formal Description

6.

6

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

6 Examples of Basic FDT
Concepts
These are examples of concepts of FDTs or their applica-
tion. They are neutral with respect to any particular FDT
and to architectural concepts. They illustrate how the FDTs
capture some basic ideas of Information Theory. Definitions
of FDT terms are given in clause B.4.

6.1 Abstraction
6.1.1 Estelle Representation

By design, Estelle allows the writing of descriptions in a style
that closely mimics the way communications protocols are
described.
Estelle descriptions may be written at various levels of Ab-
straction, ranging from abstract to concrete. Using appro-

o p r i a t e support tools, it is possible to move from one level
to another. Details may be deferred using external mod-
ule bodies, primitive functions and procedures, and the
type ‘...I.

Top-down design is supported in various ways: the usual
mechanisms of a modern programming language (Pascal)
are augmented by the ability to structure Estelle modules
into submodules.

6.1.2 LOTOS Representation

It is an important strength of LOTOS that it may be used
with an appropriate level of Abstraction. Although LOTOS
is a constructive language, it can be used in a constraint-
oriented, almost assertional style. That is, it is possible to
write LOTOS descriptions which satisfy a ‘separation of con-
cerns’. Each such concern, or constraint, may be written
as a separate behaviour expression in LOTOS. The con-
straints may then be combined by the appropriate LOTOS
operators (e.g. sequence, choice, interleaving, or synchro-
nisation).

- I

6.1.3 SDL Representation

SDL provides the means to give a system description at
any level of detail, and from several viewpoints. Thus it is
possible to abstract and to represent only those aspects of
a system that matter in a given context. For example, it
is possible to neglect implementation detail, maintenance
issues, etc.
Moreover, SDL provides the means to describe a system
using a sequence of levels, each tied to the previous one
and providing more details. In this sense, SDL supports
both top-down design and representations of virtual system.
This is achieved through structuring, partitioning, and refine-
ment (top-down approach) and through channel structuring
(virtual system approach). Abstraction is made possible
by the use of Abstract Data Types, in which objects are
described in terms of their properties rather than in terms of
their implementation.

6.2 Information
6.2.1 Estelle Representation

Information is represented by Pascal data types. The
usual types ‘integer’ and ‘real’ are interpreted to be the
actual mathematical objects, not computer-dependent ap-
proximations to them. As does Pascal, Estelle allows the
creation of new data types.
Information that constitutes implementation detail may be
indicated using the any construct (e.g. MaxSize = any
integer). Details about data types that are not important at
a particular level of description may be deferred.

6.2.2 LOTOS Representation

LOTOS represents Information using the ACT ONE Ab-
stract Data Type (ADT) language. The emphasis is on the
structure of data objects and the operations on them, rather
than their representation in a particular implementation (or
class of implementations). Information may be established
when synchronisation on a LOTOS event occurs, or may be
transferred when processes are instantiated.

6.2.3 SDL Representation

SDL has a set of pre-defined data types (e.g. ’Real’, ‘In-
teger’, and ‘Charstring’). SDL also provides the means to
define structures such as arrays and matrixes. SDL, like
LOTOS, uses Abstract Data Types; indeed the same Ab-
stract Data Type kernel is shared between SDL and the
ACT ONE part of LOTOS.

6.3 Action
6.3.1 Estelle Representation

An action in Estelle corresponds to a transition of a module.
A transition can be enabled either through an external event
or through conditions local to the module. Transitions are
atomic.

6.3.2 LOTOS Representation

The notion of an Action corresponds to the notion of an
event in LOTOS. Events in LOTOS are atomic; there is
no concept of events overlapping in time or happening si-
multaneously, so all events are fully interleaved. Events
in LOTOS are associated with a list of values which cor-
responds to the Information associated with the Action.
An event has an associated gate name, at which the event
occurs, and a list of zero or more values.

6.3.3 SDL Representation

In SDL, the establishment of Information (including the
manipulation of existing Information) is always tied to a
state-transition pair. Information can be implicit (i.e. the
state of the process) or explicit (i.e. contained in a data
object). The activation of a transition is the only means
through which an Action (or sequence of Actions) can

7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

take place.

6.4 Interaction
6.4.1 Estelle Representation
Normally, Interactions in Estelle correspond to the inputs
and outputs of modules. Indeed, these are called interac-
tions in Estelle. In addition, Estelle also supports sharing of
variables between modules, subject to certain restrictions
that serve to eliminate race conditions.
The allowable Interactions at an interaction point are de-
scribed by a channel description. Interactions are queued
by the receiving module.

6.4.2 LOTOS Representation
The idea of an Interaction is built into the synchronisation
mechanism of LOTOS. Two (or more) behaviour expres-
sions may synchronise on an event. Such events may refer
to only gate names (pure synchronisation), to matching !
and ? expressions (value-passing), and to matching 3 and
? expressions (value-establishment). Examples of all these
forms of synchronisation are found in OS1 Standards.

6.4.3 SDL Representation
The idea of an Interaction is supported in SDL by three
constructs:

a) signal interchange; and
b) internal signals; and
c) shared data.

The principal means of Interaction in SDL is through signal
interchange. This allows asynchronous Interactions to
be modelled, wherein the process sending the signal is not
aware of when the signal will be received by the receiver.
Signals are never lost, i.e. the receiver will always receive
them. If no receiver exists, a dynamic interpretation error
will occur, but the receiver might be in a state where that
particular signal is not awaited, so that it will be discarded.
The sender is not notified of the reception of the signal. If
this is required, an explicit acknowledge signal should be
sent from the receiver.
Through internal signals, the Interaction between SDL
Services can be modelled. Note that the SDL Service con-
struct models activities which are split into separate se-
quences, where only one sequence can be active at any
time. Thus, this type of Interaction resembles a transfer
of control. It is not the same control transfer as in a proce-
dure call (i.e. immediate transfer, with return at a later point
to the caller), nor a process activation (because the Ser-
vice activation will occur according to the queued internal
signals).
Through shared data (i.e. variables), two SDL Services or
processes may interchange Information, and may also be
activated upon the occurrence of a certain value using the
PROVIDED construct. Two processes which are both in a
state with no signals waiting, and with a PROVIDED clause

with the same value for a variable, will be activated at the
same time, i.e. when the variable assumes that value. This
is the sole means of synchronisation existing in SDL. Note
that the variable value should be set by a third process.

PROCESS A;
1 . .

OUTPUT WaitingForSync;
NEXTSTATE Waitsync;

STATE Waitsync;
SAVE *;
PROVIDED VIEW (Activate, Synchroniser); ...

ENDPROCESS A;

PROCESS B;
...
OUTPUT WaitingForSync;
NEXTSTATE WaitSync;

STATE Waitsync;
SAVE *;
PROVIDED VIEW (Activate, Synchroniser);

...
ENDPROCESS B;

PROCESS Synchroniser;
DCL REVEALED Activate BOOLEAN;

DECISION BothSyncReqReceived;
(true): TASK Activate := TRUE;

. . .

...
ENDPROCESS Synchroniser;

6.5 Interaction Point
6.5.1 Estelle Representation
In Estelle, an Interaction Point corresponds to the con-
struct of the same name. An Estelle interaction point is
an abstract, bi-directional interface through which a module
may send and receive interactions. It has three attributes:
the corresponding channel identifier; a rôle identifier which
describes the interactions a module may send and receive;
and a queueing discipline to be used for interactions re-
ceived through the interaction point. Estelle interaction
points may be external or internal.

6.5.2 LOTOS Representation
In LOTOS, an Interaction Point corresponds most closely
to an event gate. The gate name certainly distinguishes
events from those at other gates. However, events are of-
ten tagged with identifiers which further distinguish different
behaviours. For example, events at a particular endpoint
might have the form:

0

Gate ! EndpointId ! Valuel ! ... ! ValueN
where Endpointld distinguishes that endpoint, and Value1
to ValueN represent the relevant Information.

8

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

6.5.3 SDL Representation
In SDL, activities (i.e. SDL Services or processes) inter-
act through an interface. This interface may consist of an
implicit part (shared data) andor an explicit part.
When the Interaction is achieved through signal inter-
change between different blocks, an Interaction Point
can be represented by means of a uni-directional or bi-
directional channel. Also, the graphic representation
(Functional Block Interaction Diagram) is well suited to
show the Interaction Points.
The channel, as a means of showing an Interaction
Point, can be further decomposed into sub-channels, each
one showing a sub-Interaction Point. Each of the sub-
Interaction Points is connected to the parent Interaction
Point using the CONNECT construct.
The refinement construct applied to the signals associated
with a channel provides a means of representing a specifi-
cation at several levels of detail.
The Interaction Point, in the case of signal interchange,
can also be represented by the SIGNALSET construct, con-
tained in the two interacting processes. However, the use of
the channel (or signal route) makes the Interaction Point
explicit and easier to handle from the viewpoint of a human
reader.
When the Interaction is achieved through internal signals,
the Interaction Points are defined by means of the SIG-
NALROUTE construct. The corresponding graphic repre-
sentation may be used, in which lines connect the various
SDL services.
When using shared data as an implicit interface, it is advis-
able to group the data into sets, each set corresponding to
a certain Interaction between two activities. For example:

DCL REVEALED
n i , n2 t y p e l ,
n3 type2 /* shared values with P1, P4 */;

DCL REVEALED
n3 type2,
n4 type3 /* shared values with P2, P4 */;

and similarly for the EXPORTED mechanism. In the shar-
ing processes, it is also advisable to group together in the
VIEWED declaration, those variables whose values are in
common with a group of processes. There is no rule in the
language requesting such a grouping, but such grouping
simplifies reading.

7 Examples of Basic Architectural
Concepts
These are more complex examples, drawn from concepts
defined in the OS1 Basic Reference Model and elsewhere.
They illustrate more specifically how FDTs can be used to

represent OS1 concepts. However, only examples of partic-
ular interpretations of the concepts are given; the concepts
may be specified in other ways. The examples are given in
a bottom-up fashion so that more elementary examples are
given first.
Each example in this clause is explained in general terms,
but a pointer to a specific use in later clauses is given. In
many cases, the example could be given in a data-oriented
or behaviour-oriented style. The most appropriate choice
of style has been made according to the example and the
FDT used.

7.1 Service Access Point
For a specific example, see the Interaction Point between
a player and the system in the Daemon Game descriptions.

7.1 .I Estelle Representation
In the simplest case, a Service Access Point is represented
in Estelle as an external interaction point. More generally,
however, a Service Access Point may contain many End-
points; this is represented by an array of interaction points.
External interaction points are indicated as part of a module
header. Such an example might be:

module M process;

end;
i p SAP : SAP(provider);

This declares M to be a process-type module with a sin-
gle interaction point SAP which plays the role of Service
Provider. SAP and provider refer to a channel definition
(not given here) and serve to describe the allowable inputs
and outputs through the interaction point SAP.
For a specific example, see the Daemon Game: interaction
point P.

7.1.2 LOTOS Representation
A Service Access Point appears in LOTOS in events of the
form:

S ! Sap ! ...

where:

a) S is the gate at which communication with the Service
takes place; and

b) Sap is the identifier of the Service Access Point; it is
usually the same as the Address of the Service Access
Point.

At the most abstract level, all one can say about Sap values
is that they are distinct:

type SapType is

9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

sorts SapSort

opns BaseSap : -> SapSort
NextSap : SapSort -> SapSort

endtype

This says that there is some base identifier for Sap values,
from which other identifiers are constructed by repeated
application of the NextSap function. In the absence of
equations these values are all distinct. (The Sap sort is
obviously isomorphic to the natural numbers.)
For a specific example, see the Daemon Game: gate P.

7.1.3 SDL Representation
A Service Access Point may be represented in SDL in the
form of:

CHANNEL Sap

FROM Serviceuser TO ProtocolEntity
WITH Eventl, Event2, ... ;
FROM ProtocolEntity TO Serviceuser
WITH Event3, Event2, ... ;

ENDCHANNEL;

where:

a) Sap is the name of the channel, and can be used to
address the signals (events) using the VIA construct in
an OUTPUT action; and

b) Eventl, etc. are the names of the signals interchanged
at the Service Access Point; and

c) Serviceuser is the User of the Service Access Point;
and

d) ProtocolEntity identifies the supporting Protocol Entity.

Note that events are associated with a particular direction
of the interaction.
For a specific example, see the Daemon Game: channel
Gameserver.

7.2 Endpoint
For a specific example, see the Transport Connection
Endpoint in the Transport Protocol descriptions.

7.2.1 Estelle Representation
As noted above, in the simplest case, an Endpoint corre-
sponds to a Service Access Point, and thus is represented
in Estelle as an external interaction point. More generally,
however, a Service Access Point may contain many end-
points. In this case, a single Endpoint corresponds to a
single element in an array of interaction points.
A slight modification of the Estelle example above shows
an array of Endpoints.

module M process;
ip SAP : array [l. .MaxSize] of

NSAP(provider) ;
end ;

This defines SAP to be an array of Endpoints; the usual
Pascal syntax is used to select a single Endpoint in the
array. For example, output of an interaction called ConReq
with address parameters Addrl and Addr2 and Quality of
Service parameter QOS through the first of the Endpoints
would be written as:

output SAP [l] . ConReq(Addr1, Addr2, QOS)

For a specific example, see the Transport Protocol: inter-
action points TCEP.

7.2.2 LOTOS Representation
An Endpoint is represented in LOTOS in events of the form: 0

S ! Sap ! Ep ! ...

where:

a) Ep is the identifier of an Endpoint, and would be de-
scribed just as for Sap:

type EpType is

sorts EpSort

opns BaseEp : -> EpSort
NextEp : EpSort -> EpSort

endtype

For a specific example, see the Transport Protocol: type
TCEndpointldentifier.

0 7.2.3 SDL Representation
In SDL, the representation of an Endpoint can be hidden
in the Service Access Point, since the channel construct
supports several instances.
If with Endpoint it is necessary to connect different SDL
Services (or processes) each representing a given set of
communications, then the Endpoint is represented using
the SIGNALROUTE construct:

SIGNALROUTE Endpointl

FROM ENV TO ServiceEntityl
WITH Eventl, ...;
FROM ServiceEntityl TO ENV
WITH EventN, . . . ;

SIGNALROUTE Endpoint2

10

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

I.

FROM ENV TO ServiceEntity2
WITH EventX, ... ;
FROM ServiceEntityP TO ENV
WITH EventM, ... ;

CONNECT Endpoint1 AND Sap;
CONNECT Endpoint2 AND Sap;

Depending on the choice in representing a Service (or Pro-
tocol) Entity as a process or as an SDL Service, it is nec-
essary to connect the signalroute to a channel (when using
a process) or to a signalroute that is the continuation of the
channel to the block embedding the SDL Services.
For a specific example, see the Transport Protocol: variable
CEP-ID.

7.3 Service Primitive Parameter
.The example used is a set of Quality of Service (QoS)

requirements. For a specific example, see the Connec-
tion Request Called Address parameter in the Transport
Protocol descriptions.

7.3.1 Estelle Representation
Service Primitive Parameters are described in Estelle as
parameters of interactions. In the Estelle example in 7.4.1,
Addrl , Addr2, and QOS are Service Primitive Parameters.
For a specific example, see the Transport Protocol: type
TADDRESS, as parameter of interaction TCON- REQ of
channel TS- INTERFACE.

7.3.2 LOTOS Representation
A Service Primitive parameter in LOTOS is simply a value
of some sort, for example:

type QoSSetFormalType is Set renamedby

sortnames qoSSetSort for Set

endtype

type QoSSetType is QoSSetFormalType

actualizedby QoSType, Boolean using

sortnames QoSSort for Element
Boo1 for Fbool

endtype

where:

a) Set is the standard library data type; and
b) QoS is the type which defines Quality of Service values.

In the above, a set of Quality of Service values is first named
by renaming the standard sort Set, then the formal param-
eters Element and Fbool are instantiated.

For a specific example, see the Transport Protocol: type
TransportAddress, as used in type BasicTSP with opera-
tion TCONReq.

7.3.3 SDL Representation
Service Primitive Parameters are variables of a given type
defined, for example, as:

NEWTYPE Typename

ENDNEWTYPE;

For example:

NEWTYPE QoSSet Set (90s)

ENDNEWTYPE;

where:

a) QoS defines Quality of Service values; and
b) Set is defined in the usual fashion.

For a specific example, see the Transport Protocol:
type TADDRESS. as used in type TPDU with operator
BUILD-TCR.

7.4 Service Data Unit
For a specific example, see the Medium Data Request
parameter in the Sliding Window Protocol descriptions.

7.4.1 Estelle Representation
A Service Data Unit is represented in Estelle as one or more
interaction parameters. Consider the following example:

channel SAP(user, provider) ;
by user:

CONNECTrequest(Addr1, Addr2, 9 0 s) ;
CONNECTresponse(Addr1, Addr2, qOS);
DATArequest (UserData : UserDataType) ;
DISCONNECTrequest;

CONNECTindication(Addr1, Addr2, qOS);
CONNECTconf irm(Addr1, Addr2, qOS) ;
DATAindication(UserData : UserDataType) ;
DISCONNECTindication;

by provider:

In this example, the DATArequest and DATAindication
Service Primitives each have Service Data Units repre-
sented as the interaction parameter UserData, which is
defined to be of type UserDataType.
For a specific example, see the Sliding Window Protocol:
type DTPDUType, as parameter of interaction DT in chan-
nel M.

11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.4.2 LOTOS Representation

A Service Data Unit is represented in LOTOS as a value of
some particular sort which is considered to be Service User
data. In a Service description, a Service Data Unit has only
operations which construct values. See 7.12.2 and 7.13.2
for what is involved in a Protocol description. A Service
Data Unit might be described as:

type SduType is Octetstring

endt ype

where:

a) OctetString is the standard library data type for a string
of octets.

For a specific example, see the Sliding Window Protocol:
type PduQpe, as used in type MPType with operation
MReq.

7.4.3 SDL Representation

A Service Data Unit is represented in SDL as a variable of
a type which is considered to be Service User Data. For
example, a Service Data Unit might be described as:

NEWTYPE Sdu

INHERITS Octetstring ALL;

ENDNEWTYPE;

where:

a) Octetstring is defined in the usual fashion for octet

For a specific example, see the Sliding Window Protocol:
type DataType, as used in signal MDTreq.

strings.

7.5 Service Primitive
The general example used is a Data Indication. For a spe-
cific example, see the Score signal in the Daemon Game
descriptions.

7.5.1 Estelle Representation

A Service Primitive is described in Estelle as an interac-
tion, given in a channel definition. In the example given in
7.4.1, CONNECTrequest, CONNECTresponse, etc. are
all Service Primitives.
For a specific example, see the Daemon Game: interaction
Score in channel Gameserver.

7.5.2 LOTOS Representation

The occurrence of a Service Primitive corresponds to a
LOTOS event of the form:

S ! Sap ! Ep ! Sp (...)

where Sp is an operation which constructs some value of
the sort corresponding to the Service Primitive, for example:

DatInd (UserData)

where:

a) Datlnd constructs a Data Indication; and
b) UserData holds the value corresponding to the data to

For a specific example, see the Daemon Game: operation
Score in type SignalType.

7.5.3 SDL Representation

A Service Primitive can be represented in SDL as a creation
of a signal instance e.g.:

be delivered.

0
OUTPUT Sp (Sap, Ep, DatInd (. . .));

However, it is usual to simplify the form of the signal so that
in the specific case it might be:

OUTPUT Dat Ind (UserData) ;

where:

a) UserData holds the value corresponding to the data to
be delivered.

The corresponding reception by the Service User would be
with the statement:

INPUT DatInd (Varl);

where:

0 a) Varl would have to be the same sort as UserData.

The time elapsing between the issuing of a Service Primi-
tive and its reception is not determined. However, there are
means to explicitly indicate that a Service Primitive must
be received within a certain time to be effective. This can
be done by adding to the output the parameter NOW. This
parameter will take the value of the system time at the mo-
ment the OUTPUT clause is interpreted; such a value can
be check against the current time at the reception point.
For a specific example, see the Daemon Game: signal
Score in system Daemongame.

7.6 Protocol Entity
The example used is a Protocol Entity which is composed
with other Protocol Entities and the underlying Service to
yield the required Service. For a specific example, see the
transmitter Protocol Entity in the Sliding Window Proto-
col descriptions.

12

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.6.1 Estelle Representation

A Protocol Entity usually corresponds to an Estelle mod-
ule. Such a module may be refined into sub-modules. A
module is described in two parts, a header and a body.
The header is introduced with the keyword module and in-
dicates the external visibility of the module, by listing the
exported (shared) variables, the parameters, and the ex-
ternal interaction points of the module. Each associated
body describes an allowable behaviour of the module. As
an example, consider the following:

module M process;

end ;
i p SAP : NSAP(provider);

body MBody f o r M ;
end ;

This describes a module M with a single interaction point

For a specific example, see the Sliding Window Protocol:
module Transmitter.

0 SAP and the most uninteresting body possible, MBody.

7.6.2 LOTOS Representation

A Protocol Entity is modelled in LOTOS by giving the con-
straints on behaviour at the boundaries of its upper and
lower Services, and the relationship it maintains between
behaviour at these. For example:

process ProtocolEntity [U, LI
(USapSet : USapSetSort, LSapSet : LsapSetSort)
: noexit :=

Uconst ra int s [U] (USapSet)

ULConstraints Cu, LI

LConstraints CL] (Lsapset)

I CUI I

I CL1 I

endproc

where:

a) U and L are the gates for communication at the Upper
and Lower Service boundaries of the Protocol Entity;
and

b) USapSet and LSapSet are the sets of identifiersfor the
Upper and Lower Service Access Points supported by
the Protocol Entity; and

c) UConstraints, LConstraints, and ULConstraints con-
strain the Upper and Lower Services, and the mapping
between them.

At a lower level of description, each constraint would be
expanded to deal with individual Endpoints.
For a specific example, see the Sliding Window Protocol:
process TransmitterEntity.

7.6.3 SDL Representation

A Protocol Entity is represented in SDL by a block containing
one or more processes. For example:

BLOCK ProtocolEntity;
SIGNALROUTE RLSap

FROM ProtocolProc TO ENV WITH LReq;
FROM ENV TO ProtocolProc WITH LInd;

SIGNALROUTE RUSap
FROM ProtocolProc TO ENV WITH UInd;
FROM ENV TO ProtocolProc WITH UReq;

CONNECT RUSap AND USap;
CONNECT RLSap AND LSap;

PROCESS ProtocolProc REFERENCED;

ENDBLOCK ProtocolEntity;

where:

a) USap is the channel representing the Service Access
Point of the Layer; and

b) LSap is the channel representing the Service Access
Point of the underlying Layer: and

c) RLSap and RUSap are signalroutes connecting the
channels LSap and USap respectively to the process
ProtocolProc, and conveying the signals LReq, Llnd,
UReq, and Ulnd.

For a specific example, see the Sliding Window Protocol:
block sender-entity.

7.7 Protocol
The example used is a set of Protocol Entities which sup-
port a Service using two underlying Services. For a specific
example, see the Abracadabra Protocol descriptions.

7.7.1 Estelle Representation

In Estelle, the rules, procedures, and data structures
needed to represent a Protocol are contained in the descrip-
tion of one or more modules and their associated bodies.

spec i f icat ion ProtocolExample;

default individual queue;

const
MaxSapl = any integer;
MaxSap2 = any integer;

channel Llchan(user, provider) ;
by user:

by provider:
Ulrequest;

Ulresponse;

13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

channel L2chan(user, provider) ;
by user :

by provider :
U2request;

U2response;

module L i process;
i p LlSap: a r r a y [l. .MaxSapl] of

Llchan(provider);
end ;

module L2 process;
i p L2Sap: a r r a y [l. .MaxSap2] of

LPchan(provider) ;
end ;

module U process;
i p UlSap: a r r a y [i. .MaxSapl] of

U2Sap: a r ray 11. ,MaxSap21 of
Llchan(user) ;

Llchan(user) ;
end ;

body Llbody f o r L I ;
end :

body L2body f o r L2;
end :

body Ubody f o r U;
end ;

var i : i n t e g e r ;

modvar
Ll instance: L i ;
L2instance: L2;
Uinstance: U;

i n i t i a l i z e
begin

i n i t Ll instance with Llbody;
i n i t L2instance with Llbody;
i n i t Uinstance with Ubody;
f o r i := 1 t o MaxSapl do

connect ~i instance.L1SapCil t o
üinstance.UiSap Cil ;

f o r i := 1 t o MaxSap2 do
connect instance .L2SapCil t o

Winstance .U2Sap Cil ;
end ;

end.

For a specific example, see the Abracadabra Protocol:
module Abra.

7.7.2 LOTOS Representation
A Protocol is modelled in LOTOS as a set of Protocol En-
tities composed with a set of underlying Services. For ex-
ample:

process Protocol [U, L i , L21

LîSapSet : LlSapSetSort,
~ ~ ~ a p ~ e t : ~ 2 ~ a p s e t S o r t)
: noexi t :=

(USapSet : USapSetSort ,

ProtocolEnt i t ies [U, L1, L21
(üsapset , LiSapSet , L2SapSet)

I [L I , L21 I
(

I I I

1

Uservice CL11 (LiSapSet)

Uservice [L2] (L2SapSet)

endproc

where:

a) U, L1, and L2 are the gates for communication at the
supported Service and the two underlying Services re-
spectively; and

b) USapSet, LlSapSet, and L2SapSet are the sets of
Service Access point identifiers for the corresponding
Services; and

c) ProtocolEntities is the composed behaviour of the in-
dividual Protocol Entities; and

d) Uservice is the Service derived from either of the un-
derlying Services.

For a specific example, see the Abracadabra Protocol:
overall behaviour as represented by the composition of pro-
cesses Service, Protocol, and CMService.

7.7.3 SDL Representation
A Protocol is represented in SDL by a set of blocks, each
block representing a Protocol Entity. The blocks are con-
nected to each other indirectly via the underlying Service.
Normally a Protocol contains two blockg which are mirror
images of each other. In this case it is sufficient to provide
the description of one block only. For example:

SYSTEM Protocol ;

NEWTYPE UserDataType ... ENDNEWTYPE;

SIGNAL ConReq, DatReq (UserDataType) , . . . ;
SIGNALLIST ToUser = ConInd, ... ;
SIGNALLIST FromUser = ConReq, ... ;
BLOCK ProtocolEnt i ty;

CHANNEL USap
FROM ENV TO ProtocolEnt i ty

FROM ProtocolEnt i ty TO ENV
WITH (FromUser) ;

WITH (ToUser) ;

14

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (El

ENDCHANNEL USap;

CHANNEL MSap
FROM ENV TO ProtocolEnt i ty WITH Unit lnd;
FROM Pro tocolEnt i ty t o ENV UnitReq;

ENDCHANNEL MSap;

ENDBLOCK Pro tocolEnt i ty ;

ENDSYSTEM Protocol ;

where:

a) USap is the channel representing the Service Access
Point of the Layer, and conveying the signals contained
in the signallists ToUser and FromUser; and

b) MSap is the channel representing the Service Access
Point of the underlying Layer, and conveying the signals
UnitReq and Unitlnd; and

c) ProtocolEntity is a block representinga Protocol Entity.

For a specific example, see the Abracadabra Protocol: sys-
tem diagram Abracadabra.

7.8 Protocol Data Unit
The example used is a Data Transfer Protocol Data Unit
(DT TPDU), with End of Transfer (EOT) and User Data
parameters. For a specific example, see the Protocol Data
Unit handling in the Transport Protocol descriptions.

7.8.1 Estelle Representation

In Estelle, a Protocol Data Unit is realised as an encoded
piece of information contained in a Service Data Unit. A
Protocol Data Unit may be described using the User Data
Management procedures and functions described in Annex
B of IS0 9074. The following example is based on this:

const MaxData = any i n t e g e r ;

type o c t e t = O .. 255;
LenType = O . . MaxData;
IdTypa = 1 . . MaxData;
DataType =

record
1 : LenType;
d : a r r a y [IdTypa] of o c t e t

end ;

For a specific example, see the Transport Protocol: type
TDATA.

7.8.2 LOTOS Representation

A Protocol Data Unit is represented in LOTOS as a value
of some sort which is used to construct underlying Service
Data Units. For example:

type PduType is Boolean, O c t e t s t r i n g

s o r t s PduSort

opns D t : Bool, O c t e t s t r i n g -> PduSort
DtEot : PduSort -> Bool
DtData : PduSort -> O c t e t s t r i n g

eqns f o r a l l Eot : Bool, Ud : O c t e t s t r i n g

o f s o r t Bool

DtEot (D t (Eot, Ud)) = Eot

of s o r t O c t e t s t r i n g

DtData (D t (Eot, Ud)) = Ud

endtype

where:

a) Boolean and Octetstring are the standard library data

b) DtPdu represents a Data Transfer Protocol Data Unit;

c) Dt is used to construct these Data Transfer Protocol

d) DtEot selects the End of Transfer flag; and

e) DtData selects the User Data field.

types: and

and

Data Units; and

This description gives the abstract encoding of the Protocol
Data Unit. A lower level description would be given if the
concrete encoding were needed (i.e. field order, field sizes,
bit patterns, etc.).
For a specific example, see the Transport Protocol: type
BasicBlock.

7.8.3 SDL Representation

A Protocol Data Unit is simply a value of some sort, for
example:

NEWTYPE D t STRUCT
DtEot BOOLEAN;
DtData O c t e t s t r i n g ;

ENDTYPE DtPdu;

which defines a sort of Data transfer Protocol Data Units
with constructor Dt and selectors for the various parame-
ters. Such a description gives the abstract encoding of a
Protocol Data Unit.
For a specific example, see the Transport Protocol: type
TPDU.

15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.9 Connection
The example used is a single connection between two Ser-
vice Users. For a specific example of the single-connection
case, see the Connection handling in the Abracadabra
Protocol descriptions. For a specific example of the
multiple-connection case, see the Transport Protocol de-
scriptions.

7.9.1 Estelle Representation
As used in communications protocols, a Connection be-
tween peer Protocol Entities is established through the ex-
change of Protocol Data Units, as defined for a given Pro-
tocol. These Protocol Data Units are encoded in Service
Data Units and exchanged through the Service provided by
lower Layers. This meaning is distinct from the connect
keyword of Estelle, which is used to associate interaction
points of modules.
Typically, a Connection, as viewed by the Protocol Entities
involved, goes through various phases such as: opening,
data transfer, and closing. Each of these phases is USU-
ally represented by in Estelle as a state of the module that
represents the Protocol Entity. The number of states used
depends on the complexity of the Protocol, the level of ab-
straction required, etc.
For specific examples, see the Abracadabra Protocol and
the Transport Protocol: the states and transitions of mod-
ules Station and PARENT, respectively.

7.9.2 LOTOS Representation
The phases of a Connection are described in LOTOS in the
following general form:

Connect >> (Data [> Disconnect)

In such a description, connection refusal is properly handled
as part of Connect and not Disconnect.
The behaviour of a Connection is decomposed into the inde-
pendent behaviour of its Endpoints (Ep) and its End-to-End
behaviour (Ee). For example:

process Connection [SI
(Sapl, Sap2 : SapSort, Epi, Ep2 : EpSort)
: noexit :=

(

I I I

1

EeConstraints CS] (Sapl, Epi, Sap2, Ep2)

EpConstraints CS] (Sapl , Epl)

EpConstraints CS] (Sap2, Ep2)

I I

endproc

where:

a) S is the gate for communication at the Service; and

b) Sapl, Sap2, Epl, and Ep2 are the identifiers of the pair
of interconnected Service Access Points and Endpoints;
and

c) EpConstraints and EeConstraints constrain activities
at one Endpoint and end-to-end between two End-
points.

For specific examples, see the Abracadabra Protocol and
the Transport Protocol: processes Connection and TCEP-
Connections, respectively.

7.9.3 SDL Representation
A Connection is represented in SDL by the combined be-
haviour of two process instances, each representing the
active component of a Protocol Entity. When the Layer can
provide several simultaneous Connections, then a process
instance is created for each Connection in each Protocol
Entity. These process instances are created by a dispatcher
process that exists permanently from system start-up time.
For specific examples, see the Abracadabra Protocol and
the Transport Protocol: the states and transitions of pro-
cesses SenderReceiver and T- MANAGER, respectively.

0

7.1 O Multiplexing
The example used is a Multiplexing/Demultiplexing Func-
tion which multiplexes data from one Service onto an un-
derlying Service.

7.1 0.1 Estelle Representation
In Estelle, Multiplexing applies to interactions of two or more
Users who request a Service (by Service Primitives) at two
or more interaction points. These interactions are mapped
by a Protocol Entity onto one underlying interaction point of
the underlying Service Provider.
In the simplest case, multiplexing data from several Users
onto a single underlying Service is accomplished by adding
User identification to User interactions, and then sending
the result via the underlying Service. Demultiplexing works
in the opposite direction by removing User identification,
and then sending the remaining information to that User.
The following example assumes that the necessary chan-
nels, types, variables, etc. have been defined. This Estelle
fragment gives two transitions, one to multiplex from any of
NUsers Users onto the underlying Server, and the other to
demultiplex from the Server onto the Users.

'

I

trans (multiplex)
any i d : 1 .. NUsers do

when User [id] .UDataReq(UserData)
begin

output
Server. SDataReq(id, UserData)

end ;

trans {denultiplex)
when Server, SDataInd(id , UserData)

16

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

begin
output
User [id] .UDataInd(UserData)

end ;

7.10.2 LOTOS Representation
A simple multiplexer/demultiplexer accepts data from differ-
ent sources, distinguished by their identifier, and forwards
it with a tag indicating its source. For example:

process MuxDemux [U, L]
WSap : USapSort, LSap : LSapSort)
: noexi t :=

MUX CU, LI (USap, LSap)

Demux [U, LI (USap, LSap)
I I I

where

process Mux [U, LI
(Usap : USapSort, Lsap : LSapSort)
: noexi t :=

choice UEp : UEpSort, Ud : O c t e t s t r i n g [I
(

U ! USap ! UEp ! UDataReq (Ud);
L ! LSap ! LDataReq (UEp, Ud);
Mux CU, LI (USap, LSap)

1

endproc (* Mux *)

process Demux [U, LI
@Sap : USapSort, LSap : LSapSort)
: noexi t :=

choice UEp : UEpSort, Ud : O c t e t s t r i n g [I
(

L ! LSap ! LDataInd (UEp, Ud);
U ! USap ! UEp ! UDataInd (Ud);
Demux [U, LI (USap, LSap)

)

endproc (* Demux *)

endproc (* MuxDemux *)

where:

a) U and L are the gates for communication at the Upper
and Lower Services; and

b) USap refers to the Upper Service Access Point identi-
fier, and LSap refers to the Lower Service Access Point
identifier; and

c) UEp refers to the Upper Service Endpoint identifier; and
d) Octetstring is the standard library sort, used for Service

Data Units.

7.1 0.3 SDL Representation
Multiplexing can be handled in SDL by mapping Protocol
Data Units from different Associations onto a single Asso-
ciation (channel and receiver identity), tagging each PDU
with a final destination identifier.

PROCESS Multiplexing;
...
INPUT PDU (P a r l , Para, Par3);
OUTPUT MediumPDU (Par l , Par2, Par3, RefNo);

PROCESS Demultiplexing;
...
INPUT MediumPDU (P a r l , Par2, Par3, RefNo) ;
DECISION (RefNo) ;

(PathA) :
OUTPUT PDU (Par l , Par2, Par3) V I A PATHA;

...
(PathN) :

ENDDECISION
OUTPUT PDU (Par l , Par2, Par3) V I A PATHN;

7.1 1 Splitting
The example used is a Splitting/Recombining Function
which splits data over a number of Service Access Points
in an underlying connectionless Service.

7.1 1.1 Estelle Representation
In the simplest case, splitting data from one User onto sev-
eral interactions points of the underlying Service is accom-
plished by accepting interactions from a User, and then
sending them through one of several interaction points of
the underlying Service. Recombining data in the opposite
direction is accomplished by sending the incoming interac-
tions to the User.
The following example assumes that the necessary chan-
nels, types, variables, etc. have been defined. This Estelle
fragment gives two transitions, one to split the data via one
of NServers underlying Servers, and the other to recom-
bine it the data. It is further assumed that the function select
chooses an underlying interaction point on which to output
the data.

trans (s p l i t 1

begin
when User. UDat aReq (UserData)

output
Server [select] . SDataReq(UserData)

end ;

trans {recombine)
any i d : 1 .. NServers

begin
when Server [id] . SDataInd(UserData)

output
User .UDataInd(UserData)

end ;

17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.1 1.2 LOTOS Representation
A simple spïier/recombiner accepts data and forwards it
via different routes. For example:

process SplitRecombine [U, LI
(Usapl : Usapsort. Lsaps : LSapSetSort)
: noexi t :=

where

process S p l i t Cu, LI
(usapi : Usapsort, Maps : LSapSetSort)
: noexi t :=

choice USap2 : USapSort, LSap : LSapSort,
Ud : Octe t s t r ing [I

[Lsap i s in Lsapsl ->
(

U ! USapl ! UDataReq (USap2, Ud);
L ! LSap !

S p l i t [U, LI (Usapi, Lsaps)
LDataReq (D t (USapl, USap2, Ud));

1

endproc (* S p l i t *)

process Recombine CU, LI
(usapi : ilSapsort, Lsaps : LSapSetSort)
: noexi t :=

choice USap2 : USapSort, LSap : LSapSort,
Ud : Octe t s t r ing [I

[Lsap isin Lsaps] ->
(

L ! LSap !

U ! USapl ! UDataInd (USap2, Ud);
Recombine [U, L] (USapl, LSaps)

LDataInd (Dt (USap2, USapl, Ud)) ;

1

endproc (* Recombine *)

endproc (* SplitRecombine *)

where:

a) U and L are the gates for communication at the Upper
and Lower Services; and

b) USapl and USap2 are the source and destination Up-
per Service Access Point identifiers, and LSaps gives
the identifiers of the Lower Service Access Points which
may be used for splitting; and

c) Dt is used to construct a datagram from the source
address, destination address, and user data; and

d) Octetstring is the standard library sort, usedfor Service
Data Units.

7.1 1.3 SDL Representation
Splitting in SDL can be represented as follows:

PROCESS S p l i t t i n g ;

DECISIOlJ S p l i t ;
...

(I) : OUTPUT A VIA SAP-I;
(2): OUTPUT B VIA SAP-2;

...
Recombining is represented by converging channels (and
signalroutes) to a process.

7.12 Concatenation
The example used is a ConcatenatiodSeparation Function
which concatenates Protocol Data Units into one Service
Daia Unit of the underlying Service.

7.1 2.1 Estelle Representation
In Estelle, Concatenation is carried out by a Protocol En-
tity combining a set of Protocol Data Units into a single
interaction sent to an underlying Service Provider. The fol-
lowing example is based on Annex 6 of IS0 9074, using
the Datavpe definition in 7.8.1:

{ append t h e da t a contained i n "addition" t o t h e
va r i ab le "base", s e t t i n g "addition" t o t h e
n u l l da t a type >

procedure assemble
(var base : DataType; var addi t ion : DataType);
var TotLength : i n t ege r ;

Index : LenType;

begin
TotLength := base.1 + addi t ion .1 ;
if TotLength > MaxData

f o r index := I t o TotLength - base.1 do
then TotLength := MaxData;

ba8e.d [index + base.11 :=
addi t ion. d [index] ;

base.1 := TotLength;
n u l l (addi t ion)

end

7.1 2.2 LOTOS Representation
Concatenation and Separation correspond in LOTOS to op-
erations which relate Protocol Data Units to Service Data
Units of the underlying Service. For example:

type SduType is Oc te t s t r ing

opns
ConcatenateSdu : Octe t s t r ing , Octe ts t r ing

Separatepdu : Octe ts t r ing -> Octe ts t r ing
-> Octe t s t r ing

18

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Separatesdu : Octe tSt r ing -> Octe ts t r ing

eqns
f o r a l l Pdu, Pdul, Pdu2, Sdu : OctetStr ing

o f s o r t O c t e t s t r i n g

Separatepdu (0) = 0 ;
Separatepdu (ConcatenateSdu (Pdu, O)) =

Separatepdu (ConcatenateSdu (Pdul ,
Pdu ;

ConcatenateSdu (Pdu2, Sdu))) =

ConcatenateSdu (Pdu2, Sdu))
Separatepdu (

Separatesdu (0) = O ;
Separatesdu (ConcatenateSdu (Pdu, 0)) =

Separatesdu (ConcatenateSdu (Pdui,
0 ;

ConcatenateSdu (Pdu2, Sdu))) =

Concatenate (Pdu2, Sdu)))
ConcatenateSdu (Pdul, Separatesdu (

endtype

where:

a) SduType defines a Service Data Unit of the underlying
Service; and

b) Octetstring is the standard library sort, used for Proto-
col Data Units and Service Data Units of the underlying
Service; and

c) <> is the representation of an empty octet string; and
d) ConcatenateSdu appends a Protocol Data Unit to a

Service Data Unit, yielding a new Service Data Unit;
and

e) Separatepdu and Separatesdu yield the last Protocol
Data Unit and the remainder of the Service Data Unit re-
spectively, after separation of the original Service Data
Unit.

This defines Concatenation and SeDaration to be inverse 0
operations: Protocol Data Units are separated in the same
order as they were concatenated.

7.12.3 SDL Representation
The concatenation of Protocol Data Units can be repre-
sented in SDL by operators defined on those Protocol Data
Units.

NEWTYPE SduType

LITERALS NullSdu;

OPERATORS
ConcatenateSdu : OctetStr ing, O c t e t s t r i n g

Separatepdu : Octe tSt r ing -> Octe ts t r ing ;
Separatesdu : Octe tSt r ing -> Octe ts t r ing ;

-> OctetStr ing;

AXIOMS
FOR ALL Pdu, Pdul, Pdu2, Sdu IN O c t e t s t r i n g

(
Separatepdu (NullSdu) == NullPdu;
Separatepdu (ConcatenateSdu (
Pdu, NullSdu) ==

Pdu ;
Separatepdu (ConcatenateSdu (Pdul,

ConcatenateSdu (Pdu2 Sdu))) ==

ConcatenateSdu (Pdu2, Sdu)) ;
Separatepdu (

Separatesdu (NullSdu) == NullSdu;
Separatesdu (ConcatenateSdu (Pdu,
NullSdu)) ==

NullSdu ;
Separatesdu (ConcatenateSdu (Pdul,

ConcatenateSdu (Pdu2, Sdu))) ==
ConcatenateSdu (Pdul, Separatesdu

(ConcatenateSdu (Pdu2, Sdu) 1) ;
1

ENDNEWTYPE SduType;

where the operations and sorts are much as in the LOTOS
example.

7.13 Segmentation
The example used is a Segmentation/Reassembly Function
which segments one Service Data Unit into multiple Proto-
col Data Units of the supporting Protocol. For a specific
example, see Segmentation and Reassembly Functions
in the Transport Protocol descriptions.

7.13.1 Estelle Representation
In Estelle, Segmentation is realised by decomposing one
Service Data Unit into two or more Protocol Data Units, and
sending them as two or more interactions via an underlying
Service Provider. The following example is based on Annex
B of IS0 9074, using the DataType definition in 7.8.1:

{ segment t h e d a t a i n "old" by moving t h e first
"len" o c t e t s t o "head", l eav ing t h e t a i l (o f
l ength " length (old) - len") i n "old"

1

procedure segment
(var head : DataType; var o ld : DataType;

l e n : LenType);
v a r index, length : LenType;
begin

i f l e n > o l d . 1
then length := o l d . 1
else length := l e n ;

create (head, length) ;
if length > O

begin
then

19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

for index :=
1 to length do
head.d [index] := o1d.d [index] ;

for index :=
1 to old.1 - length do
o1d.d [index] :=

o1d.d [index + length] ;

old.1 - length + 1 to old.1 do
for index :=

o1d.d [index] := O;
old.1 := old.1 - length

end
end ;

For a specific example, see the Transport Protocol: proce-
dure D-FRAGMENT as used in trans TC22 and procedure
D-ASSEMBLE, as used in tram TC28.

7.13.2 LOTOS Representation

Segmentation and Reassembly correspond in LOTOS to
operations which relate Service Data Units to Protocol Data
Units of the supporting Protocol. For example:

type PduType is SduType

opns
SegmentPdu : OctetString -> Octetstring
SegmentSdu : OctetString -> Octetstring
ReassembleSdu : OctetString, Octetstring

-> Octetstring

eqns
forall Pdu, Pdul, Pdu2, Sdu : Octetstring

ofsort Octetstring

SegmentPdu (0) = O ;
SegmentPdu (ReassembleSdu (Pdu, 0))

SegmentPdu (ReassembleSdu (Pdul ,
ReassembleSdu (Pdu2, Sdu))) =

Pdu ;

SegmentPdu (ReassembleSdu (Pdu2, Sdu))

SegmentSdu (0) = O;
SegmentSdu (ReassembleSdu (Pdu, <>)I SS

SegmentSdu (ReassembleSdu (Pdul,
ReassembleSdu (Pdu2, Sdu))) =

ReassembleSdu (Pdu2 , Sdu))

<> ;

ReassembleSdu (Pdul, SegmentSdu (

endtype

where:

a) SdoQpe defines a Service Data Unit; and
b) PduType defines a Protocol Data Unit of the supporting

Protocol; and

c) Octetstring is the standard library sort, usedfor Service
Data Units and Protocol Data Units of the supporting
Protocol: and

d) <> is the representation of an empty octet string; and
e) SegmentPdu and SegmentSdu yield a Protocol Data

Unit and the remainder of the Service Data Unit respec-
tively, after segmentation of the original Service Data
Unit: and

I
I :

f) ReassembleSdu appends a Protocol Data Unit to a

This defines Segmentation and Reassembly to be inverse

Service Data Unit.

i operations: Service Data Units are reassembled in the
same order as they were segmented.
For a specific example, see the Transport Protocol: opera-
tions ReplaceTop and Addsegment in type TSDUS.

7.13.3 SDL Representation

The segmentation of a Service Data Unit can be repre- 4
sented by ad hoc operators defined for the Service Data
Unit.

NEWTYPE PduType

LITERALS NullPdu;

OPERATORS
SegmentPdu : OctetString -> Octetstring
SegmentSdu : Octetstring -> OctetString
ReassembleSdu : OctetString, Octetstring

-> Octetstring

AXIOMS
FOR ALL Pdu, Pdul, Pdu2, Sdu IN Octetstring

(
SegmentPdu (NullSdu) == NullPdu;
SegmentPdu (ReassembleSdu (Pdu,
NullSdu)) ==
Pdu ;

SegmentPdu (ReassembleSdu (Pdul,
ReassembleSdu (Pdu2, Sdu))) ==

ReassembleSdu (Pdu2, Sdu)) ;
SegmentPdu (

SegmentSdu (NullSdu) == NullSdu;
SegmentSdu (ReassembleSdu (Pdu,
NullSdu)) ==
NullSdu;

SegmentSdu (ReassembleSdu (Pdul ,
ReassembleSdu (Pdu2, Sdu)) ==
ReassembleSdu (Pdul, SegmentSdu (
ReassembleSdu (Pdu2, Sdu))) ;

)
ENDNEWTYPE PduType;

I where the operations and sorts are much as in the LOTOS
example.
For a specific example, see the Transport Protocol: proce-
dure DATA- PHASE.

20

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.14 Service
The example used is a Service which hides its supporting
Protocol and the underlying Service. For a specific example
of a Service viewed as a black box, see the Abracadabra
Service descriptions. For a specific example of a Service
viewed as a Protocol combined with the underlying Service,
see the Sliding Window Protocol plus Medium descrip-
tions.

7.14.1 Estelle Representation
In Estelle, a Service is represented by one or more module
definitions whose inputs and outputs are Service Primitives
for the Layer described. Module behaviour, as defined in
relevant module bodies, maps Service Primitives sent by
one Service User to Service Primitives received by the cor-
responding peer Service User. Services that are unique
to a Layer are realized by algorithms described within the
module bodies.

0 For specific examples, see the Abracadabra Service
module Abraservice, and Sliding Window Protocol plus
Medium modules Transmitteruser, Receiveruser, Timer
plus Cms.

7.14.2 LOTOS Representation
A Service description in LOTOS may be a Protocol descrip-
tion with the internal details hidden (i.e. the communication
at gates corresponding to the underlying Services). For
example:

process Service CUI
(USapSet : USapSetSort , LSapSet : Lsapsetsort)
: noexit :=

hide L i n Protocol [U, L] (USapSet, LSapSet)

endproc

a) U and L are the gates for communication at the Upper
and Lower Services; and

b) USapSet and LSapSet define which Upper and Lower
Service Access Points are supported by the supporting
Protocol.

However, a Service may also be described in LOTOS with-
out reference to a Protocol description. The behaviour of a
Service is decomposed into the independent behaviour of
its Endpoints (Ep) and its End-to-End behaviour (Ee). For
example:

process Service [U]
(USapSet : USapSetSort) : noexit :=

EpConstraints [U] (USapSet)

EeConstraints [U] (USapSet)
I I

endproc

where:

a) EpConstraints and EeConstraints constrain activities
independently at each Endpoint and end-to-end be-
tween two Endpoints.

For specific examples, see the Abracadabra Service and
Sliding Window Protocol plus Medium: overall behaviour
as represented by the composition of the processes Con-
nection and Backpressure; and overall behaviour as rep-
resented by the composition of the processes Transmitter-
Entity, ReceiverEntity, and Medium, respectively.

7.1 4.3 SDL Representation
A Service can be represented in SDL by means of two inter-
working processes, which are mirror images of each other.
Each represents the behaviour of the Service Provider as
seen by a Service User. The processes interact by means
of internal signals, conveyed on a bi-directional signalroute
and mapping the Service User Primitives. Using two pro-
cesses instead of one single process is essential in order
to model faithfully the time delay in the Service Provider
between a Request at one side and the corresponding In-
dication at the other.
For specific examples, see the Abracadabra Service and
Sliding Window Protocol plus Medium: system diagrams
Abraservice and SIidingWindowProtocol, respectively.

21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 E)

8 Daemon Game Example
This illustrates a small self-contained system. Although not
presented as a Service or Protocol example, this is a gentle
lead-in to later, more realistic examples.

8.1 Informal Description
This is a simple game having several players. The game
is the system that is to be defined in a chosen specification
language. The players belong to the environment of this
system.
In the system there is a daemon that generates Bump sig-
nals randomly. A player has to guess whether the number
of generated Bump signals is odd or even. The guess is
made by sending a Probe signal to the system. The sys-
tem replies by sending the signal Win if the number of the
generated Bump signals is odd, otherwise by the signal
Lose.
The system keeps track of the score of each player. The
score is initially zero. It is increased by 1 for each success-
ful guess (signal Win is sent), and reduced by 1 for each
unsuccessful guess (signal Lose is sent). A player can ask
for the current value of the score by the signal Result, which
is answered by the system with the signal Score.
Before a player can start playing, the player must log in.
This is accomplished by the signal Newgame. A player
logs out by the signal Endgame. The system allocates a
player a unique identifier on logging in, and de-allocates it
on logging out. The system cannot tell whether different
identifiers are being used by the same player.

