TECHNICAL ISO/IEC
REPORT TR 10167

First edition
1991-11-15

= e

Information technology —Open Systems
Interconnection — Guidélines for the applicdtion

of Estelle, LOTOS and SDL

Technologies de I'information — Interconnexion de systémes ouveyts —
Principes directeurs polr I'application d’Estelle, LOTOS et SDL

Reference number
ISO/NEC TR 10167:1991(E)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Contents

List of Figures ix
Foreword xi
Introduction xiii

1 Scope ‘ 1

2 | References 1

b

3 | Terminology
3.1 ArchitecturalTerms i ..
32 FDTTerms o ittt e e e e e

N

4 | FDT General Characteristics
4.1 Introduction
4.2 The Natureand Purposeof FDTs
421 ThePurposeof FDTs
422 UseinDevelopment
423 Assessmentof FDTs 4.
43 Estelle OV
4.4 LOTOS. e SN L
45 SDL ey e
46 Benefitsof FDTs
47 ToolsforFDTso s e e

bW WW WM DN N

5 | Guide to the Examples

5.1 Explanationofthe ExamplesS
5.1.1 Examples of BasicFDT Concepts
5.1.2 Examples of Basic ArchitecturalConcepts
5.1.3 DaemonGame
5.1.4 Sliding Window PBrotocol
5.1.5 AbracadabraServiceandProtocol
5.1.6 ATransportProtocol

52 HowtoreadtheExamples

(o> T ¢ LI B & LN TN B 5 N & LR |

© ISO/IEC 1991

Ail rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm, without
permission in writing from the publisher.

ISO/MEC Copyright Office ® Case Postale 56 @ CH-1211 Genéve 20 ® Switzerland
Printed in Switzerland

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

6 Examples of Basic FDT Concepts

6.1 Abstraction
6.1.1 Estelle Representation
6.1.2 LOTOS Representation
6.1.3 SDL Representation - .
Information
‘/6.2.1 Estelle Representation

6.2

1SO/IEC TR 10167 : 1991 (E) |

.....................

.....................

8:2.2—LOTOS Reprosentation

6.2.3 SDL Representation .
Action
6.3.1 Estelle Representation
6.3.2 LOTOS Representation
6.3.3 SDL Representation .
Interaction
6.4.1 Estelle Representation
6.4.2 LOTOS Representation
6.4.3 SDL Representation .
Interaction Point
6.5.1 Estelle Representation
6.5.2 LOTOS Representation
6.5.3 SDL Representation .

6.3

.............

6.4

6.5

7.1 Service Accéss Point
7.1.1 Estelle Representation
7.1.2:-LOTOS Representation
7.4.3 SDL Representation .
Endpoint
7.2.1 Estelle Representation
7.2.2 LOTOS Representation
7.2.3 SDL Representation .
Service Primitive Parameter .
7.3.1 Estelle Representation
7.3.2 LOTOS Representation
7.3.3 SDL Representation .
Service Data Unit
7.4.1 Estelle Representation

7.2

............

7.3

7.4

.....................

.....................

.....................

Examples of Basic Architectural Concepts

...........................

......................

W 0 0 W M W W 0O N ~N N N N N N N N NN NN

742—OTOSRepresentation
- 7.43 SDL Representation .
7.5 Service Primitive
7.5.1 Estelle Representation
7.5.2 LOTOS Representation
7.5.3 SDL Representation .

7.6 ProtocolEntity

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.6.1 Estelle Representation e 13
762 LOTOSRepresentation. 13
7.6.3 SDLRepresentation¢co0onon. 13
7.7 Protocol e e e e e e e e e e e | 13
7.7.1 EstelleRepresentation 13
7.72 LOTOSRepresentation. 14
7.7.3 SDL Representation e e e 14
7.8 Protocol Data Unit . . RPN 15
7.8.1 Estelle Representation 15
7.8.2 LOTOSRepresentation 15
7.8.3 SDLRepresentation ennen.. 15
7.9 Conmnection B 16
7.9.1 EstelleRepresentation 16
7.9.2 LOTOSRepresentation. 16
7.9.3 SDL Representation e e e e 16
7.0 Multiplexingo o oo O 16
7.10.1 Estelle Representation¢ 16
7.10.2 LOTOS Representation%. 17
7.10.3 SDL Representation <. . .. 17
7A1Sphiting AN 17
7.11.1 Estelle Representation3%....... 17
7.11.2 LOTOS Representation 18
7.11.3 SDL. Representation %\ . o0 L. 18
712Concatenation G 18
7.12.1 Estelle Representation~\"., 18
7.12.2 LOTOS Representation . . %07 18
7.12.3 SDL Representation . (>o 19
743 Segmentation N . Lo e e 19
7.13.1 Estelle Representation 19
7.13.2 LOTOS Representationo vn. 20
7.13.3 SDLRepresentation 20
714 8emvice . L) L L L e e e e e e 21
7.14.1Estelle Representation 21
7.142°LOTOS Representation. e e e 21
7.,14.3 SDL Representation\ e e e 21
8< Daemon Game Example 22
8.1 Informal Dascription » 22
8.2 Deficiencies in the Informal Description 22
8.2.1 PresenceofDaemon, 22
8.22 logintoaCurrentGame 22
8.2.3 Attempttoplaybeforelogin 22 X
8.2.4 Identification of PlayersandGames 22
825 PlayerUseofSystemSignals 22

iv

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

8.2.6 Interruptionof ProbeorResult
8.2.7 Countingof‘Bump’Signals
8.3 Estelle Description
8.3.1 Architecture of the Formal Description e
8.3.2 Explanationof Approach
8.3.3 FormalDescription
8.3.4 Alternative FormalDescription

8.3.5Subjective Assessment

8.4 LOTOSDescription e e ON
"~ 8.4.1 Architecture of the Formal Descriptionn ..
8.4.2 Explanationof Approach~\ ...
8.4.3 FormalDescription N R
8.4.4 Alternative FormalDescription >,
8.4.5 Subjective Assessment N . L.

8.5 SDLDescription. N0
8.5.1 Architecture of the Formal Description
-8.6.2 Explanation of Approach . (7. e

8.5.3 Formal Description . . .\ . .. e e e e e e e e e :

8.5.4 Subjective Assessment0
8.6 Assessment of the Applicationofthe FDTs e

Sliding Window Protocol Example

9.1 InformalDescription. e
911 Overview. e
9.1.2 _SequenceNumbering e
9.1 Transmitter Behaviour
9.1.4 ReceiverBehaviour,

9.2 Deficiencies in the Informal Description
9.2.1 UnderlyingMedium
9.22 WindowSize.,
923 FlowControl
9.2.4 Deliveryof CorruptedMessages
9.25 Valueof Time-OutPeriod
9.2.6 ConsistentUse of NextRequired
9.27 ReceiveWindowSize
9.2.8 SequenceofOperations
9.29 TransmitWindowSize
9-2-10-Receive-WindowSizge———————————————————— —

9.2.11 CorruptionofMessagest
9.2.12 Transfer of Data and Acknowledgements
9.2.13 Retransmissionon Timeout
9.3 EstelleDescription,
9.3.1 Architecture of the Formal Descriptions
9.3.2 Explanationof Approach

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

9.3.3 Formal Description of the Protocol e e 40

9.3.4 Formal DescriptionoftheMedium 43
9.3.5 Subjective ASSeSSMent 44
9.4 LOTOSDGSCHpON . . . o v oo v e e A 44
9.4.1 Architecture of the Formal Descriptions 44
9.4.2 ExplanationofApproach 47
9.4.3 Formal Description of the Protocol . . e .47
[9.4.4 Formal Description of the Medium 54
9.4.5 Subjective Assessment 56

9.5 SDLDescription v S 56
9.5.1 Architecture of the Formal Descriptions 56
9.5.2 Explanation of Approach e 56
9.5.3 Formal DescriptionoftheProtocol 57
9.5.4 Formal Description of the Medium R 57
9.5.5 Subjective Assessment T, ... 57

9.6 Assgssment of the Applicationofthe FDTs 57
10 Abracadabra Service and Protocol Example 72
10.1 InformalDescription % .. 72
10.1.1Introduction OV .. 72
10.1.2 Service Description 00 ..., 72
10.1.3 ProtocolDescription.~ 72
10.1.4 Communications Medium Service Description. 73
10.185Model 73

10.2 Deficiencies in the Informal Description .~\. .. [73
1021 FlowControl %7 ... L . 0 o 73
10.2.2 Premature TransmissionofOT 74
10.2.3 Stopping Retransmissionon Error 74
10.2.4 Retransmission LimitandPeriod 74
10.2.5 RepeatedConReq [74
10.2.6 DRwhenDisconnected 74
10.2.7 ConnectionRefusal 74
10.2.8 Connection Refusal , 75
10.2.9 igrioring Out-of-sequenceData. 75

10.3 Esfelle Description [75
10.3.1 Architecture of the Formal Descriptions 75
10.3.2 Explanationof Approach 76
10.3.3 Formal Descriptionofthe Service 77
10.3.4 Formal Description of the Protocol U 79
10.3.5 Subjective Assessment 85

104 LOTOS description e .. 85
10.4.1 Architecture of the Formal Descriptions 85
10.4.2 Explanation of Approach- e 86
10.4.3 Formal Descriptionofthe Service 86

vi

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.4.4 Formal Descriptionofthe Protocol9
10.4.5 Subjective Assessment 98
105 SDL Description o8
10.5.1 Architecture of the Formal Descriptions 98
10.5.2 Explanationof Approach 99
10.5.3 Formal Descriptionofthe Service 99
10.5.4 Formal Descriptionofthe Protocol 99
10.5.5 Subjective Assessment} 99

10.6 Assessment of the Applicationofthe FDTs e OV 116
11 A Transport Protocol Example ' 117
11.1 InformaiDescription o0 ONGL oL 117
MA106gINS o D e e e 117
11.12 TransportFunctions N 117
11.1.3 Connection Establishment and Termination Procedures . . . [118
11.1.4 Description of Data Transfer Procedures 118
11.1.5 Treatment of ProcedureErrors) 119
11.1.6 Formats 2 T I 119
1117 InvalidTPDUs . .~ o .. 124

11.2 Deficiencies in the InformalDescription 125
11.2.1 Service Definitions [L. 125
11.2.2 Descriptionof Procedures 126
11.2.3 ProtocofClasses 26
11.2.4 Missing Definitions 126
11.2:5 Unspecified Functions e 127
11.2.6 Non-Use of Concatenation e 127
11.2.7 RespondingAddress 127
11.2.8 Multiple SAP Connections 127
11.2.9 Reactionto Incorrect TCA e e e e e e 127

11.3 Estelle Description, 127
11.3.1 Architecture of the Formal Description BRI i -7 4
11.3.2 Explanation of Approach e L hes
11.3.3 Formal Description 129
11.3.4 Subjective Assessment 138

11.4 LOTOS Description 138
11.4.1 Structure of the Formal Description e e 138
11.4.2 Explanationof Approach e 139
11.4.3 Formal Description, 140
11.4.4 Subjective Assessment L. 171

11.5 SDL DeSCriptON o oot T
11.5.1 Architecture of the Formal Description 1T
11.5.2 Explanationof Approach 172
11.6.3 Formal Description 172
11.5.4 Subjective Assessment, 172

vii

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11.6 Assessment of the Application of FDTs BRI L. 172
Annexes 196
A ‘Bibliography 196

A.1 InternationalStandards oo oL 196

A2 Documents e e e e e AR 196
B| FDT Characteristics . 196

B.1 Specifications and Implementations, 196

B.2 Formal Specificationso o 196

B.3 Levelsof Abstractiono - 196

B4 FDTTerms [P O 1 4

B.4.1 Formalisation e e e 197
B.4.2 Abstraction e e 197
B.4.3. Specification, Description, and Implementation. 197
B.4.4 Model i e e e 197
B.4.5 interpretationo e 198
B.46 Constructive o e L1998
B.4.7 Information O O 198
B.48 Action G 198
B.49 Interaction e e el NN 198
B.4.10 Composition i e e i@y e e .. 198
B.4.11 Non-Determinism oo L 198
G FDT Objectives , , 198