8.2 Deficiencies in the Informal Descrip-
tion

8.2.1 Presence of Daemon (Clause 8.1)
8.2.1.1 Deficiency
Should the daemon be an integral part of the description,
or is it an artefact of the informal explanation?

8.2.1.2 Resolution
It was not intended that the daemon be part of the system
description.

8.2.2 Login to a Current Game (Clause 8.1)
8.2.2.1 Deficiency
What should happen if a player who is already logged in
tries to issue Newgame again? The informal description
does not clearly cover this case.

8.2.2.2 Resolution
The intention was to treat games like 'Bingo' game panels
with buttons for input and indicators for output. Newgame
should therefore be allowed to happen in a current game,
but should be ignored.

8.2.3 Attempt to play before Login (Clause 8.1)

8.2.3.1 Deficiency
What should happen if a player issues any signal other
than Newgame before logging into a game? The informal
description says that a player must first login, but does not
say what happens if Newgame is not the first signal.

8.2.3.2 Resolution
The intention was to allow Probe, Result, or Endgame
when a game is not current, but to ignore these signals.

8.2.4 Identification of Players and Games
(Clause 8.1)

8.2.4.1 Deficiency
The informal description precludes the case of logging into
a current game, because it implies that a further login will
result in a new game. This contradicts the intended be-
haviour as described in 8.2.2. Presumably some identifiers
are needed, but how should they be allocated and what
should they distinguish?

8.2.4.2 Resolution
The intended behaviour was that each game should be
distinguished from the system's point of view by some iden-
tifier. The system was not intended to be able to tell which
player (or even players) were issuing signals for a game.
A player should therefore be able to play multiple games
simultaneously without the system knowing: the players
should be an anonymous part of the environment of the
system.

8.2.5 Player Use of System Signals (Clause 8.1)
8.2.5.1 Deficiency
What should happen if the player issues Win, Lose, or
Score signals?

8.2.5.2 Resolution
The intention was to disallow such behaviour: it simply must
not happen, as opposed to happening but be ignored.

8.2.6 Interruption of Probe or Result (Clause 8.1)

8.2.6.1 Deficiency
Should it be allowable for another signal to be processed
by the system between Probe and WinlLose, or between
Result and Score?

8.2.6.2 Resolution
The intention was that Probe or Result should be followed
by their respective responses before any other signal is
processed.

22

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

+--------+

IPlayer 11 . . . IPlayer NGamesI
+--G()--+ + ---- G() +

I I
+ ---e- P(+) ---------- +------ P(+)---- . . .

Figure 8.1: Architecture of the Daemon Game in Estelle

8.2.7 Counting of ‘Bump’ Signals (Clause 8.1)

8.2.7.1 Deficiency
In deciding whether a player wins or loses, is it necessary
to use the count of Bump signals since the system started
or since that game started?

8.2.7.2 Resolution
The intention was to count the number of Bump signals
since a game started.

8.3 Estelle Description
a . 3 . 1 Architecture of the Formal Description

Figure 8.1 shows the architecture of the Daemon Game de-
scription in Estelle using an explicit daemon; a description
without an explicit daemon is given in 8.3.4. Interaction
points are indicated by parentheses and labelled by their
names. Those marked with a + symbol are bound both by
a connect and an attach and thus logically continue the
path of interactions to or from a child module. The specifi-
cation of ManagerBody illustrates the dynamic structuring
capabilities of Estelle. Declaring the Manager module to be
a systemprocess is a way to guarantee fairness in the ser-
vice provided to the players, because the Game modules
will be synchronised.

8.3.2 Explanation of Approach

Definitions of bodies for the Player and the Daemon are
left unspecified, as these are not relevant to the descrip-
tion: each may behave in any way consistent with the cor-
responding channel definition.

ISO/IEC TR 10167 : 1991 (E)

The Manager handles the instantiation and eventual re-
moval of game instances, as the players initiate and ter-
minate them. Once it has established the game, the Man-
ager attaches the Gameserver channel to the newly estab-
lished games, SO that the remaining interactions between
the player and the game require no mediation on the part
of the Manager. The shared variable Done is used by the
game to indicate to its manager-parent that its user has
finished play, so the game should be removed (released).
This approach is one of several possible: it was chosen to
show the use of shared variables.
The game modules simply implement the rules of the game
as given in the informal description. The Distributor mod-
ule distributes the daemon’s Bump to each of the games.

8.3.3 Formal Description
s p e c i f i c a t i o n Daemongame;

const N G a m e s = any integer;

channel Daemonserver (User, Provider) ;
by Provider:

Bump ;

channel Gameserver (Player , Machine) ;
by Player:

Probe;
Resul t ; Player r e q u e s t s s c o r e 3
Newgame; Player i n i t i a t e s game 3
Endgame; Player te rmina tes game 3

by Machine:
Win;
Lose;
Score (nuon: i n t e g e r) ; { i n response t o

P layer t a k e s a t u r n 3

{ t e l l s Player he won 3
t e l l s P layer he l o s t 3

Resul t , t e l l s Player h i s score 3

module Daemon systemprocess;
i p D: Daemonserver (Provider)

ind iv idua l queue;
end; Daemon 3

body DaemonBody f o r Daemon; ex terna l ;

module Player systemprocess;
i p G: Gameserver (Player)

ind iv idua l queue ;
end; Player 3

body PlayerBody f o r Player; e x t e r n a l ;

module Manager systemprocess;
i p P: a r r a y c i . .NGames] of

Gameserver (Machine)
common queue;

D: Daemonserver (user)
common queue;

end; Manager 3

body ManagerBody f o r Manager;

23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

module Distributor process;
ip G: array [I, .NGames] of

Daemonserver (provider)
common queue;

D: Daemonserver (user)
common queue;

end; { Distributor 1

body DistributorBody for Distributor;
trans

when D .Bump
begin
{ distribute bump to all games 1

all i: 1 . , NGames do
output G [il .Bump

end ;
end; { DistributorBody 3

module Game process;
ip P: Gameserver (machine) common queue;

export

end; C Game 3

D: Daemonserver (user) common queue;

Done: boolean;

body GameBody for Game;

state EVEN, ODD; { records parity of

stateset EITHER = [EVEN, ODD];

NCorrect: integer;

bumps 3

h i t ial ize
to EVEN

begin
NCorrect := O;
Done := false;

end ;

trans
{ *** Player makes guess *** 3
when P.Probe

from EVEN to EVEN
begin

NCorrect := NCorrect - I;
output P. Lose

end ;

begin
from ODD to ODD

NCorrect := NCorrect + 1;
output P.Win

end;

i *** Player wants score *** 1
when P.Result

begin
from EITHER to same

output
P. Score(NCorrect)

end ;

{ *** Player is done *** 3
when P.Endgame

from EITHER to same
begin

end ;
Done := true

{ *** Player requests new game *** 3
uhen P. Newgame

from EITHER to same
begin
{ ignore Player8s error 1
end ;

{ *** Daemon bumped *** 3
when D.Bump

from EVEN to ODD
begin
end ;

from ODD to EVEN
begin
end ;

end; { GameBody 3

{ Actual Manager description begins here 3
modvar

GameInstance: Game;
DistributorInstance: Distributor;

state MANAGING;

initialize
to MANAGING

begin
init DistributorInstance
with DistributorBody;

attach D
to Distributor1nstance.D;

end ;

trans
any GameNumber: I..NGames do

{ *** Player requests game *** 1
when P [GameNumber] . Newgame

begin
init GameInstance
with GameBody;

attach P [GameNumber]
to Game1nstance.P;

connect Gameinstance .D
to Distributor1nstance.G

[GameNumberl ;
end;

{ *** ignore Player’s errors *** 1
when P [GameNumberl .Probe

begin
end ;

when P CGameNumberl .Result

24

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

begin
end ;

begin
end ;

when P [Gamelumber] .Endgame

t r a n s
{ *** Clean up af ter game *** 1
provided e x i s t GameBody: Game

suchtha t GameBody.Done
begin

a l l GameBody: Game do
i f GameBody.Done then

release GameBody
end ;

end; { Manager 1

{ here is t h e body of t h e s p e c i f i c a t i o n

modvar
i tself 3

DaamonInstance: Daemon;
ManagerInstance: Manager;
PlayerInstance: a r r ay [l. .NGamesl

of Player;

i n i t i a l i z e
begin

i n i t DaemonInstance
with DaemonBody;

i n i t ManagerInstance

a l l i: 1 .. N G a m e s do
with ManagerBody;

begin
i n i t P iayer ins tance Cil

connect ManagerInstance. P [il
with PlayerBody;

t o PlayerInstanceCiI .G
end ;

connect Daemon1nstance.D
t o Manager1nstance.D;

end ;
end. { spec i f i ca t ion Daemongame 3 a
8.3.4 Alternative Formal Description
This alternative approach of specifying the Daemon Game
avoids explicit representation of the daemon. The descrip-
tion given earlier was written to reflect the informal descrip-
tion more naturally. However, it was recognized that there
was no way a player could distinguish between a system
that had a central daemon and a system where the effect of
the daemon was purely non-determinism. The architecture
of the alternative description without the daemon is shown
in Figure 8.2.

spec i f i ca t ion Daemongame;

const lGames = any in t ege r ;

channel Gameserver (Player , Machine) ;
by Player:

Probe; P layer takes a t u r n }

Figure 8.2: Alternative Architecture of the Daemon
Game in Estelle

Resul t ; { Player r eques t s s co re 3
Newgame; { Player i n i t i a t e s game 3
Endgame; { Player te rmina tes game 3

by Machine:
Win; { t e l l s Player he won 3
Lose; { t e l l s P layer he l o s t
Score (nwon: in t ege r) ; { i n response t o

Resul t , t e l l s Player h i s s co re 3

module Player systemprocess;

end; { Player 3
i p G: Gameserver (Player) i nd iv idua l queue;

body PlayerBody f o r P layer ; ex te rna l ;

module Manager systemprocess;
i p P: a r ray [l. .NGamesl of

Gameserver (Machine) common queue;
end; { Manager 3

body ManagerBody f o r Manager;

module Game process;
i p P: Gameserver (machine) common queue;
export

end; { Game 3
Done: boolean;

body GameBody f o r Game;
var ICorrect : i n t ege r ;
state EVENorODD; { records p a r i t y of

bumps 3

i n i t i a l i z e
t o EVENorODD

begin
NCorrect := O;
Done := false;

end ;

t r a n s
{ *** Player makes guess *** }
when P.Probe

25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

begin
NCorrect := NCorrect - 1;
output P. Lose

end ;

when P.Probe
begin

NCorrect := NCorrect + 1;
output P.Win

end ;

i *** Player wants score *** 3
when P.Result

begin

end ;
output P. Score(NCorrect)

i *** Player is done *** 1
when P.Endgame

begin

end ;
Done := true

{ *** Player requests new game *** 3
when P.Neugame

begin
i ignore Player’s error 3
end ;

end; { GameBody }

Actual Manager description begins here 1
modvar

GameInstance: Game;

26

state MANAGING;

initialize
to MANAGING

begin
init DistributorInstance
with DistributorBody;

attach D
to Distributor1nstance.D;

end ;

trans
any GameNumber: l..NGames do

i *** Player requests game *** 3
when P [GameNumber] . Newgame

begin
init CameInstance
with GameBody;

attach P [GameNumber]
to Game1nstance.P;

end ;

{ *** ignore Player’s errors *** }
when P [GameNumber] .Probe

begin

end ;

begin
end ;

begin
end ;

when P [Gamelumber] .Result

when P [GameNumber] .Endgame

trans
{ *** Clean up after game *** 3
provided exist GameBody: Game

suchthat GameBody . Done
begin

all GameBody: Game do
if GameBody .Done then
release GameBody

end ;
end; { Manager 3

i here is the body of the specification

modvar
itself 3

ManagerInstance: Manager;
PlayerInstance: array [l. .NGames] of

Player;

initialize
begin

init ManagerInstance
with ManagerBody;

all i: 1 .. NGames do
begin

init Piayerinstance Cil

connect ManagerInstance .P[i]
with PlayerBody;

to PlayerInstance [il . G
end ;

connect Daemon1nstance.D
to Manager1nstance.D;

end ;
end. { specification Daemongame 3

8.3.5 Subjective Assessment
The Daemon Game was originally invented as a graded
series of examples, each more complex than the next, to
explain Estelle. In its original, simplest version, the game
had no beginning and no end: it allowed one player, and it
did not report a score. In this case, it is unnecessary to have
the complex structure given here since there are only empty
daemon and player modules, and a game module that has
states and no variables. Each version of the game in the se-
ries forced the use of more complex Estelle constructs until
the most complete version of the game (approximating the
one given here) made use of a fairly large subset of Estelle.
The informal description of the game given here was initially
written by augmenting the old, original informal description;
perhaps that affected some of the design choices.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TI? 10167 : 1991 (E)

8.4.1 Architecture of the Formal Description

The top-level structure of the LOTOS description is as fol-
lows:

8.4.1.1 Gates
P for all communication between players and the system;

interactions are tagged with the identifier of a game in
order to distinguish them

D an internal gate for communication between the dae-
mon and the games; a Bump signal is represented
purely by synchronisation at D, i.e. there is no Bump
value in the event

8.4.1.2 Data Types

Identifierset for indicating which games may be used
Integer for scoring
Signal for interactions between players and the

system

8.4.1.3 Processes

Identifier for distinguishing games

0

System for explaining the top-level specification be-
haviour; this is decomposed into the indepen-
dent constraints on permitted games

NoGame for describing the behaviour of a game which is
not current (i.e. not logged into)

Game for describing the behaviour of a current game
(i.e. logged into)

Daemon for describing the behaviour of the daemon

8.4.2 Explanation of Approach
The major decision taken in the writing of the description
was whether to explicitly represent the daemon. In the fol-
lowing description, the daemon is explicitly represented as
a process which interacts with game processes. The dae-
mon process is responsible for generating Bump signals.

.The description was written this way in order to reflect the
informal description more naturally. However, the philos-
ophy of LOTOS is to describe only observable behaviour,
so this style of description is unnatural in LOTOS. An alter-
native description without an explicit daemon is therefore
given in 8.4.4.

8.4.3 Formal Description
The whole description of the system is parameterised by the
gate at which external communication occurs with players
(P), and by the set of game identifiers which may be used
(ids).

spec i f icat ion Daemongame [PI
(i d s : IdSetSort) : noexit

(* use standard l ibrary *) Boolean, S e t
endlib

The following type defines game identifiers. The only formal
property which identifiers have is that they are distinct. This
is explained by giving a base value (Baseld) and an opera-
tion for reaching all other identifier values (Nextld). Equality
(es) and inequality (ne) are defined for game identifiers.

type IdentifierType is Boolean
s o r t s IdSort
opns

BaseId : -> IdSort
NextId : IdSort -> IdSort
-eq-, -ne, : IdSort, IdSort -> Bool

eqns
f o r a l l Id, I d l , Id2 : IdSort

of sort Bool
BaseId eq BaseId = true;
BaseId eq NextId (Id) = f a l s e ;
NextId (Id) eq BaseId = false;
NextId (Idl) eq NextId (Id21 =

Id1 eq Id2;
Id1 ne Id2 = not (Id1 eq Id2)

endtype

The following type renames the standard library data type
Set, still with formal sorts Element and FBool

The following type defines sets of game identifiers as an
actualisation of the parameterised type IdentifierSetFor-
malType. A set of game identifiers is a parameter to the
overall description.

type IdentifierSetType i s
IdentifierSetFormalType

actualizedby IdentifierType, Boolean using
sortnames

IdSort f o r Element
Bool f o r FBool

endtype

l ibrary

27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

The following type defines the integers (..., -1, O, 1, ...) in
terms cif a zero value, an ‘add one’ operation (inc), and a
‘subtract one’ operation (de 2).

*) -----------------------..-----------------------

t y p e IntegerType i s
s o r t s I n t S o r t
opns

O : -> I n t S o r t
i n c , dec : I n t S o r t -> In tSor t

f o r a l l n : I n t S o r t
eqns

o f s o r t I n t S o r t
i n c (dec (n)) = n;
dec (inc (n)) = n

endtype

gnals between the players
on of Score, these signals

s o r t s SigSort
opns

ssion specifies the entire
the given gate and set of
is used for communication

between the daemon a

behaviour
h ide D i n

where

games are.

28

process System CP, DI
(i d s : IdSetSort) : noexi t :=
choice i d : IdSort [I

[(Card (ids) eq Succ (O)) and
(i d IsIn ida)] -> (* one i d *)
NoGame [P, D l (id)

CI
[(Card (ids) g t Succ (O)) and
(i d IsIn ids)] -> (* s e v e r a l i d s *)
(

I [Dl I

1

NoGame [P, DI (id)

System [P, D l (Remove (i d , i d s))

where

The following process specifies the behaviour of a game 0
when it is not current (i.e. logged into). The process is
non-terminating, since on completion of a game it offers to
start a new game. Unwanted signals from the player or the
daemon are discarded while a game is not in progress.

process NoCame [P, DI

P ! i d ! Newgame;
(i d : IdSort) : noexi t :=

(* score O , even Bumps *) (
Came [P, D l

(i d , O of I n t S o r t , f a l s e)
>>

NoGame [P, DI (i d)
)

CI

CI

Cl

CI

P ! i d ! Probe; NoGame [P, DI (i d)

P ! i d ! Resul t ; NoCame [P, D l (id)

P ! i d ! Endgame; NoGame [P, DI (i d)

D;
NoCame [P, DI (id)

(* Bump s i g n a l *)

where

The following process specifies the behaviour of a current
game. Only the parity of the number of Bump signals is
relevant, so the actual number of the signals is not stored.
The process is entered after Newgame, and terminates
once Endgame is received.

process Game [P, DI

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

iSO/IEC TR 10167 : 1991 (E)

(i d : IdSor t , t o t a l : In tSor t , odd : Bool)
: e x i t :=
P ! i d ! Newgame;
Game [P, D l (i d , t o t a l , odd)

P ! i d ! Probe;
CI

(
[odd] ->

P ! i d ! Win;
G a m e [Pl D l (i d , i n c (t o t a l) , odd)

CI
[not (odd)] ->

P ! i d ! Lose;
Game [Pl D] (i d , dec (t o t a l) , odd)

1
CI

P ! i d ! Resul t ;
P ! i d ! Score (t o t a l) ;
Game [P, D l (i d , t o t a l , odd)

P ! i d ! Endgame; e x i t

D ; (* Bump s igna l *)
Game [P, D l (i d , t o t a l , not (odd))

CI

CI

endproc (* Game *)

endproc (* NoGame *)

The following process specifies the behaviour of the dae-
mon. It simply generates an endless series of event offers
at the D gate, corresponding to Bump signals.

process Daemon [DI : noexi t :=

endproc (* Daemon *)
D; Daemon [Dl

endspec (* Daemongame *)

8.4.4 Alternative Formal Description
It was recognised that there was no way a player could
distinguish between a system that had a central daemon
and a system that had one independent daemon per game
process. Since there is no concept of absolute time or si-
multaneity in LOTOS, a description could not differentiate
between the behaviour of these two systems. If two play-
ers sent Probe at almost the same time and one received
Win while the other received Lose, they would conclude
that the system had internally generated Bump in between
the two signals. This would be true no matter how close
in time the two Probe signals were. Since the two Probe
signals could never be simultaneous in LOTOS, and could

not be determined to be simultaneous in the real world, the
players could not observe whether there were one or many
daemons in the system. This illustrates a deep difierence
found between some FDTs. FDTs such as LOTOS mo-
del concurrency by interleaving of events, whereas others
model simultaneity using the concept of ‘true concurrency’.
An alternative formal description has therefore been pro-
vided with one daemon per game process. However, since
the daemon is simply a source of non-determinism, it can be
dispensed with altogether in the LOTOS description. The
manifestation of the daemon is that a player receives a Win
or Lose signal aftera Probe. It is therefore not necessary to
model the Bump signals (which are, after all, invisible from
the outside), nor to count whether an odd or even number
has occurred. Such non-determinism is simply hidden as
an internal event in the LOTOS description. This descrip-
tion therefore dispenses with the internal gate D and the
Daemon process.

spec i f i c a t i o n Daemongame [PI
(i d s : IdSetSort) : noexi t

l i b r a r y

end l ib
Boolean, Set (* use s tandard l i b r a r y *)

The following type defines game identifiers. The only formal
property which identifiers have is that they are distinct. This
is explained by giving a base value (Baseld) and an opera-
tion for reaching all other identifier values (Nextld). Equality
(eq) and inequality (ne) are defined for game identifiers.

type Ident i f ie rType is Boolean
s o r t s IdSort
opns

BaseId : -> IdSort
Next I d : IdSort -> IdSort
-eq,, -ne, : IdSor t , IdSort -> Bool

eqns
f o r a l l Id , I d l , Id2 : IdSort
o f s o r t Bool

BaseId eq BaseId = t r u e ;
BaseId eq NextId (Id) = fa lse;
NextId (Id) eq BaseId = false;
NextId (Id l) eq NextId (Id21 =

Id1 eq Id2;
Id1 ne Id2 = not (Id1 eq Id2)

endtype

The following type renames the standard library data type
Set, still with formal sorts Element and FBool

29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 199

type IdentifierSetFormi
sortnames IdSetSort :

endtype

The following type defines s
actualisation of the paramet
mall’ype. A set of game idc
overall description.

type Ident i f ierSetType
IdentifierSetFormalTy]
actual izedby I d e n t i f

IdSort f o r Elemei
Boo1 f o r FBool

sortnames

endtype

The following type defines tt
terms of a zero value, an ‘a(
‘subtract one’ operation (dec

type IntegerType i s
s o r t s In tSor t
opns

O : -> IntSi
i n c , dec : In tSor t

eqns f o r a l l n : IntSi
of s o r t In tSor t

i n c (dec (n)) = :
dec (inc (n)) = 1

endtype

The following type defines th
and the system. With the exc
are constants.

type SignalType i s Intl
s o r t s SigSort
opns

Newgame, Endgame,
Resul t : -> SigSor
Score : In tSor t ->

endtype

30

Type is Set renamedby
r Set

IS of game identifiers as an
ised type IdentifierSetFor-
ltifiers is a parameter to the

integers (..., -1, O, 1, ...) in
one’ operation (inc), and a

,t
> In tSor t
t

signals between the players
stion of Score, these signals

.obe, Win, Lose,

ligSort

The following behaviour expression specifies the entire
game. It is parameterised by the given gate and set of
identifiers.

behaviour System [PI (ids)

where

The following process specifies the overall behaviour of the
system. It sets up games independently in parallel one
by one, assigning each of them a unique identifier. The
process is non-terminating, since all the games are.

process System [PI
(i d s : IdSetSort) : noexi t :=
choice i d : IdSort [I

[id I s I n ids] ->
(

I I I

)

NoGame [Pl (i d)

System [Pl (Remove (i d , i d s))

where

The following process specifies the behaviour of a game
when it is not current (i.e. logged into). The process is
non-terminating, since on completion of a game it offers to
start a new game. Unwanted signals from the player are
discarded while a game is not in progress.

process NoGame [PI
(i d : IdSort) : noexi t :=
P ! i d ! Newgame;
((* score 0 *>

Game [PI (i d , O of I n t S o r t)

NoGame [Pl (i d)
>>

1
CI

CI

Cl

P ! i d ! Probe; NoCame [Pl (i d)

P ! i d ! Resul t ; NoGame [Pl (i d)

P ! i d ! Endgame; NoGame [PI (i d)

where

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

The following process specifies the behaviour of a current
game. The Bump actions of the daemon are not explicitly
modelled since their external effect is only non-determinism.
For this reason, there is no central daemon which sends
Bump signals to game processes. The process is en-
tered after Newgame, and terminates once Endgame is
received.

process Game [PI
(i d : IdSort, t o t a l : IntSort)
: e x i t :=
P ! i d ! Newgame; Game [Pl (i d , t o t a l)

P ! i d ! Probe;
CI

(
i ; P ! i d ! Win;
Game [Pl (i d , inc (t o t a l))

CI
i ; P ! i d ! Lose;
Game [Pl (i d , dec (t o t a l))

)
CI

P ! i d ! Result; P ! i d ! Score (t o t a l) ;
Game [Pl (i d , t o t a l)

P ! i d ! Endgame; e x i t
CI

endproc (* Game *)

endproc (* NoGame *)

endproc (* System *)

endspec (* Daemongame *)

(*---

8.4.5 Subjective Assessment
The LOTOS description shows a clear separation between
static aspects (the data typing) and dynamic aspects (the
behaviour). The data typing draws on already established
data types, which are defined in an Annex to the LOTOS
Standard. The description of the data types concerns it-
self with implementation-independent aspects; for exam-
ple, scores are described as mathematical integers, not bit
patterns.
The behaviour description illustrates the ‘constraint-
oriented’ style in which LOTOS can be used. In this style,
behaviour is decomposed into largely separate constraints
which are then combined using the appropriate LOTOS op-
erators. In this specification, the overall system behaviour
is expressed in terms of game behaviours. These in turn
are expressed in terms of the login/logout behaviour and
game-playing behaviour. The data typing also shows a
similar modularity, whereby more complex data types (e.g.
IdentifierSetType) are built out of simpler ones.
The fact that there should be no central daemon process,
or for that matter any daemon processes at all, reflects

O

ISO/IEC TR 10167 : 1991 (E)

the emphasis in LOTOS on observational behaviour. A
well-written LOTOS description will focus on the sequences
of interactions which can be externally observed, and will
avoid unnecessary and implementation-dependent detail.
To this extent, the informal description is weak because
it describes a particular mechanism for implementing the
system, not the externally required behaviour. The informal
description is an example of over-specification, which must
be carefully avoided in International Standards.

8.5 SDL Description
8.5.1 Architecture of the Formal Description
The Daemongame system contains only one block, called
Blockgame. This block has two process types, called Mon-
itor and Game. Of Monitor there is one single process that
is created at the same time when the system is created (ini-
tial process). of Game a dynamic process is created for
each player.
A player is regarded as a process in the environment of the
system. Each process in SDL is given a unique identity
(of the sort Pld), and each signal carries the identity of
the sending process. Thus, when a player logs in by the
signal Newgame, his identity is known to the system. In the
system a Game process is created for him. The process
‘presents itself’ by sending the signal Gameid to the player
and takes care of the rest of the game session.
The Monitor process has the task of creating Game pro-
cesses and distributing Bump signals to all the Game pro-
cesses.
Note that an SDL system may ignore some possible se-
quences of signals coming from the environment, for in-
stance a Probe signal coming from a player who has not
logged in is ignored by Daemongame. In other words, the
allowed behaviour of the environment is specified indirectly
by the SDL system description.

8.5.2 Explanation of Approach
The architectural approach above is rather natural. A
unique Monitor process is necessary to receive signals
from the environment (Newgame and Bump) which cannot
be addressed to a specific process (these signals are sent
without an address).
The relation between the Monitor and Game processes
could be simplified by addressing the Endgame signal to
Monitor, which would then update its record of players and
Game processes, passing the signal to the Game process
in question. However, this would require a coupling be-
tween a player and the corresponding Game process in the
Monitor process.
A main feature of this game is the non-deterministic reply
to a Probe signal. Since an SDL system behaves in a
deterministic way, this non-determinism must be modelled
by signals sent (from a daemon in the environment) to the
system.

31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

t

ISO/IECTR 10167 : 199 (E)

in both concrete representa-

iew part and a set of remote
description. Actually it is only

can be ‘called’ from
e system is described in
nd a remote block dia-

SDUGR and SDUPR.

SIGNAL

CHANNEL Gameserver.’n
FROM ENV TO Block ame
WITH Newgame, Pro e, Result, Endgame;

ENDCHANNEL Gameserv i r.in;
CHANNEL Gameserver.

FROM Blockgame TO
WITH Gameid, Win,

ENDCHANNEL Gameserv

FROM ENV TO Block
CHANNEL Daemonserve

WITH Bump;
ENDCHANNEL Daemonse

BLOCK Blockgame REF4RENCED;

/**/

ENDSYSTEM Daemongame;

/**/

SIGNAL Gameover, Gdeoverack;

FROM ENV TO Monit
WITH Newgame;

SIGNALROUTE Rl

SIGNALROUTE R2
FROM ENV TO Game

WITH Probe, Result, Endgame;

SIGNALROUTE R3
FROM Game TO ENV
WITH Gameid, Win, Lose, Score;

SIGNALROUTE R4
FROM ENV TO Monitor
WITH Bump;

SIGNALROUTE R5
FROM Monitor TO Game
WITH Bump, Gameoverack;
FROM Game TO Monitor
WITH Gameover;

CONNECT Gameserver.in AND Ri, R2;
CONNECT Gameserver.out AND R3;
CONNECT Daemonserver AND R4;

PROCESS Monitor (1, 1) REFERENCED; a
PROCESS Game (O,) REFERENCED;

ENDBLOCK Blockgame;

.
/**/ PROCESS Monitor (1, 1); /**/
.
P This process registers new players, creates a Game pro-
cess for each of them, and distributes Bump signals to all
the Game processes. If a registered player tries to ‘log in’,
then no action is taken. Note that no record is kept for the
coupling between a player and the corresponding Game
process. *I

DCL player PId; /* The identity of the
corresponding player is stored
temporarily in this variable */

DCL userset, /* Keeps record of the players */ a gameset, /* Keeps record of the Game

copygameset Pidset ;
processes */

MACRO Datatypedef;

START ;
NEXTSTATE Idle;

STATE Idle;
INPUT Newgame;
DECISION (SENDER IN userset) ;

(True) : NEXTSTATE - ;
(False) : CREATE Game(SENDER) ;

Incl(OFFSPRING, ge

(SENDER, userset);

TASK gameset :=

TASK userset :-

NEXTSTATE -;
ENDDECISION

32

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

INPUT Gameover(p1ayer) ;
TASK gameset : = Del (SENDER , gameset) ;
TASK userset := Del (player, userset) ;
OUTPUT Gameoverack TO SENDER;
NEXTSTATE -;

TASK copygameset := gameset;
1: DECISION (copygameset = empty) ;

(True): NEXTSTATE -;
(False): OUTPUT Bump TO

INPUT Bump;

take(copygameset) ;
TASK copygameset :=
Del (take(copygameset) ,
copygameset);

JOIN 1;
ENDDECISION

ENDPROCESS Monitor;

.

.

/* This process is created for a new player, and takes care
of the rest of the game session. The identity of the player is
given as the formal parameter player. When a player ‘logs
out’, the Monitor process must be informed (in order not to
send Bump signals to the process) before the process can
terminate. */

0 /**/ PROCESS Came (O ,); /**/

FPAR
player PId;

DCL
count Integer := O ;
of the score */

/* Counter to keep track

START ;
OUTPUT Cameid TO player;
NEXTSTATE Even ;

STATE Even;
INPUT Probe;
OUTPUT Lose TO player;
TASK count := count - I;
NEXTSTATE -;

NEXTSTATE Odd;
INPUT Bump;

STATE Odd;
INPUT Bump;

INPUT Probe;
NEXTSTATE Even;

OUTPUT Win TO player;
TASK count := count + 1;
NEXTSTATE -;

INPUT Endgame;
OUTPUT Gameover(p1ayer) ;
NEXTSTATE Wait.for.ack;

STATE Wait.for.ack;
INPUT Gameoverack;
STOP ;

ENDPROCESS Game;

The corresponding SDUGR representation is given in fig-
ure 8.3.

8.5.4 Subjective Assessment
The SDD description is separated into a static description
(represented by a system diagram and a block diagram)
and a dynamic description (represented by process dia-
grams). The static description gives a clear structure of
the SDL system, reducing its overall complexity, so that it
can be studied one part at a time. This feature of SDL
is reinforced by the use remote definitions. The graphical
representation greatly improves the readability of the formal
description.
SDL does not have constructs to express non-determinism.
The use of state machines to express behaviour contributes
to user friendliness, but at the same time this may lead to
over-specification.

8.6 Assessment of the Application of
the FDTs

It is remarkable that such an apparently simple example
should result in so many different interpretations. It took
several iterations among the authors of the informal and
formal descriptions to determine exactly what the original
intentions were. The conclusions from this small example
are:

a) How difficult it is to be precise about even simple thing.
b) How easy it is to forget to specify all error cases. Fail-

ure to do so often results in problems of incompatibility
between implementations of a complex description.

c) How easy it is to be unclear about the responsibilities of
different parts of a system, and how these parts should
view each other.

d) How easy it is to colour the description of a system
with unnecessary implementation detail which excludes
valid implementations.

These conclusions apply even more so to complex descrip-
tions (e.g. International Standards). The application of the
FDTs to this small example has shown how the writing of
a formal description can identify ambiguities, errors, and
over-specification.

STATE *(Wait.for.ack);
INPUT Result;
OUTPUT Score(count) TO player;
NEXTSTATE -;

33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

34

~

SYSTEM Da

SIGNAL I+
c

Daemonsex

nongame

:wgame, Probe, Result, Endgame, Gameid, Win, Lose,
ore(Integer), Bump;

Blockgame
Er

Figure 8.3: SDL Specification of Daemon Game

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

BLOCK Blockgame

SIGNAL Gameover, I Gameoverack;
I I

Gameserver.in Gameserver .out

MACRODEFINITION Datatypedef

NEWTYPE Pidset Powerset (PId)

ADDING

OPERATORS
take! : Pidset PId -> PId;
take : Pidset -> PId;

AXOMS
îake(empty) == Error;
take(Pidset) == take!(Pidset, null);
take!(empty,PId) == Error;
take!(Pidset,PId) == IF PId IN Pidset

/* The take operator returns an element of the Pidset. */

then PId
else take! (Pidset,unique!(PId));

DEFAULT empty;

ENDNEWTYPE Pidset;

ENDMACRO Datatypedef;

35

Figure 8.3 (continued)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11
~ ~ ~ _ _ _ ~ ~~

'* This process registers new players, creates a Game
jocess for each of them, and distributes Bump
signals to ail the Game processes. If a registered player
ries to "log in", then no action is taken. Note that no
record is kept for the coupling between a player and the
zorresponding Game process. */
DCL player PId; /*The identity of the corresponding

DCL userset, /*Keeps record of tie players /*

MACRO Datatypedefi

player is stored temporarily in this variable*/

gameset, /*Keeps record of the Game processes */
copygameset Pidset; (-)

I I I
Bump Gameover

(Player)

I I

Del(player, userset) - gameset := copy gameset
Del(SENDER,gameset) := gameset
userset :=

I
Game
(SENDER)

I
gameset :=
Incl(OFFSPRING,

gameset),
userset :=
Incl(SENDER, userset)

I I

same state (Idle in this case). */ 4 /* The hyphen in the nextstate
symbol means return to the

copygameset :=
Del(take(copy-
gameset),

Figure 8.3 (continued)

36

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

@O PROCESS Game
WAR player PId
/*This process is created for a new
player, and takes care of the rest of
the game session. The identity of the
player is given as the formal parameter
'player'.When a player "logs out", the

I

2 3 Probe

I

I
count :=
count - 1

t

track of score $/ I (EvM\ I
L-J

g; 8 TO player

/*The asterisk in the
state symbol means
any state except those

>"'"I >""'I
count+ 1

Figure 8.3 (continued)

37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

9 Sliding Window Protocol
Example
This illustrates an important flow-control and error recovery
technique which is present in many real Protocols. In addi-
tion, it illustrates the description of a Protocol in relation to
its underlying Service.

9.1 Informal Description
9.1 .I Overview

The following prose description was derived from the initial
work by Stenning [Stenning 19761. The description was
produced from the narrative and Pascal-like programs in
the paper.
The Sliding Window Protocol supports a unidirectional flow
of data with a positive handshake on each transfer, and
use of an acknowledgement window for flow control. The
protocol operates over a medium which may lose, duplicate,
or re-order messages. It is assumed that the corruption
of messages can be reliably detected. Connection and
disconnection procedures are not described by the protocol.

9.1.2 Sequence Numbering

The transmitter sends a sequence number with each mes-
sage. A sequence number is unbounded and is incre-
mented for each new message. The first message trans-
mitted is given sequence number 1.
The receiver sends an Acknowledgement when it receives
a message. The Acknowledgement carries a sequence
number which refers to the last message successfully trans-
ferred to the receiving user. If an Acknowledgement has to
be sent before a successful reception (e.g. the first mes-
sage was corrupted), it is given sequence number O.

9.1.3 Transmitter Behaviour

The transmitter maintains a window of sequence numbers
as shown in Figure 9.1.
This gives the lowest sequence number for which an Ac-
knowledgement is awaited, and the highest sequence num-
ber so far used. The window size is limited to the value
TWS.

Figure 9.1 : Transmitter Window Parameters

38

receiver - window size --->
..........................

I I ///
..
I

NextRequired HighestReceived

Figure 9.2: Receiver Window Parameters

The transmitter behaves initially as a) below, and then loops
doing b), c) and d) where possible:

a) LowestUnacked is set to 1, HighestSent to O and MIS
to an implementation-defined value (2 1).

b) If the current window size (i.e. HighestSent -
LowestUnacked) is less than MIS, then a message
with the next sequence number (i.e. HighestSent + 1)
may be transmitted. In this case, HighestSent is incre-
mented and a timer for that message is started.

c) If an Acknowledgement is received which is not cor-
rupted and whose sequence number is not less than
LowestUnacked, then all timers for messages up to
and including that sequence number are cancelled. In
this case, LowestUnacked is set to the sequence num-
ber following the acknowledged one.

d) If a time-out occurs, then the timers for all messages
transmitted after the timed-out one are cancelled. All
these timed-out messages are re-transmitted (in se-
quence, starting with the earliest) and have timers
started for them.

9.1.4 Receiver Behaviour

The receiver maintains a window of sequence numbers as
shown in Figure 9.2.
This gives the lowest sequence number which is awaited
and the highest sequence number which has been received.
The window size is limited to the value RWS.
The receiver behaves initially as a) below, and then loops
doing b) and c) where possible.

a) NextRequired is initialised to 1, and MIS to an
implementation-defined value (2 1)

b) If a message is received which is not corrupted, which
has not already been received, and which lies within the
maximum receive window (defined by NextRequired
and RWS), then all messages from NextRequired up
to but not including the first unreceived message are
delivered to the receiving user. (There may be no such
messages if there is a gap due to misordering). In this
case, NextRequired is set to the sequence number of
the next message to be delivered to the receiving User.

c) If a message is received under any circumstances, an
Acknowledgement giving the last delivered sequence
number (i.e. NextRequired - 1) is returned.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

9.2 Deficiencies in the Informal Descrip-
tion

9.2.1

9.2.1.1 Deficiency
Is the description of the underlying medium an integral part
of the description of the Sliding Window Protocol?

Underlying Medium (Clause 9.1 .l)

9.2.1.2 Resolution
The description of the underlying medium is provided as
technical justification for the design of the protocol, and SO
is not an integral part of its description. However, it should
be included so as to illustrate the relationship between a
Protocol and its underlying Service.

9.2.2 Window Size (Clauses 9.1.3 and 9.1.4)

9.2.2.1 Deficiency
0 Do the Transmit and Receive Window Sizes (TWS, RWS)

have to be the same? What should happen if these param-
eters are not greater than O?

9.2.2.2 Resolution
The window sizes are intentionally allowed to be different.
If the window size is not greater than O, the protocol should
simply fail to transmit (TWS 5 O) or receive (RWS 5 O)
any messages.

9.2.3 Flow Control (Clause 9.1.4)

9.2.3.1 Deficiency
The informal description is unclear as to what ‘delivery’
means. Does it mean dispatch by the receiver to its user,
or receipt by its user? These may not be the same if there
is buffering or delay between the receiver and its user.

9.2.3.2 Resolution
Since the interface between the receiver and its user is an
implementation-dependent matter, it is not reasonable to
restrict the meaning of ‘delivery’ in the informal description.
Similarly, the concept of ‘delivery’ in the formal descriptions
depends on the most natural style in the FDT used.

9.2.4 Delivery of Corrupted Messages (Clause

9.2.4.1 Deficiency
Does the medium deliver corrupted messages, or are they
discarded within the medium?

9.2.4.2 Resolution
The medium was intended to deliver corrupted messages,
and the Protocol to detect this by some unspecified means.

9.1 .l)

9.2.5 Value of Time-out Period (Clause 9.1.3)

9.2.5.1 Deficiency
Is the time-out period fixed for all implementations, fixed for
one implementation, or dynamically variable?

9.2.5.2 Resolution
It was the intention that the time-out period be left unspeci-
fied (i.e. to be specified at a lower level of description).

9.2.6 Consistent Use of NextRequired (Clause

9.2.6.1 Deficiency
Is the ‘next lowest sequence number which is awaited’ the
same as NextRequired?

9.1.4)

9.2.6.2 Resolution
NextRequired should have been used consistently
throughout the informal description.

9.2.7 Receive Window Size (Clause 9.1.4 a))

9.2.7.1 Deficiency
Should the receiver initialise RWS, or TWS as stated?

9.2.7.2 Resolution
The use of TWS was a typographical error: RWS was in-
tended.

9.2.8 Sequence of Operations (Clauses 9.1.3 and

9.2.8.1 Deficiency
Do the phrases ‘b), c) and d)’ and ‘b) and c)’ mean a se-
quence in time, or a set of operations which may be carried
out in parallel?

9.2.8.2 Resolution
A sequence in time was intended.

9.1.4)

9.2.9 Transmit Window Size (Clause 9.1.3)

9.2.9.1 Deficiency
The diagram and the definition of ‘current window size’ are
inconsistent.

9.2.9.2 Resolution
The value ‘HighestSent -LowestUnacked+ 1’ should
have been used for the current window size.

9.2.1 O Receive Window Size (Clause 9.1.4 b))

9.2.1 0.1 Deficiency
Processing of a message is said to be allowed if its se-
quence number lies within the ‘maximum receive window’.
Is the upper bound of this (i.e. NextRequired + RWS)

39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

included in this range?

9.2.10.2 Resolution
The upper bound is not included. The text should have
read ‘within the current receive window (NextRequired+
RWS - 1)’.

9.2.1 1 Corruption of Messages (Clause 9.1 .l)

9.2.1 1.1 Deficiency
Can Acknowledgements as well as Data messages be cor-
rupted in the medium?

9.2.1 1.2 Resolution
The intention was that this could happen.

9.2.12 Transfer of Data and Acknowledgements
(Clause 9.1 .l)

9.2.12.1 Deficiency
Does the medium support ‘Data’ and ‘Ack‘ Service Primi-
tives, or does the Protocol have to encode this information
in Protocol Data Units?

9.2.12.2 Resolution
The intention was that ‘Data’ and ‘Ack’ be distinguished by
the medium.

9.2.13 Retransmission on Timeout (Clause 9.1.3

9.2.13.1 Deficiency
It is unclear what ‘all these timed-out messages’ are: only
one message has in fact timed out. The phrase might also
mean all the messages following, but not including, the
timed-out one.

d))

9.2.13.2 Resolution
The intention was that the timed-out message and all later
messages be retransmitted.

9.3 Estelle Description
9.3.1 Architecture of the Formal Descriptions
The architecture of the formal descriptions is shown in Fig-
ure 9.3. The Protocol description is found in 9.3.3 and the
Medium description is found in 9.3.4. All the modules of
the description are systemprocesses, and so run asyn-
chronously. As these modules are not refined into submod-
ules, the global behaviour would not change if they were
designated systemactivities. The crucial point is that they
are distinct systems. An explicit Timer module was chosen
for two reasons:

a) it shows a way to manage timeouts that does not de-
pend directly on the use of delay clauses, although an
Estelle. description of a timer module would obviously

Figure 9.3: Architecture of the Sliding Window Protocol
in Est8118

O use these: and

ments of the Protocol.
b) it seemed to model more closely the informal require-

9.3.2 Explanation of Approach
The Sliding Window Protocol is unusual in several ways.
For example, its data flow is uni-directional, leading to a
few peculiarities in the architecture of the formal descrip-
tion, such as having distinct and different modules acting
as peers.
Unless cancelled, the timer module generatesan interaction
for each DT interaction which arises, in order to ensure re-
transmission.
The Communications Medium is described quite simply as
a single module. Its unreliable behaviour is modelled by
the procedure mung, which is defined only informally. (See
the description of procedure mung for the meaning and
supposed etymology of this word.)

9.3.3 Formal Description of the Protocol
specification SlidingWindowProtocol;

default individual queue;

type SeqType - integer; 4 sequence number type;
will always be >= O 1
UserDataType - . . . ;
DTPDUType - record

Seq: SeqType;
Msg: UserDataType;

end ;
AKPDUType = record

end ;
Seq: SeqType;

channel UT(user, provider);
by user:

DataRequest (Data : UserDataType) ;

40

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

channel UR(user , provider) ;
by provider:

DataIndication(Data : UserDataType) ;

{ this one channel, M, takes the place of the
two separate channels, MT and MR, used in

other specifications 1
channel M(DTSender , DTReceiver) ;

by DTSender:

by DTReceiver:
DT(PDU : DTPDUType);

AK(PDU : AKPDUType);

channel TimerChan(user. provider);
by user:

TimerRequest(Seq : SeqType);
TimerCancel(Seq : SeqType);

TimerResponse(Seq : SeqType);

0 module Transmitteruser systemprocess;

by provider:

ip U : UT(user);
end ;

body TransmitterUserBody for Transmitteruser;
external ;

module ReceiverUser systemprocess;

end ;
ip U : UR(user);

body ReceiverUserBody for ReceiverUser;
external ;

module Cms systemprocess;
ip CT : M(DTReceiver);

CR : M(DTSender);
end ;

{ the body for the Cms module is given in the
following clause)

body CmsBody for Cms;
external ;

module Timer systemprocess;

end ;
ip T : TirnerChan(pr0vider);

body TimerBody for Timer;
external ;

module Transmitter systemprocess;
ip U : UT(provider);

CT : M(DTSender);
T : TimerChan(user1;

end;

{ Transmitter module body 1
body TransmitterBody for Transmitter;

const TransmitterWindowSize = any integer;

state SENDING;

{ save user data in buffer until

procedure BufSave(

primitive;

Acknowledegment 1

s : SeqType; d : UserDataType) ;

{ free user data buffer entry after

procedure Buf Free (s : SeqType) ;
primitive;

Acknowledegment 3

{ retrieve user data entry from buffer }
function BufRetrieve(s : SeqType)

primitive;
: UserDataType;

{ returns true if the PDU is corrupted 1
function corrupted(PDU : AKPDUType) :
boolean;

primitive;

{ construct a DT PDU from the user data and

function
sequence number 1

PDUDT(s : SeqType; d : UserDataType) :
DTPDUType ;

primitive;

var
LowestUnacked : SeqType;
HighestSent : SeqType;
TUS : integer;

initialize
to SENDING

provided (TransmitterWindowSize >
0)
begin

LowestUnacked := 1;
HighestSent := O;
TUS :=

TransmitterWindowSize;
end ;

trans

{ transmit while window not full 3
from SENDING to same

when U.DataRequest
provided HighestSent -
LowestUnacked + 1 < TUS

begin
HighestSent : =

output T.TimerRequest(

output CT .DT(PDUDT(

HighestSent + 1;

HighestSent) ;

HighestSent, Data)) ;

41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

BufSave(HighestSent,
Data) ;

end ;

{ receive Acknowledgement 3
from SENDING to same

when CT.AK
provided (PDU.Seq >=
LowestUnacked) and
(PDU.Seq <= HighestSent)
and not corrupted(PDU)

var S : SeqType;
begin
for S := LowestUnacked
to PDU.Seq do

output
begin

T.TimerCancel(S) ;
BufFree(S) ;

end ;
LowestUnacked :=
PDU.Seq + 1;

end ;

{ receive ack not in window 3
provided otherwise

begin

end ;
{ ignore this ack 3

{ Timer response 3
from SENDING to same

when T.TimerResponse
provided (Seq >= LowestUnacked)
and (Seq <= HighestSent)
var S : SeqType;
begin
for S := Seq

begin
to HighestSent do

output

output CT.DT(
T. Timercancel (S) ;

PDUDT (S ,
BufRetrieve (

SI));
output T.
TimerRequest (S) ;

end ;
end ;

provided otherwise
begin
{ ignore timer response for
sequence number outside
window; can happen when
AK arrives just as timer
responds 3

end ;

end; { TransmitterBody 1

42

module Receiver systemprocess;
ip U : UR(provider);

CR : M(DTReceiver);
end ;

{ Receiver module body 3
body ReceiverBody for Receiver;

const ReceiverWindowSize = any integer;

state RECEIVING;

i construct an AK PDU, given the sequence

function PDUAK(S : SeqType) : AKPDUType;
primitive;

number 3

{ retrieve the PDU of sequence number S
from buffer. If it is not in the buffer,
return a PDU with seq number set to O 3

function PDURetrieve(S : SeqType) :

primitive;

{ Save the PDU in the buffer 1
procedure PDUSave(PDU : DTPDUType);
primit ive ;

DTPDUType ;

{ returns true if the PDU is corrupted 1
function corrupted(PDU : DTPDUType) :
boolean;

primitive;

{ Return the user data from the given PDU 1
function UserData(

primitive;
p : DTPDUType) : UserDataType;

var
NextRequired : SeqType;
HighestReceived : SeqType;
RWS : integer;

initialize
to RECEIVING

provided ReceiverWindowSize > O
begin

NextRequired := 1;
HighestReceived := O;
RUS := ReceiverWindowSize;

end ;

trans

c receive message in window 3
from RECEIVING to same

when CR.DT
provided (PDU.Seq >=
NextRequired) and
(PDU.Seq <

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NextRequired + RUS) and
not corrupted(PDU)

S : SeqType;
TPDU : DTPDUType;
Done : boolean;

var

begin
PDUSave (PDU) ;
S := NextRequired;
Done := false;
{ Retrieve each PDU from
buffer and send it to
user. Stop at first
gap in buffer, i.e.
the first PDU not
received. PDURetrieve
returns a PDU with
sequence number O if
desired PDU is not in
buffer. }

repeat
TPDU :=

if TPDU.Seq = S then
PDURetrieve(S);

begin
{ extract user data
from PDU and send
to user 1

Dat aIndicat ion (
output U.