C.1 Scope of Application% Q.. ... B I 198

C.2 General Requirements()s « v o cv v v v v v L., 198

C.3 Appropriate Level of Abstractidn)." . . . I ... 199

C.4 DesignSupport IR 199

C.5 Implementation Support). I oo 199
D Evaluating Formal Descriptions 200

D.1 Layer-IndependéntChecklists-o WL, 200

D1.1 General R S 200
D.1.2>Service Dascriptionso e 200
D)8 ProtocolDescriptionso e 200
D2 \Layer-independent and FDT-Dependent Checklists V..o .. 200
D21 General e e T 200
D.2.2 Description of a Single Object i .. 200
D.2.3 Description of Several Interconnected Objects 200
D.2.4 Different Descriptions of Same Object 200
D.3 Verification MethodsandTools v v v v v e 201
D.4 Validation Methods andTools b e e e e e 20

viii

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

List of Figures

4.1 Developmentthrough Refinemento,3

5.1 Typical Layout of an Examble e e e e B 6
8.1
8.2
8.3

9.1 Transmitter Window Parameters A" 0. 8
9.2 Receiver WindowParameters.0 ... 8
9.3 Architecture of the Sliding Window Protocol in Estelle n.. 40
9.4 Architecture of the Sliding Window Protocol in LOTOS 5
9.5 Outline Decomposition of the Sliding Window/Protocol in LOTOS . 5
9.6 Processes of the Sliding Window ProtocohinLOTOS
9.7 Outline Decomposition of Sliding WindowMedium in LOTOS. . . .
9.8 Processes of Sliding Window Mediumin LOTOS
9.9 SDL Specification of Sliding Windew Protocol
9.10 SDL Specification of Sliding Window Medium

10.1 Relationship between Abracadabra Service Primitives

. 10.2 AbracadabraProtocolDataUnits
.10.3 Communications Medium Service Primitives
10.4 Abracadabira Service and ProtocolModel
10.5 Architecture of the Abracadabra ServiceinEstelle
10.6 Architecture of the Abracadabra Protocol inEstelle
10.7..Outline Decomposition of the Abracadabra Service in LOTOS . . .
10.8 Outline Decomposition of the Abracadabra Protocol in LOTOS . . .

10.9 SDL Specification of AbracadabraService 10
10.10 SDL Specification of AbracadabraProtocol

11.1 Receiving Terminal Reaction to TCR Addressing Options 11
11.2 Calling Terminal Reaction to TCA Addressing Options 11
11.3 Parameter Element Coding Structure. 12
11.4 GeneralBlock Structure 12
11.6 Transport Connection RequestBlock 12
11.5 TransportLayerBlock Types 12
T1.7 ExtendedAddressing 122
11.8 Transport Data Block Size Parameter 122
11.9 Transport Connection AcceptBlock. 122
11.10 Transport ConnectionClearBlock 123
11.11 Additional Clearing Information Parameter 123
11.12 Transport Block RejectBlock 123
11.13 Rejected Block Parameter. 123

ix

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

11.14TransportDataBlock L. .. 124

11.15 Architecture of A Transport ProtocolinEstelle 128
11.16 Constraint-Oriented Decomposition of a Transport Protocol Entity . 139
11.17 Decomposition of Process TPEConnection 139
11.18 SDL Spescification of A TransportProtocol 178

- B Domain of Applicability of an FDT F 197

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

'Foreword

ISO (the International Organization for Standardization} and IEC [the
International Electrotechnical Commission) form the_specializeéd system
for worldwide standardization. National bodies that are members of[ISO
or IEC participate in the development of internationatl Standards thrqugh
technical committees established by the respective organization to fleal
with particular fields of technical activity, ISO and IEC technical com-
mittees collaborate in fields of mutuat.jnterest. Other international or-
ganizations, governmental and nop-governmental, in liaison with [ISO
and |EC, also take part in the work:

In the field of information technology, ISO and IEC have establishdd a
joint technical committee, ISO/IEC JTC 1.

The main task of technical commitiees is to prepare International Sﬁm-
dards, but in exceptional circumstances a technical commitiee may
propose the publication of a Technical Report of one of the following

types: :

— type 1, when the required support cannot be obtained for the pybli-
cationof an International Standard, despite repeated efforts;

n

— Aype 2, when the subject is still under technical development or
where for any other reason there is the future but not immedjate
possibility of an agreement on an International Standard;

— type 3, when a technical committee has collected data of a different
kind from that which is normally published as an International S{an-
dard (“state of the art”, for example).

Technical Reports of types 1 and 2 are subject to review within three
years of publication, to decide whether they can be transformed [nto
International Standards. Technical Reports of type 3 do not necessdrily
have to be reviewed until the data they provide are considered to bg no
longer valid or useful.

ISO/IEC TR 10167, which is a Technical Report of type 3, was prepared

Annexes A, B, C and D of this Technical Report are for information only.
The formal descriptions in this Technical Report have been prepared

with care, and have been checked by tools wherever practicable. How-
ever, the aim of this Technical Report is to be tutorial rather than defin-

xi

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

itive in nature. The emphasis has therefore been on giving timely
guidance on the use of FDTs.

it is therefore possible that some errors remain in the formal de-
scriptions. Readers are encouraged to report these. Errors in SDL de-
scriptions should be reported to:

CCITT Secretariat

{8G X Question X/1 - FDT)
—Rue-Varembs 2
GENEVA
Switzerland

Errors in Estelle or LOTOS descriptions should be reported to:

ISO/IEC JTC 1/8C 21 Secretariat
“{Project 1.21.45)

1430 Broadway

NEW YORK ‘

NY 10018

USA

via the appropriate National Standards Body.

xii

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Introduction

Formal Description Techniques have been developed to be used in theformal speg-
ification of OSI and other telecommunications services and protocols. SDL in paf-
ticuiar has been developed for application in the wider field of, telecommunicatio
systems, but in this Technical Report the focus is on the specification of OSI servic
and protocols.

The purpose of this Technical Report is:

a) to aid the users of the FDTs (Formal Desctiption Techniques) Estelle, LOTOS,
and SDL; and

b) to assist and encourage the use ofthe-FDTs for specifying OSI| services angl
protocols; and

¢) to introduce the FDTs through a ¢arefully chosen set of graded examples; and

d) to assist and encourage the.use of the FDTs for defining unambiguous requirg
ments for implementation,and conformance testing; and

e) to illustrate the errors and ambiguities which can arise with natural language
descriptions; and

f) to illustrate how basic architectural ideas may be represented using FDTs.

xiii

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

TECHNICAL REPORT

ISO/IEC TR 10167 : 1991 (E)

1 Scope

Thig Technical Report provides:

a) @n introduction to the nature and purpose of FDTs; and

b) formal descriptions in each of the FDTs for selected
xamples described in natural language; and

¢) guidance to the FDT users as to how to judge and im-
rove the quality of formal descriptions; and

d) management guidance to FDT users as to how to han-
le the relationship between informal and formal de-
criptions, and between formal descriptions; and

e) fn implicit basis for comparison of the FDTs.
Thig Technical Report does not provide:

a) utorials on the FDTs and the OS! architecture; and

b) & means of formally mapping between descriptions pro-
fluced using different FDTs; and _

c) @n explicit comparison of the FDTs.

Theldefinition of each FDT, & tutorial on its usage, and the
defimition of the OSI architecture are indicated in clause 2.

The|intended audience tor this Technical Report is those
wholrequire to developformal descriptions, and those who
reqyire to use FDTs generally.

2 References

Information-technology—Open-Systems-interconnection——
Guidelines for the application of Estelle, LOTOS and SDL

of IEC and ISO maintain registers of currently valid Inferna-
tional Standards.

A bibliography of related documents is given in Annex A.

1SO 7498 : 1987, Information processing systems —|Open
Systems Interconnaction — Basic Reference Model.

ISO/TR 8509 : 1987, Information processing systems —
Open Systems Interconnection — Service conventions.

1SO:8807 : 1989, Information processing systems —|Open
Systems Interconnection — LOTOS — A formal desctiption
technique based on the temporal ordering of observational
behaviour.

I1SO 9074 : 1989, Information processing systems —|Open
Systems Interconnection — Estelle — A formal descfiption
technique based on an extended state transition mocj:l.

ISO/TR 10023 : —', Information processing systeins —
Open Systems Interconnection— Formal description f ISO
8072 (transport service definition) in LOTOS.

CCITT T.70, Network-Independent Basic Transport Sgrvice
for the Telematic Services (Red Book).

CCITT Z.100, SDL, Specification and Description Language
(Blue Book).

CCITT Z.100 Annex D, SDL User Guidelines (Blue Bpok).
CCITT Z.100 Annex F, SDL Formal Definition (Blue Book).

CCITT Z.200, Open Systems Interconnection Basic Refer-
ence Model (Red Book).

The following standards contain provisions that, through
reference in this text, constitute provisions of this Technical
Report. At the time of publication, the editions indicated
were valid. All standards are subject to revision, so parties
to agreements based on this Technical Report are encour-
aged to investigate the possibility of applying the most re-
cent editions of the standards indicated below. Members

170 be published

~ -

9 Iérmlnolcgy

The following terms are referenced within the Technical Re-
port. Where a term is used with a particular meaning (e.g.

an FDT concept, keyword, or variable) it is given in bold
face type.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

3.1 Architectural Terms

The following terms are used in accordance with the defini-
tions in 1SO 7498 and CCITT X.200:

a) (N)-association
b) concatenation
¢) (N)-connection
d) (N)-connection-endpoint

j) interpretation

k) model

1) non-determinism
m) specification.

4 FDT General Characteristics

P (Njentity

f) (N)-facility

) flow-control

h) (N)-funiction

i) multiplexing

j) (N)-protocol

k) (N)-protocol-déta-unit
I) segmentation

m) (N)-setvice

h) (N)-sewice-access-point
b) (N)-service-data-unit
p) splitting.

The following terms are used in accordance with the defini-
tions in ISO/TR 8509:

() confirm

r) indication

Is) request

t) respohse

u) (N)-primitive

v) (N)-service-provider
v) (N)-service-user.

For brevity, the above terms are-referred to in this Technical
Report without the (N)- prefix-(e.g. Service Access Point).

3.2 FbT Terms

Fhe followiﬁg FDT terms are referenced within this Tech-
hical Report. For-those unfamiliar with FDT terminology, a
utorial introduction is given in Annex B.

a) abstract, abstraction
b)-action

_CCITT/SG/X has already developed and issued

4.1 Introduction

Formal Description Techniques exhibit| different ptrengths
with respect to their location on thé range from(abstract
to implementation-oriented descriptions. All FDTY offer the
means for producing unambiguous descriptions off OSI Ser-
vices and Protocols in a mote-precise and comprehensive
way than natural language descriptions.

FDTs provide a foundation for analysis and verifjcation of
a description. The\target of analysis and verificgtion may
vary from abstract properties to concrete propertigs.

Natural language descriptions remain an essential adjunct
to formal descriptions, enabling an unfamiliar reader to gain
rapid insight into the structure and function of Seryices and
Protocols.

4.2 The Nature and Purpose of FDTs

4.2.1 The Purpose of FDTs

ISO/TC97/SC21 has developed International Starjdards for
two FDTs: :

a) Estelle (based on Pascal, with extensions to describe
-finite state machines); and .

b) LOTOS (based on the mathematical technigues CCS
(Calculus of Communicating systems), C§P (Com-
municating Sequential P‘rocesses), and ACT ONE).

Recom-

mendationvfor the FDT:

¢) SDL (based on an extended finite state maghine mo-
del with two concrete syntaxes; one-graphical and one
textual). ~

All three FDTs share a common basis, namely labglled tran-
sition systems, for expressing dynamic behaviour. Estelle
uses Pascal data types for data description, while LOTOS

cj—wmqosiﬂmrdecmnpcsiuiuun
d) constructive, non-constructive
e) descr‘iption‘

f) formal, formalisation

g) implementation

h) information

i) interaction

The objectives of FDTs are (in brief):

a) unambiguous, clear and concise specifications; and

b) a basis for determining completeness of specifications;
and

¢) a foundation for analysing specifications for correct-
ness, efficiency, etc.; and

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

more abstract

|

|
check | | SPEC'i |

consistency |

:]

check properties

ISO/IEC TR 10167 : 1991 (E)

C) criteria for evaluating FDTs; and

D) criteria for evaluating formal descriptions.

4.3 Estelle

Estelle is a formally-defined specification language for de-
scribing distributed or concurrent processing systems, in
particular those which implement OSI Services and Pro-
tocols. The language is based on widely used and ac-

|
|
|
| are preserved
|
|
+

]

|

check |
consistency | J__________ |

l

|

oncrete

Figure 4.1: Development through Refinement

d) abasis for determining conformance of implementations
to gpecifications; and

e) abasis for determining consistency of specifications rel-
ative to each other; and

f) a basis for implementation support

The usg of an FDT imposes a discipline of attending to rel-
evant details, thus increasing confidence in the resultant
descrigtion. Although the development of tools was not
an explicit objective of FDTs, the rigorous nature of FDTs
makes |it possible to develop tools which assist in the cre-
ation, dnalysis, and refinement of formal descriptions:

4.2.2 | Use in Development

Each sfage in the software (or hardware)development pro-
cess cgn be pictured as in Figure 4,1.

The deyelopment process is a succession of such activities,
beginning with informal requirements and ending up with an
implemeentation. Different languages, appearing at different
points |n the specificationsimplementation spectrum, may
therefoe be appropriate-at different stages in the develop-
ment pfocess.