UserData(TPDU)) ;
s := s + 1;

end

{ reached gap in
buffer 1

Done := true;

else

until Done;
NextRequired := S;
output CR. AK(PDUAK(

NextRequired - 1)) ;
end ;

{ receive message not in window

provided otherwise
or is corrupted 1

begin
output CR. AK (PDUAK (
NextRequired - 1)) ;

end ;

end; { ReceiverBody 1

{ main body for Sliding Window specification 1
modvar

TransmitterInstance : Transmitter;
ReceiverInstance : Receiver;
TransmitterUserInstance : Transmitteruser;
ReceiverUserInstance : Receiveruser;
CmsInstance : Cms;
TimerInstance : Timer;

initialize
begin

init TransmitterUserInstance
with TransmitterUserBody;

init ReceiverUserInstance
with ReceiverUserBody;

init TransmitterInstance
with TransmitterBody;

init ReceiverInstance
with ReceiverBody;

init CmsInstance with CmsBody;
init TimerInstance with TimerBody;

connect TransmitterUser1nstance.U

connect ReceiverUser1nstance.U

connect Transmitter1nstance.CT

connect ReceiverInstance.CR

connect Transmitter1nstance.T

to Transmitter1nstance.U;

to Receiver1nstance.U;

to CmsInstance.CT;

to CmsInstance.CR;

to Timer1nstance.T;
end;

end. { specification SlidingWindowProtocol 1

9.3.4 Formal Description of the Medium
body CmsBody for Cms;

const MaxDelay = any integer; { maximum
delay 1
QueueData = record

Seq: SeqType;
Msg: UserDataType

end ;

{ The next several procedures and
functions manipulate queues in the
usual fashion. The details are left to
the reader. 1

procedure initqueue(var q: QueueType);
primitive;

procedure enqueue(

primit ive ;
Data: QueueData; var q: QueueType) ;

procedure dequeue(

primitive;
var Data: QueueData; var q: QueueType);

function isempty(q: QueueType): boolean;
primitive;

{ The procedure "mung" is invoked to
model the unreliability of the medium.
Each time it is invoked, it may drop,
reorder, duplicate, or corrupt some of
the entries of the queue, q. Of course,

43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

it may also leave the queue unaltered.
Again, details are left to the reader.
It is reputed that the acronym "mung"
comes from the phrase "modify until no
good". 1

procedure mung(var q: QueueType);
primitive;

Var
TtoR: QueueType; { queue for data from

M O T : QueueType; { queue for data from
Transmitter to Receiver 1

Receiver to Transmitter 3

initialize
provided (MaxDelay > O)

begin { 1 1
initqueue(TtoR) ;
initqueue(RtoT) ;

end ;

trans
when CT.DT

var QueueElement: QueueData;
begin { 2 1

QueueElement.Seq := PDU.Seq;
queueElement.Msg := PDU.Msg;
enqueue(queueElement, TtoR);

end ;

var QueueElement: queueData;
begin c 3 1

wben CR.AK

QueueElement.Seq := PDU.Seq;
enqueue(QueueElement, RtoT);

end;

trans
provided not isempty(TtoR)

delay(0, MaxDelay)
var PDUtoSend: DTPDUType;

begin { 4 1
QueueElement: QueueData;

mung(TtoR) ;
if not isempty(TtoR) then

begin
dequeue(QueueElement,

PDUtoSend.Seq :=

PDUtoSend.Msg :=

TtoR) ;

QueueElement.Seq;

QueueElement.Msg;

CR. DT(PDUtoSend) ;
output

end
end ;

provided not isempty(RtoT)
delay(0, MaxDelay)

var AKtoSend: AKPDUType;

begin { 5 1
QueueElement: queueData;

mung(RtoT) ;
if not isempty(RtoT) then

begin
dequeue(QueueElement,

AKtoSend.Seq :=
RtoT) ;

QueueElement.Seq;

CT.AK(AKtoSend)
output

end
end ;

end; < CmsBody 3

9.3.5 Subjective Assessment

In the description of the Sliding Window Protocol, the Timer
module was not described because it was felt that it would
make the text longerwithout really adding much information
to the example.
One could argue that the Communications Medium need
not be described in order to understand the workings of the
Sliding Window Protocol; it suffices to know its properties.
However, it was decided to include the description of the
medium for completeness.
Nevertheless, the medium description was written so as
to avoid irrelevant details such as how to re-order the mes-
sages in the medium, howto lose a message in the medium,
etc. This is all hidden inside the procedure mung. To
understand the workings of the system, it is necessary to
understand the workings of mung. Indeed, in general an
Estelle description is parameterised in terms of its primitive
procedures and functions. For example, if there were no
guarantee that mung would eventually allow something to
exit the queue unaltered, then there would be no way for
the Protocol to work.

a

9.4 LOTOS Description

9.4.1 Architecture of the Formal Descriptions
The formal description of the Protocol is given in 9.4.3. The
architecture of the Protocol is decomposed into three major
entities, as reflected in Figure 9.4. This structure is reflected
in LOTOS as shown in Figure 9.5.
The top-level structure of the Protocol description is as fol-
lows:

9.4.1 . I Gates
ut for interactions between the sending user and the

transmitter

Ur for interactions between the receiving user and the
receiver

mt for interactions between the transmitter and the
medium

mr for interactions between the receiver and the medium.

44

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

Figure 9.4: Architecture of the Sliding Window Protocol
in LOTOS

specification SlidingWindowProtocol
[ut, Ur, mt, mr] (. . .) : noexit

behaviour

TransmitterEntity [ut, mtl (. . .)
ReceiverEntity Cur, mr] (. . .

I I I

where

process TransmitterEntity
[ut, mtl (, . .> : noexit :=
...

endproc

process ReceiverEntity
Cur, mrl (. . .) : noexit :=
. ..

endproc

endspec

Figure 9.5: Outline Decomposition of the Sliding Win-
dow Protocol in LOTOS

ISO/IEC TR 10167 : 1991 (E)

9.4.1.2 Data types
UserData Service User Data

SP Service Primitive
MP Medium Service Primitive

PdM Protocol Data Unit
PduQueue First-in First-out queue of PDUs

SeqNumberSet Set of Sequence Numbers
PduSet Set of PDUs

TimerSignal Signals to communicate with the timers
EnrichedNat Enrichment of the Natural numbers with

the 7 operation
NatMod Enrichment of the Natural numbers with

the Mod operation (modulo).

The outline structure shown in Figure 9.5 is further decom-
posed into processes as shown in Figure 9.6.

9.4.1.3 Medium
The Medium of the Sliding Window Protocol is described in
9.4.4. Only those parts of the formal description which are
additional to the formal description of the Protocol are given
for the Medium.
The place of the Medium in the overall architecture of the
medium is shown in Figure 9.4. The two entities, Trans-
mitterEntity and ReceiverEntity communicate through the
Medium. To the user, the only observable gates are those
at top of the sliding window protocol. So, gates ut and
Ur provide a Service to the users of the Sliding Window
Protocol. The underlying Service upon which this Proto-
col operates is irrelevant and not observable by the Sliding
Window Service Users. In LOTOS this fact is described as
shown in Figure 9.7. Notice that the gates through which
the Medium is accessed are hidden to reflect the fact of
non-observability.
This view of the Sliding Window Protocol can be more con-
venient since it is an asymmetrical Protocol. The underly-
ing Service of any Protocol must be described somewhere,
although it may be considered a non-integral part of the
Protocol description itself.
In Figure 9.8 the process decomposition for the Medium
description is shown. Only processes which are additional
to those of the Protocol are included.

9.4.1.4 Abbreviations
The following abbreviations are used in the descriptions:

tws transmitter window size
rws receiver window size

lu lowest unacknowledged message
hs highest sent message
nr next required message
sn sequence number
rq queue for re-transmissions

45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

specification SlidingWindowProtocol
Cut, url (. . .> : noexit
behaviour

SlidingWindowProtocol
I

- - - - - - - - - - - I ----------
I I

----I ---- - - - - - I -___
I I I I

I --- I --_ I -- I ----
I I I I I I

TES TEMS I RES REMS I
I - - - - - - - - - - I -----
I I I I

----I ----- I I

Transmit t erEnt it y ReceiverEntity

Service Global Service Global
Constraints Constraints Constraints Constraints

Transmitting PDU Receiver Ignored
Constraints Acceptance I PDU

I I Deliver I
I I Messages I

Transmitter AllTimers I I
I ------- I I I

I Timer I

I I I

I I

I - - - - I ---- SendAck

1 AnyTimer Identification

1 AnySetTimer
--------I ------------------

I I I I
Sender IgnoredPdu AckRec TimeOut

I I
1 Retransmission

----------I ------------
I I I

I I
AckAccept Releasequeue ReleaseTimers

ReleaseQueuel ReleaseTimer

Figure 9.6: Processes of the Sliding Window Protocol
in LOTOS

46

hide mt, mr in
(

I I I

>

TransmitterEntity [ut, mtl (. . .>
Receiverbtity Cur, mrl (. . . >

I I
Medium [mt, mr] (. . .>

where

process TransmitterEntity
Cut, mtl (. . . I : noexit :=
. . .

endproc

process ReceiverEntity
Cur, mrl (...> : noexit :=

endproc

process Medium [mt, mrl (. . .> : noexit :=

endproc
...

endspec

Figure 9.7: Outline Decomposition of Sliding Window
Medium in LOTOS

SlidingWindowMedium
I

- - - - - - - - - - - - - - I ---------______
I I I

Medium Transmitter Receiver
- - - - I ----- Entity Entity

I I I I

I I -- I -- - - I --
I I I I
I ----- I I ----- I

I I

I
MHolder

MAcceptance MTransf er .

MAccept MHalfTransfer

Figure 9.8: Processes of Sliding Window Medium in
LOTOS

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

sns sequence numbers set
ps pduset
up User Service Primitive

mp Medium Service Primitive
pdu Protocol Data Unit.

9.4.2 Explanation of Approach

These are ‘constraint-oriented’ descriptions. This structur-
ing method has been extensively used with LOTOS. It pro-
vides a well-structured description, having several advan-
tages, including:

a) the description is clearer and better structured; and
b) the description is separated into different constraints,

logically related ones being grouped in a single process;
and e) further constraints may be added with little effort; and

d) the description is relatively abstract because no internal
structure is defined.

The queuesare used in such a way that constructor-selector
problems with the data types are avoided. That is, in order
to prevent the proliferation of error values in sorts, queues
are always referred to by explicit construction rather than by
the usual ‘head’ and ‘tail’ operations (which yield error val-
ues with an empty queue). This decision was not extended
to other data types, such as Service Primitives, in order not
to jeopardize the description.

9.4.3 Formal Description of the Protocol

At the highest level, the protocol is accessed through gates
ut and Ur. Gates mt and mr are for communication between
these two entities through the Medium. The specification
is parameterised by the transmitter and receiver window
sizes, respectively tws and MIS.

Abstract Data Types: imported from the Standard Library.

l i b r a r y
NaturalNumber, Element, S t r i n g , Octe ts t r ing ,
Boolean, Set

e n d l i b

Sliding Window Service Data: a definition of user data;
based on the standard Bitstring type.

*I ...
type UserDataType i s O c t e t s t r i n g renamedby

sortnames UserData f o r O c t e t s t r i n g
opnnames No-Octets f o r <>

endtype (* UserDataType *)

(*---

Service Primitive: a definition of Service Primitives: this
type has the usual structure for OS1 Services specified in
LOTOS.

type SPType is UserDataType, Boolean
s o r t s SP
opns

Sreq, Sind : UserData -> SP
IsSreq, IsSind : SP -> Bo01
Data : SP -> UserData

f o r a l l s p : SP, udata : UserData
eqns

o f s o r t Bool
IsSreq (Sreq (uda ta)) = t r u e ;
IsSreq (Sind (uda ta)) = f a l s e ;
IsSind (sp) = not (IsSreq (s p)) ;

Data (Sreq (udata)) = udata;
Data (Sind (udata)) = udata;

of s o r t UserData

endtype (* SPType *)

Medium Service Primitive: description of the Service
Primitives of the Medium: this is also a common structure
in OS1 Services, especially for Connectionless-Mode.

type MPType is PduType, Boolean
s o r t s MP
opns

Mreq, Mind : Pdu -> MP
IsMreq, IsMind : MP -> Bool
Pdu : MP -> Pdu

f o r a l l mp : MP, pdu : Pdu
o f s o r t Bool

eqns

IsMreq (Mreq (pdu)) = t r u e ;
IsMreq (Mind (pdu)) = false;
IsMind (mp) = Not (IsMreq (mp));

Pdu (Mreq (pdu)) = pdu;
Pdu (Mind (pdu)) - pdu;

o f s o r t Pdu

endtype (* MPType *)

PDU Type: the Medium Service Primitives as PDUs instead
of normal data. The only thing which can be described is

47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

the PDU types and parameters. The actual encodings of
these PDUs have not been defined in the informal text.

type PduType i s UserDataType, NaturalNumber,
Boolean

s o r t s Pdu
opns

MakeDTPdu : UserData, Nat -> Pdu
MakeAKPdu : Nat -> Pdu
Data : Pdu -> UserData
SN : Pdu -> Nat
I sDTPdu : Pdu -> Bool
IsAKPdu : Pdu -> Bo01
-eq- : Pdu, Pdu -> Bool
-ne- : Pdu, Pdu -> Bo01

f o r a l l
eqns

sn , s n l , sn2 : Nat,
d a t a , d a t l , da t2 : UserData,
pdu, pdul, pdu2 : Pdu

IsDTPdu (MakeDTPdu (da ta , sn)) = t r u e ;
IsAKPdu (MakeAKPdu (sn)) = t r u e ;
IsDTPdu (MakeAKPdu (sn)) = fa l se ;
IsAKPdu (MakeDTPdu (da ta , sn)) = f a l s e ;
HsDTPdu (pdul), IsAKPdu (pdu2) =>

pdul eq pdu2 = f a l s e ;
RakeDTPdu (d a t l , s n l) eq
WakeDTPdu (dat2, sn2) =

o f s o r t Bool

(d a t l eq dat2) and (s n l eq sn2);
WeAKPdu (sn l) eq

pdul ne pdu2 = not (pdul eq pdu2);

ÇH (MakeDTPdu (data , s n)) = sn;
SN (MakeAKPdu (sn)) = sn;

Data (MakeDTPdu (data , s n)) = d a t a ;

MakeAKPdu (sn2) = s n l eq sn2;

o f s o r t Nat

o f s o r t UserData

endtype (* PduType *)

(*---

Queue of PDUs: used when re-transmission of PDUs is
necessary. The type is an instantiation of the standard
library type String.

type PduQueueType is S t r i n g actual izedby
PduType using

sortnames
Pdn f o r Element
Boo1 f o r FBool
PdnQueue f o r S t r i n g

NoJdus f o r <>
Pdim f o r S t r i n g

opnnames

endtype (* PduQueueType *>

Set of Sequence Numbers: used by the receiver. A vari-
able of this type will hold the sequence numbers of the
PDUs already received. It is based on the standard types
Set and Nat.

type SeqNumberSetType is Set actual izedby
NaturalNumber using

sortnames
Nat f o r Element
Bool f o r FBool
SeqNumberSet f o r Set

endtype (* SeqNumberSetType *)

Set of PDUs: also used by the receiver. It holds PDUs
already received.

type PduSetType is Set actual izedby
PduType using

sortnames
Pdu f o r Element
Bool f o r FBool
PduSet f o r Set

endtype (* PduSetType *)

Timersignal: the signals used to communicate with the
timers via the t gate.

type TimerSignalType is
s o r t s Timersignal
opns

set : -> Timersignal
cancel : -> Timersignal
expired : -> Timersignal

endtype (* TimerSignalType *)

NatModType: natural numbers enriched with the Mod op-
eration; used for the identification of timers. The auxiliary
operation I-’ is introduced to help in the definition of Mod.

type NatModType is NaturalNumber
opns

---, ,Mod, : Nat, Nat -> Nat

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

eqns
forall m, n : Nat
ofsort Nat
O - n = O ;
Succ (m) - 0 = succ (m);
Succ (m) - Succ (n) = m - n;
m Mod O = O ;
m It n =>
m Mod n = m;

m ge n, n gt O =>
m Mod n = (m - n) Mod n

endtype (* NatModType *)

Protocol Behaviour: the general constraint that both the
transmitter and the receiver window sizes must be greater
than zero. The general decomposition into Transmitter and
Receiver is also expressed here.

behaviour
[(tws gt O) and (rws gt O)] ->

(

I I I

1

TransmitterEntity [ut, mtl (tws)

ReceiverEntity Cur , mr] (rws)

where

TransmitterEntity: the Transmitter Entity decomposed into
the following constraints:

a l) the service constraints at gate ut; and
a2) the service constraints at gate mt.
a3) the protocol constraints relating eventsat gates ut and

process TransmitterEntity [ut, mt] (tws : Nat)
: noexit :=

TES [ut]

TEMS [mtl

(

I I I

1
I I
TransmittingConstraints [ut, mt] (tws)

where

Protocol Entity-Medium Constraint: expressing the tem-
poral ordering of Service Primitives that the protocol im-

poses on the acceptance of Service Primitives from the
Medium at gate mt (i.e. by the transmitter).
The constraint is that a Data PDU will be sent first; after
that, more Data PDUs may be sent, or Indications may be
accepted in any order.

process TEMS [mt] : noexit :=
mt ? mp : MP [IsMreq (mp) and

TEMSl [mt]
I sDTPdu (Pdu (mp)) 3 ;

where

process TEMSl [mt] : noexit :=
mt ? mp : MP [IsMreq (mp) and

TEMSl [mt]

mt ? mp : MP [IsMind (mp)];
TEMSl [mtl

IsDTPdu (Pdu (mp))] ;

CI

endproc (* TEMSl *)

endproc (* TEMS *)

Transmitter gate constraint: acceptance of Service Re-
quests at all times.

process TES [ut] : noexit :=

ut ? up : SP [Issreq (up)];
TES [ut]

endproc (* TES *)

TransmittingConstraints: decomposition of the transmit-
ter into two processes: an actual transmitter process and all
the timers needed for the time-outs. These two processes
synchronise through the t gate.

process TransmittingConstraints [ut, mt]
(tus : Nat) : noexit :=
hide t in
Transmitter [ut, mt, t]
(tus, O , Succ (O) , No-Pdus)

I Ctl I
AllTimers [tl (tus, O)

where

49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 70167 : 1991 (E)

AllTimers: forking into all possible timers. The number of
timers needed is tws.

process AllTimers [t]
(MaxId : Nat, TimerId : Nat) : noexi t :=

[TimerId It MaxId] ->
(

I I I
Timer [t] (MaxId, TimerId)

)

AllTimers [t] (MaxId, Succ (TimerId))

where

Timer: decomposed into the following constraints:

AnyTimer the behaviour of a generic timer; and
Identification a constraint that uniquely identifies each

particular timer.

process Timer [t]
(MaxTimer : Nat, TimerId : Nat)
: noexi t :=
AnyTimer [t]

I d e n t i f i c a t i o n [tl (MaxTimer, TimerId)

where

Identification: selection of the signals sent to the timer
Timerld.

process I d e n t i f i c a t i o n [tl
(MaxTimer: Nat, TimerId: Nat)
: noexi t :=
t ? I d e n t i f i e r : Nat ?

Anysignal : Timersignal [TimerId =
(Ident i f i e r Mod MaxTimer) 1 ;

I d e n t i f i c a t i o n [t]
(MaxTimer , TimerId)

endproc (* I d e n t i f i c a t i o n *)

AnyTimer: triggered initially with a set event, after which it
behaves like AnySetTimer. While set, a timer may be can-
celled (if re-transmission becomes necessary before expiry)
or may expire. The elapsed time between setting and expiry
is not defined since LOTOS abstracts away from absolute

time; a LOTOS internal event is used. When AnySetTimer
exits (due to cancellation or expiry), AnyTimer repeats its
behaviour.

process AnyTimer [tl : noexi t :=
t ? AnyId : Nat ! se t ;
AnySetTimer [t] (AnyId)

AnyTimer [t]
>>

where

process AnySetTimer [t]

t ! AnyId ! cancel ;
e x i t

i ;
t ! AnyId ! expired;
e x i t

endproc (* AnySetTimer *)

(AnyId : Nat) : e x i t :=

CI

endproc (* AnyTimer *)

endproc (* Timer *)

endproc (* AllTimers *)

Transmitter: decomposed into the following constraints:

Sender how the protocol sends data, modify-
ing the parameters HighestSent and Re-
transmissions Queue: and

AckRec receipt of an Acknowledgement, modifying
the parameters HighestUnacked and Re-
transmissions Queue; and

TimeOut behaviour when a time out occurs; and
IgnoredPdu ignoring out-of-order PDUs.

process Transmit ter [ut , m t , t l

r q : PduQueue) : noexi t :=
(t u s : Nat, h s : Nat, l u : Nat,

(
Sender [ut , m t , t] (t u s , hs , l u , r q)

accept h s : Nat, r q : PduQueue i n
>>

Transmitter [u t , m t , tl
(t u s , hs , lu', r q)

Cl
(

AckRec [m t , t] (hs, l u , r q)
>>

50

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

accept lu : Nat, rq : Pduqueue in
Transmitter [ut, mt, tl
(tus, hs, lu, rq)

)

(
CI

TimeOut [mt, tl (hs, lu, rq)

Transmitter [ut, mt, tl

I >>

(tus, hs, lu, rq)
)

(
CI

IgnoredPdu [mt] (hs, lu)

Transmitter [ut, mt, t]
>>

(tus, hs, lu, rq)
1

where

Sender: if there is room enough (the maximum window size
tws is not fully used), a new Service Primitive from the user
is accepted and its corresponding PDU is sent. The PDU
is added to the re-transmissions queue. The HighestSent
value is incremented. A timer is started.

process Sender [ut, mt, t]
(tus : Nat, hs : Nat, lu : Nat,
rq : Pduqueue)
: exit (Nat, Pduqueue) :=
[(lu + tus) gt SUCC (hs)] ->
ut ? up : SP;
(
let pdu : Pdu = MakeDTPdu (
Data (up). Succ (hs)) in
mt ! Mreq (pdu);
t ! Succ (hs) ! set;
exit (Succ (hs), pdu + rq)

endproc (* Sender *)
)

AckRec: reception of an Acknowledgement decomposed
into the following constraints:

a) acceptance of Acknowledgements; and
b) release PDUs from the re-transmissions queue; and
c) release of timers.

process AckRec [mt, t]
(hs : Nat, lu : Nat, rq : Pduqueue)

: exit (Nat, Pduqueue) :=
AckAccept [mt] (hs, lu, rq)

Releasequeue [mtl (rq)

ReleaseTimers [mt, t] (lu)

accept lu : Nat, rq : Pduqueue in

I Cmtl I

I Cmtl I

>>

exit (lu, rq)

where

AckAccept: acceptance of an Acknowledgement, provided
that its sequence number is between the values LowestU-
nacked and HighestSent.

process AckAccept [mt]
(hs : Nat, lu : Nat, rq : Pduqueue)
: exit (Nat, Pduqueue) :=
mt ? mp : MP [(SN (Pdu (mp)) ge lu)
and (SN (Pdu (mp)) le hs)];
exit (any Nat, any Pduqueue)

endproc (* AckAccept *)

ReleaseQueue: release from the queue of all PDUs from
the received sequence number to LowestUnacked (lu).
The new value of LowestUnacked and the queue itself are
results.

process Releasequeue [mtl
(rq : Pduqueue)
: exit (Nat, Pduqueue) :=
mt ? mp : MP;
(
Releasequeuel (SN (Pdu (mp)) , rq)

>> accept rq : Pduqueue in

1
exit (Succ (SN (Pdu (mp))), rq)

where

ReleaseQueuel: release from the queue of all the PDUs
up to the sequence number received. The mechanism for
releasing is by a choice of exactly that queue which is
equal to the tail of the current queue. This may be hard to
understand, but it avoids the constructor-selector problem.

51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

(sn : Nat, rq : Pduqueue)
: exit (Pduqueue) :=
choice newrq : PduQueue,

[rq eq (newrq + pdu)] ->
pdu : Pdu [I

(
[SN (pdu) It sn] ->

Releasequeuel (sn, newrq)

[SN (pdu) eq 91-11 ->
CI

exit (newrq)
1

endproc (* Releasequeue1 *)

endproc (* Releasequeue *)

ReleaseTimers: release of all timers from that for Lowee-
tUnacked to that for the received sequence number.

process ReleaseTimers [mt , t]
(lu : Nat) : exit (Nat, Pduqueue) :=
mt ? mp : MP;
ReleaseTimer [t] (SN (Pdu (mp)), lu)

exit (any Nat, any Pduqueue)
>>

where

process ReleaseTimer [t]
(Last : Nat, First : Nat) : exit :=
[First le Last] ->

(
t ! first ! cancel;
exit

ReleaseTimer [t]
I I I

(Last, Succ (First))
1

CI
[First gt Last] ->
exit

endproc (* ReleaseTimer *)

endproc (* ReleaseTimers *)

endproc (* AckRec *)

TimeOur: a time out for the sequence number sn has ex-
pired. The timer for the first sequence number has to be
set.

52

process TimeOut [mt , t]
(hs : Nat, lu : Nat, rq : Pduqueue)
: exit :=
t ? sn : Nat ! expired [(sn le hs) and

Retransmission [mt, t] (sn, rq, set)
(sn ge lu)];

where

Retransmission: re-transmission of all timed out PDUs.
The elements of the queue are processed in the same way,
except that the timer does not need to be cancelled for
the first one. Re-transmission is not undertaken for earlier
messages whose timers have not yet expired.

process Retransmission [mt , t]

Sig : Timersignal) : exit :=

choice newrq : Pduqueue,

[rq eq (newrq + pdu)] ->

[sn gt SN (pdu) 1 ->

(sn : Nat, rq : Pduqueue,

(

pdu : Pdu [I

(

Retransmission [mt , t]
(sn, newrq, Sig)

[sn le SN (pdu)] ->
Cl

(
[Sig = set] ->
mt ! Mreq (pdu);
t ! SN (pdu) ! set;
Retransmission [mt , t]
(sn, newrq, cancel)

Cl
[Sig - cancel] ->
t ! SN (pdu) ! cancel;
mt ! Mreq (pdu);
t ! SN (pdu) ! set;
Retransmission [mt , t]
(sn, newrq, cancel)

)
1

1
CI
[rq eq No-Pdusl ->
exit

endproc (* Retransmission *)

endproc (* TimeOut *)

IgnoredPdu: ignoring the incoming PDUs not accepted by
the AckRec process. The discarding of corrupted PDUs
is modelled by non-deterministically forcing a PDU to be
accepted but ignored.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process IgnoredPdu [mt]
(hs, lu : Nat) : exit :=
mt ? mp : MP [(SN (Pdu (mp)) It lu) or

exit

i; (* PDU assumed to be corrupted *)
mt ? mp : MP;
exit

(W (Pdu (rap)) gt hsll;

CI

endproc (* IgnoredPdu *)

endproc (* Transmitter *)

endproc (* TransmittingConstraints *)

endproc (* TransmitterEntity *)

ReceiverEntity: decomposed into the constraints at each
one of the gates, and those at both gates.

process ReceiverEntity Cur, mr]
(rws : Nat) : noexit :=
(

I I I

)

RES Cur]

REMS [mr]

I I
Receiver Cur, mr] (rws, Succ (O) ,

43 of SeqNumberSet, 4) of PduSet)

where

Receiver Entity-Medium Constraint: transmission of an
Acknowledgement after any Indication is sent.

process REMS [mr] : noexit :=
mr ? mp : MP [IsMind (mp)];
mr ? mp : MP [IsMreq (mp) and

REMS [mr]
IsAKPdu (Pdu (mp) 11 ;

endproc (* REMS *)

Receiving User Constraint: transmission of Indications to
the user at any time.

process RES Cur] : noexit :=
Ur ? up : SP [IsSind (up)];
RES Curl

endproc (* RES *)

Receiver: decomposition of the constraints at both gates
into the acceptance of valid PDUs, the constraints on in-
coming valid PDUs, and the constraint on ignoring invalid
PDUs.

process Receiver Cur, mr]
(rws : Nat, nr : Nat, sns : SeqNumberSet,
ps : PduSet) : noexit :=
(

I Cmrl I

1

(

Receiver1 Cur, mr] (rws, nr, sns, ps)

PduAcceptance [mrl (rws, nr, sns)

CI

IgnoredPdu [mr] (rws, nr, sns)

Receiver Cur, mr] (rws, nr, sns, ps)
>>

1

where

Receiverl: acceptance by the receiver of a valid PDU. The
sequence number is inserted into a set, and the pdu itself is
inserted in another set. These sets are given to a process
which delivers data to the user.

process Receiver1 Cur, mr’J

ps : PduSet) : noexit :=
mr ? mp : MP;
DeliverMessages Cur, mrl

Insert (Pdu (mp), ps))

(rws : Nat, nr : Nat, sns : SeqNumberSet,

(nr, Insert (SN (Pdu (mp)), sns),

>>
accept nr : Nat, sns : SeqNumberSet,
ps : PduSet in
Receiver Cur, mr] (rws, nr, sns, ps)

where

DeliverMessages: delivery of all the received messages
to the user if they are in order. All ordered messages are
delivered. An Acknowledgement is issued after delivery
even if no message has been indicated to the user.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process DeliverMessages Cur, mrl
(nr : Nat, sns : SeqNumberSet,
ps : PduSet)

[nr isin snsl ->
: exit (Nat, SeqNumberSet, PduSet) :=

(
choice pdu : Pdu [I
[(SN (pdu) eq nr) and
(pdu IsIn ps)] ->
Ur ! Sind (Data (pdu));
DeliverMessages cur, mr]
(Succ (nr), Remove (nr, sns),
Remove (pdu, ps))

1

Enr NotIn snsl ->
Cl

(
SendAck [mrl (nr)

exit (nr, sns, ps)
>>

)
endproc (* DeliverMessages *)

endproc (* Receiver1 *)

SendAck transmission of an Acknowledgement of the next
required minus one.

process SendAck [mr] (sn : Nat) : exit :=
choice Id : Nat [I

[sn eq Succ (Id)] ->
mr ! Mreq (MakeAKPdu (Id));
exit

endproc (* SendAck *)

PduAcceptance: acceptance of an incoming PDU if its
sequence number is within the window and if it has not
been already received.

process PduAcceptance [mr]
(rus : Nat, nr : Nat, sns : SeqNumberSet)
: noexit :=
mr ? mp : MP [IsMReq(mp) or (IsMInd (mp)
and ((SN (Pdu (mp)) It (nr + rus)) and
((SN (Pdu (mp)) ge nr) and
(SN (Pdu (mp)) NotIn sns))))];

PduAcceptance [mr] (rus, nr, sns)
endproc (* PduAcceptance *)

54

IgnoredPdu: ignoring PDUs which are outside the window,
duplicated, or corrupted. An Acknowledgement of Nex-
tRequired minus one is sent. (See process SendAck).
The discarding of corrupted PDUs is modelled by non-
deterministically forcing a PDU to be accepted but ignored;
in this case, no Acknowledgement is sent.

process IgnoredPdu [mr]
(rus : Nat, nr : Nat, sns : SeqNumberSet)
: exit :=
mr ? mp : MP [(SN (Pdu (mp)) ge

(SN (Pdu (mp)) IsIn sns))];
(nr + rus)) or ((SN (Pdu (mp)) It nr) or

SendAck [mr] (nr)

i;
mr ? mp : MP;
exit

Cl
(* PDU assumed to be corrupted *)

endproc (* IgnoredPdu *)

endproc (* Receiver *)

endproc (* Receiverhtity *)

endspec (* SlidingWindowProtocol *)

9.4.4 Formal Description of the Medium

This is not a self-standing description of the Medium. It
relies on definitions which are given in the description of the
Protocol, but which, for brevity, have not been copied into
the Medium description. At the highest level, the protocol
is accessed through gates ut and Ur. Only the user gates
are now visible. The specification is parameterised by the
transmitter and receiver window sizes, respectively tws and
MIS.

specification SlidingWindowProtocol [ut, ur]
(tws : Nat, rws : Nat) : noexit

Medium Objects: common in OS1 Service descriptions,
as well. The Medium transfers objects from one Service
Access Point to another. The relationship between these
objects and the Medium Service Primitives is expressed by
means of the functions Object and Indication. The equa-
tions for Indication state that a medium object corresponds
to a Medium Request or Medium Indication with the same
PDU. The second equation for Indication is also required
SO that the operation Object is specified as total.

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

type MOType is MPType, PduType
sorts MO
opns
Object : MP -> MO
Indication : MO -> MP

forall mp : MP, mo : MO, pdu : Pdu
ofsort MP

eqns

Indication (Object (Mreq (pdu))) =

Indication (Object (Mind (pdu))) - Mind (pdu);

Mind (pdu);
endtype (* MOType *)

Protocol Behaviour: decomposed in a new way. The
Medium and the Service gates to it are hidden from the

The Protocol has the general constraint that both the trans-
mitter and the receiver window sizes must be greater than
zero.

@Service User.

behaviour
[(tus gt O) and (rws gt O>] ->

(
hide mt, mr in

(

I I I

)

TransmitterEntity [ut, mt] (tws)

ReceiverEntity Cur, mrl (rws)

I I
Medium Cmt, mrl

)

where

Medium: decomposed into the constraints related to the
acceptance of Service Primitives and the constraints related
to the actual transfer of data.

process Medium Cmt, mr] : noexit :=
MAcceptance Cmt, mrl

MTransfer Cmt, mrl
I I

where

Acceptance: decomposed into the constraints at each of
the gates.

process bikceptance [mt, mrl : noexit :=

I I I
MAccept [mt]

MAccept [mr]

where

process èbîccept [ml : noexit :=
m ? mp : MP [IsMreq (mp)];
MAccept [m]

m ? mp : MP [IsMind (rap)] ;
MAccept [m]

CI

endproc (* MAccept *)

endproc (* MAcceptance *>

Transfer: decomposition of the constraints related to the
transfer of data into two identical halves.

process MTransfer Cmt, mrl : noexit :-

I I I
MHalf Transf er [mt , mr]

MHalfTransf er [mr , mt]

where

HalfTransfer: acceptance of a Medium Service Primitive.
It transforms the Service Primitive into an object to be trans-
ferred, then creates a process to hold this object.

process MHalfTransfer [t, r] : noexit :=
t ? mp : MP [IsMreq (mp)];
(

I I I

1

MHalfTransfer [t, rl

MHolder [r] (Object (mp))

where

55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Holder: discarding, duplication, corruption, or delivery of
an object. Corruption is modelled by non-deterministically
replacing the object by another one.

process MHolder [rl
(sbj : MO) : noexit :=
(
i; (* Object discarded *)
stop

CI
i;
r ! Indication (obj);
MHolder [r] (obj)

i; (* PDU corruption *)
(

(* Duplication of objects *)

Cl

choice corrupted-obj : MO [I
MHolder [r] (corrupted-obj)

1
CI
i; (* Object delivery *>
r ! Indication (obj);
stop
)

adproc (* MHolder *>
endpioc (* MHalfTransfer *>

endprac (* MTransfer *>
endproc 5;* Medium *)

endspec (* SlidingWindowProtocol *>

9.4.5 Subjective Assessment
The LOTOS description of the Sliding Window Protocol is
a good example of how the ‘constraint-oriented‘ style can
be applied to a large and complex problem, breaking it
down into many small and manageable pieces. This allows
a description to be understood and analysed in a highly
modular fashion. However, it should be said that by such
economical means it is possible to construct from simple
parts some very complex behaviours which may be diffi-
cult to understand in their entirety. The constraint-oriented
style is therefore appropriate to a component-engineering
approach, reminiscent of that used in the Engineering disci-
plines. Although a constraint-oriented description is de-
signed top-down, it may be necessary to understand it
bottom-up!
The LOTOS style used in the descriptions is typical of that
which has evolved through a large amount of experience in
describingiOSI Standards in LOTOS. This style is a distilla-
tion of many debates among LOTOS and OS1 experts. Al-
though many other approachesare possible, and have been
tried, the style used in these examples is recommended to
future specifiers.
As shown by the descriptions, it is quite straightforward in

LOTOS to decompose a system into a number of parts and
to describe these individually. Two separate ideas make this
possible. For the data typing, the mechanisms of enrich-
ment (building on existing data types), renaming (copying
existing data types), and actualization (instantiating a pa-
rameterised data type) make it possible to build complex
data types out of simpler ones. For the behaviour descrip-
tion, the process combinators (notably 0,11, >>,and[>)
make it possible to build complex behaviours our of sim-
pler ones.

9.5 SDL Description
9.5.1 Architecture of the Formal Descriptions
The SlidingWindowProtocol system is modelled as the
composition of the following three blocks: sender-entity,
receiver-entity, and medium. The sending and receiv-
ing users are located in the environment: they interact with
the system via two Service Access Points, modelled by
means of two channels ut (from the environment to the
sender- entity) and Ur (from the receiver-entity to the
environment). The channels ut and Ur carry the signals
UDTreq and UDTind respectively, which model the simplest
interaction imaginable between the User and the Provider
of a uni-directional data transfer Service.
The sender-entity puts Data (MDTreq signal) on the
Medium and gets Acknowledgements (MAKind signal) from
it by using a bi-directional channel mt. Conversely, the re-
ceiver-entity gets Data from the medium (MDTind signal)
and puts Acknowledgements (MAKreq signal) onto it by
using a bi-directional channel mr.
The sender-entity block consists of a process type trans-
mitter, instantiated just once at system start-up time. The
receiver-entity block consists of a process type receiver,
instantiated just at once at system start-up time. The
medium block consists of two ‘queue manager’ processes
(one for the Data and the other for the Acknowledgements)
and two ‘hazard’ processes (to model abnormal behaviour
in manipulating objects). The description of the Protocol
is given in 9.5.3. The description of the Medium is given
separately in 9.5.4 because it is not an integral part of the
Protocol.

0

0

9.5.2 Explanation of Approach

The architecture described in the previous clause is quite a
natural mapping between static SDL semantics and some
layering concepts of OSI.

9.5.2.1 Medium description
AWhough the formal description of the Protocol does not re-
quire a formal description of the Medium, the description of
the Medium is useful for understanding some of the features
of the Protocol, and would be essential in order to simulate
the Protocol or to validate it against the required Service.
Indeed, the Protocol features are based on the assumption
that the Medium may lose, re-order, corrupt, and duplicate
objects.

56

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

9.5.2.2 Signal definition
The informal description of the Protocol suggests no names
for Protocol Data Units. In the SDL description the follow-
ing identifiers are used: MDT (Medium Data) and MAK
(Medium Acknowledgement).
In a pure OS1 approach, the sender-entity and the re-
ceiver-entity would normally interact with the Mttdium via
two Service Primitives (say, data-req and data-ind) in or-
der to convey Protocol Data Units. For the sake of sim-
plicity, the following short-hand notations have been used:
MDTreq (standing for data-req (MDT)), MDTind (stand-
ing for data-ind (MDT), MAKreq (standing for data-req
(MAK)), and MAKind (standing for data-ind (MAK)).
Four corresponding signals have been defined. From this
point of view, the Medium can be thought of as just a block
performing transfer and renaming of signals (Requests be-
coming Indications in both directions).

9.5.2.3 Timer management
The informal description of the Sliding Window Protocol re-
quires an individual timer to be set for each message sent.
This is managed in SDL by using a timer tim with multiple
instances referred to by a value in the range [O .. tws].
The indexing value is used either to seüreset a given in-
stance or to detect which timer instance has expired. When
timer primitives SET and RESET are used, a duration value
should be specified. If specifying a value is undesirable,
such primitives cannot be used; alternatively, three exter-
nal signals (say set-timer, reset-timer, and timer-expiry)
could be used between the process sender and the envi-
ronment. The timing mechanism would then be located in
the environment. Unfortunately, this solution would intro-
duce an unacceptable level of detail into the overall system
block interaction diagram, and was therefore not adopted.
However, it should be noticed that in the Sliding Window
Protocol descriptions using the other FDTs, timers are de-
scribed without giving any fixed delay.

9.5.3 Formal Description of the Protocol

The SDUGR description of the Protocol and some support-
ing macro and type definitions are shown in figure 9.9.

9.5.4 Formal Description of the Medium

The SDUGR description of the Medium is shown in fig-
ure 9.1 O. From the viewpoint of SDL syntax and semantics,
the description cannot be considered in isolation, but as a
part of the previous system description. Nevertheless, it is
given in a separate clause in order to emphasise the fact
that it is not part of the Protocol description. The SDL de-
scription of the Medium could be avoided simply by locating
it in the environment.

9.5.5 Subjective Assessment

The SDL description consists of a static part, represented
by the system diagram and the block diagrams (which faith-
fully describe the essential architecture of the real system),

and a dynamic part, represented by the process diagrams
(which algorithmically describe the behaviour of the active
components of the system). This distinction greatly helps
to ease understanding of far more complex systems than
the Sliding Window Protocol.
The dynamic description is, to some extent, oriented to-
wards an implementation; consider, for example, the use
of concrete data structures such as arrays and queues.
This implementation-oriented bias can hardly be avoided
with SDL. However, it does not seem to add an undesirable
amount of detail, at least as far the Protocol description is
concerned. The Medium description, however, has perhaps
too much bias towards procedural details.
Timer management is performed in a natural and elegant
way. This is not necessarily true of every FDT and should
therefore be considered an important feature of SDL in de-
scribing real Protocols, where timers are used extensively.
Finally, it can be stated that the SDL description is quite
effective for the purpose of clearly understanding the sys-
tem in question. In addition, it is also friendly and self-
explanatory; very few comments are needed within the for-
mal text in order to assist comprehension.

9.6 Assessment of the Application of
the FDTs

This example is fairly typical of the style of Protocol de-
scriptions. The deficiencies found in the informal descrip-
tion included the usual straight errors or lack of information.
However, some interesting types of errors were found:

a) It is easy to be imprecise in natural language about
whetherthe bounds of a range are included or excluded.

b) The word ‘and’ can be ambiguous in natural language.
For example, it is commonplace in restaurant menus to
see that a meal is followed by ‘coffee and tea’!

c) It is easy in natural language to lapse into ‘elegant varia-
tion’ ([Fowler 1968l). For example, the same thing may
be called a ‘unit’, a ‘component’, a ‘sub-system’, and a
‘module’. Although this is acceptable in a literary work,
such a style leads to imprecision in a specification.

d) A much deeper problem was to how to interpret the
‘time-out’ parameter. The informal description refers to
‘a timer’ being started. Does the word ‘a’ reflect the
fact that each message has an individual timer, that
some particular value be used for each message timer,
or that any timer value (perhaps different from timer
values used on other occasions) be used?

e) This issue is also tied up with the distinction between
a non-deterministic specification and a partial specifica-
tion. A non-deterministic specification of such a timer
could say that a timer value would be chosen (by means
which could not be determined). A partial specification
could indicate that a single timer value would be used,
but that the precise timer value would be defined when
the specification was made total (i.e. at a later stage in
the design).

57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SYSTEM Sliding Window Protoc o I

/* A unidirectional data transfer protocol having
the following features is described:
- transmit window mechanism
- positive acknowledgement
- individual timers
- retransmission on timeout */

SIGNAL
UDTreq (DataType), UDTind (DataType),
MDTreq (SeqnoType,DataType,datacrc),
MDTind (SeqnoType,DataType,datacrc),
MAKreq (SeqnoType,ackrc),
MAKind (SeqnoType,ackrc);

MACRO DataTypeDef;

Ur ut
L w

[UDTreq]

sen de r-e n t i t y rece iver-en t i t y
[UDTind]

[MDTind] [MAKind]

m i m i

medium
[MDTreq] [MAKreq]

Figure 9.9: SDL Specification of Sliding Window Protocol

58

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

MACRODEFINITION DataTypeDef;
GENERATOR queue (TYPE item) ;

ISO/IEC TR 10167 : 1991 (E)

LITERALS qnew;

OPERATORS
qadd: item,queue -> queue;
qfirst: queue -> item;
qrest: queue -> queue;
qconcat: queue,queue -> queue;
qdelete: integer, queue -> queue;
qempty: queue -> boolean;

AXIOMS
qfirst (qnew) == ERROR! ;
qfirst(qadd(x,qnew)) == x;
qfirst(qadd(xl,qadd(x2,q))) == qfirst(qadd(x2,q));
qrest (qnew) == qnew
qrest (qadd (x, qnew)) == qnew;
qrest (qadd(xl,qadd(x2,q))) == qadd(x1,qrest (qadd(x2,q))) ;
qconcat (qnew, q) == q;
qconcat (qadd (xl, 91) ,q2)) ==

qdelete(0,q) == q;
FORALL i in NATURAL

qempty (qnew) ;
NOT(qempty(qadd(x,q))) i

ENDGENERATOR queue;

qadd(x1,qconcat (ql,q2)) ;

(qdelete(i,q) == qdelete(i-1,qrest (9)));

SYNTYPE positive=INTEGER;

ENDSYNTYPE positive;
CONSTANTS > O;

SYNTYPE index=INTEGER;

ENDSYNTYPE index;
CONSTANTS 1:lmax;

SYNTYPE datacrcindex = INDEX;

ENDSYNTYPE datacrcindex;
CONSTANTS 1:lendatacrc;

SYNTYPE ackcrcindex = INDEX;

ENDSYNTYPE ackcrcindex;

SYNTYPE tsn = INTEGER / * integer in range O..tws-1 */;
ENDSYNTYPE tsn;

CONSTANTS 1:lenackcrc;

CONSTANTS 0:tws-1

SYNTYPE rsn = INTEGER / * integer in range O..rws-1 */;
ENDSYNTYPE rsn;

CONSTANTS 0:rws-1

SYNTYPE sequence number = natural;
ENDSYNTYPE sequence-number;

NEWTYPE datacrc ARRAY (crcindex,bit)
Figure 9.9 (continued)

59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

OPERATORS dcheck: sequence number, b i t s t r i n g -> datacrc
/ * f o r a given p a i r of sequence number and userdata t o be

i n s e r t e d i n a MDT protocol da ta u n i t bu i ld s t h e crc
f i e l d * /
ENDNEWTYPE datacrc;

NEWTYPE a c k c r c ARRAY(crcindex,bi t)
OPERATORS acheck : sequence number -> a c k c r c

/ * f o r a sequence n u m b e r t o beinserted i n a MAK p r o t o c o l
data u n i t b u i l d s t h e crc f i e l d */

AXIOMS / * u n d e f i n e d * /
ENDNEWTYPE a c k c r c ;

NEWTYPE msgqueue queue (b i t s t r i n g) ;
ENDNEWTYPE msgqueue;

NEWTYPE DataType STRING (b i t , ')
EDDNEWTYPE b i t s t r i ng ;

NEWT YPE b i t

EHDNEWTYPE b i t ;
LITERALS O , 1;

ENDMACRO DataTypeDef;

Figure 9.9 (continued)

60

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ut b
[UDTreq]

ISO/IEC TR 10167 : 1991 (E)

transmitter

B LOCK se nd e r-e n t i t y

L
[MAKind] '

S

[M DTreq]

mt

Figure 9.9 (continued)

61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

r-sap
receiver D

[UDTind]

[MAKreq]

mr

Figure 9.9 (continued)

62

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS transmitter 1 (2)

r Thls promss consists of two
states: data-transfer, where data I transfer normally OCCUR and
window cbsed. where data
transfer3 suspinded because
maximum size has been reached
by the current transmit window */

reiease-timers

retransmii

hs :=O,
iu :* 1

data-t ransfe r (5
UDTreq
(data)

h6 := hS+ 1 a
data, dcheck
(hs.data))

SET (NOWtdeiia.
tim (hs mod tws))

MAKind
(seqno.acrc)

@e (false)

cq := qdelete
(seqno - lu + 1, cq)

lu := seqno + 1

I
0 (-1 window-closed (3

i

Figure 9.9 (continued)

63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Figure 9.9 (continued)

64

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCEDURE releasetimers FPAR IN si,sj SeqnoType;

4 DCL r tsn,
k nahirai;

k :=s j - s i+1 ,

r := si mod tws

I

r := (r+l) mod tws,
k : = k - l

(true)

(false)

Figure 9.9 (continued)

65

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCEDURE retransmit FPAR IN p,v SeqnoType, cq msgqueue;

I I k l : = p - l u + l

inf := qfirst(cq),
cq := qrest(cq),

cq := qadd(inf,cq),
k l := k l - 1

inf := qfirst (cq),
cq := qrest (cq),

cq := qadd (inf, cq)

MDTreq (p, inf,
dcheck(p, inf))

p := p mod tws,
SET (NOW+delta,

tim (Pl)

p := (p+l) mod tws,
k:= k-1

Figure 9.9 (continued)

66

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS receiver

DCL
delivermessages I nr, seqno SeqnoType,

nr := 1 data DataType,
r:=O already-received ARRAY (rsn, boolean),

recbuf ARRAY (rsn, DataType),
dcrc datacrc;

I^ This process ha-
state. In order to cope with sequential
delivery of messages to its local user, iî
maintains an array recbuf whose components
buffer messages according to their sequence
number and a boolean array akeady-received
whose components flag the status (oldlnew)
of the homologous components in recbuf "I

already-received := false
r := r+l

datatransf er 0

recbuf(seqn0
mod rws):= data

already-received
(seqno mod rws) :=

I

. .
true I

deiver-messages
(nr, seqno, recbuf,
alre ad y-r eceive d)

Figure 9.9 (continued)

67

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

PROCEDURE DeliverMessages FPAR IN/OUT xnr, xseqnr SeqnoType,
recbuf ARRAY (rsn, DataType),
already-received ARRAY (rsn, boolean);

W

xnr := xnr + 1 I

UDTind(recb
(xnr mod rw

I

MAKreq
(xn r ,acheck(xn

alread y-received

I (xnr mod ws) :=

Figure 9.9 (continued)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

mt

mi

BLOCK medium

MsgHazard
/* not defined *I

I

SIGNAL ANormal,
ALose,
mup,
mead,
ACcmupt,
M M ,
Miose,
MDup,
M W ,
MCompt;

SIGNALLIST LA = A N W d ,
ALose,
ADUP,
mead,
A m P t ;

SIGNALLIST LM = MNormal,
Miose,
MDup,
MRead,
MCompt;

rmr
MsgManager

[MDTreq] [M DTinc

sar rar
AckManager

I

AckHazard
I* not defined */

Figure 9.10: SDL Specification of Sliding Window Medium

nr

mr

69

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

d n

n

~ Y

L
al cn a r: a
3
2
cn cn
Lu
O
O a a

Y n
- 2

L o z

Figure 9.1 O (continued)

70

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

i I

j+ Y

II ..
E

3

6
Figure 9.1 O (continued)

71

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PDU

10 Abracadabra Service and
Protocoç Example

Meaning Corresponding
Primitives

This example illustrates the familiar Alternating Bit Proto-
col, which is a precursor to some real Protocols. It also
illustrates extra features found in connection-oriented Pro-
tocols. The example presents the description of a Protocol
in relation to the Service it provides.