4.2.3 | Assessment of FDTs

cepted concepts of communicating non-deterministic stite
machines (automata). An Estelle specification defines a
system of hierarchically-structured state machines.
machines communicate by exchanging messages throggh
bi-directional channels that connect their(@ommunicatjon
ports. These messages are queued at.either end of the
channel. The actions of machines are- specified in (px-
tended) Pascal, hence familiarity with.Pascal makes Estglle
specifications easily readable.)

Estelle mechanisms allow_ modelling of synchronous gnd
asynchronous parallelism bétween the state machines gf a
specified system. They also permit dynamlc development
of the system configuration.

Estelle specifications can be prepared at different levelq of
abstraction, from abstract to quite implementation-orientgd.
The latter.may be derived from the former with the ai
supporting tools. Since all Estelle concepts are rigoro
defined; Estelle tools which accurately refiect the langu
can be developed.

4.4 LOTOS

LOTOS is a mathematically-defined FDT,vde\{e'Ioped froma
large, well-established body of theory based on CCS, C$P,
and ACT ONE.

Having a well-defined mathematical foundation, it proviges
a solid basis for both analysis and development of reliaple
tools, including simulation, compilation, and test sequerjce
derivation.

The basic constructs of LOTOS allow modellmg of sequehc-
ing, choice, concurrency, and non-determinism in an én-
tirely unambiguous way. In addition, LOTOS permits m¢d-
elling of both synchronous and asynchronous communiga-
tion.

LOTOS may be applied to produce a speclfncatlon of the
allowed behaviours of a system, i.e the set of all behavioyirs
which may be observed of a conforming impiementatio

Furthermore, LOTOS permits the description of allowed be-
haviours without describing how this may be achieved,| or

FDTs gré-used to represent basic concepts such as ab-
straction, ularity, -hiding, structuring, and
synchronisation, as well as more complex architectural con-

cepts. Later clauses illustrate these. -

It is difficult to assess FDTs, since they differ in their techni-
cal aspects and in the goals of their application. However,
tutorial Annexes are provided to assist in this:

A) bibliography; and
B) characteristics of FDTs; and

by describing particular mechanisms which achieve the re-
quired behaviour. .

45 SDL

SDL is based on the extended finite state machine model
supplemented by capabilities for Abstract Data Types based
on the initial algebra model (the same as used in the ACT
ONE part of LOTOS). This combination is supported by a

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

well-defined formal semantics.

SDL provides constructs for representing structures, be-
haviours, interfaces, and communication links. In addition,
it provides constructs for abstraction, module encapsula-
tion, and refinement. All of these constructs were designed
to assist the representation of a variety of telecommunica-
tions system specifications, including aspects of protocols
and services. .

SDL is quite widely used in the telecommunications com-

not agree on a formal description: they may interpret the
informal description differently.

A high-level description is the basis for further develop-
ment of the system. An advantage of using an FDT is that,
since the specification language is defined exactly, com-
puters can be used in the development process. From the
high-level description more detailed descriptions can be de-
rived, leading finally to an implementation. At each step in
the design process, implementation decisions and restric-
tions are made more explicit, being postponed as late as

which are generally available.

1.6 Benefits of FDTs

With a specification written in an FDT, an accurate descrip-
ion of {(system) behaviour can be given. Descriptions writ-
en so far with:.the FDTs mostly deal with the behaviour
bt data communications services and protocols, and with
elecommunications switching systems. Other kinds of be-
haviour can be considered for specification, for instance the
Hescription of the dialogue between a user and a system.

high-level description says exactly how a system should
ehave. It describes only its behaviour, not the realisation of
hat behaviour (implementation details are excluded). The
escription is also exact; there are no loose ends or spec-
fication gaps, and behaviour is described for all possible
ystem inputs. When an input should give an undefined
behaviour, this should be described as well.

The use of an FDT enforces a discipline on the specifier as
to what information should be given and how it should be
presented. Although it might be felt by the specifier thatthis
discipline is very strict, the result is a much better quality
description than would have resulted if natural language
had been used. This benefit is obtained in addition to the
benefits from using automated analysis togls:

Another problem with natural language descriptions is that
they often jump from one abstraction level to another. An
FDT gives better possibilities for ‘structuring descriptions,
and distinguishing between different abstraction levels.

In a development process which uses a (formal) specifi-
cation language, several spacification levels are generally
used. Usually, the starting point is a rough idea of what a
system should do..This idea is then written down in natural
language. From this informal functional description a formal
description is-derived (written in a specification language).
In this proceéss, exact requirements must be captured, and
loose_ends or fuzzy areas must be detected and resolved.
The{resulting high-level description is an accurate repre-
séntation of the functions of the system.

possible.

Each detailed description or the implementation can be ver-
ified (with computer assistance) for conformante to the
specification it is derived from. A flrther advantage is
the possibility of deriving test sequentCes with expected re-
sponses for the final implementation;'in principle, these can
be derived from the original specification automafically.

of abstraction may be used. For example, a higt-level de-
scription may be given of what a system should d
tionality); such an implementation-independent
would be appropriate in a definitive International
implementation-independence can aiso make dgscriptions
re-usable for future systems (in a different envirpnment or
with different constraints) and can facilitate desgription of
re-usable software components. However, it magy aiso be
advantageous to give a more implementation-orjented de-
scription so as to assist the production of conforming imple-
mentations.

More detailed tutorial guidance on FDTs and thejr applica-
tion can be found in the Annexes.

4,7 Tools for FDTs

The availability of tools for FDTs can be an impprtant fac-
tor in their application. The nature of these togls follows
from the aspects of the application of FDTs descrjbed in the
previous section.

There have to exist good tools for writing and| changing
descriptions. These tools could incorporate soipe kind of
source version-control system to keep track of different ver-
sions. Furthermore, there should exist verificgtion tools:
a description which is not checked for correctjess loses
much of its value as an exact description of a [system or

} ipti re written

Getting a complete and unambiguous high-level descrip-
tion before most of the design decisions are made is one
of the most important benefits of using an FDT. Even if the
natural language requirements are written very carefully, as
for the examples in this Technical Report, errors and omis-
sions are found. The problems with the ambiguity of natural
language descriptions is best illustrated by the fact that spe-
cialists who agree on the natural language description may

using a computer system, it would be a waste not to use
that computer system for verification of correctness.

Several tools for FDTs can be considered. These tools can
be divided into two categories, static and dynamic.

Static tools deal only with language aspects of the FDT
used for a description. Into this category fall (graphical)
(syntax-driven) editors, checkers for correct use of the FDT,

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

teaching tools, and static report-generators (reporting on
use of language constructs).

When descriptions are written, a style must be chosen that
is appropriate for the system to be described. The ‘best’
style is rarely found at the first attempt. Static tools fa-
cilitate modifications of style, as well as modifications and
extensions of the description.

Dynamic tools deal with the behaviour of the specified sys-
tem. They can be used to verlty whether the specmed sys-

gory include interpreters, simulators/animators, validators,
and test sequence generators. The benefit of these tools is
tha{ they help to avoid the introduction of errors during the
design process.

Other possible tools include (interactive) generators of an
implementation or prototype of the specified system. These
tools ease the burden of straightforward but error-prone
coding, giving the opportunity to concentrate on important
implementation decisions.

The kinds of prototype tools for FDTs that are available or
are|being developed include:

a

~

specialised editors to help produce or modify formal de-
scriptions; and

b) fformatters to produce-pretty-printed text or graphical
representations of formal descriptions; and

¢) verifiers and theorem-provers to analyse specification
properties; and

d) [parsersto:detect lexical and syntactic errors, and to per-
form chiecks on static semantics (e.g. type-checking);
and

ISO/IEC TR 10167 : 1991 (E)

The benefits of using such tools fall into three categories:
increasing confidence in the description of a system, reduc-
ing the costs of implementing a formally-described system,
and producing an implementation in a systematic way.

The current trend in tools development for FDTs shows that
particular kinds of tools are likely to be developed for each
FDT. For example, the emphasis with Estelle has been on
the early development of compilers. In the case of LOTOS,
simulators have been developed first. For SDL, graphical
editors and top-down design aids have received priority.

5 Guide to the Examples

5.1 Explanation of the Examples

A careful choice has been made of a graded series of exam-
ples, given in each FDT,, The examples have been ghosen
with the following aims:

5.1.1 Examplesof Basic FDT Concepts

These are examples of concepts which are represerjted by
all FDTs. <They are neutral with respect to any paEicuIar

FDT and to architectural concepts. They illustrate how the
FDTs capture some basic ideas of Information Theoty.

5.1.2 Examples of Basic Architectural Congepts

defined in the OSI Basic Reference Model and elsewhere.
They illustrate more specifically how FDTs can be used to
represent OSI concepts.

These are more complex examples, drawn from cc:Ecepts

5.1.3 Daemon Game

This illustrates a small self-contained system. Although not
presented as a Service or Protocol example, this is ajgentle
lead-in to later, more realistic examples.

5.1.4 Sliding Window Protocol

This illustrates an important flow-control and error-refovery
technique which is present in many real Protocols. In addi-
tion, it illustrates the description of a Protocol in relgtion to
its underlying Medium.

5.1.5 Abracadabra Service and Protocol

This illustrates the familiar Alternating Bit Protocol,|which

e) simulators to aid interactive analysis of formal descrip-
tions; and

f) compilers to generate executable code in some target
language; the output of a compiler would vary according
to the intended use of the code (simulation, debugging,
implementation, etc.); and

g) test sequence generators, for checking implementa-
tions against a formal description.

is-a-precursorto—some—rteal-Protocols—H—aiso-llustrates
the extra features in connection-oriented Protocols. The
example presents the description of a Protocolin relation to
the Service it provides.

5.1.6 A Transport Protocol

This is based on the CCITT T.70 Transport Protocol in order
to illustrate how real Protocols may be formally described.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

It is, however, only an exampie and is not definitive with
regard to T.70 as to either the informal or the formal de-
scriptions. ‘

52 How to read the Examples

The examples in each FDT have been carefully prepared
by experts in the appropriate FDTs. As far as practicable,
the formal descriptions have been checked with automated
tools. The formal descriptions have also been checked by

their authors for top-level consistency with each other and
ith the informal descriptions. This has lead to deficiencies
in the informal descriptions being discovered and corrected.
a matter of policy, these deficiencies have been noted
parately rather than correcting the original informal de-
riptions. The reason for this was to point out the kinds of
rrors which can arise in writing informal descriptions. The
amples therefore serve a secondary purpose of justifying
the use of FDTs. A reference to the offending clause in the
informai description is given for each deficiency.

owever, it should not be forgotten that the examples are
just that. They are illustrative of good style in each FDT,
ut of course it would be possible to produce different and
qually valid formal descriptions. The examples also re-
ict the individual style of their authors, and are thus not
ecessarily completely uniform in their approach. The ex-
mples illustrate the preferences of experienced specifiers,
Ithough in some cases the examples were modified in or-
er to ensure commonality with companion descriptions in
‘gther FDTs. Alternative styles would be valid, and may be

nsidered superior according to the subjective judgment
f the reader.’ ' v ' .

e examples may be read in different ways:

by FDT all the examples in one FDT could be read
in order to gain insight into-how that FDT
may be used; or :

by example all the formal descriptions of one example
‘ could be read, in‘order to gain insight into
how the FDTs differ in their approach; or

for problems the informaldescriptions and deficiencies of
one example could be read in order to gain
insight into the kinds of errors and ambigu-
ities which can easily be introduced when
-writing informal descriptions.

To facilitate.the above, the examples are generally pre-
sented,in the form shown in Figure 5.1.
Hor-the smaller examples, this structure is simplified. For

rmal description is given

Informal Description

Deficiencies in the dnformal Description
2.1 Deficiency’ A

2.1.1 , (Deficiency

2.1.2</ Resolution
etc.

Estelle Description

3.1 Architecture of the Formal Descrigtion

3.2 Explanation of Approach
‘3.3 Formal Description '
3.4 Subjective Assessment

LOTOS Description

4.1 Architecture of the Formal Descrigtion

4.2 Explanation of Approach
4.3 Formal Description
4.4 Subjective Assessment

SDL Description

5.1 Architecture of the Formal Descrigtion

5.2 Explanation of Approach
5.3 Formal Description
5.4 Subjective Assessment

Assessment of the Application of FDTs

Figure 5.1: Typical Layout of an Exampl

in two parts. In the case of SDL, alternative graphical (GR)
and textual (PR) representations are possible. The graph-
ical representation is given in all cases, but for brevity the
textual representation is given only for the Daemon Game
example.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

6 Examples of Basic FDT
Concepts

These are examples of concepts of FDTs or their applica-
tion. They are neutral with respect to any particular FDT
and to architectural concepts. They iliustrate how the FDTs
capture some basic ideas of Information Theory. Definitions
of FDT terms are given in clause B.4.