10.1 Informal Description
10.1.1 Introduction
Many people have studied the Alternating Bit protocol which
supports a unidirectional flow of information with a pos-
itive handshake on each transfer. This protocol is too
simple to represent a number of complexities found in
real communications protocols. This example describes a
more realistic protocol which has Alternating Bit sequence
numbers, Retransmission on timeout, Acknowledgements,
Connection And Disconnection.

10.1.2 Service Description
The Abracadabra Service operates between a pair of sta-
tions, addressed as A and B. Each station is presumed to
support a local user interface to the Protocol Entities. The
service offered is a reliable, connection-orientedservice be-
tween a Pa& of Service Users. The Service Primitives sup-
ported are:

ConReqnnd Connection Requestllndication
ConRespJConf Connection Response/Confirmation
DatReq/lnd Data Requestllndication
DisReq/lnd Disconnect Requestllndication

Only DatReq and Datlnd carry a parameter, which is a
Service Data Unit (SDU). The Service Primitives are related
as shown in Figure 1 O. 1.
A connection may be established through the Service by
either station. The normal sequence of primitives is: Con-
Req, Conlnd, ConResp, ConConf. However, if each sta-
tion simultaneously initiates a connection then each end
sees only ConReq, ConConf. A connection establishment
attempt may be abandoned by the initiator by sending Dis-
Req, before receiving ConConf. A connection establish-
ment attempt may also be abandoned by the responder,
sending a DisReq following Conlnd.
Once a connection is established, either station may send a
DatReq which will be delivered as Datlnd. Data messages
are preserved in sequence and content, except when a
disconnection occurs. In this case, an undefined number
of data messages already in the Service may be lost. Data
transfer is subject to flow control by back-pressure.
Either staüon may terminate an established connection by
issuing DisReq. This is normally matched by a Dislnd at
the other station, but if the other station issues DisReq in the
meantime then the connection is terminated immediately.
The Service Provider itself may abandon a connection at-

tempt or may terminate the connection. Normally each sta-
tion which knows of the connection (attempt) is informed of
this by Dislnd. However, if the station issues DisReq in the
meantime then the Dislnd is not delivered.
Once a connection has been terminated, either party may
initiate a new connection with ConReq.

10.1.3 Protocol Description

10.1.3.1 General
The protocol operatesover a full-duplex, unreliable commu-
nications medium between two stations. The two stations
communicate by transfer of Protocol Data Units (PDUs).
The communications protocol is two-way simultaneous,
symmetrical and reliable. Communication takes place in
various phases: Connection, Data Transfer, Disconnection,
and Error.
Only the PDUs shown in Figure 10.2 are permitted. Only DT
and AK carry parameters : both carry a one-bit sequence
number, and DT carries a Service Data Unit. Each Abra-
cadabra Service Data Unit is carried in one DT Protocol
Data Unit. Each Abracadabra Protocol Data Unit is carried
in one Service Data Unit of the underlying medium.
The Abracadabra Protocol is parameterised by two con-

O

72

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

stants. N (> O) defines the maximum number of at-
tempts to transmit a PDU without receiving an acknowl-
edgement. P (which exceeds the round-trip transit delay)
defines the time period which should elapse before attempt-
ing re-transmission.

10.1.3.2 Connection Phase
A connection attempt is made following ConReq by sending
a CR. If a CC is received, a ConConf is issued and the
Data Transfer Phase is entered: the same is true if CR is
received instead. If DR is received or DisReq occurs, the
Disconnection Phase is entered. If any PDU other than
CC, CR or DR is received, it is ignored. If no response to
CR is received within period P, the CR is re-transmitted. A
maximum of N connection attempts (i.e. N periods of value
P) are permitted. After this, the Error Phase is entered.
When no connection is set up, receipt of a CR causes a
Conlnd; any other PDU is ignored. If a ConResp follows,
then CC is sent and the Data Transfer Phase is entered.
If, however, the connection attempt is abandoned with Dis-
Req, then the Disconnection Phase is entered.

10.1.3.3 Data Transfer Phase
A DatReq leads to a DT being sent. On receipt of the
corresponding AK, a further DatReq may be accepted. If
the corresponding AK is not received within period P, the DT
is re-transmitted. A maximum of N transmission attempts
(i.e. N periods of value P) are permitted. After this, the
Error Phase is entered.
DTs and AKs carry a one-bit sequence number which is
independent for each direction of transmission. The se-
quence number starts at O after connection. The correct
acknowledgement to a DT bears the next (i.e. other) se-
quence number. lf an AK with the wrong sequence number
is received, then the Error Phase is entered.
When a DT is received, it is acknowledged with AK (with the
next sequence number after the one in the DT). However,
if a further DT is received before the AK is sent, the Error
Phase is entered. If the DT bears the sequence number
which is expected, a Datlnd is issued. Otherwise the DT is
not delivered to the User.
If a further CR is received before any DTs or AKs, a CC is
sent. If a DR is received by either station the Disconnection
Phase is entered. If any PDU apart from DT, AK, CR (ini-
tial re-transmission only), or DR is received, then the Error
Phase is entered.

10.1.3.4 Disconnection Phase
A DisReq leads to a DR being sent. On receipt of DC
the connection is terminated and a new connection may
be attempted; the same is true if DR is received instead.
If a further DR is received, then DC is sent. Any other
kind of PDU is ignored. If no response to DR is received
within period P, the DR is re-transmitted. A maximum of
N disconnection attempts (i.e. N periods of value P) are
permitted. After this, the connection is considered to have
been terminated and a new connection may be attempted.

Figure 10.3: Communications Medium Service Primi-
tives

When a DR is received, it is acknowledged with DC. If a
connection is established, a Dislnd is issued. After this, a
new connection may be attempted. Any PDU other than
DR or CR which arrives subsequently is ignored.

10.1.3.5 Error Phase
A Protocol error leads to the Error Phase being entered and
DR being sent. This is identical to the Disconnection Phase
except that the station which detected the error also issues
Dislnd before sending the DR.

10.1.4 Communications Medium Service De-

The Communication Medium Service operates between a
pair of stations, addressed as a or b. The Communications
Medium Service is connectionless, and is accessed by Uni-
tReq and Unitlnd (Unit Request and Indication) Service
Primitives, which carry Service Data Units corresponding
to Abracadabra Protocol Data Units. The communications
medium is full-duplex and transparent, but does not guar-
antee delivery. Messages may be lost, but may not be mis-
ordered, corrupted, invented, or duplicated. The Service
Primitives are related as shown in Figure 10.3.
Either station may issue UnitReq, which may be delivered
as Unitlnd or may be lost.

scription

10.1.5 Model
The Service and Protocol should be modelled as shown in
Figure 10.4.

10.2 Deficiencies in the Informal De-

10.2.1 Flow Control (Clause 10.1.2)

10.2.1.1 Deficiency
Is it reasonable that the informal description should stipulate
that flow control by back-pressure be modelled?

scription

10.2.1.2 Resolution
Flow control by back-pressure is an implicit feature of many
OS1 Service definitions, although it is not normally referred

73

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

STATION A STATION B

Figure 10.4: Abracadabra Service and Protocol Model

to by this explicit name. The mechanisms for realising
flow control by back-pressure lie partly within the Service
Provider (i.e. the Protocol) and partly in the inter-layerinter-
face between the Service Users and the Service Provider.
Although the former is subject to standardisation, the lat-
ter is implementation-dependent and therefore not subject
to standardisation. Therefore, although the precise mech-
anisms for achieving flow control by back-pressure would
not normally be included in a Service description, it is per-
missible to refer to the end-to-end effect of these.

10.2.2 Premature Transmission of DT (Clause
10.1.3.3)

10.2.2.1 Deficiency
Is it reasonable that the informal description should regard
the reception of a further DT before an AK can be transmit-
ted as an error?

10.2.2.2 Resolution
The intention was to trap misuse of the protocol by the
transmitter, or to detect that the timeout period was too
short. However, this intention was probably misguided; this
case should not have been regarded as an error.

10.2.3 Stopping Retransmission on Error

10.2.3.1 Deficiency
Should retransmission of a CR or DT be stopped if the Error
Phase is entered?

(Clauses 10.1.3.2 and 10.1.3.3)

10.2.3.2 Resolution
Any current retransmission on timeout of a PDU should
cease on entry to the Error Phase.

10.2.4 Retransmission Limit and Period (Clause
10.1.3.1)

10.2.4.1 Deficiency
What should be the behaviour of the protocol if the param-
eters N and P are negative?

10.2.4.2 Resolution
The intention was that the protocol should refuse to accept
or transmit any messages.

10.2.5 Repeated ConReq (Clause 10.1.2)
10.2.5.1 Deficiency
Should ConReq be accepted while a connection is being
attempted or is current? More generally, should the be-
haviour of the Service under incorrect use by the Service
User be described?

10.2.5.2 Resolution
The intention was that a ConReq should be issued only
once to establish a connection. More generally, the actual
FDT being used affects how Service User misbehaviour
should be most naturally described.

10.2.6 DR when Disconnected (Clauses 10.1.3.2
and 10.1.3.4)

10.2.6.1 Deficiency
The informal description says that receipt of any PDU other
than CR is ignored in the Connection Phase. However, in
the Disconnection Phase it says that receipt of DR should
result in DC. Which is right?

10.2.6.2 Resolution
The description of the Disconnection Phase is right. The
intention was that receipt of DR when not connected should
result in DC.

O

10.2.7 Connection Refusal (Clause 10.1.3.2)

10.2.7.1 Deficiency
If DR is received in response to CR, should a Dislnd be
given to the User?

10.2.7.2 Resolution
The intention was to inform the User by Dislnd if the con-
nection was refused by DR.

74

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.2.8 Connection Refusal (Clause 10.1.3.2)

10.2.8.1 Deficiency
Should the Disconnection Phase be entered if the connec-
tion is refused by the other party (i.e. is the sequence CR,
DR, DC correct as stated)?

10.2.8.2 Resolution
Although the informal description is viable, it was intended
that connection refusal be by CR, DR only. The informal
description should refer to a DR being sent and the 'not
connected' state being entered, rather than the Disconnec-
tion Phase being entered.

10.2.9 Ignoring Outof-sequence Data (Clause

10.2.9.1 Deficiency

10.1.3.3)

it the Datlnd rather than the DT which is not delivered to e he User if the received sequence number is wrong?

10.2.9.2 Resolution
It should be the Datlnd; the informal description is a bit
loose.

10.3 Estelle Description
10.3.1 Architecture of the Formal Descriptions

The modules in the descriptions are systemprocesses,
and SO run asynchronously. As these modules are not re-
fined into submodules, the global behaviour of these de-
scriptions would not changed if they were designated sys-
temactivities. The crucial point is that they are distinct
systems.

10.3.1.1 Architecture of the Service Description
The modules and interaction points for the Abracadabra
Service description are shown in Figure 10.5. The Abra-

e a d a b r a Service Provider in Estelle is modelled by two
identical processes, one for each SAP. Of course, there
are other solutions possible which only use one process.
The reason for choosing two processes is that there may
be a possible delay between the reception of a Service
Primitive by the Service Provider and the sending of the
corresponding Service Primitive to the respective Service
User. This delay is modelled by the communication via
channel INTERNAL between the two SAPmanagers. The
Abracadabra Service is described in 10.3.3.

10.3.1.2 Architecture of the Protocol Description
The modules and interaction points for the Abracadabra
Protocol description are shown in Figure 10.6. The Abra-
cadabra Protocol is described in 10.3.4.

I channel SAP channel SAP I
V V

+----ip USERA---------------------- ip USER------+

I +---ip USER---+ +---ip USER---+ I
I I module I channel I module I I
I ISAPmanagerA ip INchnC->ip INchn SAPmanagerBI I

I I module Abraservice I I

I +-------------+ INTERNAL + I

Figure 10.5: Architecture of the Abracadabra Service in
Estelle

+--------------------+
I module I

User UA I
U()------ +

I
..
I

+- - - - - - - USER(+)------+
I module 1 I
I Abra A v I
I +----USER()---+ I
I I module I I
I I Station S I I
I I (for A 1 I I
I +---- PEER(I---+ I
I I
I I I
I V I

Up(I---+ I I +------

I I module I I
I I TransCode XC I I
I I (for A) I I
I +----Dom()---+ I
I I
I I I
+----- MEDIUM(+)------+

,.

..

I
V

+-------------------- +
I module I
I User UB I
+--------- U() ------- +

1

I
+------ USER(+)-------+
I module I I
I Abra B v I
I +---USER()----+ I
I I module I I
I I Station S I I
I I (for B) I I

I I
I I I
I V I
I +----- Up()----+ I
I I module I I
I I Transcode XC I I
I I (for B) I I
I +---Down()----+ I
I I
I I I

I +---PEER()----+ I
,.

+---- MEDIUM(+)-------+
I
V

Figure 10.6: Architecture of the Abracadabra Protocol
in Estelle

75

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 199 (E)

10.3.2 Explanation of Approach

10.3.2.1 Explanation of Service Approach
If an Abracadabra Service description were produced using
only one process for the Service Provider, time constraints
would have to be introducedfor the sending of Service Prim-
itives corresponding to received ones. The two-process
solution has been used for the sake of simplicity.
When one SAPmanager receives a Service Primitive from
a Service Access Point, it will send an internal message to
the SAPmanager for the other Service Access Point, which
will the result in a Service Primitive being sent to the User
at this Service Access Point. For example, a ConReq from
User A will invoke an IConReqlnd, which will result in a
Conlnd to User B. The names for the internal messages
are defined in a straightforward manner, and are believed
to be self-explanatory.
The main difference between the Abracadabra Service and
Abracadabra Protocol descriptions can be seen in the fact
that the Service is an abstraction of the Protocol. The inter-
face to the User is, of course, identical in both cases. In the
Service description there are no re-transmissions and there
is no alternating bit, because these things cannot be seen
by the User. Therefore, it is possible to omit them in order
to abstract from the Protocol. Furthermore, the processes
of the Service Provider at the Service Access Points do not
have to communicate through an unreliable medium, which
is the Service Provider of the underlying Layer. Instead,
the inability of the Service Provider to establish or maintain
a connection in some cases (the cases where in the Pro-
tocol’s N re-transmissions have failed) is modelled in the
Service description by the use of non-determinism.

10.3.2.2 Explanation of Protocol Approach
The structure of the Abracadabra Protocol description is
chosen to illustrate a way to solve the common problem of
peer-to-peer communication. Specifically, the problem is
this: normally, peers are considered to communicate with
each other, but within the OS1 reference model, they cannot.
An (N)-entity cannot communicate directly with another (N)-
entity; rather it communicates with an (N-1)-entity, which
provides the necessary Service to convey the peer-to-peer
communications. When describing Protocols, therefore, it
is not possible for an (N)-entity to ‘send a CR’. Instead, it
must package a CR up into an (N-1) Service Data Unit, and
its peer must unwrap the CR from the (N-1) Service Data
Unit.
The description is broken up into several modules. The Pro-
tocol itself is described in the Station module. The reader
primarily interested in the Protocol should concentrate on
this module. The Abracadabra Station modules have been
written as though they were communicating directly, so they
can ‘send a CR’ or ‘receive an AK. To accommodate the OS1
architecture, a TransCode module has been interposed be-
tween each Abracadabra Station and the communications
medium. This TransCode module encodes (‘packages’)
the peer-to-peer communication from the Station into the
UnitData of a UnitReq that the communications medium re-
quires. The TransCode module also decodes (‘unwraps’)

the UnitData of a Unitlnd that the communications medium
provides into a peer-to-peer communication.
This structuring is done using features of Estelle that make
the sub-structures ‘invisible’ to the rest of the system.
Note that the module Abra serves simply to form the sub-
structures and connect them together; it does not have any
transitions. Note also that the TransCode module has only
one (unnamed) state, thus from and to clauses are unnec-
essary for its transitions.
Although back-pressure flow-control has a global, end-
to-end effect, its precise realisation is a local and
implementation-dependent matter. The Protocol descrip-
tion given in 10.3.4 does not therefore deal with back-
pressure flow-control. The changes to describe this in gen-
eral terms are as follows.
The approach taken is based on the introduction of primi-
tive predicates (i.e. boolean-valued functions). These func-
tions are ‘true’ when the intended receiver of an interaction
wishes to assert back-pressure flow-control. These p r i m a
tive functions are given names like ReceiverBlocked. By
their nature, these clearly show that back-pressure flow-
control is indeed a local implementation issue which de-
pends on the availability of local resources. It is necessary
to make the firing of those transitions that have output on
a channel subject to back-pressure flow-control depend on
the value of these primitive functions.
Note that these primitive functions are necessarily primitive:
it is unlikely that they could be written in Estelle. From the
point of view of the formal semantics of Estelle, a descrip-
tion is technically incomplete until all primitive functions and
procedures have been formally described in terms of the se-
mantic model. However, for an implementation it is enough
to have a description of the desired behaviour which is suf-
ficiently detailed for an implementation to be made. The in-
tended meaning of a predicate like ReceiverBlocked could
be formalised in terms of the Estelle semantic model: it
would be defined in terms of the queue in ReceiverUserln-
stance.

parties which are subject to back-pressure, i.e. the trans ”. In the following changes it was decided to describe bot

mitting and the receiving stations. Since the TransCode
module is a simple translator, its actions are not made sub-
ject to flow-control; instead the Station module is made the
locus of this activity. The effect on the sending User or on
the Communications Medium has not been shown since the
actions of these modules are left unspecified. However, the
changes that would be required to describe back-pressure
flow-control in these modules should be clear from the ex-
amples.
The specific changes to the Abracadabra Protocol descrip-
tion to implement back-pressure flow-control in this way are
as follows:

O Two boolean-valuedfunctions should be declared in the
body StationBody for Station. The effect of these func-
tions can be described in terms of the queues of the
Communications Medium module (CM) and the Users
(UA and UB).

76

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

function MediumBlocked : boolean;
primitive;

function ReceiverBlocked : boolean;
primitive;

Two provided clauses in the body StationBody forsta-
tion should be modified as follows. Transitions 13 and
16 then become:

{ send data in DT PDU 1
from ESTAB to same

when USER. DatReq
provided not Sending and

not MediumBlocked
begin { 13 1

OldData := UserData;
output
PEER.DT(SendSeq, OldData) ;

OldSendSeq := SendSeq;
SendSeq :=

(SendSeq + 1) mod 2;
Sending := true;
{ turn on retransmission

DTRetranRemaining := N-1;
timer 1

end ;

{ receive data in DT PDU >
from ESTAB to same

when PEER.DT
provided not ReceiverBlocked
begin { 16 1

if Seq = RecvSeq then
begin

output
USER.DatInd(UserData) ;

(RecvSeq + 1) mod 2;
RecvSeq :-

end ;
{ send AK with next expected

output PEER.AK(RecvSeq);
DTorAK := true;

sequence number 1

end ;

10.3.3 Formal Description of the Service
specification Abracadabraservice;

default individual queue;
type UserDataType = ...;
channel SAP (user, provider) ;

ConReq;
ConResp ;
DatReq(UserDat a : UserDat aType) ;
DisReq;

ConInd;
ConConf;

by user:

by provider:

ISO/IEC TR 10167 : 1991 (E)

DatInd (UserData: UserDataType) ;
DisInd;

channel INTERNAL (A, B);
by A, B:

IConReqInd;
IConRespConf;
IDat (UserData: UserDataType) ;
IDis;

module User systemprocess;

end ;

body UserBody for User;
end ;

ip U: SAP(user);

module Abraservice;
ip USERA: SAP(provider);

USERB: SAP(provider);
end ;

body AbraServiceBody for Abraservice;

module SAPmanagerA systemprocess;
ip USER: SAP(provider) ;

INchn: INTERNAL(A) ;
end ;

body SAPmanagerBodyA for SAPmanagerA;

state
DISCONNECTED, CALLED, CALLING,

CONNECTED;

stateset
DISoccurs =

[CALLED, CALLING, CONNECTED];

initialize
to DISCONNECTED

begin end; { no variables 1

trans

{ *** Connection Phase *** 1

from DISCONNECTED to same

begin { 1 1

end ;

when USER.ConReq

output USER.DisInd;

from DISCONNECTED to same
when INchn. IDat (UserData)

begin { 2 1

end ;
output 1Nchn.IDis;

from DISCONNECTED to CALLING
when USER.ConReq

begin { 3 1
output

77

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

1Nchn.IConReqInd;
end ;

from DISCONNECTED to CALLED
when 1Nchn.IConReqInd

begin { 4 3

end ;
from CALLED to CONNECTED

when USER.ConResp

output USER.ConInd;

begin { 5 3
output INchn.
IConRespConf;

end ;
from CALLED to CONNECTED

when USER.ConReq
{ collision situation 3

begin { 6 1
output USER.ConConf;
output INchn.
IConRespConf;

end ;
from CALLING to CONNECTED

begin { 7 3

end ;

when 1Nchn.IConRespConf

output USER.ConConf;

from CALLING to CONNECTED
when 1Nchn.IConReqInd

{ collision situation 3
begin { 8 3
output USER.ConConf;
output INchn.
IConRespConf;

end ;

{ *** Data Phase *** 3

{ spontaneous disconnection
by the Provider 3

begin < 13 3
output USER.DisInd;
output 1Nchn.IDis;

end ;
from DISoccurs to DISCONNECTED

when USER.DisReq
begin { 14 3

end ;
output 1Nchn.IDis;

from DISoccurs to DISCONNECTED
when 1Nchn.IDis

begin { 15 3

end ;
end; { SAPmanagerBodyA 3

output USER.DisInd;

module SAPmanagerB systemprocess;
ip USER : SAP(provider);

INchn: INTERNAL(B) ;
end ;

body SAPmanagerBodyB for SAPmanagerB;

state
DISCONNECTED, CALLED, CALLING,
CONNECTED;

stateset
DISoccurs =

[CALLED, CALLING, CONNECTED]

initialize
to DISCONNECTED

begin end; 1 no variables

from CONNECTED to same
when USER.DatReq(UserData)

begin { 9 3
output INchn.
IDat (UserData) ;

end ;
from CONNECTED to same

when 1Nchn.IDat (UserData)
begin C 10 3
output USER.
Dat Ind(UserData1;

end ;
from CONNECTED to DISCONNECTED

when USER.DatReq(UserData)
begin { 11 3
output USER.DisInd;
output 1Nchn.IDis;

end;
from Connected to CALLED

when 1Nchn.IConReqInd
begin { 12 3

end ;
output USER.ConInd;

from DISoccurs to DISCONNECTED

trans

{ *** Connection Phase *** }
from DISCONNECTED to same

begin { 1 3

end ;

when USER.ConReq

output USER.DisInd;

from DISCONNECTED to same
when Iüchn. IDat (UserData)

begin { 2 3

end ;
output 1Nchn.IDis;

from DISCONNECTED to CALLING
when USER.ConReq

begin { 3 3
output INchn.
IConReqInd;

end ;
from DISCONNECTED to CALLED

when 1Nchn.IConReqInd
begin { 4 3
output USER.ConInd;

78

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

end ;
from CALLED to CONNECTED

when USER.ConResp
begin { 5 3

output INchn.
IConRespConf;

end ;
from CALLED to CONNECTED

when USER.ConReq
{ collision situation 3

begin { 6 3

output INchn.

end ;

output USER.ConConf;

IConRespConf;

from CALLING to CONNECTED

begin { 7 3

end ;

when 1Nchn.IConRespConf

output USER.ConConf;

from CALLING to CONNECTED
when 1Nchn.IConReqInd

{ collision situation 3
begin { 8 3

output USER.ConConf;
output INchn .

IConRespConf;
end ;

{ *** Data Phase *** 3

from CONNECTED to same
when USER.DatReq(UserData)

begin { 9 3
output INchn.
IDat (UserData) ;

end ;
from CONNECTED to same

when INchn. IDat (UserData)
begin { 10 3

output USER.
DatInd(UserData1;

end ;
from CONNECTED to DISCONNECTED

when USER .DatReq(UserData)
begin { Il 3

output USER.DisInd;
output 1Nchn.IDis;

end ;

from Connected to CALLED
when 1Nchn.IConReqInd

begin { 12 3

end ;
output USER.ConInd;

from DISoccurs to DISCONNECTED
1 spontaneous disconnection
by the Provider 3

begin { 13 3
output USER.DisInd;
output 1Nchn.IDis;

ISO/IEC TR 10167 : 1991 (E)

end ;
from DISoccurs to DISCONNECTED

when USER.DisReq
begin { 14 3

end;
output 1Nchn.IDis;

from DISoccurs to DISCONNECTED
when 1lchn.IDis

begin { 15 3

end ;
end; { SAPmanagerBodyB 3

output USER.DisInd;

{ main body for AbraServiceBody 3

modvar
A: SAPmanagerA;
B: SAPmanagerB;

initialize
begin

init A with SAPmanagerBodyA;
init B with SAPmanagerBodyB;
attach USERA to A.USER;
attach USERB to B.USER;

connect A.INchn to B.INchn;
end ;

end; { AbraServiceBody >
{ main body for specification
AbracadabraService 3

modvar
UA, UB: User;
AS : Abraservice;

initialize
begin

init UA with UserBody;
init UB with UserBody;
init AS with AbraServiceBody;
connect UA.U to AS.USERA;
connect UB.U to AS.USERB;

end ;

end. { Specification AbracadabraService 3

10.3.4 Formal Description of the Protocol
specification AbracadabraProtocol;

default individual queue;
timescale seconds;

const
N = any integer; { number of transmission

P = any integer; { delay amount for
attempts 3

timers 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SeqType = 0..1;
UserDataType = ...;
PduType = (CR, CC. DT, AK, DR, DC);

{ sequence number type 3

UnitDataType = record
Pdu : PduType;
SeqNo : SeqType;
UData : UserDataType

end ;

channel USAP(user , provider) ;
by user:

ConReq;
ConResp;
DatReq(UserData : UserDataType) ;
DisReq;

by provider:
ConInd;
ConConf ;
DatInd(UserData : UserDataType) ;
DisInd;

channel PeerCode(peer, coder);
by peer, coder:

CR ;
cc ;
DT(Seq : SeqType;

AK(Seq : SeqType);
DR ;
DC ;

UserData : UserDataType) ;

channel MSAP (user, provider) ;
by user:

by provider:
UnitReq(UnitDat a : UnitDataType) ;

UnitInd(UnitData: UnitDataType) ;

module User systemprocess;
ip U : USAP(user);

end ;

body UserBody for User;
end ;

module Cms systemprocess;

end ;
ip CMA, CMB : MSAP(provider);

body CmsBody for Cms;
external ;

module Abra systemprocess;
ip USER : USAP(provider);

MEDIUM : MSAP(user1;
end ;

body AbraBody for Abra;

module Station process;

ip USER : USAP(provider);
PEER : PeerCode(peer) ;

end;

body StationBody for Station;

state
CLOSED, CRSENT, CRRECV, ESTAB,
DRSENT ;

stateset
CRignore = [CRRECV] ;
CCignore -
DTignore =

AKignore =

DCignore =

ConReqIgnore =

ConRespIgnore =

DatReqIgnore =

DisReqIgnore =

[CLOSED, CRRECV , DRSENT] ;

[CLOSED, CRSENT, CRRECV, DRSENT];

[CLOSED , CRSENT, CRRECV , DRSENT] ;

[CLOSED, CRSENT , CRRECVI ;

[CRSENT , CRRECV, ESTAB , DRSENT] ;

[CLOSED, CRSENT , ESTAB , DRSENT] ;

[CLOSED, CRSENT, CRRECV, DRSENTI;

[CLOSED, DRSENT] ;

var
Sending : boolean;
SendSeq, RecvSeq : SeqType;
OldSendSeq : SeqType;
CRRetranRemaining : integer;
DTRetranRemaining : integer;
DRRetranRemaining : integer;
OldData : UserDataType;
DTorAK : boolean;

procedure InitVar;
begin

Sending := false;
SendSeq := O;
RecvSeq := O;
{ setting the following

counters to -1 guarantees
the predicates that check
them will fail. 3

CRRetranRemaining :- -1;
DTRetranRemaining := -1;
DRRetranRemaining := -1;
DTorAK := false;

end ;

initialize
to CLOSED

begin { I 3
{ Variables are initialized
when leaving CLOSED state,
since the protocol module
may cycle through CLOSED

80

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

repeatedly. 1
end ;

last CR 3
begin { 8 3

{ enter error phase 1
output USER.DisInd;
output PEER.DR;
CRRetranRemaining : =

DRRetranRemaining :=
-1;

N - 1;
end ;

{ receive connect request from

from CLOSED to CRRECV
when PEER.CR

peer entity 3

begin { 9 1
{ initialize module
variables whenever
leaving CLOSED 3

InitVar;
output USER.ConInd;

end ;
{ user accepts connection 3
from CRRECV to ESTAB

begin < 10 3

end ;
{ user rejects connection 3
from CRRECV to CLOSED

when USER.ConResp

output PEER. CC ;

when USER.DisReq
begin { il 1

output PEER.DR {just
once 1

end ;
{ other user disconnected 3
from CRRECV to CLOSED

when PEER.DR
begin { 12 3

output USER.DisInd;
output PEER. DC ;

end ;

trans

{ *** Connection Phase *** 1

{ user requests connection 3
from CLOSED to CRSENT

when USER.ConReq
begin { 2 3

{ initialize module
variables whenever
leaving CLOSED 1

InitVar ;
output PEER. CR;
CRRetranRemaining := N-1;

end ;
{ other user accepted connection 3
from CRSENT to ESTAB

when PEER.CC
begin { 3 3

output USER.ConConf;
CRRetranRemaining := -1;

end ;
{ colliding CRs 3
from CRSENT to ESTAB

when PEER.CR
begin { 4 1

output USER.ConConf;
CRRetranRemaining := -1;

end ;
{ other user rejected connection 3
from CRSENT to CLOSED

when PEER.DR
begin { 5 1

output USER.DisInd;
CRRetranRemaining := -1;

end ;
{ sender requests disconnection 1
from CRSENT to DRSENT

when USER.DisReq
begin { 6 1

output PEER.DR;
CRRetranRemaining := -1;
DRRetranRemaining := N-1;

end ;
{ retransmission timer for CR

from CRSENT to same
fires 3

provided CRRetranRemaining > O
delay (P)
begin { 7 1

CRRetranRemaining :=

output PEER. CR;
end ;

{ terminate retransmission of CR 3
from CRSENT to DRSENT

provided CRRetranRemaining = O
delay (Pl { allow time for

CRRetranRemaining - 1;

{ *** Data Transfer Phase *** 1

{ send data in DT PDU 1
from ESTAB to same

when USER.DatReq
provided not Sending

begin { 13 3
OldData := UserData;
output PEER.

OldSendSeq := SendSeq;
SendSeq :=

(SendSeq + 1) mod 2;
Sending := true;
{ turn on retrans-
mission timer 3

DTRetranRemaining :=
N - 1;

DT(SendSeq, OldData) ;

end ;

81

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

{ receive ack with correct sequence

from ESTAB to same
number in AK PDU 3

when PEER.AK
provided Seq = SendSeq

Sending := false;
{ turn off retrans-
mission timer 3

DTRetranRemaining :=
-1 ;

DTorAK := true;

begin { 14 3

end ;
{ receive acknowledgement with

incorrect sequence number 3
from ESTAB to DRSENT

when PEER.AK
provided Seq <> SendSeq

begin { 15 3
C enter error phase 3
output USER.DisInd;
output PEER. DR;
DTorAK := true;
DTRetranRemaining : =

DRRetranRemaining :=
-1;

N-1 ;
end ;

{ receive data in DT PDU 3
from ESTAB to same

when PEER.DT
begin { 16 3

begin
if Seq = RecvSeq then

output USER.
Dat Ind (UserData) ;

RecvSeq := (RecvSeq
+ 1) mod 2;

end ;
{ send AK with next
expected sequence
number 3

output PEER. AK (RecvSeq) ;
DTorAK := true;

end ;

when PEER.CR
from ESTAB to same

provided not DTorAK
begin { 17 3

end;
from ESTAB to DRSENT

when PEER.CR

output PEER. CC ;

provided DTorAK
begin { 18 3

{ enter error phase 3
output USER.DisInd;
output PEER. DR;
DTRetranRemaining :=

DRRetranRemaining :=
-1 ;

N-1;
end ;

from ESTAB to DRSENT
when PEER.CC

begin { 19 3
{ enter error phase 3
output USER.DisInd;
output PEER. DR;
DTRetranRemaining := -1;
DRRetranRemaining := N-1;

end ;
when PEER.DC

begin { 20 3
{ enter error phase 3
output USER.DisInd;
output PEER.DR;
DTRetranRemaining := -1;
DRRetranRemaining := N-1;

end ;
{ retransmission timer for DT

from ESTAB to same
fires 3

provided DTRetranRemaining > O
delay (P)

begin < 21 3
DTRetranRemaining :=

output PEER.
DTRetranRemaining - 1;

DT(OldSendSeq, OldData) ;
end ;

{ terminate retransmission of DT 3
from ESTAB to DRSENT

provided DTRetranRemaining = O
delay (P)

begin { 22 3
{ enter error phase 3
output USER.DisInd;
output PEER.DR;
DTRetranRemaining :=

DRRetranRemaining :=
-1;

N - 1;
end ;

{ *** Disconnection Phase *** 1

{ receive disconnect request from

from ESTAB to DRSENT
when USER.DisReq

begin { 23 3

user 3

output PEER. DR;
DTRetranRemaining : =

DRRetranRemaining : =
-1;

N - 1;
end ;

{ receive DC 3
from DRSENT to CLOSED

when PEER.DC
begin { 24 3

82

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

DRRetranRemaining := -1;
end ;

{ receive DR 1
from DRSENT to CLOSED

when PEER.DR
begin 25 3

end ;
{ receive DR 3
from ESTAB to CLOSED

when PEER.DR
begin { 26 3

DRRetranRemaining := -1;

output USER.DisInd;
output PEER. DC ;
DTRetranRemaining := -1;

end ;
{ reply to retransmitted DR 3
from CLOSED to same

when PEER.DR
begin { 27 3

end ;
output PEER. DC ;

{ retransmission timer for DR

from DRSENT to same
fires 3

provided DRRetranRemaining > O
delay (P)
begin { 28 3

DRRetranRemaining :=

output PEER.DR;
DRRetranRemaining - 1;

end ;
{ terminate retransmission of DR 3
from DRSENT to CLOSED

provided DRRetranRemaining = O
delay (P)

begin { 29 1
{ The connection is
regarded as closed. 1

DRRetranRemaining := -1;
end ;

{ ignore other PDU’s 1
from CRignore to same

when PEER.CR
begin { 30 3
end ;

from CCignore to same
when PEER.CC

begin { 31 3
end ;

from DTignore to same
when PEER.DT

begin { 32 3
end ;

from AKignore to same
when PEER.AK

begin { 33 3
end ;

from DCignore to same
when PEER.DC

begin { 34 3

ISO/IEC TR 10167 : 1991 (E)

end ;
from ConReqIgnore to same

when USER.ConReq
begin C 35 3
end ;

from ConRespIgnore to same
when USER.ConResp

begin { 36 3
end ;

from DatReqIgnore to same
when USER.DatReq

begin { 37 1
end ;

from DisReqIgnore to same
when USER.DisReq

begin { 38 3
end ;

end; { StationBody 3

{ **** The TransCode section **** 3

{ See the Explanation of Approach, describing
the structure of the specification 3

module TransCode process;

Down : MSAP(user);
ip Up : PeerCode(coder);

end ;

body TransCodeBody for TransCode;

var SDU: UnitDataType;

procedure BuildCR(

begin

end ;

var SDU: UnitDataType) ;

SDU.PDU := CR

procedure BuildCC(

begin

end ;

var SDU: UnitDataType) ;

SDU.PDU := CC

procedure BuildDT(
Seq: SeqType; Data: UserDataType;
var SDU: UnitDataType);

SDU.PDU := DT;
SDU.SeqHo := Seq;
SDU.UData := Data

begin

end ;

procedure BuildAK(

begin
Seq: SeqType; var SDU: UnitDataType);

SDU.PDU := AK;
SDU.SeqNo := Seq

end;

83

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

a4

procedure BuildDR(

begin

end ;

procedure BuildDC(

begin

end ;

var SDU: UnitDataType) ;

SDU.PDU := DR

var SDU: UnitDataType) ;

SDU.PDU := DC

trans
when Up.CC

begin { 1 3
BuildCC(SDU) ;
output Down.UnitReq(SDU)

end ;

begin { 2 3
when Up.CR

BuildCR(SDU) ;
output Down .UnitReq(SDU)

end ;

begin { 3 3
when Up .DT

BuildDT(Seq, UserData, SDU) ;
output Down .UnitReq(SDU)

end ;

begin { 4 3
when Up. AK

BuildAK(Seq, SDU) ;
output Down .UnitReq(SDU)

end ;

begin { 5 3
when Up.DR

BuildDR(SDU) ;
output Down.UnitReq(SDU)

end ;

begin { 6 3
when Up.DC

BuildDC(SDU) ;
output Down.UnitReq(SDU)

end ;

when Down.UnitInd
provided (UnitData.PDU = CR)

begin { 7 3

end ;
output Up. CR

when Down.UnitInd
provided (UnitData.PDU = CC)

begin { 8 3

end ;
output up.cc

when Down.UnitInd
provided (UnitData.PDU = DT)

begin { 9 3
output Up.DT(UnitData.SeqNo,
UnitData .UData)

end ;

when Down.UnitInd
provided (UnitData.PDU = AK)

begin { 10 3
output up.
AK(UnitData. SeqNo)

end ;
when Down.UnitInd

provided (UnitData.PDU = DR)
begin { 11 3

end ;
output Up.DR

when Down.UnitInd
provided (UnitData.PDU = DC)

begin { 12 3

end ;
output Up.DC

end; { TransCodeBody 3

{ main body for AbraBody 3
modvar

S : Station;
XC : TransCode;

begin
initialize

{ instantiate the modules 1
init S with StationBody;
init XC with TransCodeBody;

{ make connections 3
attach USER to S.USER;
connect S.PEER to XC.Up;
attach MEDIUM to XC.Down;

end ;
end; { AbraBody 1

{ main body for specification
AbracadabraProtocol 3
modvar

A , B : Abra;
UA, UB : User;
CM : Cms;

initialize
provided (N > O) and (P > O)

begin { 1 3
init UA with UserBody;
init UB with UserBody;
init A with AbraBody;
init B with AbraBody;
init CM with CmsBody;
connect UA.U to A.USER;
connect UB.U to B.USER;
connect A.MEDIUM to CM.CMA;
connect B.MEDIUM to CM.CMB;

end ;

end. { Specification AbracadabraProtocol 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

spec i f i ca t ion AbracadabraService
[a] (stat iona, stat ionb : Address) : noexit

(* type d e f i n i t i o n s *)

behaviour
Connection [al (stat iona, stat ionb : Address)

Backpressure [a]
I I

where

process Connection [al
(stat iona, stat ionb : Address) : noexit :=
...

endproc

process Backpressure [al : noexit :-
...

endproc 0
endspec

Figure 10.7: Outline Decomposition of the Abracadabra
Service in LOTOS

10.3.5 Subjective Assessment

The writing of the Abracadabra Protocol description in Es-
telle was fairly straightforward. The reader will note that the
order of the transitions of the StationBody closely follows the
order of the original description. Indeed, this portion of the
specification was written almost as a translation of the text.
In the course of writing the description, it was noted that
there were contradictory requirements in the case where a
dr is received and no connection is established; this lead
to a deficiency report. In addition, it was noted that the
phrase 'the disconnection phase is entered' was unclear,
and it was necessary to guess the correct interpretation to
write the formal description; clearly different interpretations
were necessary at different points in the Protocol.
After the first version of the description was complete, it was
analysed using automated tools, and additional deficiencies
were found. Subsequent discrepancies were noted in the
course of coordinating the three descriptions.

10.4 LOTOS description

10.4.1 Architecture of the Formal Descriptions
The description is divided into the description of the Ser-
vice and of the Protocol. Both are self-contained and inde-
pendent. The architecture of the descriptions follows that
suggested in the informal description. The decomposition
of the Service description is given in Figure 10.7, and that
of the Protocol is given in Figure 10.8.

ISO/IEC TR 10167 : 1991 (E)

spec i f i ca t ion AbracadabraProtocolEntity [a, m]
(N : Nat, P : Nat, s t a t i o n : Address) : noexit

(* type d e f i n i t i o n s *)

behaviour

Service [a] (s ta t ion)

Protocol Ca, m l (N , P)

CMService cm]

I Ea1 I

I [ml I

process Service [al
(s ta t ion : Address) : noexit :-
...

endproc

process CMService [m] : noexit :=

endproc

process Protocol [a, m]

...

(N : Nat, P : Nat) : noexit :=
...

endproc

endspec

Figure 10.8: Outline Decomposition of the Abracadabra
Protocol in LOTOS

The Abracadabra Service is described in 10.4.3. The top-
level structure reveals one gate a for communication, with
an address value to distinguish the stations. The behaviour
of the description is described in two interleaved main pro-
cesses: Connection, which controls the handling of con-
nections; and Backpressure, which controls the flow of
data.
The Abracadabra Protocol is described in 10.4.4. The top-
level structure reveals two gates for communication with the
User and with the underlying Medium:

a this is the upper Service gate to the Abracadabra Ser-
vice User

m this is the Communications Medium gate

The structure of events at these gates is the usual one:

a ! Station ! ASP (...)

m ! User ! MSP (...)

where:

a) Station is the station identification; and
b) ASP constructs a value for the Abracadabra Service

Primitive sort: and

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

c) User is the user identification; and
d) MSP constructs a value for the Medium Service Primi-

tive sort.

The behaviour of the description is described in three inter-
leaved main processes: Service and CMService describe
the behaviour at the gates and a and m respectively; and
Protocol describes the behaviour of the Protocol itself. The
behaviour of Protocol is split into the following processes:
Connect and DataTransfer, which describe their respec-
tive phases; and Disconnect and TryDisconnect, which
cover the Disconnection Phase. The ‘not connected‘ state
is also described in the Connect process.
Although some of the data types are common both to the
Service and the Protocol, the Protocol description is self-
contained. There are very few differences in these data
types, arising mainly from the necessity in the protocol to
select some parameters from certain structures (e.g. the
Service Primitives).

10.4.2 Explanation of Approach

The descriptions use a mixture of ‘constraint-oriented’ and
‘construction-oriented’ styles. Complex systems may be
described as a collection of constraints that filter out only
those action denotations may take place at a given gate at
each moment. Requirements may be easily translated into
constraints. This approach is thus a requirement-oriented
philosophy. More formally, a constraint is a behaviour, i.e.
list of actions imposed on a gate. It is a higher level of
concern than that of the basic sequencing (;) and choice
([I) operators.
Constraints (i.e. requirements) on a gate may be put to-
gether using synchronised composition:

constrainti [gl . . .
constraint2 Cgl ...

I Cgl I

or by means of interleaving:

constrainti [gl . . .
constraint2 [gl ...

I I I

Notice the difference from this ‘parallel or’ and the ‘just one
or’:

constrainti [gl . . .
constraint2 Cgl ...

CI

The compact versions of the parallel operator are frequently
used: I I for ‘and‘ composition on every gate of each be-
haviour expression, and l l l for ‘or’ composition with no
synchronisation at all. This style of description is quite
terse. Usually, very few gates are considered, although
synchronisation often involve many behaviours. The multi-
way synchronisation feature of LOTOS is essential to this.

The additional use of a construction-oriented style is justi-
fied as follows. Protocols are usually considered as state
machines. The informal description, for instance, states
facts according to the so-called Phase in which the entity
is. This may be regarded as a macro state.
The general style of a construction-oriented description is
to derive one process per phase (roughly) such that the
Protocol Entity starts behaving according to the first phase,
moves to the next one under certain conditions, etc. The
new phase is a ‘continuation’ of the current one.

10.4.3 Formal Description of the Service

The description itself is parameterised by the addresses of
both stations.

specification AbracadabraService [a] O
(stationa, stationb : Address) : noexit

Standard Library: imports some data types from the Stan-
dard Library.

library
BaturalNumber, Boolean, Set, DecDigit,
Octetstring

endlib

Abracadabra Service Addresses: defines the known ad-
dresses that the stations may have.

type AddressType is Boolean
sorts Address
opns

A i B : -> Address
-eq-, -ne- : Address, Address -> Bool

eqns forall al, a2 : Address
ofsort Bool

A eq A = true;
A eq B = false;
B eq A = false;
B eq B = true;
al ne a2 = not (ai eq a2)

endtype (* AddressType *)

Abracadabra Service Data Units: defines Service User
data in terms of the standard type Octetstring.

86

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

type UserDataType is OctetString renamedby

endtype (* UserDataType *)
sortnames UserData for OctetString

Set of Addresses: used by the Backpressure process.

type SetOfAddressFormalType is Set renamedby

endtype (* SetOfAddressFormalType *)
sortnames SetofAddress for Set

type SetOfAddressType is SetOfAddressFormalType
actualizedby AddressType, Boolean using

sortnames
Address for Element
Bool for FBool

endtype (* SetOfAddressType *)

Abracadabra Service Primitives: defined as values of sort
SP, with some operations to extract information from the
Service Primitives. There is also a mapping to DecDigit in
order to simplify the definition of the recognition predicates.
Notice that any injective mapping would suffice.

type SPType is Boolean, UserDataType, DecDigit
sorts SP
opns
ConReq, ConInd, ConResp, ConConf : -> SP
DatReq, DatInd : UserData -> SP

IsConReq, IsConInd, IsConResp, IsConConf,
IsDatReq, IsDat Ind,
IsDisReq, IsDisInd : SP -> Bool
IsReq, IsInd : SP -> Bool
data : SP -> UserData
-il=- : SP, SP -> Boo1
map : SP -> DecDigit

of sort UserData

DisReq, DisInd : -> SP

eqns forall d : UserData, sp : SP

data (ConReq) = <>;
data (ConInd) = <>;
data (ConResp) = <>;
data (ConConf) = 0;
data (DatReq (d)) = d ;
data (DatInd (d)) = d ;
data (DisReq) = 0 ;
data (DisInd) = <>;

map (ConReq) = O ;
map (ConInd) = 1 ;
map (ConResp) = 2 ;

of sort DecDigit

ISO/IEC TR 10167 : 1991 (E)

map (Conconf) = 3 ;
map (DatReq (d)) = 4 ;
map (DatInd (d)) = 5 ;
map (DisReq) = 6 ;
map (DisInd) = 7 ;

IsConReq (sp) = map (sp) eq O ;
IsConInd (sp) = map (sp) eq 1 ;
IsConResp (sp) = map (sp) eq 2 ;
isconconf (sp) = map (sp) eq 3 ;
IsDatReq (sp) - map (sp) eq 4 ;
IsDatInd (sp) = map (sp) eq 5 ;
IsDisReq (sp) = map (sp) eq 6 ;
IsDisInd (sp) = map (sp) eq 7 ;
IsReq (sp) =

ofsort Bool

IsConReq (sp) or
(IsConResp (sp) or (IsDatReq (sp) or
IsDisReq (sp)) ;

IsInd (sp) = not (IsReq (SPI);
sp == sp = true;

endtype (* SPType *)

(*---

Abracadabra Service Objects: defines the Objects
which are used to represent the information in tran-
sit on a connection between its entry to the Ser-
vice as RequestdResponses and its delivery as Indica-
tiondConfirmations. A distinct form of Object is defined
for each pair of Service Primitive Request and Indication
(or, Response and Confirmation respectively).

type ObjectType is SPType
sorts Object
opns
object : SP -> Object
indication, altindication : Object -> SP
IsCon, IsCak, IsDat, IsDis : Object -> Bool
-==- : Object, Object -> Bool

eqns
forall sp : SP, obj : Object, data : UserData

ofsort Bool
IsCon (object (sp)) =

IsCak (object (sp)) =

IsDat (object (sp)) =

IsDis (object (sp)) =

obj == obj = true;

indication (object (ConReq)) = ConInd;
indication (object (ConInd)) = ConInd;
indication (object (ConResp)) - ConConf;
indication (object (ConConf)) - ConConf;
indication (object (DatReq (data))) =

IsConReq (sp) or IsConInd (sp);

IsConResp (sp) or IsConConf (sp);

IsDatReq (sp) or IsDatInd (sp);

IsDisReq (sp) or IsDisInd (sp);

ofsort SP

DatInd (data) ;

87

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

i nd ica t ion (objec t (DatInd (da t a))) =

i nd ica t ion (objec t (DisReq)) = DisInd;
i nd ica t ion (objec t (DisInd)) = DisInd;
a l t i n d i c a t i o n (objec t (ConReq)) =

a l t i n d i c a t i o n (objec t (ConInd)) =

a l t i n d i c a t i o n (objec t (ConResp)) =

a l t i n d i c a t i o n (objec t (ConConf)) =

a l t i n d i c a t i o n (objec t (DatReq (da ta))) =

a l t i n d i c a t i o n (objec t (DatInd (da t a))) =

a l t i n d i c a t i o n (objec t (DisReq)) = DisInd;
a l t i n d i c a t i o n (objec t (DisInd)) = DisInd;

DatInd (da ta) ;

ConConf ;

ConConf ;

ConInd;

ConInd;

DatInd (data) ;

DatInd (data) ;

endtype (* ObjectType *)

Behaviour: decomposed into the following constraints:

a) the Connection that the Service Provider can offer; and
b) application of Service Provider backpressure flow con-

trol.

behaviour

I I
Connection [a] (s t a t i o n a , s t a t ionb)

Backpressure [a]

where

Connection: decomposed into the dependent conjunction
of the following constraints:

a) the two associated Connection Endpoints; and
b) the correct bi-directional Service Primitive transfer.

process CEPS [a]
(s t a t iona , s t a t i o n b : Address) : noexi t :=
CEP [a] (s t a t iona) I I I CEP [a] (s t a t ionb)

where

CEP: decomposed into the disjoint constraints on a single
Connection Endpoint at a given address (station):

a) the order in which Service Primitives occur at the CEP;

b) the constraint regarding the address at which the Ser-
and

vice Primitives occur.

0 The ordering of Service Primitives is constrained as follows
for a calling (and called) endpoint:

a) the first event may only be a ConReq (Conlnd); and
b) the event following the initial ConReq (Conlnd) may be

a ConConf (ConResp); and
c) following occurrence of a ConConf (ConResp), any

sequence of DatReqs and Datlnds may occur; and
d) at any point after the initial ConReq (Conlnd), a DisReq

or a Dislnd may occur; and
e) after either a DisReq or Dislnd, the whole behaviour

may be repeated.