ISO/IEC TR 10167 : 1991 (E)

6.2 Information
6.2.1 Estelle Representation

Information is represented by Pascal data types. The
usual types ‘integer’ and ‘real’ are interpreted to be the
actual mathematical objects, not computer-dependent ap-
proximations to them. As does Pascal, Estelle aliows the
creation of new data types. ’

Information that constitutes implementation detail may be

6.1 |Abstraction

6.1.1 | Estelle Representation

By design, Estelle aliows the writing of descriptionsin a style
that clasely mimics the way communications protocols are
described.

Estelle [descriptions may be written at various levels of Ab-
stractipn, ranging from abstract to concrete. Using appro-
‘priate support tools, it is possible to move from one level
to another. Details may be deferred using external mod-
ule boglies, primitive functions and procedures, and the
type “..J.

Top-down design is supported in various ways: the usual
mechanisms of a modern programming language (Pascal)
are au*mented by the ability to structure Estelle modules
into sutbmodules.

6.1.2 [LOTOS Representation

It is an|important strength of LOTOS that it may be used
with an|appropriate level of Abstraction. Although LOTOS
is a copstructive language, it can be used in a constraint-
orientef!, almost assertional style. That is, it is possible, to
write LOTOS descriptions which satisfy a ‘separation of'con-
cerns’. | Each such concern, or constraint, may ke written
parate behaviour expression in LOTOS: The con-
straintd may then be combined by the appropriate LOTOS
operatgrs (e.g. sequence, choice, interleaving, or synchro-
nisation))

6.1.3 | SDL Representation

SDL provides the means to.give a system description at
any leviel of detail, and ffom’several viewpoints. Thus it is
possiblp to abstract and-t0 represent only those aspects of
a systgm that matter’in a given context. For example, it
is possible to neglect implementation detail, maintenance
issues,|etc.

Moreover; SDL provides the means to describe a system
using P i Zious one

indicated using the any construct (e.g. MaxSize = any
integer). Details about data types that are not important at
a particular level of description may be deferred.

6.2.2 LOTOS Representation

LOTOS represents Information using.the ACT ONE Ab-
stract Data Type (ADT) language: The emphasis is on the
structure of data objects and the’opérations on them, rather
than their representation in a(particular implementation|(or
class of implementations).. Information may be established
when synchronisation on-a LOTOS event occurs, or may be
transferred when processes are instantiated.

6.2.3 SDL Representation

SDL has a'set of pre-defined data types (e.g. ‘Real’, fIn-
teger’, and ‘Charstring’). SDL also provides the meang to
define-structures such as arrays and matrixes. SDL, [ike
LOTOS, uses Abstract Data Types; indeed the same Ab-
stract Data Type kernel is shared between SDL and the
ACT ONE part of LOTOS. ’

6.3 Action
6.3.1 Estelle Representation
Atransition can be enabled either through an external event

or through conditions local to the module. Transitions pre
atomic. :

An action in Estelle corresponds to a transition of a modvEle.

6.3.2 LOTOS Representation

The notion of an Action corresponds to the notion of|an
event in LOTOS. Events in LOTOS are atomic; therg is
no concept of events overlapping in time or happening si-
multaneously, so all events are fully interleaved. Events
in LOTOS are associated with a list of values which gor-
responds to the Information associated with the Actipn.
An event has an associated gate name, at which the event
occurs, and a list of zero or more values.

and providing more details. In this sense, SDL supports
both top-down design and representations of virtual system.

. This is achieved through structuring, partitioning, and refine-
ment (top-down approach) and through channel structuring
(virtual system approach). Abstraction is made possible
by the use of Abstract Data Types, in which objects are
described in terms of their properties rather than in terms of
their implementation. ,

6.3.3 SDL Representation

In SDL, the establishment of Information (including the
manipulation of existing Information) is always tied to a
state-transition pair. Information can be implicit (i.e. the
state of the process) or explicit (i.e. contained in a data
object). The activation of a transition is the only means
through which an Action (or sequence of Actions) can

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

take place.

6.4 Interaction
6.4.1 Estelle Representation

Normally, Interactions in Estelle correspond to the inputs
and outputs of modules. Indeed, these are called interac-
tions in Estelle. In addition, Estelie also supports sharing of
V@ iablesb i j

with the same value for a variable, will be activated at the
same time, i.e. when the variable assumes that value. This
is the sole means of synchronisation existing in SDL. Note
that the variable value should be set by a third process.

PROCESS A;

OUTPUT WaitingForSync;
NEXTSTATE WaitSync;

that serve to eliminate race conditions.

he allowable Interactions at an interaction point are de-
scribed by a channel description. {nteractions are queued
hy the receiving module.

§.4.2 LOTOS Representation

he idea of an Interaction is built into the synchronisation
echanism of LOTOS. Two (or more) behaviour expres-
sions may synchronise on an event. Such events may refer
tp only gate names (pure synchronisation), to matching !
dnd ? expressions (value-passing), and to matching ? and
expressions (value-establishment). Examples of all these
forms of synchronisation are found in OS| Standards.

8.4.3 SDL Representation

he idea of an Interaction is supported in SDL by three
donstructs:

) signal interchange; and
D) internal signals; and
) shared data.

he principal means of Interaction in SDL is through signal
ihterchange. This allows asynchronous Interactions to
he modelled, wherein the process sendirig'the signal is not
gware of when the signal will be received by the receiver.
$ignals are never lost, i.e. the receiver will aiways receive
them. If no receiver exists, a dynamic interpretation error

ill oceur, but the receiver might'be in a state where that
particular signal is not awaited; so that it will be discarded.

he sender is not notified-of the reception of the signal. If
this is required, an explicit acknowledge signal should be
dent from the receiver:

hrough internal signals, the Interaction between SDL
$ervices canbe modelled. Note that the SDL Service con-
dtruct modeis activities which are split into separate se-
quencés;-where only one sequence can be active at any
tjme. “Thus, this type of Interaction resembles a transfer
af contro is not the same control transfer as in a proce-
dure call (i.e. immediate transfer, with return at a later point
to the caller), nor a process activation (because the Ser-
vice activation will occur according to the queued internal
signals).