The constraint on the address at which the Service Primi-
tives occur is simply that:

a) all Service Primitives must occur at the address given
in the parameter.

process CEP [a]
(s t a t ionx : Address) : noexi t :=
Primitiveordering [a]

Addressing [a] (s t a t ionx)
I I

where
process connection [al

(s t a t i o n a , s t a t i o n b : Address) : noexi t :=
CEPS [a] (s t a t i o n a , s t a t ionb)

Association [a] (s t a t iona , s t a t ionb) ,

I I

where

CEPS: decomposed into the constraints on the sequence
of Service Primitives and addressing possible at the Con-
nection Endpoints of each station.

process Primitiveordering [a] : noexit :*
a ? s t a t i o n : Address ? s p i : SP

[IsConReq(spl) o r IsConInd (sp i) 1 ;

a ? s t a t i o n : Address ? sp2 : SP
(

[(I sConReq (sp 1) implies
IsConConf (sp2)) and

IsConResp(sp2))l;
(IsConInd(sp1) implies

DataTransf e r [a]

Disconnect [al
c>

88

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

O

where

process DataTransfer [a] : noexit :=
a ? station : Address ? sp : SP

DataTransf er [a]
[IsDatReq(sp) or IsDatInd(sp)] ;

endproc (* DataTransfer *)

process Disconnect [al : noexit :=
a ? station : Address ? sp : SP
[IsDisReq(sp) or IsDisInd(sp)] ;

Primitiveordering [a]
endproc (* Disconnect *)

endproc (* Primitiveordering *)

process Addressing [a]
(stationx : Address) : noexit :=
a ? station : Address ? sp : SP
[station eq stationxl ;

Addressing [a] (stationx)
endproc (* Addressing *)

endproc (* CEP *)

endproc (* CEPS *)

Association: represents the correct bi-directional transfer
of Service Primitives. It is decomposed in two independent
constraints, relating Requests (and Responses) at one End-
point to Indications and Confirmations at the other, for each
direction.
Each one of these Associations can be represented as the
one-way transfer of Service Primitives through a Medium.

process Association [a] O
(stationa, stationb : Address) : noexit :=
Assoc [a] (stationa, stationb, empty)

Assoc [a] (stationb, stationa, empty)

where

I I I

Basic Abracadabra Service Medium: defines a simple
FlFO medium, used to relate the order of output Service
Primitives to input Service Primitives. The basic medium
type allows expression of Medium objects as either:

a) an empty medium (empty); or
b) a medium, asm, to which a further object, aso, has

been added (as0 + - - asm).

In addition, a further constructor is defined for a medium in
the form of a first object and the following medium. Note
that all media of this form may also be expressed in form b)
above.
Lastly, a Boolean equality function, ==, is defined for the
Medium.

type BasicMediumType is ObjectType, Boolean
sorts Medium
opns

empty : -> Medium
-+--- : Object, Medium -> Medium
---+- : Medium. Object -> Medium

-==- : Medium, Medium -> Bool
eqns
forall sm, sml, sm2 : Medium,
obj, objl, obj2 : Object
ofsort Medium

obj +-- empty = empty --+ obj;
(obj2 +-- (sm --+ objl)) =
((obj2 +-- sm) --+ objl);

ofsort Bool
sm == sm = true;
(obj2+--sm2) == empty = false;
empty == (objl+--srni) = false;
(obj2+--sm2) == (objl+--sml) =
((obj2 == objl) and (sm2 == sml));

endtype (* BasicMediumType *)

Provider Disconnection of the Abracadabra Service
Medium: contains the information relating to the Service
Provider’s ability to cause a (Provider) Dislnd at any time
during the lifetime of a connection.

type DisconnectedMediumType is
BasicMediumType
opns
,MayDisconnect, :
Medium, Medium -> Bool

forall obj, objl : Object,
eqna

sm, sml : Medium
ofsort Bool
empty MayDisconnect empty = true;
empty MayDisconnect (obj+--sm) =

(objl+--sml) MayDisconnect sm =
false ;

(((objl+--smi) == sm) or
(IsDis(obj1) and
(sml MayDisconnect empty))) ;

endtype (* DisconnectedMediumType *)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Reorderings of the Abracadabra Service Medium: con-
tains the information relating to the Service Provider’s ability
to reorder the messages in transit. An object (e.g. a Dis-
connect) may advance through the medium, destroying the
objects it overtakes (operation destroy). In some circum-
stances (e.g. a Disconnect and a Connect), two objects
may mutually destroy each other (operation cancel).
The Boolean function, IsReorderingOf, returns true if its
first argument could have been derived from its second in
accordance with the reordering rules of the Abracadabra
Service, otherwise it returns false.

type MediumType is DisconnectedMediumType
opns

-negates,, ,destroys, :
Object, Object -> Bool

-<<-, -1sReorderingOf- :
Medium, Medium -> Bool

eqns
f o r a l l m, m i , m2 : Medium,

ob j , obj0, o b j l , objOa, o b j l a : Object
o f s o r t Bool

o b j l des t roys objO =
IsDis(obj1) and (not(IsCon(obj0)));

IsDis (ob j l) and IsCon (objO);
empty << empty = t r u e ;
empty << (objO+--empty) = f a l s e ;
empty << (objl+--(objO+--m)) =

, o b j l negates objO -
(ob j l negates obj0) and

(empty << m);
(obj+--empty) << empty = f a l s e ;
(obj+--empty) << (objO+--empty) =

(obj == obj0);
(obj+--empty) <<

(obj 1+-- (obj O+--m)) =
((obj == o b j l) and

(empty << (objO+--m))) o r
((ob j l negates obj0) and

((obj+--empty) << m)) o r
((o b j l des t roys obj0) and
((obj+--empty) <<

(objla+--(objOa+--m)) << empty =

(obj la+-- (obj Oa+--m)) <<
(objO+--empty) = f a l s e ;

(obj la+--(objOa+--ml)) <<
(obj l+--(objO+--m2)) =

((o b j l a -- o b j l) and

(objl+--m))) ;

false;

((objOa+--ml) << (objO+--m2))) o r
((ob j l negates obj0) and
(((objla+--(objOa+--mi)) <<
m2))) o r ((ob j l des t roys obj0)

and
(((objla+--(objOa+--ml)) <<

(obj l+--m2)))) ;
m i IsReorderingOf m2 = m i << m2;

90

endtype (* MediumType *)

Uni-directional Primitive Transfer: defines the behaviour
as accepting an object to be transferred or delivering an
object at the other end, plus the possible reorderings of the
Medium itself.

process Assoc [a]
(s t a t iona , s t a t i o n b : Address,

s m : Medium) : noexi t :=
(
t r a n s f e r i n [al (s t a t i o n a , s m)

t r ans fe rou t [a] (s t a t ionb , sm)
1

accept s m l : Medium i n

CI

>>

(
choice sm2, s m 3 : Medium [I

C(sm2 MayDisconnect s m l) and
(sm3 IsReorderingOf sm2)] ->
(

choice sm4 : Medium,
obj : Object [1

[s m 3 = (sm4 --+ obj)] ->

Assoc [a] (s t a t iona ,
(

s t a t i o n b , sm3)

[IsDis (obj)] ->
Cl

i;
Assoc [a] (s t a t iona ,

s t a t i o n b , sm4)
1

1
1

where

Acceptance of Requests and Confirmations: defines the
constraint associated with the acceptance of a Request or
Response Service Primitive as follows:

a) A Service Primitive may occur provided that it is a Re-
quest (or Response), and the corresponding object is
sent over the Medium associated with the Connection.

process t r ans f e r i n [a]

: e x i t (Medium) :=
a ! s t a t i o n ? sp : SP [IsReq(sp)];
e x i t ((ob jec t (sp)) +-- s m)

(s t a t i o n : Address, s m : Medium)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

endproc (* transferin *)

Delivery of Indications and Confirmations: defined as
the constraint on the delivery of Service Primitives to the
receiving User:

a) Whatever object, if any, is foremost in the Medium may
be delivered to the User in the form of the appropri-
ate Indication (or Confirmation). The foremost object is
removed from the Medium as it is delivered.

process transferout [al

: exit (Medium) :=
choice undelivered : Medium,

(station : Address, sm : Medium)

deliver : Object [I
[sm = (undelivered --+ deliver)] ->

[(sp == indication(de1iver)) or

altindication(de1iver) >I ;

a ! station ? sp : SP

(sp ==

exit (undelivered)
endproc (* transferout *)

endproc (* Assoc *>
i endproc (* Association *)

I endproc (* Connection *>

I ' Backpressure: defined as the constraint which is associ-
ated with provider backpressure flow control:

a) a DatReq primitive may be refused at either Connection
O

I Endpoint at any time.

The Service User has no control over whether DatReq Ser-
vice Primitives are refused.

process Backpressure [a] : noexit :-
choice RefuseDatReq : SetofAddress [I
i;
a ? station : Address ? sp : SP
[(IsDatReq(sp) implies
(station PotIn RefuseDatReq))] ;

Backpressure [a]
endproc (* Backpressure *)

endspec (* AbracadabraService *)

10.4.4 Formal Description of the Protocol
There are two parameters to the description: the re-
transmission limit, and the period for timeouts. The unit
for timeouts is not defined since LOTOS cannot describe
absolute time. These two parameters are of sort Nat from
the standard library. A further parameter is used to identify
the Protocol Entity as an Abracadabra station.
Medium (Endpoint) identification is not directly described,
but is dynamically decided on the first event at the m gate.

*> ...
specification AbracadabraProtocolEntity [a, ml
(P : Pat, P : Pat, station : Address) : noexit

Standard Library: imports some data types from the Stan-
dard Library. Boolean is needed everywhere, Natural-
Number is for the specification parameters, DecDigit is
used to simplify the description of objects by mapping them
onto digits, and Octetstring is used for Service User data.

library

endlib
Boolean, laturallumber, DecDigit, Octetstring

Abracadabra Service Addresses: defines the known ad-
dresses that the stations may have.

type AddressType is Boolean
sorts Address
opns
A, B : -> Address
,eq,, ,ne, : Address, Address -> Bool

eqns forall al, a2 : Address
ofsort Bool

A eq A = true;
A eq B = false;
B eq A = false;
B eq B = true;
ai ne a2 5 not (ai eq a2)

endtype (* AddressType *)

Behaviour: considers the constraints introduced by the
Abracadabra Service, plus those of the Communications
Medium Service and the internal ordering imposed by the
Abracadabra Protocol.

91

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

behaviour

I Cal I

I Cml I

Service [al (s t a t i o n)

Protocol [a, m] (N. P)

CMService Em]

map (DatInd (d)) = 5
map (DisReq) = 6
map (DisIndl = 7

IsConReq (sp) = map
IsConInd (sp) = map
IsConResp (sp) = map

o f s o r t Bool
sp) eq O ;
SPI eq 1 ;
sp) eq 2 ;

IsConConf (sp) = map (sp) eq 3 ;
where IsDatReq (sp) = map (sp) eq 4 ;

IsDatInd (sp) = map (sp) eq 5 ;
(*--- IsDisReq (sp) = map (sp) eq 6 ;

IsDisInd (sp) = map (sp) eq 7 ;
Abracadabra Service Data Units: defines Service User sp == sp = t r u e ;
data in terms of the standard type Octetstring. endtype (* SPType *)

type UserDataType i s Oc te t s t r ing renamedby
sortnames UserData f o r Oc te t s t r ing

Abracadabra Protocol Data Units: defined rather like the
Service Data Units.

) a ... endtype (UserDataType *)

(*---

Abracadabra Service Primitives: defined as values of sort
SP, with some operations to extract information from the CR, CC : -> PDU
Service Primitives. There is also a mapping to DecDigit in DT : UserData, Bool -> PDU
order to simplify the definition of the recognition predicates. AK : Bool -> PDU
Notice that any injective mapping would suffice. DR, DC : -> PDU

type PDUType i s UserDataType, Boolean, DecDigit
s o r t s PDU
opns

type SPType is Boolean, UserDataType, DecDigit
s o r t s SP
opns

ConReq, ConInd, ConResp, ConConf : -> SP
DatReq, DatInd : UserData -> SP

IsConReq, IsConInd, IsConResp, IsConConf ,
IsDatReq, IsDat Ind,
IsDisReq, IsDisInd : SP -> Bool
IsReq, I s Ind :' SP -> Bool
d a t a : SP -> UserData
-==- : SP, SP -> Bo01
map : SP -> DecDigit

of s o r t UserData

DisReq, DisInd : -> SP

eqns f o r a l l d : UserData, sp : SP
-

d a t a (ConReq) = <>;
d a t a (ConInd) = <>;
d a t a (ConResp) = <>;
d a t a (ConConf) = O ;
d a t a (DatReq (d)) = d ;
d a t a (DatInd (d)) = d ;
d a t a (DisReq) = O ;
d a t a (DisInd) = <>;

map (ConReq) = O ;
map (ConInd) = 1 ;
map (ConResp) = 2 ;
map (ConConf) = 3 ;
map (DatReq (d)) = 4 ;

of s o r t DecDigit

d a t a : PDU -> UserData
bool : PDU -> Bo01
I s C R , I s C C , IsDT, I s A K , I s D R , I s D C :

map : PDU -> DecDigit

of s o r t UserData

PDU -> Bo01

eqns f o r a l l d : UserData, b : Bool, pdu : PDU

d a t a (CR) = <>;

da ta (DT (d, b)) = d ;
da ta (AK (b)) = <>;

da ta (CC) = <>;

da ta (DR) = <>;
da ta (DC) = <>; a o f s o r t Bool
bool (CR) = f a l s e ;
bool (CC) = f a l s e ;
bool (DT (d, b)) = b ;
bool (AK (b)) = b ;
bool (DR) = false;
bool (DC) = f a l s e ;

of s o r t DecDigit
map (CR) = O ;
map (CC) ' 1 ;

map (DR) - 4 ;
map (DC) '5;

map (DT (d, b)) = 2 ;
map (AK (b)) = 3 ;

o f s o r t Bool
I s C R (pdu)
I s C C (pdu)
IsDT (pdu)
I s A K (pdu)

= map (pdu) eq O ;
= map (pdu) eq 1 ;
= map (pdu) eq 2 ;
= map (pdu) eq 3 ;

92

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

IsDR (pdu) = map (pdu) eq 4 ;
IsDC (pdu) = map (pdu) eq 5 ;

endtype (* PDUType *)

Communications Medium Service Primitives: defined
explicitly without use of any mapping to DecDigit, since this
type is simpler than that for Abracadabra Service Primitives.

type CMSPType is PDUType, Boolean
sorts CMSP
opns
UnitReq, UnitInd : PDU -> CMSP
pdu : CMSP -> PDU
IsUnitReq, IsUnitInd : CMSP -> Bool

eqns forall d : PDU, cmsp : CMSP
of sort PDU
pdu (UnitReq (d)) = d ;
pdu (UnitInd (d)) = d ;

IsUnitReq (UnitReq (d)) = true ;
IsUnitReq (UnitInd (d)) = false ;
IsUnitInd (UnitReq (d)) = false ;
IsUnitInd (UnitInd (d)) = true ;

ofsort Bool

endtype (* CMSPType *)

Abracadabra Service Constraints: decomposed into con-
straints on the station addressing, as well as on the ordering
of Service Primitives. Unlike the Service description, only
the addressing constraint is considered. The ordering of
Service Primitives is to be deduced from the Protocol. The
constraint on the addressing is to accept only transactions
for this station. In the remainder of the description, it is then
possible to forget about which station is involved.

process Service [al
(station : Address) : noexit :=
a ! station ? sp: SP ;
Service [al (station)

endproc (* Service *)

Connections Medium Service Constraints: obtains a
User (Connection Endpoint) identifier on the first event, and
then sticks to it for all subsequent events.

process CMService [ml : noexit :=
m ? user : Address ? cmsp : CMSP;
StickTo [m] (user)

where

process StickTo [m]
(user : Address) : noexit :=
m ! user ? cmsp: CMSP;
StickTo [m] (user)

endproc (* StickTo *)

endproc (* CMService *)

Abracadabra Protocol Constraints: defines the Protocol
behaviour in a more constructive manner, i.e. instead of
a composition of constraints, there is a traversal of states.
The natural language description clearly distinguishes four
phases. The entity starts in the Connect Phase and moves
to other phases according to interactions with the environ-
ment.

process Protocol [a, ml

Connect [a, ml (N, P)

vhere

(N, P : Nat) : noexit :=

Connection: may be started by either station. Normally,
the Protocol Entity proceeds to data transfer, where it re-
mains for ever, unless a disconnection is requested or an
error rises. As processes give control to each other, a rea-
son is given to explain the cause of the disconnection.

process Connect Ca, ml
(H, P : Nat) : noexit :=
(* this station starts *)
a ? s : Address ! ConReq;

Tryconnect [a, ml (O of Nat, N, P)

(
c>

m ? U : Address ! UnitInd (DR);
a ? s : Address ! DisInd;
Connect [a, d (N, P)

a ? s : Address ! DisReq;
GiveUp [a, ml (N, P, UserDisc)

CI

1
1

CI
(* the other station starts *)
m ? U : Address ! UnitInd (CR);
a ? s : Address ! ConInd;
(

93

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

a ? s : Address ! ConResp;
m ? U : Address ! UnitReq (CC);
DataTransfer [a. ml (N, P)

Disconnect [a, m]

accept r: reason in

c>
>>

CiveUp [a, ml (Na P, r)
1

(* any other incoming message is ignored *)
m ? U : Address ? cmsp : CMSP

or IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)) or
IsDC (pdu (cmsp>))l i

CI

[IsUnitInd (cmsp) and (IsCC (pdu (cmsp))

Connect [a, m] (N, P)

(* however, DRs are replayed *)
m ? U : Address ! UnitInd (DR) ;
m ? U : Address ! UnitReq (DC) ;
Connect [a, m] (Na P)

Cl

where

Reasons to release a Connection: defines the several
reasons for Connection Release that are passed between
the processes of each phase.

1 ---*

type ReasonType is
sorts reason
opns
UserDisc, (* from Abracadabra user *)
CMDisc , (* from Comms. Medium *)
error : -> reason

(* unexpected incoming message *)
endtype (* ReasonType *)

Try to Connect: attempts a connection up to N times, when
this station starts up. The number of connection attempts
so far is held in This. The timeout period is P.

process Tryconnect [a, m]
(This, N, P : Nat) : noexit :=
[This It NI ->
m ? U : Address ! UnitReq (CR);
(

(* loop *>

(

StandBy [m]
c>

m ? U: Address ? cmsp : CMSP

[IsUnitInd (cmsp) and
(IsCC (pdu (cmsp)) or
IsCR (pdu (cmsp)))] ;

a ? s : Address ! ConConf;
DataTransfer [a, m] (N, P)

Disconnect [a, ml

accept r : reason in
>>

GiveUp [a, mi (Na P, r)
CI

(* timeout *)
(
Wait (P)

Tryconnect [a, m]
>>

(Succ (This), N, P)
1

1
Cl
[This ge NI ->
CiveUp [a, m] (Na P. error)

where

process StandBy [m] : noexit :=
m ? U: Address ? cmsp: CMSP

[IsUnitInd (cmsp) and
(IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)) or
IsDC (pdu (cmsp>))l;

StandBy [ml
endproc (* StandBy *)

endproc (* Tryconnect *)

Data Transfer: decomposed into three constraints:

a) the transmission of data (downward flow); and 0
b) the reception of data (upward flow); and
c) the acceptance of CR only before any DT or AK.

which are composed in the obvious way:

CRFlow [ml . ..
I Cml I

(

I I I

1

DownwardFlow [a, m]

UpwardFlow [a. m] .
...

where the first is an ‘and‘ composition and the second a
‘parallel or’ one. This normal transfer may be disrupted by
unexpected incoming messages, leading to the next phase.
Each of the Protocol Data Units that may arrive in Unitlnds
is ‘captured’ by a separate part of the description:

94

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

CR CRFlow and UpwardFlow
CC unexpected incoming messages
DT UpwardFlow and CRFlow
AK DownwardFlow and CRFlow
DR Disconnect
DC unexpected incoming messages.

UnitReqs are controlled by DownwardFlow, UpwardFlow
and CRFlow.
It is necessary to have three processes running in parallel
to model the composition of the constraints. Any of these
processes may find an error and, consequently, may want
to exit. But LOTOS requires that every process in a par-
allel composition must synchronise on the exit. It would
be helpful if LOTOS had an abrupt termination of parallel
composition, i.e. a non-synchronisedexit: if any of the pro-
cesses exited, the others would be disabled. But for the

The following outline style of description has therefore been
used to emulate the desired behaviour:

m i m e being, there is no such a facility in LOTOS.

(

c>
B i

choice i : Nat [I [i ne 11 -> e x i t (i)

I c . . .I I

B2

choice i : Bat [I c i ne 21 -> e x i t (i l

(

c>

I c . . .I I

B3

choice i : Nat [I c i ne 31 -> e x i t (i)

(

c>

0' c: . . I I
...

(This is a schematic description, not syntactically correct
LOTOS.) Each process B would exit with its proper code,
i.e. 1 for Bl, 2 for 82, etc. Using this approach, the whole
Data Transfer phase may be modelled as follows.

process DataTransfer [a, m l
(N, P : Nat) : e x i t (reason) :=
(

(

[>
CRFlow [m] (t rue)

(
choice w : who cl

[w <> crfiowl ->
e x i t (w, any reason)

1

I i m l I
(

(

c>
DoimwardFlow [a, m] (N , P, f a l s e)

(
choice w : who [I

[w <> down] ->
e x i t (w. any reason)

1
1

I I I
(

c>
UpwardFlow [a, m] (f a l s e)

(
choice w : who [I

cw <> up] ->
e x i t (w, any reason)

1
>>

accept w : who, r : reason i n
e x i t (r)

c>
m ? U: Address ? cmsp: CMSP

[IsUnitInd (cmsp) and
(IsCC (pdu (cmsp)) o r
IsDC (pdu (cmsp)) >I ;

e x i t (e r ro r)

where

Who: distinguishes who exits from the Data Transfer
Phase.

type WhoType is Boolean, DecDigit
s o r t s who
opns

up, down, crflow : -> who
map : who -> DecDigit
- <> - : Who, who -> Bool

of s o r t DecDigit
eqns f o r a l l vi, w2 : who

map (up) = O ;
map (down) = i ;
map (c r f ïov) = 2 ;

wî w2 = map (wî) ne map (w2) ;
o f s o r t Bool

endtype (* WhoType *)

95

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (El

Constraint on Flow of CR PDUs: following the informal
description, defines that CRs are accepted before the first
DT or AK. CRFlow monitors gate m to fulfil1 this constraint.
Any UnitReq is ignored.

process CitFïow Cml
(initial : Bool) : exit (who, reason) :=
m ? U : Address ? cmsp : CMSP
[IsUnitReq (cmsp)] ;

cmïow [ml (initial)

m ? U : Address ! UnitInd (CR);
CI

(
[initiai] ->
m ? U : Address ! UnitReq (CC);
Cmlow [m3 (initiai)

CI
[not (initiai)] ->
exit (crf low , error)

)
CI
m ? U : Address ? cmsp : CMSP

[IsUnitInd (cmsp) anci
(IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)))] ;

cmïow Cml (false)
gndproc (* CRFloW *>

Constraim on Downward Flow: takes care of sending
data to the Communications Medium. It mostly fits the usual
timeout pattern, but there is no Standby process as else-
where in this description to absorb unwanted Protocol Data
Units.

process DownwardFlow [a, ml
(N, P : Nat, seq : Bool)
: exit (who, reason) :=
a ? s : Address ? sp : SP

TryData [a, ml
[IsDatReq (sp)];

(O of Nat, 1, P, data (sp), seq)

where

process TryData [a, ml
(This, N, P : Nat, d : UserData,
seq : Bool) : exit (who, reason) :=

[This It NI ->
m ? U : Address !
UnitReq (DT (d, seci)) ;

(
m ? U : Address !
UnitInd (AK (not (seq)));

DownwardFlow [a, ml
(N, P, not (seq))

CI
m ? U : Address !

exit (down, error)

(* timeout *I
(
Wait (€9

TryData [a, ml

UnitInd (AK (seq)) ;

CI

>>

(succ (This), N, P I d, seq)
1

)
CI
[This ge NI ->
exit (down, error)

endproc (* TryData *)

endproc (* DownwardFlow *>

Constraint on Upward Flow: takes care of incoming data
from the Communications Medium. As an added activity, it
must accept any CR received and treated by CRFlow, as
well as any CC generated as an answer. Events with these
are offered to avoid blocking, but nothing is done with them.

process UpwardFlow [a, ml
(seq : Bool) : exit (who, reason) :=

m ? U : Address ? cmsp : CMSP
[IsUnitInd (cmsp) and
(IsDT (pdu (cmsp)))] ;

(
(* begin *)
let dr : UserData =
data (pdu (cmsp)) , seqr : Boo1 =
boo1 (pdu (cmsp)) in
m ? U : Address !
UnitReq (AK (not (seqr))) ;

(
[seqr eq seql ->
a ? s : Address ! DatInd (dr);
UpwardFlow [a, ml (not (seq))

CI
[seqr ne seql ->
UpwardFlow [a, m] (seq)

)
CI
m ? U : Address ? cmsp : CMSP

[IsUnitInd (cmsp) and
(IsDT (pdu (cmsp)))] ;

exit (up, error)
(* end *)

1
CI

96

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

(* absorb CRs *>
m ? U : Address ! UnitInd (CR);
UpwardFlow [a, ml (seq)

(* absorb CCs *)
m ? U : Address ! UnitReq (CC) ;
UpwardFlow [a, ml (seq)

CI

endproc (* UpwardFlow *)

endproc (* DataTransfer *)

Disconnection Phase: releases an established Connec-
tion on a Disconnection Request or due to an error. The
Disconnection Requests are captured by Disconnect.

process Disconnect [a, ml
: exit (reason) :=
a ? s : Address ! DisReq;
exit (UserDisc)

m ? U: Address ! UnitInd (DR);
exit (CMDisc)

CI

endproc (* Disconnect *)

GiveUp: performs the actual release.

process CiveUp [a, m]

[r - UserDisc] ->
(N, P : Nat, r : reason) : noexit :=

TryDisconnect [a, m] (O of Nat, N, PI
Cl
[r = cmiscl ->
m ? U : Address ! UnitInd (DC);
a ? s : Address ! DisInd;
Connect [a, ml (N, P)

CI
[r = error] ->
a ? SI : Address ! DisInd;
TryDisconnect [a, ml (O of Nat, N, P)

where

TryDisconnect: this uses the familiar timeout pattern.
Standby ignores unwanted Protocol Data Units during dis-
connection.

process TryDisconnect [a, m]

(This, N, P : Nat) : noexit :=
[This It NI ->
m ? U : Address ! UnitReq (DR) ;
(

c>
StandBy [m]

m ? U : Address ? cmsp : CMSP
[IsUnitInd (cmsp) and
(IsDR (pdu (cmsp)) or
IsDC (pdu (cmsp)) 11 ;

Connect [a, ml (N, Pl

(* timeout *)
(
Wait (Pl

TryDisconnect [a, m]
(Succ (This). N, P)

[I

>>

1
1

CI
[This ge NI ->
Connect [a, ml (N, P)

where

process StandBy [m] : noexit :=
m ? U : Address ? cmsp : CMSP
[IsUnitInd (cmsp) and
(IsCR (pdu (cmsp)) or
IsCC (pdu (cmsp)) or
IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)) 13 ;

StandBy [m]
endproc (* StandBy *)

endproc (* TryDisconnect *)

endproc (* GiveUp *)

Wait: this models a timeout for period P. Because LOTOS
abstracts away from time, the actual delay cannot be spec-
ified. The effect is only of an internal event.

*I ...
process Wait (P : Nat) : exit :=

endproc (* Wait *)

endproc (* Connect *)

exit

endproc (* Protocol *)

endspec (* AbracadabraProtocolEntity *)

97

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.4.5 Subjective Assessment

The LOTOS descriptions show a clear separation between
those aspects modelled using Abstract Data Types and
those aspects modelled using behaviour expressions. The
data types given in the formal descriptions match those
given in the informal description.
The constraint-oriented style in LOTOS has been amply
demonstrated in earlier examples. However, there are
many other styles open to the specifier, for example: ‘data-
oriented‘, in which the emphasis is on the description of data
types and their operations; ‘process-oriented’, in which the
emphasis is on the description of the dynamic behaviour;
‘resource-oriented‘, in which the emphasis is on the descrip-
tion of resources in the system (Service Access Points, Pro-
tocol Entities, etc.); and ‘verification-oriented’, in which the
emphasis is on structuring the description to ease formal
verification.
A constraint-oriented style has been used for the Abra-
cadabra Service description, and in part for the Abra-
cadabra Protocol description. However, the Abracadabra
Protocol description also uses a ‘construction-oriented’style
which emphasizes the construction of the system in terms
of a number of states. Estelle, LOTOS, and SDL are all
examples of Labelled Transition Systems. Estelle and
SDL tend to emphasize the states of the systems, whereas
LOTOS tends to emphasize the transitions between states
of the system. In fact, state is generally implicit in a LOTOS
description, being embodied in the currently permitted be-
haviour (loosely, the processes which are active). The LO-
TOS process operators are the means whereby sequences
of potential events can be given a compact representation.
This can lead to concise descriptions if the basic problem is
not too state-oriented. Service definitions are often given in
a black-box, requirements-orientedfashion, SO a constraint-
oriented style is appropriate. Protocol definitions are often
given in a state-oriented and rule-orientedfashion, SO a mix-
ture of styles is appropriate. The construction-oriented style
lends itself well to describing the division into phases of the
overall Protocol behaviour, where the phases may be com-
pared to states. The constraint-oriented style works well
for describing the possible sequences of actions that may
occur within a phase. These constraints are then combined
using the LOTOS process operators.
LOTOS abstractsawayfrom absolute time; this is the mean-
ing of the term Temporal Ordering in the title of LOTOS.
It is therefore not possible to express absolute timeouts in
LOTOS. It is certainly possible to specify a timer process
which accepts set or cancel events and which responds
with timeout events. However, since such a timer process
would be hidden from external view, the events it engages
in would be hidden, thus turning into internal events. Rather
than make the description too constructive by introducing
and hiding such a timer process, timeouts are therefore
generally described directly as internal events.
It is possible to ‘simulate’ the passage of time in LOTOS as
a number of time-ticks. A clock process could be defined
which distributed ticks to other parts of the system. This
would give a measure of relative time. But the interval

between ticks could not be specified, nor indeed that the
ticks occurred at regular intervals.
A large majority of errors in Protocol design are logic er-
rors, not timing errors. Therefore, the inability of LOTOS to
describe absolute time is not a serious issue. Work, how-
ever, is already in hand on timed models of LOTOS which
will allow the description of delays or time limits in a more
meaningful fashion.

10.5 SDL Description
10.5.1 Architecture of the Formal Descriptions

10.5.1.1 Architecture of the Service Description
The Abracadabra Service is described in 10.5.3. It is mo-
delled as a system Abraservice, consisting of one single
block Serv. This communicates with the environment by
means channels SAP A and SAP B, which represent Ser-
vice Access Points. Service Users are located in the en-
vironment. Service Primitives are represented by means @
of signals. According to the informal description, only the
DatReq and Datlnd carry parameters, namely a User-
DataType parameter. The Service Provider may behave
non-deterministically by refusing connection attempts and
disrupting established connections on its own initiative, for
some ‘internal reason’. In order to model this, the chan-
nels AServOnOff and BServOnOff from the environment
to block Serv are meant to convey, asynchronously and
unpredictably, two possible signals Serviceon and Ser-
viceoff. These cause the Service to become available or
unavailable respectively.
Block Serv includes two processes which are always active
from system-startup. These mirror-image processes are
SAPManagerA and SAPManagerB; they model the be-
haviour of the Service at the two user sides. Channels to or
from the environment are mapped onto corresponding sig-
nalroutes within the block. Peer processes SAPManagerA
and SAPManagerB communicate via the signalroute Inter-
nal. The implicit underlying queue mechanism models the
delay it takes for a Service Primitive issued at one SAP
to be converted into the corresponding Service Primitive
at the remote SAP. Signalroute Internal may transfer four
possible objects in both directions: Connection Request
or Indication, Connection Response or Confirmation, Data,
and Disconnection. The distinction between ‘from-user’and
‘to-user’ Service interactions is obviously meaningless at
the level of communication between the peer processes.
Since SAPManagerA and SAPManagerB behave identi-
cally, they are described by means of an SDL macro SAP-
ManagerDef.

10.5.1.2 Architecture of the Protocol Description
The Abracadabra Protocol is described in 10.5.4. It is mo-
delled as a system Abracadabra, consisting of only one
block Station, which represents a Protocol Entity. Accord-
ingly, the boundary of the system is represented by the user
Service Access Point (channel USAP) and by the Service
Access Point to the Medium (channel MSAP).

98

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Block Station is refined into two processes: Sender-
Receiver and Transcode. SenderReceiver describes the
Protocol Entity as an extended finite state machine which
relates input Service Primitives andor Protocol Data Units
to output Service Primitives and/or Protocol Data Units.
Transcode describes the lowest level of functionality of the
Protocol, i.e. PDU encoding and decoding. The PduType
and UserDataType components of a Protocol Data Unit are
encoded into the parameters of a UnitReq, or are decoded
from the parameters of a Unitlnd.
Process SenderReceiver has five states:

Closed the Protocol Entity is ready to accept a Connec-
tion Request

CRsent the Protocol Entity is waiting for a Connection
Confirmation from the peer Protocol Entity

CRrecv the Protocol Entity is waiting for a Connection
Response from itsuser

Send data transfer is permitted

Wait data transfer is delayed until previous data is ac-
knowledged; in the meantime, data transfer re-
quests from the User are buffered.

A timer is needed in order to count down the maximum de-
lay for Connection Confirmation and for Data acknowledge-
ment. The SDL built-in constructs for timer management
are used with an instance called Timerl.
Process Transcode consists of just one state, Transwait.
In fact, encoding or decoding is always enabled and the
mapping function does not require any memory of past con-
ditions.

10.5.2 Explanation of Approach

10.5.2.1 Explanation of Service Approach
A Service description must always cover two key aspects:

O local behaviour of the Service, i.e. the correct sequenc-
ing of Service Primitives at one Service Access Point

O end-to-end behaviour of the Service, i.e. the correct
relationship between Service Primitives at different Ser-
vice Access Points.

The SDL description expresses both aspects. Local be-
haviour is expressed independently by processes SAP-
ManagerA and SAPManagerB. End-to-end behaviour is
expressed by the mapping that each process performs be-
tween Service Primitives and objects on the inter-process
signalroute. This communication structure implicitly models
the intrinsic delay between related Service Primitive inter-
actions at different Service Access Points.
Signals Serviceon and Serviceoff may be independently
received by either of the two processes. This explains why
two distinct but equivalent channels have been chosen at
the system level in order to model non-determinism in the
Service.

10.5.2.2 Explanation of Protocol Approach
The approach taken consists of formally describing the Pro-
tocol by expressing the behaviour of just one party. This is
sufficient due to the symmetry of the Abracadabra Protocol.
It would not be the case for unsymmetrical protocols, where
it would be necessary to describe the individual behaviour
of the two parties.
Interactions with the Medium use only the signals UnitReq
and Unitlnd, meaning Protocol Data Unit transmission and
reception respectively. The Medium is implicitly assumed
to be ready for transmission or reception at all times.
Isolating low-level features of the Protocol such as encoding
and decoding greatly improves readability of the formal de-
scription. The partitioning of block Station into processes
SenderReceiver and Transcode serves this purpose, with-
out necessarily imposing this structure on an actual imple-
mentation.

10.5.3 Formal Description of the Service
The formal description of the Service is shown in figure 10.9.

10.5.4 Formal Description of the Protocol
The formal description of the Protocol is shown in fig-
ure 1 O. 1 O.

10.5.5 Subjective Assessment
The SDL description of the Abracadabra example shows
how SDL can satisfactorily express both Services and Pro-
tocols. Nevertheless, it is interesting to note how the ap-
proaches taken in describing a Service and a Protocol may
differ substantially. As far as the Service description is con-
cerned, an end-to-end view was considered appropriate,
whereas with the Protocol description a local view was cho-
sen. Adopting a local description for the Service would have
resulted in incomplete specification: the distributed nature
of the Service Provider, with its property of delaying infor-
mation exchange between Service Users, would have been
left out. As a consequence, some legal sequences of Ser-
vice Primitives would not have been modelled. Conversely,
an end-to-end description for the Protocol, describing both
Protocol Entities, would have caused duplication in the de-
scription due to the equivalent behaviour of both parties.
The approach chosen for the description of the Service had
to rely on a higher degree of abstraction than was appro-
priate for the Protocol. For example, the solution of US-
ing signals from the environment in order to express non-
determinism is the only one possible in SDL. Unfortunately
it leads to a system interaction diagram where the intuitive
mapping between channels and physical pathways for in-
formation is no longer valid. However, the approach chosen
for the description of the Protocol turned out to be quite nat-
ural: all the SDL features which have been used are easily
justified and intuitively comprehensible.

99

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

SYSTEM Abraservice

r" The Abracadabra service is specified as a block communicating with @
two users by means of two channels, SAP A and SAP B, representing
service access points. Users themselves are located in the environment
and nondeterministic behaviour of the service is modeied by means of
two signals ServiceOn Serviceoff issued from the environment either
via channel AServOnOff or via channel BServOnOff */

SIGNAL ConReq, Conlnd, ConResp, ConConf, 1
Disreq, Dislnd,
DatReq (UserDataType), Datlnd (UserDataType),
ServiceOn,Serviceûff;

SIGNALLIST lnSP = ConReq, ConResp, DisReq, DatReq;
SIGNALLIST OutSP = Conlnd, ConConf, Dislnd, Datlnd;
NEWTYPE UserDataType ARRAY (NATURAL, bit);
ENDNEWTYPE UserDataType;
NEWTYPE bit

ENDNEWTYPE bit;
LITERALS 0,1;

SAP A I

[Serviceon, [Serviceon,
Serviceoff] Serviceoff]

AServOnOff BServOnOff

Figure 10.9: SDL Specification of Abracadabra Service

1 O0

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

L
8

9
Y
O

m

Figure 10.9 (continued)

1 O1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

102

Figure 10.9 (continued)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/tEC TR 10167 : 1991 (E)

O

v-
al

3
C m a
3

rn

Figure 10.9 (continued)

1 03

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

MACRODEFINITION SAPManagerDef

f
c.

ServOff

r

Figure 10.9 (continued)

104

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

8- a
0

-
tn
-

U
a,
O
a,

v) c=
c
O
O tn

+-

0 -
0

Figure 10.9 (continued)

1 05

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

106

n
v>
Ln
W

Figure 10.9 (continued)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Rusap

SYSTEM Abracadabra

NEWTYPE UserDataType String(Bit,' ')
ENDNEWTYPE;
NEWTYPE Bit

LITERALS 0,l;
OPERATORS

AXIOMS
'NOT': Bit -> Bit;

NOT(0) == 1;
NOT(1) == O;

ENDNEWTYPE Bit;
NEWTYPE PduType

LITERALS DC,CC,AK,DT,CR,DR;
ENDNEWTY PE
NEWTYPE UnitDataType STRUCT

Pdu PduType;
U data User D at aT ype;

EN DNEWTY PE;

c
SIGNAL ConReq, Conlnd,

ConcOnf, ConResp,
Dat Req(UserDataType),
Datlnd(User DataType),
Dislnd,
UnitR eq(Unit DataType),
Unitlnd(Unit DataType);

Conlnd, ConConf,
Datlnd, Dislnd;

SIGNALLIST FromU =
ConReq, ConResp,
DatReq, DisReq

SIGNALLIST TOU =

U=P

[(TOU11

Station

[UnitReq]

[Unit Ind]

Mq i

SIGNAL DC,CC,AK(Bit), I!
SIGNALLIST Lis =

CR, D R,DT(User DataT ype);

DC,CC,AK,CR,D R,DT;

[UnitReq]

Msap

Figure 10.1 O: SDL Specification of Abracadabra Protocol

1 07

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver

TIMER Tbnerl;
SYNONYM P Duration E EXTERNAL;
SYNONYM N Natural E EXTERNAL; I" the

maximum number of retransmissions for
CR,DR and DT *I

DCL Seq Bit;
DCL UserData UserDataType;
DCL DTorAK Boolean; I"DT or AK received "I
DCL SendSeq, RecvSeq Bit; I* sequence number *I
DCL CRremaining, D Rremaining, DTremammg

Integer; I* indicates the remaining number
of retransmissions for CR,DR and DT
respectively "I

I

I.--*; for connection request

I

DR

I

DTorAK := False,
SendSeq := O,
RecvSeq := O

CRsent

I->
SadSW := O,
RecvSeq := O

;i CRrecv

Figure 10.1 O (continued)

108

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 199

PROCESS SenderReceiver 2(6)

If CR is received, then both
stations request connection
at the same time (7)- The process is wailing

for connection confimation 1 I
I
I I I I I

ConConf D
RESET(Timer1) U * (.-)

Dislnd

RES ET(Timer 1)

(-)

Disconnect Cl
CRremaining :=
CRremaining - 1

Disconned
('DR,Dislnd') 1 2) I -- - 1 retransmits a CR

SET(NOW+P,
Timerl)

Figure 10.1 O (continued)

1 O9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

The process is waiting
for ConResp from the user

I >"I
U Dislnd

(e)
F> ConConi

(-)

DisReq 23 (3 Closed

a

a

Figure 10.10 (continued)

110

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver 4 (6)

Send,Wait

DC,
Dislnd

I

RESETCTimer 1)

Closed

I

('0 RI Dis I nd')
Disconnect FI

(False)
U I orAr\

-l--

DT

I
(User Data)

Dscomect
(' D R , D is In d')

I
DTorAK := True,
Seq := UserData
(Length(UserData))

NOT(RecvSeq)

removed from UserData
UserData :=
Substring(UserData, 1,
Length(U serD ata)-1)

Datlnd
I

(UserData)

~~

Figure 10.1 O (continued)

111

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver

The process is wailing for
acknowledgement of DT;
DatReq are saved h the
input port of the process prepared to send DT

SET(N0W t P,
Timer 1)

NOT(SendSeq),
DTremaining := N

I F

RES ET(Timer l),
DTorAK := True

1
DatReq L7

Timer1

DTremaining :=
DTremaining - 1

1 ri Wait

SET(N0W t P,
Timer 1)

Figure 10.10 (continued)

112

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

IROCESS SenderReceiver

If DR is received,
The process is waüng for the then both stations

request disconnection disconnection confimation DC I at the same time
I (DRsent)- 1-
I I

I

I
Timerl

D Rremahiig :=
DRremaining - 1 RESET

(Timerl)

Closed

MACRODEFlNiTlON Disconnect I
FPAR Sig

DRremainhg := N Y
DRsent LI

Figure 10.1 O (continued)

113

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS Transcode

DCL Sdu UnitDataType;
DCL UserData UserDataType;
DCL Seq Bit; 4

1(2)

- 4- Assembling protocol data
units into service Drimitives

I I I

Sdü := (.CR,' I.) Sdü := (.CC,' I.) Sdü := (.DC,' '.)

I I I

(Sdu) (Sdu) (Sdu)

-
UnitReq UnitReq UnitReq

Sdü := (.DR,' I.) (.DT,UserData.)

Sdü := (.AK,
MkString(Seq).

I

114

Figure 10.1 O (continued)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

GO/ EC TR 10

PROCESS Trançcode

Extracting protocol data
units from service primitives TransW ait

Unitlnd

SdulPdu O

ô7 : 1991 (E)

Figure 10.1 O (continued)

115

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.6 Assessment of the Application of
the FDTs

Considering the comparative complexity of this example,
the variety of errors found was quite small. The following
interesting, general classes or errors were found:

a) There are often ‘phase change’ problems, when the
boundary between different phases of a Protocol is not
clearly delineated. It is frequent in Protocols of this na-
ture to find that in error cases one Protocol Entity has a
different view of the state of connection from the other
Protocol Entity (e.g. the so-called ‘half-open connec-
tion’). It is important to describe these cases clearly.

b) It is also important to relate the behaviour of a Service
to its underlying Protocol properly. By theoretical verifi-
cation, it is possible to show using FDTs that a Service
is indeed satisfied by its Protocol. A degree of confi-
dence in this may also be established by ‘simulation’
(symbolic execution) of the Service and Protocol formal
descriptions.

c) It is a difficult issue as to how to handle misbehaviour
of a Service User. Because Services are not necessar-
ily visible in an implementation, informal Service def-
initions tend to avoid defining what happens in such
cases. However, a formal description has to ascribe
some meaning to these cases. A common approach
is to omit an explicit description of invalid Service User
behaviour. However, the formal description still implic-
itly has some meaning. The approach depends on the
FDT

1) In Estelle, such invalid behaviour would result in
deadlock. Estelle experts therefore prefer to de-
scribe invalid Service User interactions as being ac-
cepted but ignored.

2) In LOTOS, such invalid behaviour would also result
in deadlock. However, because LOTOS experts
prefer to take as implementation-independent view
as possible, no explicit description would normally
be included for Service User misbehaviour.

3) In SDL, such invalid behaviour cannot arise from
the point of view of the Service. (The invalid sig-
nals cannot be received by the Service: they are
discarded before even entering the system.)

116

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11 A Transport Protocol Example
This example is based on the CCllT T.70 Transport Proto-
col in order to illustrate how real Protocols may be formally
described. It is, however, only an example and is not defini-
tive with regard to T.70 as to either the informal or the formal
descriptions.

11.1 Informal Description
11.1.1 Origins
The following prose description is an abridgement of CClTT
Recommendation T.70. The abridgement has been made
by removing or revising references to 'further study' work
and other versions of T.70, paragraph numbers, figure num-
bers, table numbers, state tables, CCllT introductory mate-
rial, and network considerations. Specifically, this abridge-
ment is based on clause 5 and Table 8-4 (E5) of T.70. The
abridgement has been made and reproduced in this Tech-
nical Report for the following reasons:

a) to provide self-contained text which is integrated into

b) to avoid confusion due to references to items for 'further

c) to emphasise that this example is not to be taken as an

this Technical Report; and

study' or to other versions of T.70; and

authoritative statement of T.70.

Except as indicated in 11.2 of this Technical Report, this
example is intended to be identical to the Transport Protocol
defined in T.70.

11.1.2 Transport Functions
11 .1 .2.1 General
The Transport Layer will perform all those functions that
are necessary to bridge the gap between the services pro-
vided by the Network Layer and the services needed by
the Session Layer. Therefore, the functions performed are
dependent on two criteria: the services provided by the un-
derlying Network Layer and the services required by the
Session Layer.
It is the responsibilityof the Transport Service User to select
a given Quality of Service, which may imply the use of
certain Transport Layer functions such as:

a) establishment of a Transport Connection:

1) Transport Connection identification; and
2) Transport Connection multiplexing.

b) data transfer:

1) sequence control; and
2) error detection; and
3) error recovery; and
4) segmenting and reassembling; and
5) flow control; and

6) purge.

c) termination of a Transport Connection.

NOTE - Not all of the above functions will be available in the basic
Transport Service (see 1 1.1.2.3).

1 1.1.2.2 Transport Protocol Classes
Transport Layer functions are grouped (for ease of ne-
gotiation) into a hierarchical system of Transport Protocol
Classes whereby Classes occupying superior positions in
the hierarchy implement functions of the lower Classes to-
gether with the optional functions identified for their own
Class. During Transport Connection establishment the use
of a given Transport Protocol and optional functions should
be negotiated according to the following rules:

a) the calling terminal indicates the Transport Protocol
Class and (id applicable) optional functions required: and

b) the called terminal indicates the Transport Protocol
Class and (if applicable) optional functions that it is will-
ing to support; and

c) all parameters to be used in the Transport Connection
must be explicitly indicated, otherwise default values will
apply.

11.1 2.3 The Basic Transport Seivice (TS)
A limited set of Transport Layer functions is defined for a
basic Transport Service. The basic Transport Service is
provided by Transport Layer functions which are performed
by Transport Layer Protocol Elements. Transport Protocol
Data Units (TPDUs) carrying Transport Service (TS) User
information or Control information are called blocks. Trans-
port Layer block types are as follows:

a) Transport Connection Request (TCR) block; and
b) Transport Connection Accept (TCA) block; and
c) Transport Connection Clear (TCC) block; and
d) Transport Data (TDT) block; and
e) Transport Block Reject (TBR) block.

The TCR and TCA blocks are used to indicate the Proto-
col Class, and optional functions, applying to a Transport
Connection. The TCC block is used to indicate the reason
for refusing a Connection establishment. The TDT block
carries information of the Transport Service User. The TBR
block is used to report procedure errors to the remote ter-
minal.

1 1 .1 .2.4 Transport Layer Functions
Basic Class functions and associated Transport Layer Pro-
tocol Elements, i.e. blocks, include:

a) Transport Connection establishment, Transport Con-
nection identification, optional extended addressing and
optional Transport Data Block Size negotiation (TCR,
TCA and TCC blocks); and

117

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

b) data delimitation, segmentationheassembling of arbi-
trarily long Transport Service Data Units (TSDUs).
These are contained within TDT blocks. The end of
a TSDU is indicated by a TSDU End Mark in the last
data block; and

c) detection and indication of procedural errors (TBR

Other characteristics bf the basic Transport Service are:

d) maintenance of T DU integrity; and

block). I

e) overflow: if the s ser cannot absorb new data and if

performed at Net 1 ork or Data Link Layer as appropriate;

vice should be in I ormed so that appropriate recovery

the appropriate b ffers are not available, flow control is

and
f) error: no mechahm is provided within the Transport

Layer to facilitate ecovery from detected errors. Where
such errors are d tected the user of the Transport Ser-

action may be taden.

7

11 .I .3 Connecti n Establishment and Termina-

11.1.3.1 General I
The Transport Layer onnection Establishment and Termi-
nation procedures sh II also be used for negotiating Trans-
port Protocol Class nd, if applicable, optional Transport
Connection function . For the basic Transport Service,
means are provided to establish a Transport Connection
using a TCR block a d a TCA block. This exchange pro-

tion Proc dures 4
vides: I
gotiation of the chara, { teristics of the Transport Connection

ing a suitable Tra sport Connection Identifier.

This mechanism also rovides an identification of the Trans-
port Connection inde endent of any Network Connection
identification and ther fore provides independencefrom the
life of the Network C j nnection. The binary value O should
not be used as an idtdntifier.

11.1.3.2 Transpoh Connection Request (TCR)

The calling terminal hall indicate a Transport Connection
Request by transferri g a TCR block to the remote termi-
nal. The TCR block i cludes the Transport functions (e.g.
Source Reference, lass, and optional functions) for ne-

being established.

11.1.3.3 Transpoh Connection Accept (TCA) Block
The called terminal !shall indicate its acceptance of the
Transport ConnectioA by transferring a TCA block to the
remote terminal. The I C A block includes the Transport pa-
rameters applying to he connection and to be used by the

Block 1

calling terminal. I

If a terminal receives the request for an optional TDT block
size it may either:

a) indicate its support by reproducing the requested value
in the TCA block; or

b) request in the TCA block the use of a shorter allowable
TDT block - the calling side either accepts this size by
sending the first TDT block or disconnects the Network
Connection; or

c) not accept the requested TDT Block Size parameter
value by sending a TCA block without a TDT Block Size
parameter. Therefore, the standardised TDT block size
will apply.

A TCR requesting an optional TDT block size not supported
by the called side should not be answered with TBR.

11.1.3.4 Transport Connection Clear (TCC) Block
If a Transport Connection cannot be established, the called
terminal shall respond to the TCR block with a TCC block.
The clearing cause shall indicate why the connection was
not accepted. It is up to the calling side whether the receipt
of a TCC will cause complete disconnection or whether a
new TCR with a parameter different from the first one will
be sent (e.g. another extended Layer 4 address).
NOTE - There is no explicit Transport Connection termination
procedure. Therefore, the life-time of the Transport Connection
is directly correlated with the life-time of the supporting Network
Connection.

O

11.1.3.5 Transport Connection Collision
If the calling terminal receives a TCR block, it shall transfer
a TBR block to notify the called terminal of the procedure
error.

11.1.3.6 Extended Addressing
The Extended Addressing capability may be used to ad-
dress terminals in a multi-terminal configuration. The exten-
sion addresses for called terminals are optional parameters
to TCR and TCA. The receiving terminal shall respond with
a TCA as shown in Figure 1 1.1.
The calling terminal may, when receiving a called terminal
address in the TCA, act as specified in Figure 1 1.2.

11 .I .4 Description of Data Transfer Procedures

11.1.4.1 General
The data transfer procedure described in the following
clauses applies only when the Transport Layer is in the
Data Transfer Phase, i.e. after completion of Transport
Connection Establishment and prior to Clearing.
NOTE - When a connection is cleared, Transport Data blocks
may be discarded. Hence, it is lefi to the Transport Service User to
define Protocols able to cope with the various possible situations
that may occur.

118 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11.1.4.2 Transport Data Block (TDT) Length
The standard maximum TDT block length to be supported
by all terminals is 128 octets including the data block header
octets. Other maximum data field lengths may be supported
in conjunction with an optional TDT block size negotiation
connection function (see 11.1.6.4 and 1 1.1.6.5). Optional
maximum data field lengths shall be chosen from the fol-
lowing: 256, 512, 1024, and 2048 octets. If the requested
optional TDT block sue cannot be supported, a shorter al-
lowable TDT block size must be selected (see l l .1.3.3).
The agreed maximum TDT block size should be aimed at
for TDT blocks having the TSDU End Mark set to O; a num-
ber of octets less than the agreed maximum shall not cause
the receiving Transport Entity to reject this TDT block.

11.1.4.3 Transport Service Data Unit (TSDU) End
The TSDU End Mark is used to preserve the integrity of
the TSDU. The TSDU End Mark is set to binary 1 in the
last TDT data block carrying information related to a certain
TSDU. Exceptionally, this TDT block may be sent without
carrying user information for an immediate termination of a
TSDU in certain error conditions.
In case of a TSDU that comprises a single TDT block the
TSDU End Mark is also set to 1. In all other cases, the
TSDU End Mark is set to zero.

Received TCR I Multi-terminal I Stand- I
I with extended I alone I

-------____------I ---------------- I ------------ I
I I I

I addressing 1) I terminal I

Without I Send TCA with I Send TCA I
extended I extended I without I
addressing I addressing I extended I

I I addressing I
-----------------I ---------------- I ------------ I

I I I
With I Send TCA with I Send TCA I
extended I extended I without I

I addressing I addressing 2) I extended I

NOTES
1 Multi-terminal configuration, with capability for extended address-

ing.
2 If the called terminal is occupied or out of order, the call should be

routed to a default terminal or mailbox. The sender will then be
informed of the routing by the extension address of the connected
terminal. The receiver of TCR may also in this case react by
sending TCC.

Figure 11.1: Receiving Terminal Reaction to TCR Ad-
dressing Options

Figure 11.2: Calling Terminal Reaction to ?CA Address-
ing Options

11.1.5 Treatment of Procedure Errors
A terminal shall send a TBR block to the remote terminal to
report the receipt of an invalid or not implemented block (if
not explicitly specified otherwise in this description). During
the establishment of a Transport Connection, terminals shall
not send a TBR block upon the receipt of a TCR block
whose parameters or parameter values are invalid or not
implemented. In this case, terminals shall act as if no errors
have occurred and send the appropriate response (if any).
A terminal receiving a TBR block shall take appropriate
recovery action.
NOTE - A TBR whether invalid or valid shall not be answered by
sending a TBR block.

11.1.6 Formats

11.1.6.1 General
Transport Protocol Data Units (TPDUs) carrying Transport
Service (TS) User information or Control information are
called blocks (see 11.1.2.3). All blocks contain an integral
number of octets.
Bits of an octet are numbered 8 to 1 where bit 1 is the
low order bit and is transmitted first. Octets of a block are
consecutively numbered starting from 1 and are transmitted
in this order.
TDT block(s) are used to transfer a Transport Service Data
Unit (TSDU) transparently whilst maintaining the structure
of the latter by means of the TSDU End Mark.
Control blocks (TCR, TCA, TCC, TBR) are used to control
the Transport Protocol functions, including optional func-

119

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Figure 11.3: Parameter Element Coding Structure

Octet 1 Octet 2 Octet 3 . . .B c t e t l + 1 . . . M

I cator I I (f ixed I (variable I
I I I format) I format) I

Figure 11.4: General Block Structure

tions.
A parameter field is present in all control blocks within the
basic Transport Service to indicate optional functions. The
parameter field contains one or more parameter elements.
The first octet of each parameter element contains a param-
eter code to indicate the function@) requested. The general
coding structure is as shown in Figure 1 1.3.
The parameter code field is binary coded and, without ex-
tension, provides for a maximum of 255 parameters. Pa-
rameter code l l l l l l l l is reserved for extension of the
parameter code.
Octet 2 indicates the length, in octets, of the parameter
value field. The parameter field length is binary coded and
bit 1 is the low order bit of this indicator.
Octet 3 and subsequent octets contain the value of the
parameter identified in the parameter code field. The coding
of the parameter value field is dependent on the function
being requested.

11.1.6.2 Structure of Transport Control and Data
Blocks

Figure 1 1.4 illustrates the general structure of Transport
Layer blocks. A summary of Transport Layer blocks is given
in Figure 11.5.
Octet 1 contains the length indicator (LI). The value of this

2 The parameter field is present only when the terminal is request-
ing an optional Transport Connection function.

Figure 11 A: Transport Connection Request Block

indicator is a binary number that represents the length in
octets of the control block (including parameters) and the
header length in octets of data blocks (excluding any sub-
sequent user information). In both cases, this length does
not include octet 1. The basic LI value shall be restricted to
a maximum of 127 (i.e. a binary value of O1 11 11 11). Octet
2 contains the block type code. 1 to 4 of octet 2 are set to O
for all Transport Layer blocks currently defined. Octet 3 and
subsequent octets contain functional codes in a fixed for-
mat as per the block type. A parameter field or a data field
containing Transport Service (TS) user data may optionally
follow the functional code field.

0

11.1.6.3 Concatenation
Concatenation of Transport Control and/or Transport Data
blocks is not applicable.

11.1.6.4 Transport Connection Request (TCR)

The format of a TCR block is shown in Figure 11.6.
A separate parameter is provided for the indication of Called

Block Format

120

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

I

i Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7

Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7

I-, TSDU End Mark

NOTE - The terms 'Source' and 'Destination' refer to the initiator and the recipient of the Transport Protocol Data Unit (TPDU), respectively.
The value of the Source Reference is a local system parameter. The Source Reference of a received Transport block is to be used as
Destination Reference in the response to that Transport block.

Figure 11.5: Transport Layer Block Types

121

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NOTE -The Extension Address Parameter is ‘1 1000001’for call-
ing address type or ‘1 1000010’ for called address type.

Figure 11.7: Extended Addressing

S
{ 1 O 1 1 = 2048 octets
{ 1 O 1 O = 1024 octets

X X X X { 1 O O 1 = 512 octets
{ 1 O O O = 256 octets
{ O 1 1 1 = 128 octets

Figure 11.8: Transport Data Block Size Parameter

Extension Addresses. The coding of this parameter is
shown in Figure 11.7. The setting of bit 8 for extended
addressing should be ignored by the Transport Layer.
The Transport Data Block Size defines the proposed max-
imum Transport Data block size (in octets including the
Transport Data block header) to be used over the requested
Transport Connection. The coding of this parameter is as
shown in Figure 1 1.8.

11.1.6.5 Transport Connection Accept (TCA) Block
Format

The format of a TCA block is shown in Figure 11.9.
The Extended Addressing parameter is as for TCR (see
1 1.1.6.4).
The Transport Data Block Size parameter is as for TCR

Figure 11.9: Transport Connection Accept Block

(see 1 1.1.6.4).

11.1.6.6 Transport Connection Clear (TCC) Block
Format

The format of a TCC block is shown in Figure 1 1.1 O.
The Additional Clearing Information parameter is provided
to allow additional information relating to the clearing of
the connection. The coding of this parameter is shown in
Figure 1 1.1 1.

1 1.1.6.7 Transport Block Reject (TBR) Block Format
The format of a TBR block is shown in Figure 1 1.12.
The mandatory Rejected Block parameter is used to indi-
cate the bit pattern of the rejected block up to and including
the octet that caused the rejection. Only the first detected
procedural error or parameter which cannot be acted upon
shall be indicated by this method. The coding of this pa-
rameter is shown in Figure l l. 13.

122

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NOTES
1 Blocktype: TCC
2 Clearing Cause:

8 7 6 6 4 3 2 1

O - Reason not specified = O O O O O O O O

1 - Terminal occupied = O O O O O O O i

2 - Terminal out of order = O O O O O O 1 O

3 - Address unknown = 0 0 0 0 0 0 1 1

Figure 11.1 O: Transport Connection Clear Block 0

O - Reason not specified - O O O O O O O O

i - Function not implemented = O O O O O O O 1

2 - Invalid block - O O O O O O i O

Figure 11.12: Transport Block Reject Block

Figure 11.13: Rejected Block Parameter

123

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 101ô7 : 1991 (E)

NOTES
1 Blocktype: TDT.
2 TSDU End: indicates the End of TSDU when set to 1 .

Figure 11.14: Transport Data Block

11.1.6.8 Transport Data Block (TDT) Format
The format of a TDT block is shown in Figure 1 1.14.

11.1.7 Invalid TPDUs

11.1.7.1 invalid TPDUs due to Syntactic Error!
1) TCR

1 .l) The value of Octet 1 (LI):
1.1.1) is not equal to the number of the

block octets minus 1; or
1.1.2) is greater than 127; or
1.1.3) is smaller than 6.

or
1.2) see 6) below.

2) TCA
2.1) The value of Octet 1 (LI):

2.1.1) is not equal to the number of the
block octets minus 1 ; or

2.1.2) is greater than 127; or
2.1.3) is smaller than 6.

or

2.2) see 6) below; or
2.3) The values of Octets 3 and 4 are not eq

Octets 5 and 6 respectively of the apprc
TCR block; or

2.4) The value of Octet 7 is non-zero; or
2.5) The parameter Transport Data Block Size is

present, and:

rcR

TCA

nl to
riate

124

2.5.1) its value is not equal to 07 (hexadeci-
mal), in response to a TCR block without
the Transport Data Block Size parameter;
or

2.5.2) its value does not correspond to the
rules of 1 1.1.3.3; or

2.5.3) its value is different from the values 07,
08,09, OA, OB (hexadecimal); or

2.5.4) the PLI is not equal to 1.
or

2.6) U is not equal to (6+2 x N+(sum of all PLIS)),
where N is the number of parameters.

3) TCC
3.1) The value of Octet 1 (LI):

3.1.1) is not equal to the number of the TCC
block octets minus 1 ; or

3.1.2) is greater than 127; or
3.1.3) is smaller than 6.

or
3.2) see 6) below; or
3.3) The values of Octets 3 and 4 are not equs to

Octets 5 and 6 respectively of the appropriate
TCR block; or

3.4) LI is not equal to (6+2 x N+ (sum of all PLIS)),
where N is the number of parameters.

4) TBR
4.1) The value of Octet 1 (LI):

4.1.1) is not equal to the number of the TBR
block octets minus 1; or

4.1.2) is greater than 127; or
4.1.3) is smaller than 6.

or
4.2) see 6) below; or
4.3) The values of Octets 3 and 4 are not equal to

Octets 5 and 6 respectively of the appropria
TC establishment block (TCR or TCA) receive
from the peer entity; or

4.4) The value of the LI minus 6 is not equal to the
value of the PLI; or

4.5) The Rejected Block parameter is not present.

'd

See also the NOTE in 11.1.5.

5) TDT
5.1) The value of the LI is not equal to 2; or
5.2) The TSDU End Mark is O and the information

field is empty; or
5.3) The TDT block size is larger than negotiated in

the establishment phase.

6) No Identified Block
The value of the TPDU Octet 2 is not equal to one of EO,
EO, 80,70, FO (hexadecimal).

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11.1.7.2 Invalid TPDUs due to Procedure Errors
The following are failure cases:

1) After sending a TCR
1.1) Reception of not a TCA or

1.2) Reception of not a TCC; or

1.3) Reception of not a TBR.

2) After sending a TCA
2.1) Reception of not a TDT or

2.2) Reception of not a TBR.

3) After sending a TDT
3.1) Reception of not a TDT or

3.2) Reception of not a TBR.

4) After sending a TCC
Reception of not a TCR.

5) After sending a TBR
Reception of not a TDT while in the Data Phase.

6) After receiving a TDT with EM = 1
Reception of an empty TDT with EM = 1.

7) After receiving an empty TDT with EM = 1
Reception of an empty TDT with EM = 1.

8) After N-CONNECT response
Reception of not a TCR.

11.2 Deficiencies in the Informal De-
scription

Most of the deficiencies found in the informal description
were gaps in information. These have been resolved by
reference to existing International Standards, in particular:

a
a) the OS1 Connection-oriented Transport Service, as de-

fined in IS0 8072 and CClTT X.214; and

b) Class O of the OS1 Connection-oriented Transport Pro-
tocol, as defined in IS0 8073 and CClTT X.224; and

c) the OS1 Connection-oriented Network Service, as de-
fined in IS0 8348 and CClïT X.213.

As a general criterion, it was agreed that the Protocol is a
slight simplification, but also extension, of T.70. The main
motivation for introducing simplifications is to be found in
the tutoriai purpose of these Guidelines. Resolution of de-
ficiencies that could not be achieved by reference to l l .1
was based upon the procedures of the Class O of the OS1
Transport Protocol, simplified if necessary according to the
same motivation.

11.2.1 Service Definitions (Clauses 11.1.2.1,

11.2.1.1 Deficiency
Following the definitions of the OS1 Reference Model,
soundness and completeness of a Protocol definition re-
quire reference both to the Service provided and to the Ser-
vice used. Apart from the aforementioned clauses, there is
no reference as to which Network Service is used, nor to
which Transport Service is provided. In particular no relation
is specified between Blocks, on the one hand, and Trans-
port Service Primitives (TSPs) or Network Service Primi-
tives (NSPs) on the other. Actually, the very description
of a Service by way of Protocol Data Units (PDUs, termed
Blocks in this case) seems debatable. Given this gap, it
also appears that even the relation between Blocks only is
not com p le te.

11.2.1.2 Resolution
a) Services
In 11.1.2.1 both the Transport Service provided and the
Network Service used should be defined or referenced (if
they are standardised). For this Technical Report, the gap
is filled by inserting the following paragraphs in 1 1.1.2.1,
after the first paragraph:

11.1.2.3 and 11.1.2.4)

The Transport Service provided to the Session
Layer is a subset of the OS1 Connection-Oriented
Transport Service defined in IS0 8072 and CClTT
X.214. In particular, the Transport Expedited Data
facility is not provided. For other restrictions see b)
below.

The Network Service used is a subset of the
OS1 Connection-Oriented Network Service defined
in IS0 8348 and CClïT X.213. In particular, the
Network Expedited Data and Receipt Confirmation
facilities are not used. For other restrictions, see b)
below.

b) Service Primitives
In 11.1.2.3 the TSPs used in the description should be de-
fined. Also the NSPs used in the description should be
defined, perhaps in the same clause. For this Technical Re-
port, the gap is filled by inserting the following paragraphs
in 1 1.1.2.3, at the beginning:

A basic Transport Service (TS) is provided. This
is a subset of the TS defined in IS0 8072 and CClTT
X.214, according to the following restrictions:

a) Expedited Data services are not provided,
and neither Expedited Data Option nor Qual-
ity of Service parameters are defined in the T-
CONNECT Service Primitives; and

b) no User Data parameter is defined in the T-
CONNECT Service Primitives; and

c) no parameter is defined in the T-CONNECT
response, T-CONNECT confirm, and T-
DISCONNECT Service Primitives.

125

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

To provide the basic Transport Service, this
Transport Protocol makes use of a subset of the
Network Service, which is defined in IS0 8348 and
CClTT X.213, according to the following restrictions:

a) neither Expedited Data nor Receipt Confirma-
tion facilities are used; and

b) in N-CONNECT request and indication Ser-
vice Primitives the only parameters defined are
the Addresses; and

c) a limited form of N-RESET facility is used: only
N-RESET indication and response primitives
are used, with no parameters; and

d) no parameters are defined in the N-CONNECT
response, N-CONNECT confirm, and N-
DISCONNECT Service Primitives.

In 1 1.1.2.4 both the blocks and the relation between blocks,
TSPs and NSPs should be defined. The gap is filled as
follows:

a) the current content of 11.1.2.3 should be moved at the

b) at the end of existing paragraph a), replace the text in
beginning of 1 1.1.2.4; and

parentheses with:

TCR, TCA and TCC blocks: T-CONNECT,
N-CONNECT and N-DATA service primitives

c) in existing paragraph b), replace the second sentence
with:

These are contained in T-DATA service prim-
itives, and each of them is transferred by way of
a sequence of TDT blocks.

d) at the end of existing paragraph c), replace the text in
parentheses with:

TBR block; T-DISCONNECT, N-RESET and
N-DISCONNECT Service Primitives.

e) at the end of existing paragraph f), replace the text ‘the
user ...’ through to the end with:

the TS User is informed by a T-
DISCONNECT indication and the Network
Connection is released.

11.2.2 Description of Procedures (Clause 11.1.3)

11.2.2.1 Deficiency
The relation between the Connection Establishment proce-
dure and the Data Transfer procedure is not defined. Fur-
thermore, the Termination procedure is not described.

11.2.2.2 Resolution
Remove the note in 1 1.3.4 and append at the end of 1 1.1.3.1
the following text:

An implicit connection termination procedure is
made use of, by which the lifetime of the Transport
Connection and the lifetime of the Network Con-
nection are directly correlated. Furthermore, error
recovery is not supported, so that the occurrence of
an N-RESET indication leads to termination of the
Transport Connection.

When a TCR block is sent, a timer is started. If
this timer expires before receipt of a TCA or TCC
block acknowledging the TCR block, the TS User is
informed by sending a T-DISCONNECT indication
and the Network Connection is released by an N-
DISCONNECT request.

11.2.3 Protocol Classes (Clause 11.1.2.2)

11.2.3.1 Deficiency
There is no specification of the Protocol Classes, nor of
Class negotiation.

11.2.3.2 Resolution
In fact, the Protocol caters for only one Class: the encoding
of the Class and Options parameter in the TCR and TCA
blocks is fixed as a zero-value octet. However, for the
sake of compatibility and interoperability with other Protocol
Classes, it is required in 11 .I .5 that terminals shall not send
a TBR block upon receipt of a TCR block whose parameters
or parameter values are invalid or not implemented. For the
same reason, TC identification references are exchanged.
The following statement should be appended to 1 1.1.3.2:

Terminals that comply with this protocol support
only Class O, but may interoperate with terminals
that support other Classes and Class negotiation
(see 1 1.1 5).

11.2.4 Missing Definitions (Clause 11 .l)

11.2.4.1 Deficiency
There are no definitions of several terms used, including:

a) Transport Layer Protocol Element; and

b) TPDU;and

c) Transport Layer blocks; and

d) Transport Layer functions; and

e) Transport Layer procedures; and

f) Transport Connection collision; and

g) TSDU integrity; and

h) called and calling terminal; and

i) Protocol error; and

j) control block; and

k) mailbox; and

I) sender and receiver.

126

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11.2.4.2 Resolution
All terms should be defined, either in the description itself,
or by reference to a document in which they are defined. It
was decided not to fill the gap in this Technical Report.

11.2.5 Unspecified Functions (Clause 11 .l)

11.2.5.1 Deficiency
The following functions are referenced without explanation
as being excluded from the protocol:

a) multiplexing; and
b) sequence control; and
c) error detection; and
d) segmenting; and
e) flow control; and
f) purge;and

h) connection identification; and
i) identification of terminals; and
j) routing; and
k) extended addressing: and
I) association of TPDUs with Transport Connections; and

m) recovery after receipt of a TBR block; and
n) concatenation (see 11.2.6).

11.2.5.2 Resolution
The functions should be explained directly or by reference,
and the use or non-use of each should be specified. In
this Technical Report, the gap is filled only for functions
that are supported by this protocol, i.e. a) segmentation, b)
extended addressing, and c) error detection:

a) Segmenting of a TSDU may only start after the Trans-
port Entity has received the complete TSDU from the
TS User in a T-DATA request. Similarly, a T-DATA in-
dication is executed only after the complete TSDU has
been reassembled by the Transport Entity.

b) Multiple, possibly concurrent, Transport Connections
may be supported by one Transport Protocol Entity.
Use or non-use of extended addressing in the TCR and
TCC blocks is related to this possibility, which is non-
deterministic. In the TCR and TCC blocks, both the
Called Address and the Calling Address are optional.

c) When a TBR block is sent or received, the TS User is
informed by a T-DISCONNECT indication. A Trans-
port Entity receiving a TBR block releases the Network
Connection by means of an N-DISCONNECT request.
The Transport Entity sending a TBR block starts a timer.
When this timer expires the Network Connection is re-
leased. On receipt of an N-DISCONNECT indication
the timer is stopped.
Receipt of an N-RESET indication is answered with
an N-RESET response, followed by release of the Net-
work Connection; the TS User is informed by means of
a T-DISCONNECT indication.

g) how to inform the user of an error; and

11.2.6 Non-use of Concatenation (Clause

11 -2.6.1 Deficiency
The non-use of concatenation should not be defined in the
format section, but be introduced in 11.1.2.4 amongst the
functions. The concept of concatenation is not described at
all.

11.1.6.3)

11.2.6.2 Resolution
The text of 1 1.1.6.3 should be moved to 1 1.1.2.4 as follows:

g) concatenation: concatenation of Transport
control andor Transport data blocks is not ap-
plicable, so that receipt of concatenated blocks
is treated as a procedure error (see 1 1.1 5).

11.2.7 Responding Address (Clause 11.1.3.6 b))

11.2.7.1 Deficiency
It is not clear whether the Called Address parameter in a
TCA may be different from that in a TCR if the call is re-
routed.

11.2.7.2 Resolution
It is assumed that they are the same.

11.2.8 Multiple SAP Connections (Clause

11.2.8.1 Deficiency
May a Transport Protocol Entity support more than one
Transport Connection at a TSAP or an NSAP?

11.2.8.2 Resolution
It is assumed that this is permissible.

11.1.2.3)

11.2.9 Reaction to Incorrect TCA (Clause 11.1.3
and Figure 11.2)

11.2.9.1 Deficiency
It is not stated which forms of reaction are allowed by the
expression: ‘left to the discretion of the calling terminal’.
Allowing any reaction is too vague.

11.2.9.2 Resolution
The interpretation followed in this Technical Report is that
an invalid parameter in the TCA is treated as for procedure
errors (see 1 1.1 3).

11.3 Estelle Description
11.3.1 Architecture of the Formal Description
The top level architecture of the description is shown in
Figure 1 1.1 5. This architecture is made up of three kinds of
modules:

127

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Figure 11.15: Architecture of A Transport Protocol in
Estelle

a) two instances of type USER-T representing the Trans-
port Service Users; these instances are referred to
through module variables USER1 and USER2; and

b) two instances of type PARENT-T representing the
Transport Protocol Entities; both instances are created
using the same module variable PARENT; and

c) one instance of type NETWORK-T representing the un-
derlying Network Service; this instance is referred to
through module variable NETWORK.

This architecture remains static once created during the
Estelle description initialisation. Because of the nature of
the Protocol, the bodies of modules USER and NETWORK
are not specified. Several external interaction points are
defined for representing the inter-layer communication:

a) TCEP, which is an array of external interaction points
declared in both USER-T and PARENT-T modules,
represents all potential Transport Connections that may
be established on behalf of some User The upper bound
of the array is defined by constant MAXTCEP whose
concrete (integer) value is left to be defined (i.e. is
implementation-dependent).

b) NCEP, which is an array of external interaction points
declared in the PARENT-T module header, represents
all potential Network Connections that may be estab-
lished from the associated PARENT module. The up-
per bound of the array is defined by constant MAXNCEP

whose concrete (integer) value is left to be defined (i.e.
is implementation-dependent).

The description also illustrates the dynamic structuring ca-
pabilities of Estelle. One pair of module instances, whose
types are respectively TC-T and NC-T, is created dynami-
cally by each Transport Protocol Entity during the establish-
ment phase of a Transport Connection. These module in-
stances communicate (i.e. exchange interactions) through
their interaction pointsTc-IP and NC-IP, which are dynam-
ically connected.
The other external interaction point TCEP, declared in the
module header TC-T, is attached to one of the interaction
points introduced by the TCEP array declaration within the
PARENT-T module. (The index within the array represents
the Transport Connection Endpoint Identifier.) The result of
this attachment is that the interactions related to a Transport
Connection are sent directly to the module instances that
must process them. Similarly the other external interactio
point, declared in the module header NC-T, is attached to
one of the interaction pointsdeciared within the NCEP array.
Module instances of type USER-T, PARENT-T and
NETWORK-T are system instances that behave asyn-
chronously with respect to each other. Module instances of
type PARENT-T are systemactivities, as the informal de-
scription of the Protocol gives no reason for synchronising
the behaviour of several Transport Connections managed
by the same Transport Protocol Entity. Similar reasoning
motivates the use of the systemactivity class for module
instances of type USER-T and NETWORK-T.

9

11.3.2 Explanation of Approach
This approach was motivated by the desire to illustrate
some features of Estelle, e.g. structuring mechanisms
(both dynamic and static). The PARENT, USER, and NET-
WORK modules are created (statically) and bound in the
initialize part of the description. The TC and NC modules
(children within PARENT) are created (dynamically) and
bound during the Connection Establishment Phase. The
are described in the transitions of the trans part of PAR-
ENT. (Note that all the transitions in the description have
unique names.) When the Connect Request comes from
the local User, the mechanisms required to manage the lo-
cal connection endpoint are created in one transition (trans
PR2), i.e. both the TC and NC modules are created and
bound. When the Connect Request comes from the re-
mote User, the mechanisms required to manage the local
connection endpoint are created in two transitions. First,
the NC module is created and the attach is performed on
NCEP in trans PR3; then, upon receipt of the TCR, the
NC module requests the PARENT to create the TC in trans
NC9. Later, the PARENT notices such a request and cre-
ates the TC module, performing the connect of interaction
points TC- IP and NC- IP.
This example also uses the delay transitions (trans TC12
and TC39) to illustrate the use of the timer notion and its
representation in Estelle.
A User may make a transition override some others, by

'y

128

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (El

giving the priority clause. An example of this is trans
NC15 in which the Transport Connection Request of the
remote User could not be fulfilled locally, therefore a TCC
is sent in answer to the TCR.
There are several examples of non-deterministic choices of
transitions; one significant case is when the Network Con-
nection Indication is either accepted (trans PR3) or rejected
(trans PR4).

Il .3.3 Formal Description
specification TP;

default individual queue ;
timescale SECONDS;

const
MAXPRIORITYoO;
NUM-USER=any INTEGER;
NUM-NETWORK=any INTEGER;
MAXDATA=any INTEGER;
MAXCEP=any INTEGER;
MAXTCEP=MAXCEP;
MAXNCEP=MAXCEP;

TADD-array [I. .MAXDATA] of CHAR;
TADDRESS-

type

record
L:INTEGER;
VAL : TADD

end ;
NADDRESS= . . . ;
OCTET=0..255;
LEN-T=O..MAXDATA;
ID-T=I..MAXDATA;
DATA,T=

record

TBR,REASON=(INVALID,PDU);

L:LEN,T;
D:array [ID-TI of OCTET

end ;
REF-T=0..65535;
TLV-PAR= (P-CALLING ,P,CALLED,

MAX-BL,CL-INFO ,REJ,PDU) ;
CLEAR,C=(NON,SPEC,OCCUPIED,OUT,OF-ORD,

BLOCK,T=(TCR,TCA,TCC,TDT,TBR) ;
UNKNOWN) ;

PDU-T=
record

case C0DE:BLOCK-T of
TCR,TCA:(DREFl,SREFl:

REF-T ;
T,CALLING:TADDRESS;
T,CALLED:TADDRESS;
MAX-BLOCK-SIZE:

INTEGER) ;
TCC:(DREFZ,SREFZ:REF-T;

CAUSE:CLEAR,C;
CL-OPT :DATA-T) ;

TDT:(EOT:BOOLEAN;
DATA : DATA-T) ;

TBR:(DREF3:REF,T;
REASON:TBR,REASON;
TPDU:DATA-T)

end ;

channel TS-INTERFACE(USER,PROVIDER);
by USER:

TCON,REq(T,CALLING,

TCON-RESP ;
TDT-REQ (TSDU : DATA-T) ;
TDIS-RE9 ;

TCON,IND(T,CALLING,

TCON-CONF;

TDIS-IND ;

T-CALLED : TADDRESS) ;

by PROVIDER:

T,CALLED:TADDRESS);

TDT-IND(TSDU:DATA,T) ;

channel NS,INTERFACE(USER,PROVIDER);
by USER:

NCON-REQ(N,CALLING,

NCON-RESP;
NDT-REq (NSDU : DATA-T) ;
NRST-RESP ;
NDIS-REq ;

NCON-IND(N-CALLING,

NCON-CONF;

NRST-IND ;
NDIS-IND;

N-CALLED: NADDRESS) ;

by PROVIDER:

N-CALLED : NADDRESS) ;

NDT,IND(NSDU:DATA,T) ;

function TCON-REq,OK(
CALLING ,CALLED:TADDRESS) :

BO0LEAN;primitive;

function MAP,TADDRESS(ADD:TADDRESS):
NADDRESS;primitive;

function SET-DTLENGTH(
MAX-BLOCK-SIZE:INTEGER):

1NTEGER;primitive;

function IS,VALID-TPDU(PHY,PDU : DATA-T) :
BO0LEAN;primitive;

function GET-CODE(PHY,PDU:DATA,T) :
BLOCK-T;primitive;

module PARENT-T systemactivity;
iP

TCEP : array c i . .MAXTCEPl of

NCEP : array [1. . MAXNCEPI of
TS-INTERFACE (PROVIDER) ;

NS,INTERFACE(USER) ;
end ;

body PARENT-BODY for PARENT-T;

129

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

const
MAXDTLENGTH=any INTEGER;

REqUEST,T=(UNDEFINED,REJECTED,
CREATED , REqUESTED) ;

TC,IMAGE,T*
record

type

CALLINC,CALLED:TADDRESS;
DREF:REF,T;
MAX,BLOCK,SIZE:INTEGER

end ;

channel PDU-CHANNEL (TC ,NC) ;
by TC:

by NC:
NDIS-REq ;

INVALIDPDU(INVALID : DATA-T) ;
ICON-CONF;
IDIS-IND;

TPDU(PDU:PDU,T);
by TC,NC:

module TC-T activity(TC,CALLING,
TC-CALLED:TADDRESS;
TC,SREF,TC-DREF:REF,T;
TC-MXBL-S : INTEGER) ;
iP

TCEP:TS,INTERFACE(PROVIDER);
TC-IP:PDU,CHANNEL(TC);

TC,RELEASE-REq:BOOLEAN;
export

end ;

body TC-BODY for TC-T;
const

TCR-TIMER=GO ;
TBR,TIMER=GO;

IDLE,CLOSED,WFNC,WFND,WFTCA,
WFTRESP,OPEN,ERROR,
PRE-RELEASE;

PDU,SEND:PDU,T;
TSDU,SEND,TSDU,RCVD:DATA-T;
1TPDU:DATA-T;

state

var

function D,LENGTH(DATA:DATA,T):
LEN-T ;

begin
D,LENGTH:=DATA.L
end ;

procedure D,NULL(var DATA : DATA-T) ;

1NDEX:INTEGER;
Var

begin
for INDEX:=l to MAXDATA do

DATA. D [INDEX] :=O ;
DATA. L :=O
end ;

130

procedure D-COPY (
FROM-DATA:DATA,T;
var TO-DATA : DATA-T) ;

Var
1NDEX:IIYTEGER;

begin
for INDEX:=l to MAXDATA do

FROM-DATA . D [INDEX] ; TO-DATA .D [INDEX] : =

TO,DATA.L:=FROM,DATA.L
end ;

procedure D,CREATE(
var DATA:DATA,T;LENGTH:ID,T);

begin
D,NULL(DATA) ;
DATA.L:=LENCTH
end ;

function D,GET(

begin
if OFFSET>DATA.L then

else D-GET :=DATA. D [OFFSET]
end ;

DATA:DATA-T;OFFSET:ID-T):OCTET;

D-CET : =O

procedure D,PUT(
var DATA:DATA-T;OFFSET:ID-T;
VALUE: OCTET) ;

begin
if OFFSET<=DATA.L then

end ;
DATA. D [OFFSET] : =VALUE

procedure D-ASSEMBLE(
var BASE:DATA,T;
var ADDITION : DATA-T) ;

var
TOT-LENCTH:INTECER;
1NDEX:LEN-T;

begin
TOT,LENGTH:=

if TOT,LENCTH>MAXDATA then

for INDEX:=l to

BAÇE.L+ADDITION.L;

TOT,LENCTH:=MAXDATA;

TOT-LENGTH-BASE.L do
BASE .D [INDEX+BASE. LI : =
ADDITION .D [INDEX] ;

BASE.L:=TOT,LENGTH;
D-NULL (ADDITION)
end ;

procedure D,FRAGMENT(
var HEAD:DATA,T;var 0LD:DATA-T;
LEN : LEI-T) ;

var

begin
if LEN>OLD.L then

INDEX,LENCTH:LEN,T;

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

LENGTH:=OLD.L
else LENGTH:=LEN;
D,CREATE(HEAD,LENGTH) ;
i f LENGTH>O then

begin
f o r INDEX:=l t o
LENGTH do

HEAD .D [INDEX] : =
OLD.D[INDEX] ;

f o r IIDEX:=l t o
OLD. L-LENGTH do

OLD.D[
OLD. D [INDEX] : =

INDEX+LENGTH] ;
f o r INDEX:=
0LD.L-LENGTH+

t o 0LD.L do
OLD.D[INDEX] :=O;

0LD.L:mOLD.L-LENGTH
end

end ;

procedure BUILD-TCR(SREF:REF-T;
CALLING,CALLED:TADDRESS;
MAX-BLOCK-S1ZE:INTEGER;
var NSDU: DATA-T) ;

const
TCR_CODE=224;

SIZE-BL=
type

(L128 , L256, L512 , L1024,
L2048) ;

OPT,PAR,T=
record

case 0PT:TLV-PAR of
P-CALLING,
P-CALLED :
(ADDR:TADDRESS) ;

(L:SIZE-BL);

(C:CLEAR-C);

(ER:DATA-T)

MAX-BL :

CL-INFO :

REJ-PDU:

end ;
var

LENGTH,LGl:INTEGER;
OCTl,OCT2:OCTET;
NSDU1:DATA-T;
OPT-PAR-VAL:OPT,PAR-T;

func t ion FHS (CODE : INTEGER) :
INTEGER ;

begin
end ;

procedure ENCODE-REF (
REF : REF-T ;
var LOW ,HIGH : OCTET) ;

begin
end ;

func t ion OPT,LENG(P:SIZE,BL) :
OCTET;

type

begin
end ;

POWER_T=O..4;

func t ion OPT,PAR,TYPE(
0PT:TLV-PAR):OCTET;

begin
end ;

func t ion CODE-LENGTH (
S:IITEGER):SIZE,BL;

begin
end ;

procedure TLV-ENCODE-PAR(
0P:TLV-PAR;var E0P:DATA-T;
var L : INTEGER) ;

Var

I : INTEGER;
begin
case OP of
P,CALLING,P,CALLED:

begin
L:=
OPT-PAR-VAL.
ADDR . L

end ;
MAX-BL :

begin

end
L:=l

end ;
D,CREATE(EOP,L+2) ;
D-PUT(EOP,l,

D-PUT(EOPy2,L) ;
case OP of

OPT,PAR,TYPE(OP) 1 ;

P,CALLING,P,CALLED:
begin
f o r I:=l t o L do
D-PUT (EOP ,2+I,

O R D (OPT-PAR-VAL .
ADDR. VAL [I]))

end ;
MAX-BL :

begin
D-PUT(EOP.3,
OPT-LENG (
OPT-PAR-VAL . L)

end
end ;
L: =L+2
end ;

begin

D,CREATE(WSDU , LENGTH+l) ;
LENGTH:-FHS(TCR,CODE);

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ENCODE-REF(0,OCTl ,OCT2) ;
D-PUT(NSDU , 3,OCTl) ;
D,PUT(NSDU,4,OCT2) ;
ENCODE,REF(SREF, OCTl, OCT2) ;
D-PUT(NSDU, 5,OCTl) ;
D,PUT(NSDU, 6,OCT2) ;
I)-PUT(NSDU, 7 , O) ;
OPT,PAR,VAL.ADDR:=CALLING;
OPT,PAR,VAL.ADDR:=CALLED;
OPT,PAR,VAL.L:=
CODE,LENGTH(
MAX-BLOCK-SIZE) ;

OPT-PAR-VAL.OPT:=P-CALLING;
TLV,ENCODE,PAR(
P,CALLING,NSDUl ,LG1) ;

D-ASSEMBLE(NSDU,NSDUI) ;

TLV,ENCODE-PAR(

D-ASSEMBLE(NSDU,NSDUI) ;

TLV,ENCODE,PAR(

LENGTH:=LENGTH+LGl;

OPT-PAR-VAL.OPT:=P,CALLED;

P,CALLED,NSDUl,LGl) ;
LENGTH:=LENGTH+LGl;

OPT-PAR,VAL.OPT:=MAX-BL;

MAX,BL,NSDUl,LGl) ;
LENGTH:=LENGTH+LGl;
D-ASSEMBLE(NSDU,NSDU~) ;
D,PUT(NSDU,~.LENGTH)
end ;

procedure BUILD-TCA (
DREF,SREF:REF,T;
CALLING,CALLED:TADDRESS;
MAX,BLOCK,SIZE:INTEGER;
var RES : PDU-T) ;

ex te rna l ;

procedure BUILD-TCC (

ex te rna l ;
DREF : REF-T; var RES : PDU-T) ;

procedure BUILD-TDT(
E0T:BOOLEAN;DATA:DATA-T;
var RES : PDU-T) ;

ex te rna l ;

procedure BUILD,TBR(
DREF:REF,T;REASON:TBR-REASON;
TPDU:DATA,T;
var RES : PDU-T) ;

ex te rna l ;

132

procedure TRANSFER(
v a r REC,DATA:DATA,T;
var REC-PDU : PDU-T) ;

ex te rna l ;

i n i t i a l i z e
t o IDLE

begin
TC-RELEASE-REq:=FALSE;

D,NULL(TSDU,SEND) ;
D,NULL(TSDU-RCVD)
end ;

t r a n s
from WFNC

t o WFTCA
when TC,IP.NCON-CONF

var

name TC2:
begin
BUILD,TCR(

PRE,PDU:DATA-T;

TC-SREF,TC-CALLING,
TC-CALLED,
TC,MXBL,S,PRE,PDU);

PRE-PDU , PDU-SEND) ;

PDU-SEND)

TRANSFER(

output TC,IP.TPDU(

end ;
t o PRE-RELEASE

when TC,IP.NDIS-IND
name TC3:
begin
output TCEP.TDIS-IND;
end ;

name TC1:
begin
output TC,IP.NDIS-REq;
end ;

from WFTCA

when TCEP.TDIS-REq

t o PRE-RELEASE
when TC-1P.NDIS-IND

name TC5:
begin
output TCEP.TDIS-IND;
end ;

name TC4:
begin
output TC,IP.NDIS,REq;
end ;

from WFTCA

when TCEP.TDIS,REq

when TC,IP.TPDU
provided PDU.CODE=TCC

t o PRE-RELEASE
name TC8:
begin
output
TC,IP.NDIS,REq;

output TCEP.TDIS-IND;
end ;

t o OPEN
name TC7:
begin
output
TCEP.TCON,CONF;

TC,DREF:=PDU.SREFl;

provided PDU.CODE=TCA

O

O

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

TC-MXBL-S:=

end ;
PDU.MAX,BLOCK,SIZE

provided PDU.CODE=TBR
to PRE-RELEASE

name TClO:
begin
output
TC-1P.NDIS-REQ;

output TCEP-TDIS-IND;
end ;

provided PDU.CODE=TDT
to PRE-RELEASE

name TC9:
begin
output
TC-IP.NDIS,REQ;

output TCEP.TDIS,IND;
end ;

to ERROR
name TC6:
begin
TC-DREF:=PDU.SREFl;
D-NULL (ITPDU) ;
output TCEP.TDIS-IND
end ;

provided PDU.CODE=TCR

from WFTCA
to PRE-RELEASE

name TCll:
begin
D-NULL(INVAL1D) ;
output TCEP.TDIS,IND;
output TC-1P.NDIS-REQ;
end ;

when TC,IP.INVALIDPDU

trans
from WFTCA

t o PRE-RELEASE

name TC12:
delay (TCR-TIMER)

begin
output TCEP.TDIS-IND;
output TC-1P.NDIS-REI);
end ;

trans
from WFTRESP
to PRE-RELEASE

name TC15:
begin
output TCEP.TDIS-IND;
end ;

when TC-1P.NDIS-IND

t o WFND
when TCEP.TDIS-REQ

name TC14:
begin
BUILD-TCC(
TC-DREF , PDU-SEND) ;

ISO/IEC TR 10167 : 1991 (E)

output
TC-IP . TPDU(PDU,SEND)

end ;
to OPEN

when TCEP.TCON-RESP
name TC13:
begin
BUILD-TCA (
TC-DREF,TC-SREF,
TC-CALLINC,TC,CALLED,
TC-MXBL-S ,PDU,SEND) ;

TC-IP.TPDU(PDU-SEND)
output

end;
from WFTRESP
to ERROR

when TC-1P.INVALIDPDU
name TC21:
begin
1TPDU:sINVALID;
output TCEP.TDIS-IND
end ;

from WFTRESP
when TC-1P.TPDU

provided PDU.CODE<>TBR
to ERROR

name TC16,17-18-19:
begin
output TCEP.TDIS-IND;
D-NULL(1TPDU)
end ;

provided PDU.CODE=TBR
to PRE-RELEASE

name TC20:
begin
output TCEP.TDIS-IND;
output

end ;
TC,IP.NDIS-REQ;

from OPEN
to PRE-RELEASE

name TC24:
begin
output TCEP.TDIS-IND;
end ;

name TC23:
begin
output TC,IP.NDIS-REP;
end ;

when TC-IP.NDIS,IND

when TCEP.TDIS-REQ

to OPEN

var

name TC22:
begin
TSDU,RCVD:=TSDU;
while D-LENGTH(
TSDU-RCVD) >

when TCEP.TDT-REQ

DATA:DATA,T;

TC-MXBL-S-3 do

133

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

134

begin
D,FRAGMENT(
DATA,TSDU-RCVD,
TC-MXBL-S-3) ;

FALSE,DATA,
PDU-SEND);

PDU-SEND)

BUILD-TDT(

output TC,IP.TPDU(

end ;

TRUE,TSDU-RCVD,
PDU-SEND) ;

TC,IP.TPDU(PDU,SEND)

BUILD-TDT(

output

end ;
from OPEN
when TC-IP . TPDU
provided(PDU.CODE=TDT) and
not PDU.EOT
name TC28-1:
begin
D-ASSEMBLE(

end ;

PDU . EOT
name TC28-2:
begin
D-ASSEMBLE(

output TCEP . TDT-IND (

TSDU,SEND,PDU.DATA)

provided(PDU.CODE=TDT) and

TSDU-SEND,PDU.DATA);

TSDU-SEND);
D-NULL(TSDU-SEND)

(PDU.CODE<>TBR)

end ;
provided(PDU.CODE<>TDT) and

to ERROR
name TC25-26-27:
begin
output TCEP.TDIS-IND;
D-NULL(1TPDU)
end ;

provided PDU.CODE=TBR
to PRE-RELEASE

name TC29:
begin
output TCEP.TDIS-IND;
output
TC-1P.NDIS-REQ;

end ;
from OPEN
to ERROR
when TC-1P.INVALIDPDU
name TC30:
begin
ITPDU:=INVALID;
output TCEP.TDIS-IND
end ;

from IDLE
provided TC-DREF=O

to WFNC
begin
end ;

provided TC-DREF<>O
to WFTRESP
begin
output TCEP.TCON-IND(

end ;
TC,CALLING,TC-CALLED)

from CLOSED
to PRE-RELEASE

name TC31:
begin
end ;

from CLOSED

when TC,IP.NDIS-IND

when TC-1P.TPDU
provided PDU.CODE=TCR
to WFTRESP
name TC32:
begin
TC-CALLING:=

TC-CALLED:=

TC-SREF:=PDU.SREFI;
TC-MXBL-S:=
PDU.MAX-BLOCK-SIZE;

output TCEP.TCON-IND(
TC-CALLING,
TC-CALLED)

provided PDU.CODE<>TCR

name TC33-34-35-36:
begin

PDU.T-CALLING;

PDU.T-CALLED;

end ;

to PRE-RELEASE

output
TC-IP.NDIS-REQ;

end ;
when TC-1P.INVALIDPDU
name TC37:
begin

output TC-1P.NDIS-REQ;
end ;

D-NULL(INVALID) ;

from WFND
to PRE-RELEASE

name TC38:
begin
end ;

to PRE-RELEASE

name TC39:
begin
output TC-IP.NDIS-REQ;
end ;

when TC,IP.NDIS,IND

delay (TBR-TIMER)

to WFND
when TC,IP.TPDU
name TC42:
begin

O

O

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

end ;
from ERROR

t o PRE-RELEASE
name TC4I:
begin
output TC,IP.NDIS,REQ;
end ;

t o WFND
name TC40:
begin
BUILD-TBR(
TC,DREF,INVALID,PDU.
ITPDU , PDU-SEND) ;

output
TC,IP.TPDU(PDU-SEND)

end ;
from PRE-RELEASE

name TC43:
begin
TC-RELEASE-REQ:=TRUE
end ;

end ;

module NC-T a c t i v i t y (
1NITIATOR:BOOLEAN;
NC-CALLING , NC-CALLED : NADDRESS) ;

i P
NCEP : NS,INTERFACE(USER) ;
NC-IP:PDU,CHANNEL(NC);

export
TC-CREATE-REQ:REQUEST,T;
TC-1MAGE:TC-IMAGE-T;
NC-RELEASE-REQ:BOOLEAN;

end ;

body NC-BODY f o r NC-T;
state

va r
IDLE,CLOSED,WFNC,OPEN;

PDU-SEND,PDU-RCVD:PDU-T;

procedure ENCODE(
var D:DATA-T;R:PDU-T) ;

begin
end ;

procedure DECODE(
D:DATA,T;var R:PDU,T);

begin
end ;

procedure BUILD,TCC(

ex te rna l ;
DREF : REF-T; var RES : PDU-T) ;

i n i t i a l i z e
t o IDLE

begin
NC-RELEASE,REQ:=FALSE;
TC-CREATE-REQ:=UNDEFINED
end ;

t r a n s
from IDLE

provided INITIATOR
t o WFNC

name NC1:
begin
output NCEP.NCON-REQ(
NC,CALLING,NC,CALLED)

end ;

t o OPEN
name NC2:
begin
end ;

provided not INITIATOR

from WFNC
t o OPEN

when NCEP.NCON-CONF
name NC3:
begin
output NC-1P.NCON-CONF
end ;

t o CLOSED
when NCEP.NDIS-IND

name IC4:
begin
output NC-1P.NDIS-IND;
end ;

t o CLOSED
when NC,IP.NDIS-REQ

name NC5:
begin
output NCEP.NDIS-REQ;
end ;

from OPEN
t o CLOSED

when NCEP.NDIS,IND
name NC7:
begin
output NC-IP.NDIS,IND;
end ;

t o CLOSED
when NCEP.NRST-IND

name NC6:
begin
output NCEP.NRST-RESP;
output NCEP.NDIS-REQ;
output NC-1P.NDIS-IND;
end ;

t o OPEN
when NC-1P.TPDU

V a

DT:DATA,T;
name NC14:
begin
ENCODE(DT.PDU);
output BCEP.NDT,REQ(DT)
end;

t o CLOSED
when BC,IP.NDIS,REQ

name NCI3:

135

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISQ/IEC TR 10167 : 1991 (E)

begin
output NCEP.NDIS,REQ;
end ;

from OPEN
when NCEP.NDT,IND

provided
IS-VALID-TPDU(NSDU) and
(TC-CREATE-REQ=CREATED)
name NClO:
begin
DECODE(NSDU ,PDU,RCVD) ;
output
NC,IP.TPDU(PDU,RCVD)

end ;
from OPEN

when NCEP.NDT,IND
provided
IS,VALID,TPDU(NSDU) and
(TC,CREATE,REQ=
UNDEFINED) and
(GET-CODE(NSDU)=TCR)

name NC9:
begin
DECODE (NSDU , PDU-RCVD) ;
with PDU-RCVD do

begin
TC,IMAGE.CALLING:=

TC,IMAGE.CALLED:=

TC-IMAGE.DREF:=SREFl;
TC-IMAGE.
MAX-BLOCK-SIZE:=
MAX-BLOCK-SIZE

T-CALLING;

T-CALLED;

end ;

REQUESTED
TC-CREATE-REQ:=

end ;
provided
IS-VALID-TPDU(NSDU) and
(TC,CREATE,REQ=
UNDEFINED) and
(GET-CODE(NSDU) <>TCR)

t o CLOSED
name NC8:
begin
output NCEP.NDIS-REQ;
end ;

provided
not IS-VALID-TPDU(NSDU)

and (TC-CREATE-REQ=
CREATED)

name NC11:
begin
output
NC-IP.INVALIDPDU(
NSDU)

end ;
provided

not IS,VALID,TPDU(NSDU)
and (TC-CREATE-REQ=

UNDEFINED)
t o CLOSED

name NC12:
begin
output NCEP.NDIS,REQ;
end ;

provided TC-CREATE-REQ=

p r i o r i t y MAXPRIORITY
REJECTED

var

name NC15:
begin
BUILD,TCC(

DT:DATA,T;

TC,IMAGE.DREF,
PDU-SEND) ;
ENCODE(DT , PDU-SEND) ;

NCEP . NDT-REQ (DT) ;
UNDEFINED

output

TC,CREATE,REQ:=

end ;
from CLOSED

name NC16:
begin
NC-RELEASE-REQ:=TRUE
end ;

end ;

type

var
USE,T=(OCCUPIED,FREE);

TCEP-ID : a r ray 11. . MAXTCEP] of
NCEP-1D:array [l. .MAXICEP] of
USE-T ;

USE-T;

TC : TC-T ;
NC: NC-T;

modvar

func t ion NCACCEPT(FA,TA:NADDRESS):
BOOLEAN;

ex te rna l ;

func t ion TESTUD(U:DATA-T) :
BOOLEAN;

ex te rna l ;

i n i t i a l i z e
begin
a l l I:l..MAXCEP do

begin
NCEP-ID[I] :=FREE;
TCEP-ID[I] :=FREE
end

end ;

t r a n s
any I:l..MAXCEP do

when TCEP [I] . TCON-REQ

136

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

O

provided not TCON,REQ-OK(
T-CALLING ,T,CALLED)
name PRl:
begin
output TCEP [I] .TDIS,IND
end ;

provided TCON,REQ,OK(
T-CALLING,T,CALLED)
name PR2:
begin
forone J:l..MAXNCEP

suchthat NCEP-ID JI
FREE do
begin
i n i t NC with NC-BODY(

TRUE,MAP,TADDRESS(
T-CALLING) ,

MAP-TADDRESS(
T-CALLED) 1 ;

a t t a c h NCEPCJ] t o

i n i t TC with TC-BODY(
NC . NCEP ;
T-CALLING,T-CALLED,I,
O , SET,DTLENGTH(
MAXDTLENGTH)) ;

connect TC.TC-IP t o

a t t a c h TCEP[Il t o

NC.TC-CREATE-REQ:=

NCEP-ID [JI :=OCCUPIED;
TCEP-ID [I] :=OCCUPIED
end

otherwise
begin
output TCEPCI] .TDIS,IND
end

NC.NC,IP;

TC. TCEP ;

CREATED ;

end ;

trans
any J : 1. . MAXNCEP do

when NCEP [JI .NCON-IND
provided NCACCEPT(
N-CALLING , N-CALLED)
name PR3:
begin
NCEP-ID [JI :=OCCUPIED;
output NCEP [JI . NCON-RESP ;
i n i t NC with NC-BODY(
FALSE,N-CALLING,
N-CALLED);

a t t a c h NCEP[J] t o NC.NCEP
end ;

provided not NCACCEPT(
N-CALLING , N-CALLED)
name PR4:
begin
output NCEPCJ] .NDIS-REQ
end ;

t r a n s
any I:l..MAXTCEP do

provided e x i s t X:TC-T
suchthat X.TC-RELEASE-REQ
name PR5:
begin
forone X:TC,T suchthat
X.TC,RELEASE-REQ do

begin
release X;
TCEP-ID [I] :=FREE
end

end ;

t r a n s
any I:l..MAXNCEP do

provided e x i s t X : NC-T
suchthat X.NC-RELEASE-REQ

name PR6:
begin
f orone X : NC-T suchthat
X.NC-RELEASE-REQ do

begin
NCEP-ID[I] :=FREE;
r e l e a s e X
end

end ;

t r a n s
provided e x i s t X : NC-T suchthat (
X.TC-CREATE,REQ=REQUESTED)

name PR7:
begin
forone X:NC-T suchthat
X.TC-CREATE-REQ=REQUESTED do

begin
forone I:l..MAXTCEP suchthat
TCEP-ID [I] =FREE do

begin
i n i t TC with TC-BODY(
X.TC-IMACE.CALLED,
X.TC,IMAGE.CALLING,I,
X.TC-IMAGE.DREF,

X.TC-IMAGE.

connect TC.TC-IP t o

a t t a c h TCEPCIIto TC.TCEP;
X.TC,CREATE,REQ:=CREATED;
TCEP-ID [I] :=OCCUPIED
end
otherwise

end

SET-DTLENGTH(

MAX-BLOCK-SIZE) 1 ;

NC.NC,IP;

X.TC-CREATE-REQ:=REJECTED

end ;

end ;

module USER-T systemact ivi ty;
i P

137

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

TCEP:array ci. .MAXTCEPl of
TS,INTERFACE(USER) ;

end ;

body USER-BODY for USER,T;external;

module NETWORK-T systemactivity;
iP

NCEP : array
ci . . NUM-USER , 1 . . MAXNCEP] of

NS- INTERFACE (PROVIDER) ;
end ;

body NETWORK-BODY for NETWORK-T;external;

modvar
USER:array [l. .NUM,USER] of USER-T;
PARENT:PARENT-T;
NETW0RK:NETWORK-T;

initialize
begin
init NETWORK with NETWORK-BODY;
all I:l..NUM,USER do

begin
init USERCI] with USER-BODY;
init PARENT with PARENT-BODY;
all J:l..MAXTCEP do

connect USER[I] .TCEP[J] to
PARENT. TCEP [JI ;

connect PARENT. NCEP [JI to
all J:l..MAXNCEP do

NETWORK. NCEP [I, JI
end

end ;

end.

11.3.4 Subjective Assessment

The Estelle description shows clear separation of the dec-
laration part and the transition part. The data may be fully
defined in a Pascal style or ignored to a first approximation
(e.g. any INTEGER). Similarly, the behaviour of a mod-
ule may either be fully described by the transition part or
be postponed to a later stage (e.g. by using external for
module bodies or primitive for functions). This allows the
focus to be concentrated upon selected modules in the ini-
tial stages of description. Of course, when the description
gradually evolves towards an implementation description,
all the unspecified parts must be completed.
The Estelle description gives a good insight to the architec-
ture being described in terms of modules and channels. The
channel definition gives the list of interactions that it carries,
and the roles show the direction in which these interactions
are carried. The module header describes the view of a
module from the outside. The module body describes the
internal behaviour in terms of the transition system. The
hierarchy of modules is straightforward: a parent module
embodies a child module. This style allows the specifier to
describe a system in Estelle along the lines of the informal

Protocol description.
Although at first glance the description may appear to be
in Pascal style, a closer examination reveals that there is
a clear distinction between the Pascal constructs and the
specific Estelle constructs. In the declaration part, there are
Estelle featuresfor data description (e.g. module variable,
interaction point, and state). The transitions have a spe-
cific Estelle structure with a list of clauses and a transition
block (begin ... end). There are also statements to handle
the specific Estelle variables (e.g. the init and release op-
erations on modules, the attach and connect operations
for binding modules, and the output operation to send an
interaction from one module).
The description should be regarded as only an example:
some choices were made to illustrate selected features of
Estelle. Other important features have not been illustrated,
just because the Protocol is not suited to these.

O 11.4 LOTOS Description

11.4.1 Structure of the Formal Description

The description is designed on basis of two major require-
ments, which together provide the appropriate framework
for the formal representation of the Transport Protocol ar-
chitecture by means of the formal specification of a generic
Transport Protocol Entity:

a) the specification is to be provably consistent with the
formal description in LOTOS [IS0 TR 100231 of the OS1
Connection-OrientedOSI Transport Service [IS0 80721,
assuming a correct formal description in LOTOS of the
OS1 Connection-oriented Network Service [IS0 83481;
and

b) the specification is to apply to any Transport Entity that
implements the Protocol.

The main aspects of the specification are:
specification parameters SAP addresses O

global types sorts of specification param-
eters, and imported interface
data types from Service spec-
ifications

behaviour definition constraint-oriented specifica-
tion of dynamic conformance.

Already in the first decomposition of the constraints on the
Protocol Entity behaviour, Figure 1 1.16, a remarkable fact
arises: some of the components describe constraints that
apply to, and depend upon, the behaviour of the Protocol
Entity at only one of the two Service boundaries. These con-
straints will be referred to as Service constraints, whereas
the term Protocol constraints will refer to those which are
described by the other components. Notice that, in sub-
sequent decomposition steps, the description of a Protocol
constraint may reveal further Service constraints among its
own components.

138

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Figure 1 1.1 6: Constraint-Oriented Decomposition of a
Iyanspor i Protocol Entity

The decomposition of the behaviour definition finds its most
complex component in process TPEConnections which
describes the constraints on provision of Transport Con-
nections in relation to usage of Network Connections. Pro-
cess TPEConnections comprises instances of the process
TPEConnection combined in indefinite number by parallel
interleaving. The decomposition of process TPEConnec-
tion is illustrated in Figure 11.17. It enables a further sep-
aration of concerns between:

a) Service constraints relating to a Transport Connection
Endpoint considered in isolation; and

b) Service constraints relating to a Network Connection
Endpoint considered in isolation; and

c) Protocol constraints that describe the required relation
between Transport Service Primitives (TSPs) and Net-
work Service Primitives (NSPs).

0 11.4.2 Explanation of Approach

This specification is in a 'constraint-oriented'style. It applies
to all valid implementations of the Protocol, as it consists of
the formal description of a generic Protocol Entity that can:

a) access any given sets of Transport and Network Service

b) provide the Transport user with any number of Transport

c) make use of any number of Network Connections.

The specification provides the reader with an abstract model
of the Protocol behaviour requirements, i.e. those require-
ments that apply to any instance of communication shown
by implementations of the specified Protocol Entity.
This description is sufficiently complete, although a few im-
provements could still be made. These are indicated by
footnotes

access points; and

Connections; and

Figure 11.17: Decomposition of Process TPEConnec-
tion

11.4.2.1 Service Interactions
Service interactions are described as events at the t and n
gates. These events are of the following form:

and:
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

n ?na : NAddress ?ncei : NCEI ?nsp : NSP.

1 1.4.2.2 Block Transfer
Blocks are transferred at the n gate in N-DATA NSPs on the
Network Connection to which the Transport Connection is
assigned. There would be no need to use any Connection
identification mechanism other than Connection Endpoint
identification since neither multiplexing, nor splitting, nor re-
assignment are supported. Hence every TransportConnec-
tion is uniquely related to one Network Connection. Con-
nection identification by References is formally described,
however, according to the resolution in 11.2.3.2.

11.4.2.3 Assignment of Transport Connections
The assignment of a Transport Connection to a Network
Connection depends upon the role of the Entity with regard
to the Transport Connection. If the Entity is the initiator
of the Transport Connection, it creates a Network Connec-
tion to which the Transport Connection is assigned. In this
case the assignment ensures that blocks of that Transport
Connection are sent on the Network Connection to which
the Transport Connection is assigned. If the Entity is the
responder of the Transport Connection, the Transport Con-
nection is assigned to the Network Connection on which
the first block associated with this Transport Connection is
received.

11.4.2.4 Association of Blocks
All blocks received on a given Network Connection are as-
sociated with the Transport Connection which is assigned

139

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

to it, if any. Receipt of a block that performs assignment
generates the creation of a new Transport Connection, with
which the block is associated.

11.4.2.5 Negotiation of Class and Options
The only negotiations that take place are:

a) Class: The Entity accepts any TCR block but a Trans-
port Connection may only be created if Class O is a
proposed Class. The Entity may only send TCR blocks
with Class O as preferredclass and no alternative Class.

b) Block Size: The Entity negotiates the maximum block
size according to the negotiation rules defined in the
Protocol.

c) Extended Addressing: The Entity may negotiate the
use of extended addressing.

11.4.2.6 Segmenting and Reassembling
Segmenting and reassembling are described using the data
type TSDUS, where a value of sort TSDUS is a queue of
octet strings. Each TSDU carried by a TDATA request
is added to the queue TSDUSdown as one new element
(Octetstring). Blocks are formed from the oldest element
of TSDUSdown. When this block contains the End-ûf-
TSDU indication, then it contains all remaining octets (pos-
sibly none) of the oldest element, and this element is re-
moved from TSDUSdown. Otherwise only the octets con-
tained in the block are removed from the oldest element
of TSDUSdown. The data octets of a received TDT block
are added to the newest element of the queue TSDUSup.
If the block contains the End-Of-TSDU indication then the
newest element is considered to be a complete TSDU for a
T-DATA indication, and a new and empty newest element
is added to TSDUSup. A T-DATA indication containing
data is generated only if TSDUSup, deprived of its newest
element, contains at least one possibly empty element.

11.4.2.7 Actual Block Transfer
Blocks are transferred by means of N-DATA NSPs. Func-
tions are provided that specify the encoding of blocks as
octet strings, which are the NSDU parameter of N-DATA
NSPs. A completely general formulation of the encoding
of (abstract) block structures as octet strings is presented.
This formulation includes boolean functions on octet strings
that evaluate to true if, and only if, the octet string is a valid
encoding of a (possibly given) abstract block.

11.4.2.8 Handling of Protocol Errors
Protocol errors are treated according to the informal de-
scription, together with resolution in l l .2.5.2. Whenever an
error is detected, a TBR block is sent and the Transport and
Network Connection are disconnected. Data types deter-
mine syntactically invalid blocks and processes determine
ordering errors in block sequences are defined.

Il .4.3 Formal Description

11.4.3.1 General
The t (n) gate represents the Transport (Network) Service
boundary accessed by the Entity. It models the totality
of TSAPs (NSAPs) at which the Entity interacts with the
TS user (NS provider). Each TSAP (NSAP) is uniquely
identified by a TSAP address (NSAP address) out of the
set tas (nas). Proper cooperation between Session and
Transport entities (or Transport and Network entities), within
one open system, is ensured by assigning the same tas to
the Session and Transport entities (and the same nas to
the Transport and Network entities) residing in the same
Open System. This implies that a Transport Entity cannot
cooperate with a Session Entity if they reside in different
open systems.

specification TEhtityCt, n] a
(tas : TAddresses, nas : NAddresses) : noexit

library
Boolean, Element, Set, String, Naturallumber,
NatRepresentations, Bit, Octet, Octetstring

endlib

11.4.3.2 Service Data Types
This clause defines the specification parameters types. See
11.4.1.
Transport Address: No Transport address structure is
specified in the Transport Service standard. The following
definition allows representation an infinite number of Trans-
port addresses. See 1 1.4.3.2 for the definition of Generall-
dentifier.

type TAddress
is GeneralIdentifier renamedby
sortnames

opnnames
TAddress for Identifier

SomeTAddress for SomeIdentifier
AnotherTAddress for AnotherIdentifier

endtype (* TAddress *>

Transport Address Set: By the following definitions, any
value of sort TAddresses is a finite set of Transport Ad-
dresses.

type TAddresses
is Set actualizedby TAddress using

a

140

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

sortnames
TAddress for Element
TAddresses for Set
Bool for FBool

endtype (* TAddresses *)

(*---

The definition of Network Address and Network Address
Set are similar to those of Transport Address and Trans-
port Address Set.

type NetworkAddress
is GeneralIdentifier renamedby
sortnames
NAddress for Identifier

opç~m8~~ddress for SomeIdentif ier -
AnotherNAddress for AnotherIdentifier

endtype (* NetworkAddress *)

type NAddresses
is Set actualizedby NetworkAddress using
sortnames
NAddress for Element
Bool for FBool
NAddresses for Set

endtype (* NAddresses *>

Transport Service Primitive: The TSP data type is pre-
sented starting with the basic construction of values of sort
TSP. This construction is a direct formulation of the defini-
tion given in Table 3 of the TS standard [IS0 80721, sim-
plified in accordance with the resolution in 11.2.1.2. The
functions that yield values of sort TSP are referred to as
‘TSP constructors’. This definition imports the definitions 0 that relate to TSP parameters.

type BasicTSP
is TAddress, Octetstring
sorts
TSP

opns
TCONreq, TCONind : TAddress, TAddress -> TSP
TCONresp, TCONconf : -> TSP
TDTreq, TDTind : Octetstring -> TSP
TDISreq, TDISind : -> TSP

endtype (* BasicTSP *)

Transport Service Primitive Classification: A classifica-
tion of TSPs is defined, that enables to enrich the basic
construction with further functions in a simple way.

This classification is based on the type TSPSubsort, which
consists of a set of constants, each denoting a TSP name
in correspondence with Table 3 of the TS standard.
The type TSPClassifiers merges the previous construc-
tions and introduces the following functions on TSPs:

a) Subsort, that yields the TSP name: and
b) boolean functions, termed ‘TSP (subsorî) Classifiers’,

defined according to the Classification introduced by
TSPSubsort.

NOTE - The auxiliary function h that maps TSP names to natu-
ral numbers is defined in order to simplify the specification of the
boolean operations of equality on TSP names (as well as on TSPs).
RicherNaturalNumber is an extension of NaturalNumber with the
Odd and Even operations. See 11.4.3.3.

type TSPSubsort
is RicherNaturalNumber
sorts

opns
TSPSubsort

TCONNECTrequest, TCONNECTindication,
TCONNECTresponse, TCONNECTconfirm,
TDATArequest, TDATAindication,
TDISCONIrequest, TDISCONNindication :

h : TSPSubsort -> Nat
IsRequest, IsIndication : TSPSubsort -> Bool
,eq-, ,ne- : TSPSubsort, TSPSubsort -> Bool

-> TSPSubsort

eqns
f oral1

ofsort Nat
s, s i : TSPSubsort, n : Nat

h(TC0NNECTrequest) = O ;
h(TC0NNECTindication) =

h(TC0NNECTresponse) =

h(TC0NNECTconf irm) - Succ(h(TC0NNECTresponse)) ;
h(TDATArequest) = Succ(h(TC0NNECTconf irm)) ;
h(TDATAindicati0n) = Succ(h(TDATArequest)) ;
h(TD1SCONNrequest) = Succ(h(TDATAindicati0n)) ;
h(TDISC0NNindication) =

Succ (h(TC0NNECTrequest)) ;

Succ(h(TC0NNECTindication)) ;

Succ(h(TDISC0NNrequest))

IsRequest(s) = Even(h(s));
IsIndication(s) = Odd(h(s)) ;
s eq SI = h(s) eq h(s1);
s ne SI = not(s eq SI)

endtype (* TSPSubsort *)

ofsort Bool

type TSPClassifiers
is BasicTSP, TSPSubsort
opns

IsTCON, IsTCONI, IsTCOH2, IsTDT, IsTDIS,
IsTCONreq, IsTCONind, IsTCONresp, IsTCONconf,
IsTDTreq, IsTDTind,

141

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

IsTDISreq, IsTDISind, IsTReq, IsTind :

Subsort : TSP -> TSPSubsort
TSP -> Bo01

eqns
f orall

ofsort TSPSubsort
a, al : TAddress, d : Octetstring, t : TSP

Subsort(TCONreq(a, ai)) = TCONNECTrequest;
Subsort(TCONind(a, al)) = TCONNECTindication;
Subsort (TCONresp) = TCONNECTresponse;
Subsort (TCONconf) = TCONNECTconfirm;
Subsort (TDTreq(d))
Subsort (TDTind(d)) = TDATAindication
Subsort (TDISreq) = TDISCONNrequest
Subsort (TDISind) = TDISCONNindicat

IsTCON(t) = IsTCONl(t) or IsTCONZ(t);
IsTCONl(t) = IsTCOBreq(t) or IsTCONind

= TDATArequest ;

ofsort Bool

t) ;
IsTCON2(t) = IsTCONresp(t) or IsTCONconf (t
IsTDT(t) = IsTDTreq(t) or IsTDTind(t);
IsTDIS(t) = IsTDISreq(t) or IsTDISind(t);
IsTCONreq(t) = Subsort (t) eq TCONNECTrequest
IsTCONind(t) =
Subsort(t) eq TCONNECTindication;

*

IsTCONresp(t) = Subsort (t) eq TCONNECTresponse;
IsTCONconf(t) = Subsort(t) eq TCONNECTconfirm;
IsTDTreq(t) = Subsort(t) eq TDATArequest;
IsTDTind(t) - Subsort (t) eq TDATAindication;
IsTDISreq(t) - Subsort(t) eq TDISCONNrequest;
IsTDISind(t) =

IsTReq(t)
IsTind(t) = IsIndication(Subsort(t))

Subsort(t) eq TDISCONNindication;
= IsRequest (Subsort (t)) ;

endtype (* TSPClassifiers *)

Transport Service Primitive Selectors: The construction
of Transport Service Primitives presented above is enriched
with functions that allow to determine the value of individ-
ual parameters of TSPs. The Address parameter selectors
are defined as boolean functions. The reason for this in-
direct representation is the completeness of the equational
definition.

type TSPParameterSelectors
is TSPClassifiers
opns
,IsCallingOf,, -1sCalledOf- :

Userdata : TSP -> Octetstring
TAddress, TSP -> Bool

eqns
f orall

ofsort Bool
a, al, a2 : TAddress, d : Octetstring, t : TSP

a IsCallingOf TCONreq(a1, a2)
a IsCallingOf TCONind(a1, a2)
not(IsTCONl(t)) => a IsCallingOf t = false;
a IsCalledOf TCONreq(a1, a2)

= a eq al;
* a eq al;

= a eq a2;

142

a IsCalledOf TCONind(a1, a21 = a eq a2;
not(IsTCONl(t)) => a IsCalledOf t = false

Userdata(TCONreq(a1, a2)) = <> ;
Userdata(TCONind(a1, a2)) = <>;

= <>;

ofsort OctetString

Userdata(TC0Nresp) = <>;
Userdat a (TCONconf)
Userdata(TDTreq(d1) = d;
Userdata(TDTind(d)) - d;

= <>
Userdata(TD1Sreq) = <>;
Userdat a (TDIS ind)

endtype (* TSPParameterSelectors *)

on
Transport Service Primitive Equality: Boolean equality
on TSPs is defined as the conjunction of:

a) TSP name equality; and
b) equality of TSP parameters.

type TSPEquality
is TSPParameterSelectors
opns

eqns
f orall

-eq-, ,ne- : TSP, TSP -> Bool

al, a2, a3, a4 : TAddress, tl, t2 : TSP,
dl, d2 : OctetString

TCOlreq(a1, a2) eq TCONreq(a3, a4) =

TCONind(a1, a2) eq TCONind(a3, a4) =

TDTreq(d1) eq TDTreq(d2) = di eq d2;
TDTind(d1) eq TDTind(d2) = di eq d2;

ofsort Bool

(al eq a3) and (a2 eq a4) ;

(al eq a3) and (a2 eq a4);

not(IsTCONl(t1) or IsTDT(t1) or IsTCONl(t2) or
IsTDT(t2)) =>
tl eq t2 = Subsort(t1) eq Subsort(t2);

ti ne t2 = not(ti eq t2)
endtype (* TSPEquality *)

Transport Service Primitives Miscellaneous: IsValidT"
CONPFor represents TS requirements that apply locally to
each TC Endpoint.

type TransportServicePrimitive
is TSPEquality
opns

eqns
f orall

-1sValidTCON2For- : TSP, TSP -> Bool

tl, t2 : TSP

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ofsort Bool
t2 IsValidTCON2For tl =

IsTCONconf (t2) and IsTCONreq(t1) or
(I sTCONresp (t 2) and I sTCONind (t 1))

endtype (* TransportServicePrimitive *)

Network Service Primitives: The specification of Network
Service Primitives is very similar to the definition of Trans-
port Service Primitives above. The complete Network Ser-
vice is not specified, only the parts used in this description.

type BasicNSP
is NetworkAddress, Octetstring
sort s
NSP

opns
NCONreq, NCONind : NAddress, NAddress -> NSP
NDTreq, NDTind : Octetstring -> NSP
NCONresp, NCONconf, NDISreq, NDISind,
NRSTind, NRSTresp : -> NSP

endtype (* BasicNSP *)

type NSPSubsort
is RicherNaturalNumber
sorts

opns
NSPSubsort

NCONNECTrequest, NCONNECTindication,
NCONNECTresponse, NCONNECTconfirm,
NDATArequest, NDATAindication,
NDISCONNrequest, NDISCONNindication,
NRESETindication, NRESETresponse :

h : NSPSubsort -> Nat
IsRequest, IsIndication : NSPSubsort -> Bool
-eq-, -ne- : NSPSubsort, NSPSubsort -> Bool

-> NSPSubsort

s, si : NSPSubsort, n : Nat

h(NC0NNECTrequest) = O;
h(NC0NNECTindication) =

Succ(h(NC0NNECTrequest)) ;
h(NCONNECTresponse) =

Succ (h (NCONNECTindicat ion)) ;
h(NC0NNECTconf irm) =

Succ(h(NC0NNECTresponse)) ;
h (NDATArequest) P

Succ(h(NC0NNECTconf irm)) ;
h (NDATAindicat ion) =

Succ(h(NDATArequest)) ;
h(NDISC0NNrequest) =

Succ(h(NDATAindication)) ;
h (NDISCONNindicat ion) =

Succ(h(NDISC0NNrequest)) ;
h(NRESETindicat ion) =

Succ(Succ(h(NDISC0NNindication)) ;

ofsort Nat

h(NRESETresponse)
Succ(h(NRESETindicati0n)) ;

IsRequest(s) = Even(h(s));
IsIndication(8) Odd(h(s)) ;
s eq SI = h(s) eq h(s1);
s ne SI = not(s eq SI)

endtype (* NSPSubsort *>

ofsort Bool

type NSPClassifiers
is BasicNSP, üSPSubsort
opns

Subsort : NSP -> NSPSubsort
IsNCON, IsNCONI, IsNCON2,
IsNDT, IsNDIS, IsNRST,
IsNCONreq, IslCONind, IsNCONresp, IsNCONconf,
IsNDTreq, IslDTind, IsNDISreq, IsNDISind,
IsNRSTind, IsNRSTresp, IsNReq, IsNInd :
NSP -> Bo01

eqns
f oral1

ofsort NSPSubsort
a, al : NAddress, d : Octetstring, n : NSP

Subsort(NCONreq(a, ai)) = NCONNECTrequest;
Subsort(NCONind(a, al)) = NCONNECTindication;
Subsort(NC0Nresp) = NCONNECTresponse;
Subsort (NCONconf) = NCONNECTconfirm;
Subsort(NDTreq(d)) = NDATArequest;
Subsort(NDTind(d)) = NDATAindication;
Subsort (NDISreq) - NDISCONNrequest;
Subsort (NDISind) = WDISCONNindication;
Subsort (NRSTind) = NRESETindication;
Subsort (NRSTresp) = NRESETresponse

IsNCON(n) - IsNCONl(n) or IsNCON2(n);
ISNRST(n) = IsNRSTind(n) or IsNRSTresp(n) ;
IsNCONl(n) = IsNCONreq(n) or IsNCONind(n);
IsNCON2(n) = IsNCONresp(n) or IsNCONconf (n) ;
IsNDT (n) = IsNDTreq(n) or IsNDTind(n);
IsNDIS(n) = IsNDISreq(n) or IsNDISind(n) ;
IsNCONreq(n) = Subsort(n) eq NCONNECTrequest;
IsNCONind(n) =

IsNCONresp(n) = Subsort (n) eq NCONNECTresponse;
IsNCONconf (n) = Subsort (n) eq NCONNECTconf irm;
IsNDTreq(n) = Subsort (n) eq NDATArequest ;
IsNDTind(n) = Subsort (n) eq NDATAindication;
IsNDISreq(n) = Subsort (n) eq NDISCONNrequest ;
IsNDISind(n) =

IsNRSTind(n) = Subsort(n) eq NRESETindication;
IsNRSTresp(n) = Subsort (n) eq NRESETresponse;
IsNReq(n) = IsRequest(Subsort(n));
IsNInd(n) = IsIndication(Subsort(n))

ofsort Bool

Subsort(n) eq NCONNECTindication;

Subsort(n) eq NDISCONNindication;

endtype (* NSPClassif iers *)

type NSPParameterSelectors
is NSPClassifiers
opns

,IsCallingOf,, -1sCalledOf- :
NAddress, NSP -> Bool

143

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Userdata : NSP -> Octetstring
eqns
f orall

ofsort Bool
a, al, a2 : NAddress, d : Octetstring, n : NSP

a IsCallingOf NCONreq(a1, a2) - a eq al;
a IsCallingOf NCONind(a1, a2) = a eq al;
not(IsNCONl(n)) => a IsCallingOf n = false;
a IsCalledOf NCONreq(a1, a2) = a eq a2;
a IsCalledOf NCONind(a1, a2) = a eq a2;
not(IsNCONl(n)) => a IsCalledOf n = false

Userdata(NCONreq(a1, a2)) = <>;
Userdata(NCONind(a1, a2)) = <>;

ofsort Octetstring

Userdat a (NCONresp) 3: <>;
Userdata(NC0Nconf) <>;
Userdata(NDTreq(d)) = d;
Userdata(NDTind (d)) = d;
Userdata(ND1Sreq) = <>;
Userdata(NDISind) - <>;
Userdata(NRSTind) - <>;
Userdata(NRSTresp) = <>

endtype (* NSPParameterSelectors *)

type NSPEquality
is NSPParameterSelectors
opns

eqns
f orall

-eq-, -ne- : NSP, NSP -> Bool

al, a2, a3, a4 : NAddress,
dl, d2 : Octetstring, ni, n2 : NSP

NCONreq(a1, a2) eq NCONreq(a3, a4) =

NCONind(a1, a2) eq NCONind(a3, a4) -
NDTreq(d1) eq NDTreq(d2) - di eq d2;
not(IsNCONl(n1) or IsNDT(n1) or IsNCONl (n2) or

ofsort Bool

(al eq a3) and (a2 eq a4);

(al eq a3) and (a2 eq a4);

IsNDT(n2)) =>
ni eq n2 = Subsort (nl) eq Subsort (n2) ;

endtype (* NSPEquality *)

type NetuorkServicePrimitive
is NSPEquality
opns

eqns
forall

ofsort Bool

nl ne n2 = not(ni eq n2)

-1sValidNCON2For- : NSP, NSP -> Bool

nl, n2 : NSP

n2 IsValidNCONPFor nl =
IsNCONconf(n2) and IsNCONreq(n1) or

(IsNCONresp(n2) and IsNCONind(n1))
endtype (* NetuorkServicePrimitive *)

11.4.3.3 Auxiliary Service definitions
The following definitions are used in the definitions above.
The RicherNaturalNumber is an extension of the Natural-
Number with Odd and Even functions. A Generalldentifier
specifies an infinite number of identifiers’.

type RicherNaturalNumber
is NaturalNumbar
opns

eqns
forall

n : Nat
of sort Bool
Even(0) = true;
Even(Succ(n)) = not(Even(n));
Odd(n) = not(Even(n))

endtype (* RicherNaturalNumber *)

Odd, Even : Nat -> Bool

type GeneralIdentifier
is Boolean
sort 8

opns
Identifier

SomeIdentifier : -> Identifier
AnotherIdentifier : Identifier -> Identifier
-eq-, -ne,, -It- :
Identifier, Identifier -> Bool

eqns
f orall

ofsort Bool
a, al : Identifier

SomeIdentifier eq SomeIdentifier -
SomeIdentifier eq AnotherIdentifier(a) =

AnotherIdentifier(a) eq SomeIdentifier =

AnotherIdentifier(a) eq AnotherIdentifier(a1) =

a ne ai = not(a eq ai) ;

true;

false;

false;

a eq al;

endtype (* GeneralIdentif ier *)

11.4.3.4 Global Behaviour
The process presented below describes the relationship
between provision of TCs and usage of NCs (see TPECon-
nections), subject to Service constraints at both Service
boundaries. This process formally describes the structure
shown in Figure 11.16.
The Service constraints ensure, for instance, that the Ad-
dress component of an interaction at t (n) is a member of
the set tas (nas), that the identification of a Connection by
means of a Connection Endpoint Identifier is unique within

In this type, -It- has been included to ease checking with tools.

144

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

the scope of any given Address, that the Entity is ready to
accept and support at least one Connection, and so on.
The TS constraints are expressed by processes TClden-
tification and TPETCAcceptance: the former is imported
from the TS formal description, the latter is very similar to
the TCAcceptance process of the TS formal description,
but for the presence of a bound on the set of Transport
Addresses where TCs may be accepted. (This bound is
necessary here to represent the fact that the Transport En-
tity is confined within an end-system.) The NS constraints
are similarly expressed by processes NCldentification and
TPENCAcceptance.

behaviour
TPEConnections [t , nl

GlobalConstraints [t , nl

(
(

I I

1
I I I

(

I I

1

TCIdentif ication [t]

TPETCAcceptance [t] (tas)

NCIdentif ication [nl

TPENCAcceptance [n] (nas)

1

where

11.4.3.5 Service Constraints
Connection Identification Data Types: No structure of
Connection Endpoint Identifiers is defined by the TS and
NS standards. The value SomeTCEl is may also be under-
stood as a 'null' value in the case that a Transport Connec-
tion Endpoint Identifier is not required.
TCEndpointIdentifier specifies an infinite number of TC
Endpoint Identifiers to be represented. TCEIdentification
presentsTC Endpoint Identifiers that are global to the whole
TS boundary: each of them is a pair <TAddress, TCEI>.
See the definition of Pair in 11.4.3.9, and the definition of
Generalldentifiei in 1 1.4.3.2. TCldentifications presents
finite sets of global TC Endpoint Identifiers.

type TCEndpointIdentifier
is GeneralIdentifier renamedby
sortnames

opnnames
TCEI for Identifier

SomeTCEI for SomeIdentifier
AnotherTCEI for AnotherIdentifier

endtype (* TCEndpointIdentifier *)

type TCEIdentification
is Pair actualizedby TAddress,
TCEndpointIdentif ier using

sortnames
TAddress for Element
TCEI for OtherElement
Bool for FBool
TId for Pair

TId for Pair
TA for First
TCEI for Second

opnnames

endtype (* TCEIdentification *)

type TCEIdentifications
is Set actualizedby TCEIdentification using
sortnames
TId for Element
Bool for FBool
TIds for Set

endtype (* TCEIdentifications *)

The definition of NCEndpointldentifiers is very similar to
that of TC Endpointldentifiers.

type NCEndpointIdentifier
is GeneralIdentifier renamedby
sortnames

opnnames
NCEI for Identifier

SomeNCEI for SomeIdentifier
AnotherNCEI for AnotherIdentifier

endtype (* NCEndpointIdentifier *>
type NCEIdentification
is Pair actualizedby NetworkAddress,

sortnames
NCEndpointIdentifier using

NAddress for Element
NCEI for OtherElement
Bool for FBool
NId for Pair

iiId for Pair
NA for First
NCEI for Second

opnnames

endtype (* NCEIdentification *)

type NCEIdentifications
is Set actualizedby NCEIdentification using
sortnames
NId for Element
Bool for FBool

145

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NIds f o r Set
endtype (* NCEIdentifications *)

Connection Identification Processes: Processes TCI-
dentification and NCldentification prescribe that at no
Transport or Network address may any Endpoint Identifier
be assigned to more than one Connection at any given time.
Any two distinct instances of TConnection that concurrently
access the same TSAP are distinguishable by the TS user.
This is achieved by means of the TC Endpoint Identifier
(TCEI), which is passed together with every Service Primi-
tive at every TSAP. It is to be required, therefore, that:

a) at any given TSAP, no TCEl may be assigned to more
than one TConnection at any given time; and

b) at each TSAP, every TConnection employs the same
TCEl for the whole lifetime of the TC it represents.

While the latter constraint can be specified within the def-
inition of TConnection, the former constraint has a more
global scope, and is represented by process TCldentifica-
tion as follows.
Track is kept of the TCEP identifiers in use, for each TSAP,
by means of the parameter Use, which is a finite set of
pairs of sort Tld = <TAddress, TCEb. (The type definition
TCEldentifications above describes such sets.)
Use is initially empty. A pair <ta, tcei> is to be in Use if,
and only if, tcei is assigned to some TC that accesses the
TSAP having address ta.
Process TCldent allows any T-CONNECT request or indi-
cation to be passed at any given TSAP of address ta only
with such tcei that the pair <ta, tceb is not in Use. No other
TÇP is constrained but, upon execution of a T-Disconnect
Primitive, the associated <ta, tceb is removed from Use.
NC identification at the Network Service boundary is very
similar.
NOTE - The following technical detail is to be taken into account:
Znsert(e,s) = {e} U s. Therefore insert(e,s) = s whenever
e E 8 .

process TCIdentification[t] : noexit :=
TCIdent [t] ({) of TIds)
endproc (* TCIdentification *)

process TCIdent [t] (Use : TIds) : noexit :=
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

[IsTCONl (tsp) implies
(TId(ta, tcei) NotIn Use)] ;

(let ti : TId = TId(ta, tcei)

[n o t (ï s ~ ï S (t s p)) l ->

[IsTDIS(tsp)l ->

i n

TCIdent [t] (Insert (ti, Use))
CI

TCIdent [t] (Remove(ti, Use)))
endproc (* TCIdent *)

process NCIdentificationCn] : noexit :=
NCIdent [n] ({) of NIds)
endproc (* NCIdentification *)

process NCIdent [n] (Use : NIds) : noexit : =
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNCONI (nsp) implies
(NId(na, nce i) NotIn Use)] ;

(let n i : NId - NId(na, nce i)

[not (IsNDIS(nsp))] ->
i n

NCIdent [n] (Insert (n i , Use))
[I

[IsNDIS(nsp)] ->

endproc (* NCIdent *)
NCIdent [n] (Remove (ni , Use)))

Connection Acceptance: At any time the Protocol Entity is
allowed to accept establishment of new Connections at an
only finite set of Connection Endpoints. At the TS bound-
ary, this is described by process TPETCAcceptance, which
internally chooses a finite set tias of <ta, tceb pairs be-
fore engaging in any interaction. If the interaction starts a
new TC, the Endpoint where the interaction occurs must be
among those represented by tias. Clearly, the addresses
of elements of tias must be accessible by the Entity. This is
specified by using the function Addresses, defined in the
data type TPETCAcceptance, that when applied to a set
tids of global TCEIs returns the set of addresses that are
addresses of elements of tids.
Upon each choice of tias, however, the set of Endpoints
where new Connections can be started is actually a subset
of tias, because of the presence of a separate constraint
on TC identification. Precisely, a new Connection can only
be started with a pair <ta, tceb that is in tias but not in
Use. See process TCIdentification above. Upon each
choice of tias, therefore, the set of Endpoints where new
Connections can be started is represented by the difference
tias - Use.
The Protocol Entity is allowed internal non-determinism in
the dynamic choice of which and how many Endpoints may
be allocated to new Connections, provided the following
minimal functionality requirement is met: if no TC is active,
the Entity must be able to accept at least one TC, i.e. the
subset of tias where new TCs can be actually accepted
must be non-empty in this case.
Similarly, the following constraints are described by process
TPENCAcce ptance:

a) NS Primitives may only be exchanged at NS addresses
accessed by the Entity; and

b) at all times at least one NC Endpoint is provided; this
may allow an N-CONNECT request or indication to oc-
cur.

146

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

The TPENCAcceptance definitions are very similar.
NOTE - In fact, the minimal functionality requirement is equivalent
to the simpler requirement that tias be non-empty in any case, if
the constraint imposed by TCldentification is taken into account.
This is so because:

a) if no TC is active, then Use is empty, thus the subset of tias
where new TCs can be accepted is tias itself; whereas

b) if some TC is active, then the choice of a non-empty tias still
allows that the subset where new TCs are accepted could be
empty, i.e. whenever tias is included in Use.

type TPETCAcceptance
is TAddresses, TCEIdentifications
opns
Addresses : TIds -> TAddresses

eans
&rail

ta : TAddress, tcei : TCEI, tids : TIds
ofsort TAddresses
Addresses({)) = {I;
Addresses(Insert(TId(ta, tcei) , tids)) =

Insert (ta, Addresses(tids))
endtype (* TPETCAcceptance *)

process TPETCAcceptance [t]

choice tias : TIds [I
[tias ne and

(tas : TAddresses) : noexit:=

(Addresses(tias) IsSubsetOf tas)] ->
i ;
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

[ta IsIn tas and (IsTCONl(tsp) implies
(TId(ta, tcei) IsIn tias))] ;

TPETCAcceptance [t] (tas)
endproc (* TPETCAcceptance *)

type TPENCAcceptance
is NAddresses, NCEIdentifications
aP"S -

Addresses : NIds -> NAddresses
eqns
f oral1

ofsort NAddresses
na : NAddress, ncei : NCEI, nids : NIds

Addresses({>) = c) ;
Addresses(Insert(NId(na, ncei) , nids)) =

Insertha, Addresses(nids))
endtype (* TPENCAcceptance *)

process TPENCAcceptance [n]

choice nias : NIds 11
[nias ne I 3 and

(nas : NAddresses) : noexit:=

(Addresses (nias) IsSubsetOf nas)]
i ;
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[na IsIn nas and (IsNCONl(nsp) implies
(NId(na, ncei) IsIn nias))] ;

TPENCAcceptance [n] (nas)
endproc (* TPEIiCAcceptance *)

1 1.4.3.6 Protocol Constraints
General: TPEConnections describes the relationship be-
tween provision of TCs and usage of NCs. lt consists of
the unsynchronised, i.e. independent, parallel composition
of an indefinite number of instances of process TPECon-
nection. The latter describes the relationship between,
and constrains the occurrence of, TSP and NSP interac-
tions that relate to a single TC and supporting NC, for their
lifetime. These interactions include block transfer actions.
UniquelocalReferences ensures for all Connections the
use of unique local references in blocks2.

process TPEConnections [t, n] : noexit :=
TPEConnection Et, n]

i; TPEConnections [t, nl
endproc (* TPEConnections *)

I I I

Provision of a Transport Connection: TPEConnection
is decomposed into three processes. See figure 1 1.17.

a) Constraints at the t gate only: these are imported from
the TS Formal Description. Process TCEP specifies the
use of the same pair <TSAP Address, TCEP Identifier>
until a T-DISCONNECT Primitive occurs, and the local
TS ordering requirements on TSPs relating to a single
TC.

b) Constraints at the n gate only: process NCEP speci-
fies the use of the same pair <Network Address, NCEP
Identifier> until an N-DISCONNECT Primitive occurs,
and the local NS ordering requirements on the occur-
rence of NSPs relating to a single NC.

c) Constraints that relate the events at t to those at n and
vice versa; these constraints are formalized by pro-
cess RelationTSPandNSP, which describes the rela-
tionships between TSPs, blocks, and NSPs, including
the response to Protocol errors.

NOTE - Termination of both of the processes that represent Vie
ends of the Connection is a clearly sufficient representation of the
end of the Connection lifetime: this motivates the Use of the [> exit
construct below.

process TPEConnection[t , n] : exit:=
TCEP [t] (TSUCalling) [I TCEP [t] (TSUCalled)

I Ctl I
*in this process, I has been included to ease checking with tools.

147

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

(RelationTSPandNSP [t, n] [> exit)
I Cnl I
NCEP [nl (NSUCalling) [I NCEP [n] (NSUCalled)
endproc (* TPEConnection *)

NOTE - Both processes may terminate at any time: the end of
the local (I.e. at a TCEP) lifetime of the TC is actually determined
by the local ordering of Service Primitives.

Service UserRoles are ‘calling’ and ‘called’, and are de-
fined using Doublet, which is a sort with two distinct values.

type TSUserRole
is Doublet renamedby
sortnames

opnnames
TSUserRole for Doublet

TSUCalling for One
TSUCalled for Two

endtype (* TSUserRole *)

type NSUserRole
is Doublet renamedby
sortnames

opnnames
NSUserRole for Doublet

NSUCalllng for One
NSUCalled for Two

endtype (* NSUserRole *)

Service Constraints: The definitions that relate to the TS
boundary are presented, followed by similar NS definitions.

process TCEP[t] (role : TSUserRole) : exit :=

I I

I I

endproc (* TCEP *)

TCEPAddress [t]

TCEPIdentif ication [t]

TCEPSPOrdering [t] (role)

process NCEP [n] (role : NSUserRole) : exit : =
NCEPAddress [nl

NCEPIdentif ication [n]

NCEPSPOrdering [nl (role)

I I

I I

endproc (* NCEP *)

Throughout the lifetime of a Transport Connection the same
Identification, a pair CTAddress, TCEb, is used. Its value
is determined on the first event, in cooperation with the TS
User, and thereafter is constant.

process TCEPAddress [t] : exit : =
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP ;
ConstantTA [t] (ta) [> exit
endproc (* TCEPAddress *)

process ConstantTA[tl(ta : TAddress) : noexit:=
t !ta ?tcei : TCEI ?tsp : TSP ;
ConstantTA [t] (ta)
endproc (* ConstantTA *)

process TCEPIdentification[tl : exit:=
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP ;
ConstantTCEI [t] (tcei) [> exit
endproc (* TCEPIdentification *)

process ConstantTCEI [t] (tcei : TCEI) : noexit :=
t ?ta : TAddress !tcei ?tsp : TSP ;
ConstantTCEI [t] (tcei)
endproc (* ConstantTCEI *)

process NCEPAddress [n] : exit : =
n ?na : NAddress ?ncei : NCEI ?nsp : NSP ;
ConstantNA In] (na) [> exit
endproc (* NCEPAddress *)

process ConstantNA in] (na : NAddress) : noexit : =
n !na ?ncei : NCEI ?nsp : NSP ;
ConstantNA [n] (na)
endproc (* ConstantNA *)

process NCEPIdentif ication[n] : exit : =
n ?na : NAddress ?ncei : NCEI ?nsp : NSP ;
ConstantNCEI [n] (ncei) [> exit
endproc (* NCEPIdentification *)

process ConstantNCEI [n] (ncei : NCEI) : noexit :=
n ?na : NAddress !ncei ?nsp : NSP ;
ConstantNCEI [n] (ncei)
endproc (* ConstantNCEI *)

TCEPSPOrdering: This specifies the constraints on the
possible sequences of TSPs at one TC Endpoint, applied
to a single TC. The TC establishment phase at a TC End-
point is specified as the sequence of TCEPConnectl and
TCEPConnect2. This is due to the possible release of the
TC even before (thus preventing) successful establishment
of the TC, but only after the beginning of the TC lifetime.
The T-CONNECT Primitive executed in TCEPConnectl is
relevant information for TCEPConnect2, as constraints ap-
ply to the T-CONNECT responsdconfirm that depend on
the T-CONNECT indicationhequest.
Successful TC establishment enables entering the data

148

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

transfer phase, which at each TCEP is specified by TCEP-
DataTransfer. The behaviour in this phase is independent
of the rdle of the TCEP.
TC release at a TC Endpoint consists of a T-Disconnect
Primitive execution, as represented by TCEPRelease. This
can occur at any time after !he first T-CONNECT.
NOTE - The last alternative in the definition of TCEPSPOrderlng
caters for the possibility that the Network Connection is released
without execution of a TSP at this TCEP.

process TCEPSPOrdering [t] (role : TSUserRole) :

TCEPConnectl [t] (role)
exit : =

>> accept tsp : TSP in
(

(
TCEPConnectP [tl (tsp)

>>
TCEPDataTransf er [t]

1
c>
1
TCEPRelease [t]

[I [role eq TSUCalledl -> exit
endproc (* TCEPSPOrdering *)

process TCEPConnectl [tl

[role eq TSUCalling] ->

[IsTCONreq(tsp) and (ta IsCallingOf tsp)] ;

(role : TSUserRole) : exit(TSP):*

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

exit (tsp)
Cl
[role eq TSUCalled] ->
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

exit (tsp)
[IsTCONind(tsp) and (ta IsCalledOf tsp)] ;

endproc (* TCEPConnectl *> 0
process TCEPConnect2[t] (tspl : TSP) : exit :=
t ?ta : TAddress ?tcei : TCEI ?tsp2 : TSP

endproc (* TCEPConnectP *)
[tsp2 IsValidTCONZFor tspl]; exit

See the definition of the data type TransportServicePrim-
itive for the definition of the boolean function IsValidT-
CONPFor.
The following describes the Data Transfer Phase and Re-
lease Phase at a TCEP.

process TCEPDataTransfer [t] : noexit :=
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

[IsTDT(tsp)] ;

ISO/IEC TR 10167 : 1991 (E)

TCEPDataTransfer [tl
endproc (* TCEPDataTransfer *)

process TCEPRelease [t] : exit : =
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

exit
endproc (* TCEPRelease *)

CIaTDIS(t sp)l;

The definition of NCEPSPOrdering is similar to the defi-
nition of TCEPSPOrdring. The most significant difference
between both definitions is found in the process NCEPData-
Transfer where N-RESET Primitives may occur between
successive N-DATA Primitives.

process NCEPSPOrdering [n]

NCEPConnectl Cnl (role)
(role : NSUserRole) : exit:=

>> accept nsp : NSP in
(

(
NCEPConnect2 [nl (nsp)

NCEPDataTransf er [n]
>>

1
c>
1
NCEPRelease in]

[I [role eq NSUCalledl -> exit
endproc (* NCEPSPOrdering *)

process NCEPConnectl [n]

[role eq NSUCalled] ->

[IsNCONreq(nsp) and (na IsCallingOf nsp)] ;

(role : NSUserRole) : exit(NSP):=

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit (nsp)
Cl
[role eq NSUCalled] ->

[IsNCONind(nsp) and (na IsCalledOf nsp)] ;
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit (nsp)
endproc (* NCEPConnectl *)

process NCEPConnect2 [nl (nspl : NSP) : exit : =
n ?na : NAddress ?ncei : NCEI ?nap2 : NSP

exit
endproc (* NCEPConnect2 *)

[nsp2 IsValidNCONPFor nspl] ;

process NCEPDataTransfer [n] : noexit :=
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

NCEPDataTransf er [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDT(nsp)] ;

CI

[IsNRSTind(nsp)] ;

149

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

NCEPDataTransf er [n]
endproc (* NCEPDataTransfer *)

[IsNRSTresp (nsp) 1 ;

process NCEPRelease[n] : exit :=
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit
endproc (* NCEPRelease *>

[IsNDIS(nsp)l;

Protocol Constraints: The process RelationTSPandNSP
describes the constraints between TSPs and NSPs, which
may contain blocks. It consists of four parts:

a) process TNCNProvision describes constraints relating
to the assignment of the TC Connection to the NC
Connection. It deals with T-CONNECT request, T-
CONNECT indication, N-CONNECT request and N-
CONNECT indication Service Primitives.

b) process BlockHandling relates TSPs through valid
blocks to NSPs. It specifies which NSPs that carry
blocks should occur after a given TSP and vice versa.
It deals with N-CONNECT response, N-CONNECT in-
dication, T-DATA and N-DATA Service Primitives.

c) process ErrorDetectionAndHandling specifies the de-
tection of blocks that are invalid or constitute Protocol
errors. Furthermore it specifies what actions are to be
taken in case of any error. It deals with N-RESET and
N-DATA Service Primitives.

d) process TCNCRelease specifies the de-assignment
of Transport and Network Connection. It deals with
T-DISCONNECT and N-DISCONNECT Service Primi-
tives.

I
process RelationTSPandNSP [t , n] : noexit : = I (
BlockHandling [t, n]

ErrorDetectionAndHandling [t , nl
I I I)
I I RelationTCandNC [t, n]
endproc (* RelationTSPandNSP *)

(*---

RelationTCandNC describes the constraints relating to as-
signment of the TC to an NC. It may either create a new
Network Connection as a TC initiator or accept a Network
Connection as a TC responder. In both cases, the lifetime
of the TC will be directly related to the lifetime of the corre-
sponding NC.
Implementations will also relate the parameters of corre-
sponding 1-CONNECT and N-CONNECT Primitives, e.g.
addresses or QoS values. This is not formally described,

I

however, since such information cannot be derived from the
informal description.

process RelationTCandNCCt, nl : noexit :=
(TCNCProvision[t, n] >> IgnoreUntilDIS [t , ni>
[> TCNCRelease It, nl
endproc (* TCNCProvision *>

A Network Connection may be created on request of the TS
user or on request of the NS provider.
NOTE - The possibility that a Network Connection is accepted,
but does not result in a T-CONNECT indication is catered for by
the ability of an Entity to initiate a NCrelease at any time.

process TCNCProvision [t, n] : exit :=
TCNCInitiator [t, n] [I TCNCResponder [t, nl
endproc (* TCNCProvision *>
process TCNCInitiator [t , n] : exit : =
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit
endproc (* TCNCInitiator *>

[IsTCONreq(tsp) 1 ;

[IsNCONreq(nsp)] ;

process TCNCResponder [t , n] : exit : =
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

exit
endproc (* TCNCResponder *)

[IsNCONind(nsp)] ;

[IsTCOWind(tsp) 1 ;

TCNCRelease describes the constraints relating to de-
assignment of the TC from the underlying NC. A Transport
Connection release can be initiated in three, possible con-
current ways. The fact that two or more of these cases
may occur independently is reflected by the interleaving of
the processes. The Service constraints ensure that every
Connection is closed only once:

a) UserRelease describes the release initiated by the
Transport Service User; and

b) LocalRelease describes the release initiated by the lo-
cal Transport Entity; and

c) RemoteRelease describes the release initiated by the
remote Transport Entity or by the NS provider. No dis-
tinction can be made between a NS provider initiated
disconnect and a remote Entity initiated disconnect.

150 I

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

*> ...
process TCNCRelease [t , nl : noexit : =
UserRelease [t, n]

LocalRelease [t, n]

RemoteRelease [t , n]
endproc (* TCNCRelease *)

III

I I I

The Transport Service User may initiate a release by the
T-DISCONNECT Request Service Primitive.

process UserReleaseCt , nl : noexit := I
, t ?ta : TAddress ?tcei : TCEI ?tsp : TSP
1
I [IsTDISreq(tsp)] ;

' endproc (* UserRelease *>
n ?na : NAddress ?ncei : NCEI !NDISreq ; stop

The release initiated by the remote Entity or by the NS
provider is indicated to the Entity using an N-DISCONNECT
indication Service Primitive. The TS user is informed using
a T-DISCONNECT indication.

process RemoteRelease [t , n] : noexit : =
n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDISind (nsp)] ;
t ?ta : TAddress ?tcei : TCEI !TDISind ; stop
endproc (* RemoteRelease *>

An entity may at any time decide to initiate release of the
Transport Connection. This includes the following cases
in which no Transport or Network Service Primitives, other
than DISCONNECT, are allowed:

a) after expiry of the timer set on sending a TCR block;

b) after an N-RESET response.
and

process LocalRelease [t , n] : noexit : =
t ?ta : TAddress ?tcei : TCEI !TDISreq ; stop

n ?na : NAddress ?ncei : NCEI !NDISreq ; stop
endproc (* ReleaseTC *>
I I I

BlockHandling: This process relates TSPs and NSPs
through blocks. The TCR, TCC and TCA blocks are termed

'direct'. Non-direct blocks are TDT which is handled by Dat-
aBlackTransfer. and TBR which is handled by TBRTrans-
fer. The usage of the unsynchronised parallel operator is
justified by the fact that the sets of events in which the par-
allel components may engage are disjoint. Requirements
on sent blocks, for example the maximum length of a block,
are represented by SendBlockConstraints

> ---*

process BlockHandling[t, n] : noexit:=
(

I I I

I I I

1
I Cnl I
SendBlockConstraints [n]

endproc (* BlockHandling *>

DirectBlockTransf er [t , nl

DataBlockTransf er Et, n]

TBRTransfer [n 1

The Calling and Called addresses of T-CONNECT Primi-
tives should be related to the corresponding optional exten-
sion addresses of the corresponding TCR and TCA blocks.
The information presented in the informai description is
however not sufficient to describe formal constraints relating
to this relationship. The two components of DirectBlock-
Transfer have disjoint interaction sets. This justifies their
unsynchronised parallel composition.
NOTE - Process DirectUp contains an incompatibility beiween
T.70 and IS0 Transport Class O. In Transport Class O, aiter receipt
of a TCC block, the connection must be released, while in T.70
another TCR block may be sent.

process DirectBlockTransf er [t , n] : noexit :I
DirectUp [t, n] I I I DirectDown [t, n]
endproc (* DirectBlockTransfer *)

process DirectDounCt, n] : noexit:=
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

DirectDown [t, nl

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

DirectDown [t, n]
endproc (* DirectDown *>

[IsTCONreq(tsp)] ;

[IsNDTreq(nsp) and IsTCR(Userdata(nsp) 11 ;

Cl

[IsTCONresp (t sp)] ;

[IsNDTreq(nsp) and IsTCA(Userdata(nsp) 11 ;

process DirectUpLt, nl : noexit:=
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and IsTCR(Userdata(nsp))] ;

151

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

EC TR 10167 : 1991 (E) IS01

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP
[IsTCONind(t sp) 1 ;

DirectUp Et, n]

n ?na : NAddress ?ncei : NCEI ?nap : NSP

t ?ta : TAddress ?tcei : TCEI !TCONconf ;
DirectUp [t, n]

n ?na : PAddress ?ncei : NCEI ?nsp : NSP

Cl

[IsNDTind(nsp) and IsTCA(Userdata(nsp))I ;

CI

[IsNDTind(nsp) and IsTCC(Userdata(nsp))];
(
t ?ta : TAddress ?tcei : TCEI !TDISind ;
DirectUp [t, n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

DirectUp [t, n]

[I

[IsNDTind(nsp) and IsTCR(Userdata(nsp))I ;

)
endproc (* DirectUp *)

A data structure is needed for the description of the con-
straints that relate to transfer of data blocks:
This data structure is used for the sequence of TSDUs con-
veyed by FDATA request and for that of TSDUs to be
(possibly) mnveyed by T-DATA indication.
Basic operations on these sequences follow a FlFO disci-
pline. Thus the definition of BasicTSDUS is presented as
an instanoe of a generic, i.e. parameterized Queue defini-
tion, which introduces the usual operationson FlFO queues.
The basic definition is then enriched in TSDUS with func-
tions that, Wing into account that queue elements are octet
strings, allow one to manipulate the top and the bottom el-
ement of a queue, using standard Octetstring operations.
These functions enable the description of segmenting and
reassembling in a straightforward way (see process Dat-
aBlockTransfer):

a) ReplaceTop relates to the segmenting of the earliest
TSDU ob TSDUdown into outgoing TDT blocks; and

b) Addsegment relates to the reassembling of the latest
TSDU of TSDUup from incoming TDT blocks.

The definition of TSDUS is based on a generic description of
Queue (see 11.4.3.9) to which the operations ReplaceTop
and Addsegment are added.

type BasfcTSDUS
is Queue actualizedby Octetstring, Boolean using
sortnames
Octetstring for Element
TSDUS for Queue
Boo1 for FBool

endtype (* BasicTSDUS *)

type TSDUS
is BasicTSDUS
opns
ReplaceTop : Octetstring, TSDUS -> TSDUS
Addsegment : Octetstring, TSDUS -> TSDUS

eqns
f oral1

ofsort TSDUS
S. si, t : Octetstring, q

ReplaceTop(t , Empty)
ReplaceTop(t, Add(s, Empty
Add(t, Empty) ;

TSDUS

ReplaceTop(t, Add(s, Add(s1, q))) =
Add(s, ReplaceTop(t, Add(s1, 9)));

Addsegment (s, Empty) = Empty;
AddSegment(s, Add(s1, q)) = Add(s ++ sl, q)

endtype (* TSDUS *)

DataBlockTransfer is split into TransferDown which de-
scribes the segmenting of a T-DATA request into outgoing
TDT blocks and their transfer through the Network Service,
and Transferup which describes the reassembling of in-
coming TDT blocks into TSDUs and their transfer to the TS
user by means of T-DATA indication. The initial value of
the parameter of Transferup enables this process to start
reassembling of incoming TDT blocks. The value of et in
TDT blocks denotes presence of an End-Of-TSDU delimiter.
No internal non-determinism is described in the following
processes. The internal non-determinism on the size of out-
going data blocks, and the constraint that follows from the
related negotiation, are described in process SendBlock-
Constraints.

process DataBlockTransf er [t , n] : noexit : =
Transferup it, nl (Add(<>, Empty))

I I I TransferDown [t, n] (Empty)
endproc (* DataBlockTransfer *)

process Transf erDown It, n]
(down : TSDUS) : noexit:=

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP

TransferDown [t , n] (Add(Userdata(tsp) , down))
[IsTDTreq(tsp) 1 ;

CI
(
choice et : EOTsdu, ud, rd, s : Octetstring [I

[(rd ++ ud IsTopOf down) and
(s Encodes TDT(et, ud))] ->
n ?na : NAddress ?ncei : NCEI !NDTreq(s) ;
(

[et eq yes] ->

CI
[et eq no1 ->

TransferDown [t , n] (RemoveTop(down))

TransferDown [t , n]
(ReplaceTop (rd , down))

152

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

1
1
endproc (* TransferDown *)

process Transf erUp [t , n] (up
(

TSDUS) : noexit:=

choice et : EOTsdu, ud : OctetString []
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[TDT(et , ud) Decodes Userdata(nsp)l ;

[et eq yes] ->
(

Transferup [t, n]
(Add(<> , Addsegment (ud, up)))

CI
[et eq no1 ->
Transf erUp [t , n] (Addsegment (ud, up))

)
I
[I

(choice ud : Octetstring [I
Cud IsTopOf up and
not(RemoveTop(up) eq Empty)] ->
t ?ta : TAddress ?tcei : TCEI !TDTind(ud) ;
Transferup [t , n] (RemoveTop(up)

>
>
endproc (* Transferup *)

The process TBRTransfer allows transmission or receipt
of a TBR block at any time.

process TBRTransf er [n] : noexit :=
n ?na : NAddress ?ncei : NCEI ?nep : NSP

[IsTBR(Userdata(nsp))] ;TBRTransfer [nl
endproc (* TBRTransfer *)

SendBlockConstraints specifies that the size of an outgo-
ing TDT Block shall not exceed the maximum TPDU size
negotiated in the Connection establishment.

process SendBlockConstraints[n] : noexit:=
IgnoreUntilTCA [n]

(choice b : Block, ds : DTSize
c>

Cl
[ds IsDTSizeOf b and IsTCA(b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

MaxLengthSend [n] (ds))
[Userdata(nsp) Encodes b] ;

endproc (* SendBlockConstraints *)

procesa MaxLengthSend[n](ms : DTSize) : noexit:=
IgnoreUntilNDTreq [n]

c>
n ?na : MAddress ?ncei : NCEI ?nsp : NSP

[IsNDTreq(nsp) and

MaxLengthSend [n] (ms)
endproc (* MaxLengthSend *)

(Length(Userdata(nsp)) le DTSize(ms))I ;

ErrorDetectionAndHandling: This process specifies er-
ror detection, determination whether or not a block is valid
block, and error handling. Three sources of errors can be
identified:

a) errors detected by the Network Service Provider result-

b) errors detected by the peer Entity resulting in the receipt

c) errors detected by this Entity.

ing in an N-RESET Primitive: and

of a TBR block; and

For each of these sources a process specifies the corre-
sponding constraints on error detection and error handling.
The process NODIS specifies that a normal release is never
an error.

process ErrorDetectionAndHandling[t , n] :
noexit : =

I I

I I

NetworkDetectedErrors [t , n]

PeerEntityDetectedErrors [t, nl

EntityDetsctedErrors [t , n]
endproc (* ErrorDetectionAndHandling *)

The distinction between error detection and error handling
is represented by the use of the >> operator. An Network
detected error is always indicated to the NS user using an
N-RESET indication Primitive which is answered by an
N-RESET response and the Connection is released.

process NetworkDetectedErrors [t , n] : noexit :=
NetworkErrorDetect [n]

I I I
(IgnoreTSPbutDIS [t] [> exit)

>> NetworkErrorHandling [t , n]
endproc (* NetworkDetectedErrors *>
process NetworkErrorDetect[n] : exit:=
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

endproc (* NetworkErrorDetect *)
[IsNRSTind(nsp)] ; exit

153

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/ EC TR 10167 : 1991 (E)

process NetworkErrorHandling [t , n] : noexit : =
n ?na : NAddress ?ncei : NCEI !NRSTresp ; stop
endproc (* NetworkErrorHandling *)

Whenever a TBR block is received, the Connection is re-
leased according to the procedure in 1 1.2.5.2.

process PeerEntityDetectedErrors[t, nl : noexit:=

I I I
PeerEnt ityErrorDetect [n]

(IgnoreTSPbutDIS [t] [> exit)

PeerEntityErrorHandling [t , nl
>>

endproc (* PeerEntityDetectedErrors *)

process PeerEntityErrorDetect[nl : exit:=
n ?na : NAddress ?ncei : NCEI ?nsp : ISP

endproc (* PeerEntityErrorDetect *>
[IsTBR(Userdata(nsp))] ; exit

process PaerEntityErrorHandlingCt, n] : noexit:=
stop
endproc (* PeerEntityErrorHandling *>
(*---

All other errors are detected by the TP Entity. To be able to
distinguish them, a data structure ErrorType is introduced.

type ErrorType
is TenTuplet renamedby
sortnames

opnnames
ErrorType for TenTuplet

EncodingError for One
ErrorAfterTCR for Two
ErrorAfterNCONresp for Three
ErrorAfterTDT for Four
ErrorAfterTCC for Five
ErrorAf t erTCA for Six
IllegalDTSize for Seven
IllegalUserdataSize for Eight
EmptyTDT for Nine
IllegalParameter for Ten

endtype

EntityDetectedErrors deals with all errors, except for N-
RESET and received TBR blocks. EntityErrorDetect ex-
ports two values of sorts Errorvpe and OctetString re-
spectively. Both values are used when sending TBR blocks.

process EntityDetectedErrorsCt, n] : noexit:=
Ent ityErrorDet ect Cnl

I I
(

c>
1

I I I
(

c>
1

NoNRST [nl I I NoTBRReceived [nl

exit (any ErrorType, any OctetString)

IgnoreTSPbutDIS [t]

exit (any ErrorType, any Octetstring)

>> accept err : ErrorType, s : OctetString in
EntityErrorHandling [t, nl (err, s)

endDroc (* EntitvDetectedErrors *)

The Entity detected errors can be divided into three groups:

a) receipt of a block which constitutes a Protocol error; and
b) receipt of a block with a incorrect size; and
c) receipt of a syntactically incorrect block.

process EntityErrorDetect [n] :
exit(ErrorType, Octetstring):=

Orderingconstraint s [nl
I1 Sizeconstraints [nl
I I InvalidBlockConstraints En]

endproc (* EntityErrorDetect *>

All constraints on received blocks are always present. This
justifies the full synchronisation between the different error
detection processes. Each process may be aborted by the
occurrence of an error in one of the other processes. This
is represented by '[> OtherError()'.
NOTE - When the number of values of sort ErrorType is greater
than the number of error detection processes, all these processes
may exit at any time.
The process OrderingConstraints detects the failure
cases mentioned in 11.1 .7.23.

process OrderingConstraints [n] :
exit(ErrorType, OctetString):=
(AfterTCRSend [n] [> OtherError (ErrorAfterTCR))

3For completeness it would be necessary to add processes to
detect if the source reference and destination reference of succes-
sive Blocks are correct.

154

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

I I

I I

I I

I I

I I

(AfterTCASend En] [> OtherError (ErrorAfterTCA))

(AfterTDTSend [n] [> OtherError (ErrorAfterTDT))

(AfterTCCSend [n] [> OtherError (ErrorAfterTCC))

(EmptyTDT [n] [> OtherError (EmptyTDT))

(

c>
1

Af terNCONresp [n]

OtherError (ErrorAfterNCONresp)

endproc (* OrderingConstraints *)

After sending a TCR the receipt of a block which is not a
TCC, TCA or TBR constitutes an error.

process AfterTCRSendCn] :

I gnor eunt i 1 S endTCR [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit (ErrorType, OctetString) :=

c>
[IsNDTreq(nsp) and IsTCR(Userdata(nsp) 11 ;

(n ?na : NAddress ?ncei : NCEI ?nsp : NSP
(IgnoreUntilNDTind [n] [>

[IsNDTind(nsp) and (IsTCA(Userdata(nsp))
or IsTCC(Userdata(nsp)) or

IsTBR(Userdata(nsp)))I ;
Af terTCRSend [n]

[I
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and not(IsTCA(Userdata(nsp))
or IsTCC(Userdata(nsp)) or

IsTBR(Userdata(nsp))) I ;
exit (ErrorAfterTCR, Userdata(nsp))))

endproc (* AfterTCRSend *)

After sending a TCA, the receipt of a block which is not a
TDT or TBR constitutes an error.

process AfterTCASendin] :

IgnoreUntilSendTCA [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit(ErrorType, OctetString):=

c>
[IsNDTreq(nsp) and IsTCA(Userdata(nsp))];
(IgnoreUnt ilNDTind [n] [>
(n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and (IsTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))I ;

Af terTCASend [n]
CI

n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and not (IsTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))I ;

exit (ErrorAfterTCA, Userdata(nsp))))
endproc (* AfterTCASend *)

After sending a TDT, receipt of a block which is not a TDT
or TBR is an error.

process Af terTDTSend [n] :

IgnoreUnt ilSendTDT [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit(ErrorType, OctetString):=

[IsNDTreq (nsp) and IsTDT(Userdat a(nsp)) 1 ;
(IgnoreUntilNDTind [n] [>
(n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and (IsTDT (Userdata(nsp))
or IsTBR(Userdata(nsp)))] ; AfterTDTSend [n]

CI
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and not (IsTDT (Userdat a(nsp))
or IsTBR(Userdata(nsp)))I ;

exit (ErrorAfterTDT, Userdata(nsp))))
endproc (* AfterTDTSend *)

After sending a TCC, receipt of a block which is not a TCR
or TBR is an error.

process Af terTCCSend [n]

IgnoreUntilSendTCC [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

: exit(ErrorType, OctetString):=

c>
[IsNDTreq(nsp) and IsTCC(Userdata(nsp))I ;

(IgnoreUnt ilNDTind [nl [>
(n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind (nsp) and (IsTCR(Userdat a(nsp))
or IsTBR(Userdata(nsp))>I ; AfterTCCSend [n]
CI

n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and not (IsTCR(Userdata(nsp))
or IsTBR(Userdata(nsp)))] ;

exit (ErrorAf terTCC, Userdata(nsp))))
endproc (* AfterTCCSend *)

After receiving a TDT with TSDU end mark equal to 1, re-
ceipt of an empty TDT with End-of-TSDU set to 1 is an
error.

155

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC Ti? 10167 : 1991 (E)

process EmptyTDTCnI :

IgnoreUntilReceivedTDT [n]
exit(ErrorType, Octetstring):*

c>
(
choice b : block, et : EOTsdu [I

[et IsEndTSDUOf b and IsTDT(b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)] ;

EmptyTDTZ [ni (et)
1
endproc (* EmptyTDT *)

process EmptyTDT2 [n] (last : EOTsdu) :

IgnoreUnt ilReceivedTDT [n]

(

sxit(ErrorType, 0ctetString):s

c>
choice b : Block, et : EOTsdu,

os : Octetstring Cl
[IsTDT(b) and (et IsEndTSDUOf b) and

(os IsUserdataOf b)] ->
(
[Length(os) eq O implies
(last eq yes)] ->
n ?na : NAddress ?ncei : NCEI ?
nsp : NSP
[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)] ;

exit (EmptyTDT, Userdata(nap))
c3
[not (Length(os) eq O implies
(last eq yes))] ->
n ?na : NAddress ?ncei : NCEI ?
nsp : NSP

[I sNDTind (nsp) and
(Userdata(nsp) Encodes b)] ;

EmptyTDT2 [n] (et)
1

1
endproc (* EmptyTDTZ *)

After an N-CONNECT response, the receipt of not a TCR
is an error.

process AfterNCONresp[n] :

IgnorelEaitilNCONresp [n]

n ?na : PAddress ?ncei : NCEI ?nsp : NSP

exit (ErrorType, Octetstring) :-

c>
[IsNCChNresp (nsp)] ;

(n ?na : NAddress ?ncei : NCEI ?nsp : NSP
(IgnorettntilNDTind [n] [>

[IsNDTiad(nsp) and IsTCR(Userdata(nsp) 11 ;

AfterNCONresp [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP
CI

[IsNDTind(nsp) and
not (IsTCR(Userdata(nsp)) 11 ;

exit (ErrorAfterNCOlresp, Userdata(nsp))))
endproc (* AfterNCONresp *)

The following two constraints are derived from the descrip-
tion in 1 1.1.6.8.

process Sizeconstraints Cnl :

(

c>
1

(

c>
)
endproc (* Sizeconstraints *)

exit(ErrorType, OctetString):=

DTSizeConstraint [n]

OtherError (IllegalDTSize)

I I

TDTLength En]

OtherError (IllegalUserdataSize)

The DTSize parameter in a received TCC or TCA must not
be greater than the DTSize parameter in the last send TCR,
see 1 1.1 A.2.

process DTSizeConstraint [n] :

IgnoreUntilSendTCR [n]
exit(ErrorType, Octetstring):=

[>
(
choice b : Block, ds : DTSize [I
[IsTCR(b) and (ds IsDTSizeOf b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsWDTreq(nsp) and
(Userdata(nsp) Encodes b)] ;

DTSizeConstraint2 [n] (ds)
1
endproc (* DTSizeConstraint *)

process DTSizeConstraintP[n]

IgnoreUntilReceivedTCC [n]

IgnoreUntilReceivedTCA [n]

IgnoreUnt ilReceivedTCR [n]

(mds : DTSize) : exit(ErrorType, OctetString):=

I I

I I

156

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISOAEC TR 10167 : 1991 (E)

(
choice b : Block, ds : DTSize [I

[IsTCC(b) or IsTCA(b) and
(ds IsDTSizeOf b)] ->
(

[ds le mds] ->

nsp : NSP
n ?na : NAddress ?ncei : NCEI ?

[IsNDTind(nsp) and
(Ussrdata(nsp) Encodes b)] ;

DTSizeConstraint2 [n] (mds)
CI
[de gt mds] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)] ;

exit (IllegalDTSize, Userdata(nsp))
1

CI
[IsTCR(b) and (ds IsDTSizeOf b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)] ;

DTSizeConstraint2 [n] (ds)
1
endproc (* DTSizeConstraintP *)

The total length of a TDT Block shall not be greater than the
negotiated DTSize.

process TDTLengthCn] :

IgnoreUntilReceivedTCA [n]

(

exit (ErrorType, Octetstring) :=

c>
choice b : Block, ds : DTSize cl

[IsTCA(b) and (ds IsDTSizeOf b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)] ;

TDTLength2 [n] (ds)
1
endproc (* TDTLength *)

process TDTLength2 [nl

IgnoreUntilNDTind [n]
(mds : DTSize) : exit(ErrorType, Octetstring):=

c>
(
choice b : block, bss : BlockSubsort,

os : Octetstring [I
[Subsort(b) eq bss and (os Encodes b)] ->
(

[Length(os) le DTSize(mds)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTind(nsp) and
(Userdata(nsp) eq os)] ;

TDTLength2 in] (mds)
CI
[not(Length(os) le DTSize(mds))l ->
n ?na : NAddress ?ncei : MCEI ?nsp : NSP

[IslDTind(nsp) and
(Userdata(nsp) eq os)] ;

exit (IllegalUserdataSize, Userdata(nsp1)
)

1
endproc (* TDTLength2 *)

InvalidülockConstraints detects which blocks are valid
with respect to encoding.

process InvalidBlockConstraints[n] :

IgnoreUntilReceivedInvalidBlock [n]

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

exit(ErrorType, Octetstring) :=

c>
[IsNDTind(nsp) and
not (EncodesABlock(Userdata(nsp)))I ;

exit (EncodingError , Userdata(nsp))
endproc (* InvalidBlockConstraints *)

After an error detected by a TP Entity, a TBR block should
be sent. Afterwards, incoming Blocks are ignored, see
11.2.5.2. The informal specification states that the bit pat-
tern of the rejected block up to and including the octet that
cause the rejection are to be transmitted. For the sake
of simplicity, transmission of any part of this bit pattern is
allowed.
Readers are invited to extend the description of error de-
tection SO that this simplification is removed.

process EntityErrorHandling[t , nl

choice b : Block, sl, 92 : Octetstring

[IsTBR(b) and

n ?na : NAddress ?ncei : NCEI ?nsp : NSP

(OnlyNDTind [d [> i ; stop)
endproc (* EntityErrorHandling *)

(err : ErrorType, os : Octetstring) : noexit:=

CI
((sl ++ 92) eq os) and

(si IsRejBlockof b)] ->

[IsNDTreq(nsp) and (Userdata(nsp) Encodes b)] ;

The process OtherError exits on all errors other than the
given one.

157

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process OtherError(e : ErrorType) :

choice x : ErrorType [I
exit(ErrorType, OctetString):=

[x ne el ->
exit (x, any Octetstring)

endproc (* OtherError *)

GlobalConstraints: The only global constraint is the
uniqueness of TC references passed at the n gate.

process GlobalConstraints [t, n] : noexit :=
UniqueLocalRef erences [n]
I I I
IgnoreTSP [tl
endproc (* GlobalConstraints *)

(*---

Unique References: Usage of local references is to be
such that for each TC a unique reference is made use of.
Note however that only TCR, TCA and TCC blocks have
the source reference parameter. First a non-empty set Irs
of non-zero references is internally chosen.

process UniqueLocalReferences[n] : noexit:=
choice lrs : RefSet []

[lrs ne and (Unassigned NotIn lrs)] ->
i ; LocalReferences [n] (ira)

endproc (* UniqueLocalRef erences *)

LocalReferences: This ensures that the source reference
used in an outgoing TCR or TCA or TCC block is not in use
for another Connection‘. A reference can either be Free or
Bound.

process LocalReferences [n]
(lrs : RefSet) : noexit:=

choice Ir : Ref [I
[ir isin ïrsl ->

(

I I I

1

FreeRef [nl (lr)

i ; LocalRef erences [nl (Remove (lr , lrs))

endproc (* LocalRef erences *)

process FreeRef [n] (Ir : Ref) : noexit :=

41n this process, i has been included to ease checking with tools.

IgnoreUntilNDT [n]
c>

(
choice b : Block [I
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

[IsNDTreq(nsp) and
(Userdata(nsp) Encodes b) and
(lr IsSrcRefOf b)];

BoundRef [n] (na, ncei, lr)
1
endproc (* FreeRef *)

process BoundRef [n]
(na : NAddress, ncei : NCEI, Ir : Ref) :

n !na !ncei 7nsp : NSP [not(IsNDIS(nsp))];
BoundRef [nl (na, ncei, lr)

n !na !ncei ?nsp : NSP [IsNDIS(nsp)];
FreeRef [nl (lr)
endproc (* BoundRef *)

noexit : =

CI

11.4.3.7 Block Data Type Definitions
The definitions relating to blocks are presented below in
a hierarchical fashion, according to the following outline,
where items correspond to the types that follow:

a) basic construction of an ‘abstract’ (i.e. independent of
encoding) block data type; and

b) definition of ‘block subsort’ values, that correspond to
the ‘block types’ defined in the Protocol: the difference
in terminology is to avoid confusion with the (more gen-
eral) concept of ‘type’ in LOTOS; and

c) enrichment of the abstract block with functions, termed
‘Classifiers’, that tell whether or not a given block is of a
given subsort; and

d) enrichment of the abstract block with functions, termed
‘parameter selectors’, that tell whether a given value is
the value of a certain parameter of a given block (this
indirect representation is convenient, for the sake of
completeness of the equational definition, since gener-
ally a block parameter is defined only for some, but not
all, blocks); and

e) enrichment of the abstract block with boolean functions
representing equality and inequality; and

f) definitions relating to individual parameters of (abstract)
blocks: each definition includes basic construction and
equality enrichments

0

Auxiliary definitions that are referred to in the following, as
well as the encoding of Blocks into OctetStrings, are pre-
sented later.
Basic Block Construction: Values of sort Block, which
represent blocks abstractingfrom encoding details, are con-
structed by five functions, each corresponding to a distinct
block ‘type’ (in the sense of the Protocol). The sorts of block

158

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

parameters are either standard sorts, such as Octetstring
and Bool, or are defined later. Note that absence of op-
tional parameters, e.g. maximum data block size in TCR or
TCA blocks, is only represented in the concrete encoding of
blocks, where it is mapped to the parameter values (of the
abstract block) that are defined by the Protocol as default
values5.

type BasicBlock
is BasicReference, ExtendedAddressing,
DataBlockSize, Clearingcause, OctetString,
Boolean, Rejectcause, EOTsdu

Block

TCR : Ref, ExtAddress, ExtAddress, DTSize

sorts

opns

-> Block ' -1 TCA : Ref , Ref , ExtAddress, ExtAddress, DTSize
-> Block

TCC : Ref, Ref. Clearingcause, Octetstring

TDT : EOTsdu, Octetstring -> Block
TBR : Ref, RejCause, OctetString -> Block

-> Block

endtype (* BasicBlock *)

Block Subsorts: Sort BlockSubsort consists of five con-
stants, which represent the block types defined in the Pro- I tocol. See 11.4.3.9 for the type FiveTuplet.

type BlockSubsort
is FiveTuplet renamedby
sortnames

opnnames
BlockSubsort for FiveTuplet

1 TCR for One
TCC for Two
TCA for Three
TDT for Four
TBR for Five

endtype (* BlockSubsort *)

Block Classifiers: The following definition enriches the
combination of the two basic constructions given above with
the following functions on blocks:

a) Subsort, that yields the block subsort; and
b) the boolean functions IsTCR, IsTCA, etc. termed

BlockClassifiers.

5The specification does not deal with a Class option in a TCR
or TCC.

ISO/IEC TR 10167 : 1991 (E)

*) ...
type BlockClassifiers
is BasicBlock, BlockSubsort
opns
Subsort : Block -> BlockSubsort
IsTCR, IsTCA, IsTCC, IsTDT, IsTBR :
Block -> Bo01

eqns
forall

b : Block, sr, dr : Ref. cga, cda : ExtAddress,
ds : DTSize, cc : Clearingcause,
ac : Octetstring. et : EOTsdu,
ud : Octetstring, rc : RejCause,
rb : OctetString

ofsort BlockSubsort
Subsort(TCR(sr. cga, cda, ds)) = TCR;
Subsort(TCA(dr, sr, cga, cda, da)) = TCA;
Subsort (TCC(dr, sr, cc , ac)) = TCC;
Subsort (TDT(et , ud)) 5 TDT;
Subsort (TBR(dr , rc , rb)) = TBR

IsTCR(b) = Subsort(b) eq TCR;
IsTCA(b) = Subsort(b) eq TCA;
IsTCC(b) = Subsort(b) eq TCC;
IsTDT(b) = Subsort(b) eq TDT;
IsTBR(b) - Subsort(b) eq TBR

endtype (* BlockClassif iers *)

ofsort Bool

Block Selectors: The following definition presents boolean
functions that allow to determine whether a given value is
the value of a certain parameter of a given block, for each
block parameter defined by the Protocol. The data types
relating to parameters of sort other than Octetstring or
Boo1 are defined later.

type BlockParameterSelectors
is BlockClassifiers
opns

-1sSrcRefOf-, -1sDstRefOf- : Ref, Block
-> Bo01

,IsCallingAddrOf,, -1sCalledAddrOf- :
ExtAddress, Block -> Bo01

-1sDTSizeOf- : DTSize, Block -> Bool
-1sClearingCauseOf- : Clearingcause, Block

,IsAddClearInfOf- : OctetString, Block -> Bool
-1sEndTSDUOf- : EOTsdu, Block -> Bo01
-1sUserdataOf-, -1sRejBlockOf- :

-1sRejCauseOf- : RejCause, Block -> Bool

-> Bo01

OctetString, Block -> Bool

eqns
f oral1

b : Block, sr, sri, dr, drl : Ref,
cga, cgal, cda, cdal : ExtAddress,
ds, dsl : DTSize, cc, ccl : Clearingcause,
ac, acl : OctetString, et, et1 : EOTsdu,

159

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ud, udl : OctetString, rc, rcl : RejCause,
rb, rbl : OctetString

sr IsSrcRefOf TCR(sr1, cga, cda, ds) =

sr IsSrcRefOf TCA(dr, sri, cga, cda, ds) =

sr IsSrcRefOf TCC(dr. 811, cc, ac) sr eq srl;
not(IsTCR(b) or IsTCA(b) or IsTCC(b)) =>

dr IsDstRefOf TCA(dr1, sr, cga, cda, ds) =

dr IsDstRefOf TCC(dr1, sr, cc, ac) = dr eq drl;
dr IsDstRefOf TBR(dr1, rc, rb) = dr eq drl;
not(IsTCA(b) or IsTCC(b) or IsTBR(b)) =>
dr IsDstRefOf b = false;

cga IsCallingAddrOf TCR(sr, cgal, cda, ds) =
cga eq cgal;

cga IsCallingAddrOf
TCA(dr, sr, cgal, cda, ds) = cga eq cgal;

not(IsTCR(b) or IsTCA(b)) =>
cga IsCallingAddrOf b = false;

cda IsCalledAddrOf TCR(sr, cga, cdal, ds) =
cda eq cdal;

cda IsCalledAddrOf
TCA(dr, sr, cga, cdal, ds) = cda eq cdal;

not(IsTCR(b) or IsTCA(b)) =>
cda TsCalledAddrOf b = false;

ds 1sD"SizeOf TCR(sr, cga, cda, dsl) =
ds eg dsl;

ds IsDFSizeOf TCA(dr, sr, cga, cda, dsl) -
ds eq dsl;

not(IsTCR(b) or IsTCA(b)) =>
ds IsDTSizeOf b = false;

cc IsCBearingCauseOf TCC(dr, sr, cc1, ac) =

not(Is'SCC(b)) =>

ac IsAddClearInfOf TCC(dr, sr, cc, acl) =

not(IsTCC(b)) =>

et IsEndTSDUOf TDT(et1, ud) = et eq etl;
not (IsTD-T(b)) =>

ud IsUserdataOf TDT(et, udl) = ud eq udl;
not(IsTDT(b)) =>

rc IsRejCauseOf TBR(dr, rcl, rb) = rc eq rcl;
not(IsTBR(b)) =>
rc IsRejCauseOf b = false;

rb IsRejBlockOf TBR(dr, rc, rbl) = rb eq rbl;
not (I sTBR (b)) =>
rb IsRejBlockOf b = false

ofsort Bool

sr eq sri;

sr eq srl;

sr IsSrcRefOf b = false;

dr eq drl;

cc aq ccl;

cc IsClearingCauseOf b = false;

ac eq acl;

ac IsAddClearInfOf b = false;

et IsEndTSDUOf b = false;

ud IsUserdataOf b = false;

endtype (* BlockParameterSelectors *)

Block Equality: Equality of two blocks holds if, and only if,
the blocks are of the same subsort and have pairwise equal
parameter values. The following definition is an effective

formalization of this requirement.

type BlockEquality
is BlockParameterSelectors
opns

eqns
forall

,eq,, ,ne, : Block, Block -> Bool

b, bl : Block, sr, sr1, dr, drl : Ref,
cga, cgal, cda, cdal : ExtAddress,
ds, dsl : DTSize, cc, ccl : Clearingcause,
ac, acl : OctetString, et, et1 : EOTsdu,
ud, udl : OctetString, rc, rcl : RejCause,
rb, rbl : OctetString

Subsort(b) ne Subsort(b1) => b eq bl = false
TCR(sr, cga, cda, ds) eq

of sort Bool

TCR(sr1, cgal, cdal, dsl) =
(sr eq sri) and (cga eq cgal) and
(cda eq cdal) and (ds eq dsl);

TCA(dr1, sr1, cgal, cdal, dsl) =
(dr eq drl) and (sr eq srl) and

TCA(dr, sr, cga, cda, ds) eq

(cga eq cgal) and (cda eq cdal) and
(ds eq dsl);

TCC(dr, sr, CC, ac) eq
TCC(dr1, sr1, ccl, acl) =
(dr eq drl) and (sr eq srl) and
(cc eq ccl) and (ac eq acl);

TDT(et, ud) eq TDT(et1, udl) =

TBR(dr, rc, rb) eq TBR(dr1, rcl, rbl) =

b ne bl = not(b eq bl)
endtype (* BlockEquality *)

et eq et1 and (ud eq udl);

(dr eq drl) and (rc eq rcl) and (rb eq rbl);

". The following data type definitions specify the parameter
of blocks.
Protocol referencesare to be specified as forming a domain
of exactly 65535 distinct values. The easiest way of speci-
fying this is just to let a reference uniquely correspond to an
ordered 16-tuple of bits. See 1 1.4.3.9 for the type Hextet.
The description of this part of the abstract block structure is
therefore very close to that of its encoding, for the sake of
simplicity; this fact should be considered as an exception.

type BasicReference
is Hextet renamedby
sortnames
Ref for Hextet

opnnames
Ref for Hextet

endtype (* BasicReference *)

160

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C TR 10
16

7:1
99

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

	List of Figures
	Foreword
	Introduction
	1 scope
	2 References
	3 Terminology
	3.1 Architectural Terms
	3.2 FDTTerms

	4 FDT General Characteristics
	4.1 Introduction
	4.2 The Nature and Purpose of FDTs
	The Purpose of FDTs
	4.2.2 Use in Development
	4.2.3 Assessment of FDTs

	4.3 Estelle
	4.4 LOTOS
	4.5 SDL
	4.6 Benefits of FDTs
	4.7 Tools for FDTs

	5 Guide to the Examples
	Explanation of the Examples
	Examples of Basic FDT Concepts
	Examples of Basic Architectural Concepts
	5.1.3 Daemon Game
	5.1.4 Sliding Window Protocol
	Abracadabra Service and Protocol
	5.1.6 A Transport Protocol

	5.2 How to read the Examples

	Examples of Basic FDT Concepts
	6.1.1 Estelle Representation
	6.1.2 LOTOS Representation
	6.1.3 SDL Representation
	6.2 Information
	6.2.1 Estelle Representation
	6.2.2 LOTOS Representation
	6.2.3 SDL Representation
	6.3.1 Estelle Representation
	6.3.2 LOTOS Representation
	6.3.3 SDL Representation
	6.4.1 Estelle Representation
	6.4.2 LOTOS Representation
	6.4.3 SDL Representation

	6.5 Interaction Point
	6.5.1 Estelle Representation
	6.5.2 LOTOS Representation
	6.5.3 SDL Representation

	Examples of Basic Architectural Concepts
	7.1 Service Access Point
	7.1.1 Estelle Representation
	7.1.2 LOTOS Representation
	7.1.3 SDL Representation

	7.2 Endpoint
	7.2.1 Estelle Representation
	7.2.2 LOTOS Representation
	7.2.3 SDL Representation

	7.3 Service Primitive Parameter
	7.3.1 Estelle Representation
	7.3.2 LOTOS Representation
	7.3.3 SDL Representation

	7.4 Service Data Unit
	7.4.1 Estelle Representation
	7.4.2 LOTOS Representation
	7.4.3 SDL Representation

	7.5 Service Primitive
	7.5.1 Estelle Representation
	7.5.2 LOTOS Representation
	7.5.3 SDL Representation

	7.6 Frotocol Entity
	7.6.1 Estelle Representation
	7.6.2 LOTOS Representation
	7.6.3 SDL Representation
	7.7 Protocol
	7.7.1 Estelle Representation
	7.7.2 LOTOS Representation
	7.7.3 SDL Representation

	7.8 Protocol Data Unit
	7.8.1 Estelle Representation
	7.8.2 LOTOS Representation
	7.8.3 SDL Representation

	7.9 Connection
	7.9.1 Estelle Representation
	7.9.2 LOTOS Representation
	7.9.3 SDL Representation

	7.1 O Multiplexing
	7.10.1 Estelle Representation
	7.10.2 LOTOS Representation
	7.10.3 SDL Representation

	7.1 1 Splitting
	7.1 1.1 Estelle Representation
	7.1 1.2 LOTOS Representation
	7.1 1.3 SDL Representation

	7.12 Concatenation
	7.12.1 Estelle Representation
	7.12.2 LOTOS Representation
	7.12.3 SDL Representation

	7.1 3 Segmentation
	7.13.1 Estelle Representation
	7.13.2 LOTOS Representation
	7.1 3.3 SDL Representation

	7.14Service
	7.14.1 Estelle Representation
	7.14.2 LOTOS Representation
	7.14.3 SDL Representation

	8 Daemon Game Example
	8.1 Informal Description
	8.2 Deficiencies in the Informal Description
	8.2.1 Presence of Daemon

	I 8.2.2 Login to a Current Game
	Attempt to play before Login
	Identification of Players and Games
	8.2.5 Player Use of System Signals
	8.3 Estelle Description
	8.3.1 Architecture of the Formal Description
	8.3.2 Explanation of Approach
	8.3.3 Formal Description
	8.3.4 Alternative Formal Description
	8.3.5 Subjective Assessment

	8.4 LOTOS Description
	8.4.1 Architecture of the Formal Description
	8.4.2 Explanation of Approach
	8.4.3 Formal Description
	8.4.4 Alternative Formal Description
	8.4.5 Subjective Assessment

	8.5 SDL Description
	8.5.1 Architecture of the Formal Description
	8.5.2 Explanation of Approach
	8.5.3 Formal Description
	8.5.4 Subjective Assessment

	8.6 Assessment of the Application of the FDTs

	9 Sliding Window Protocol Example
	9.1 Informal Description
	9.1.1 Overview
	9.1.2 Sequence Numbering
	9.1.3 Transmitter Behaviour
	9.1.4 Receiver Behaviour

	9.2 Deficiencies in the Informal Description
	9.2.1 Underlying Medium
	9.2.2 Window Size
	9.2.3 Flow Control
	9.2.4 Delivery of Corrupted Messages
	9.2.5 Value of Time-out Period
	9.2.6 Consistent Use of NextRequired
	9.2.7 Receive Window Size
	9.2.8 Sequence of Operations
	9.2.9 Transmit Window Size
	9.2.1 O Receive Window Size
	9.2.1 1 Corruption of Messages
	9.2.12 Transfer of Data and Acknowledgements
	9.2.13 Retransmission on Timeout

	9.3 Estelle Description
	9.3.1 Architecture of the Formal Descriptions
	9.3.2 Explanation of Approach
	9.3.3 Formal Description of the Protocol
	9.3.4 Formal Description of the Medium
	9.3.5 Subjective Assessment
	9.4 LOTOS Description
	9.4.1 Architecture of the Formal Descriptions
	9.4.2 Explanation of Approach
	9.4.3 Formal Description of the Protocol
	9.4.4 Formal Description of the Medium
	9.4.5 Subjective Assessment

	9.5 SDL Description
	9.5.1 Architecture of the Formal Descriptions
	9.5.2 Explanation of Approach
	9.5.3 Formal Description of the Protocol
	9.5.4 Formal Description of the Medium
	9.5.5 Subjective Assessment

	9.6 Assessment of the Application of the FDTs

	10 Abracadabra Service and Protocol Example
	10.1 Informal Description
	10.1.1 Introduction
	10.1.2 Service Description

	1 O 1.3 Protocol Description
	10.1.4 Communications Medium Service Description
	10.1.5 Model

	10.2 Deficiencies in the Informal Description
	10.2.1 Flow Control
	10.2.2 Premature Transmission of DT
	10.2.3 Stopping Retransmission on Error
	10.2.4 Retransmission Limit and Period
	10.2.5 Repeated ConReq
	10.2.6 DR when Disconnected
	10.2.7 Connection Refusal
	10.2.8 Connection Refusal
	10.2.9 Ignoring Out-of-sequence Data

	10.3 Estelle Description
	10.3.1 Architecture of the Formal Descriptions
	10.3.2 Explanation of Approach
	10.3.3 Formal Description of the Service
	10.3.4 Formal Description of the Protocol
	10.3.5 Subjective Assessment

	10.4 LOTOS description
	10.4.1 Architecture of the Formal Descriptions
	10.4.2 Explanation of Approach
	10.4.3 Formal Description of the Service

	10.4.4 Formal Description of the Protocol
	10.4.5 Subjective Assessment

	10.5 SDL Description
	10.5.1 Architecture of the Formal Descriptions
	10.5.2 Explanation of Approach
	10.5.3 Formal Description of the Service
	10.5.4 Formal Description of the Protocol
	10.5.5 Subjective Assessment

	10.6 Assessment of the Application of the FDTs

	11 A Transport Protocol Example
	11.1 Informal Description
	11.1.1 Origins
	1 1.1.2 Transport Functions
	11.1.3 Connection Establishment and Termination Procedures
	11.1.4 Description of Data Transfer Procedures
	1 1.1.5 Treatment of Procedure Errors
	11.1.6 Formats
	11.1.7 Invalid TPDUs

	11.2 Deficiencies in the Informal Description
	11.2.1 Service Definitions
	11.2.2 Description of Procedures
	11.2.3 Protocol Classes
	11.2.4 Missing Definitions
	11.2.5 Unspecified Functions
	1 1.2.6 Non-use of Concatenation
	1 1.2.7 Responding Address
	11.2.8 Multiple SAP Connections
	1 1.2.9 Reaction to Incorrect TCA

	11.3 Estelle Description
	11.3.1 Architecture of the Formal Description
	1 1.3.2 Explanation of Approach
	11.3.3 Formal Description
	11.3.4 Subjective Assessment

	1 1.4 LOTOS Description
	1 1.4.1 Structure of the Formal Description
	11.4.2 Explanation of Approach
	1 1.4.3 Formal Description
	11.4.4 Subjective Assessment

	1 1.5 SDL Description
	11 5.1 Architecture of the Formal Description
	11.5.2 Explanation of Approach
	11 5.3 Formal Description
	1 1.5.4 Subjective Assessment
	11.6 Assessment of the Application of FDTs
	Annexes
	A Bibliography
	A.l International Standards
	A.2 Documents

	B FDT Characteristics
	B 1 Specifications and Implementations
	8.2 Formal Specifications
	8.3 Levels of Abstraction
	8.4 FDTTerms
	8.4.1 Formalisation
	8.4.2 Abstraction
	8.4.4 Model
	8.4.5 Interpretation
	8.4.6 Constructive
	8.4.7 Information
	8.4.8 Action
	8.4.9 Interaction
	8.4.1 O Composition
	8.4.1 1 Non-Determinism

	C FDT Objectives
	C.l Scope of Application
	C.2 General Requirements
	C.3 Appropriate Level of Abstraction
	C.4 Design Support
	C.5 Implementation Support

	D Evaluating Formal Descriptions
	D.l Layer-Independent Checklists
	D.l.l General
	D.1.2 Service Descriptions
	D.1.3 Protocol Descriptions

	D.2 Layer-Independent and FDT-Dependent Checklists
	D.2.1 General
	D.2.2 Description of a Single Object
	0.2.3 Description of Several InterconnectedObjects

	D.2.4 Different Descriptions of Same Object

	Verification Methods and Tools
	D.4 Validation Methods and Tools

	4.1 Development through Refinement
	5.1 Typical Layout of an Example
	8.1 Architecture of the Daemon Game in Estelle
	8.2 Alternative Architecture of the Daemon Game in Estelle
	8.3 SDL Specification of Daemon Game
	9.1 Transmitter Window Parameters
	9.2 Receiver Window Parameters
	Architecture of the Sliding Window Protocol in Estelle
	9.4 Architecture of the Sliding Window Protocol in LOTOS
	9.5 Outline Decomposition of the Sliding Window Protocol in LOTOS
	Processes of the Sliding Window Protocol in LOTOS
	Outline Decomposition of Sliding Window Medium in LOTOS
	9.8 Processes of Sliding Window Medium in LOTOS
	9.9 SDL Specification of Sliding Window Protocol

	9.1 O SDL Specification of Sliding Window Medium
	10.1 Relationship between AbracadabraService Primitives
	10.2 Abracadabra Protocol Data Units
	10.3 Communications Medium Service Primitives
	10.4 Abracadabra Service and Protocol Model
	10.5 Architecture of the Abracadabra Service in Estelle
	10.6 Architecture of the Abracadabra Protocol in Estelle
	10.7 Outline Decomposition of the Abracadabra Service in LOTOS
	10.8 Outline Decomposition of the Abracadabra Protocol in LOTOS
	10.9 SDL Specification of Abracadabra Service

	1 O 1 O SDL Specification of Abracadabra Protocol
	1 1.1 Receiving Terminal Reaction to TCR Addressing Options
	11.2 Calling Terminal Reaction to TCA Addressing Options
	11.3 Parameter Element Coding Structure
	11.4 General Block Structure
	11.6 Transport Connection Request Block

	1 1.5 Transport Layer Block Types
	1 1.7 Extended Addressing
	11.8 Transport Data Block Size Parameter

	1 1.9 Transport Connection Accept Block
	11 10Transport Connection Clear Block
	11.1 1 Additional Clearing Information Parameter
	11.12 Transport Block Reject Block

	1 1.13 Rejected Block Parameter
	1 1.1 4 Transport Data Block
	11.1 5 Architecture of A Transport Protocol in Estelle
	11.16 Constraint-Oriented Decomposition of a Transport Protocol Entity

	1 1.17 Decomposition of Process TPEConnection
	11.18 SDL Specification of A Transport Protocol
	8.1 Domain of Applicability of an FDT