Through shared data (i.e. variables), two SDL Services or
processes may interchange Information, and may also be
activated upon the occurrence of a certain value using the
PROVIDED construct. Two processes which are both in a
state with no signals waiting, and with a PROVIDED clause

STATE WaitSync;
SAVE x;
PROVIDED VIEW (Activate, Synchroniser);

ENDPROCESS A;
PROCESS B;

OUTPUT WaitingForSync;
NEXTSTATE WaitSync);

STATE WaitSync;
SAVE *g§
PROVIDED VIEW (Activate, Synchronisefr);

ENDPROCESS B;

PROCESS Synchroniser;
DCL REVEALED Activate BOOLEAN;

DECISION BothSyncReqReceived;
(true): TASK Activate := TRUE;

ENDPROCESS Synchroniser;

6.5 Interaction Point

6.5.1 Estelle Representation

In Estelle, an Interaction Point corresponds to [the con-
struct of the same name. An Estelle interaction point is
an abstract, bi-directional interface through which a2 module
may send and receive interactions. It has three atributes:
the corresponding channel identifier; a rble identifjer which
describes the interactions a module may send and receive;
and a queusing discipline to be used for interagtions re-
ceived through the interaction point. Estelle interaction
points may be external or internal.

6.5.2 LOTOS Representation

In LOTOS, an Interaction Point corresponds most closely
0 an event gale. The gale name certainly distinguishes
events from those at other gates. However, events are of-
ten tagged with identifiers which further distinguish different
behaviours. For example, events at a particular endpoint
might have the form:

Gate ! EndpointId ! Valuel ! ... ! ValueN

where Endpointld distinguishes that endpoint, and Value1
to ValueN represent the relevant Information.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

6.5.3 SDL Representation

In SDL, activities (i.e. SDL Services or processes) inter-
act through an interface. This interface may consist of an
implicit part (shared data) and/or an explicit part.

When the Interaction is achieved through signal inter-
change between different blocks, an Interaction Point
can be represented by means of a uni-directional or bi-
directional channel. Also, the graphic representation
(Functional Block Interaction Diagram) is well suited to

ISO/IEC TR 10167 : 1991 (E)

represent OSI concepts. However, only examples of partic-
ular interpretations of the concepts are given; the concepts
may be specified in other ways. The examples are given in
a bottom-up fashion so that more elementary examples are
given first.

Each example in this clause is explained in general terms,
but a pointer to a specific use in later clauses is given. In
many cases, the example could be given in a data-oriented
or behaviour-oriented style. The most appropriate choice

of styla has heen made according to the example and the

show the Interaction Points.

The [channel, as a means of showing an Interaction
Point, can be further decomposed into sub-channels, each
one showing a sub-Interaction Point. Each of the sub-
Interpction Points is connected to the parent Interaction
Point using the CONNECT construct.

The tefinement construct applied to the signals associated
with & channel provides.a means of representing a specifi-
catiop at several levels of detail.

The Interaction Point, in the case of signal interchange,
can glso be represented by the SIGNALSET construct, con-
tainef in the two interacting processes. However, the use of
the channel (or signal route) makes the Interaction Point
explicit and easier to handle from the viewpoint of a human
reader.

Whef the Interaction is achieved through internal signals,
the Interaction Points are defined by means of the SIG-
NALROUTE construct. The corresponding graphic repre-
sentgtion may be used, in which lines connect the various
SDL jservices.

Whef using shared data as an implicit interface, it is advis>
able to group the data into sets, each set corresponding to
a ceitain Interaction between two activities. For example:

DCL REVEALED
hli, n2 typel,
h3 type2 /* shared values, with P1, P4 */;

DCL REVEALED
h3 type2,
hd type3 /* shared values with P2, P4 */;

and similarly for the EXPORTED mechanism. In the shar-
ing processes, it isalso’advisable to group together in the
VIEWED declaration, those variables whose values are in
comrmon with @-group of processes. There is no rule in the
langdage requesting such a grouping, but such.grouping
simplifies‘reading. ‘

FDT used.

7.1 Service Access Point

For a specific example, see the Interaction Point between
a player and the system in the Daemon.Game descriplions.

7.1.1 Estelle Representation

In the simplest case, a Sefvice Access Point is represented
in Estelle as an externalinteraction point. More gengrally,
however, a Service. Access Point may contain many|End-
points; this is represented by an array of interaction ppints.

External interaction points are indicated as part of a mpdule
header. Such an example might be:

module M process;
ip SAP : SAP(provider);
end;

This declares M to be a process-type module with a sin-
gle interaction point SAP which plays the role of Sgrvice
Provider. SAP and provider refer to a channel definition
(not given here) and serve to describe the allowable inputs
and outputs through the interaction point SAP, '

For a specific example, see the Daemon Game: intergction
point P.

7.12 LOTOS Representation

A Service Access Point appears in LOTOS in e,vénts bf the
form:

S ! Sap ! ...

where:

a) S is the gate at which communication with the Sgrvice
takes place; and

7 Examples of Basic Architectural
Concepts
These are more complex examples, drawn from concepts

defined in the OSI Basic Reference Model and elsewhere.
They illustrate more specifically how FDTs can be used to

b) Sap is the identifier of the Service Access Point; it is
usually the same as the Address of the Service Access
Point. :

At the most abstract level, all one can say about Sap values
is that they are distinct:

type SapType is

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

sorts SapSort

BaseSap
NextSap :

: => SapSort
-SapSort -> SapSort

opns

endtype

This says that there is some base identifier for Sap values,
from which other identifiers are constructed by repeated
application of the NextSap function. In the absence of

module M process; .
ip SAP : array [1..MaxSize] of
NSAP(provider) ;
end; ‘

This defines SAP to be an array of Endpoints; the usual
Pascal syntax is used to select a single Endpoint in the
array. For example, output of an interaction called ConReq
with address parameters Addr1 and Addr2 and Quality of

c:ez.\1.|r:.a_;:na.:a.maxna\r_cmS_Lhn:o1LgI:_t}:1e_ﬁ:st_of_t.he_End.7omts

equations these values are all distinct. (The Sap sort is
obvibusly isomorphic to the natural numbers.)

For h specific example, see the Daemon Game: gate P.

7.13 SDL Representation

A Service Access Point may be represented in SDL in the
form of:

CHANNEL Sap

FROM Serv;céUéer TO ProtocolEntity
HITH Eventl, Event2, ...;

FROM ProtocolEntity TO ServiceUser
WITH Event3, Event2, ...;

ENDCHANNEL;

where:

a) Bap is the name of the channel, and can be used to
ddress the signals (events) usmg the VIA construct in
n OUTPUT action; and

b) Eventt, etc. are the names of the signals interchanged
t the Service Access Point; and

c) BerviceUser is the User of the Service-Access Point;
nd
d) ProtocolEntity identifies the supporting Protocol Entity.

Noté that events are associated.with a particular direction
of tHe interaction.

For [a specific example, see-the Daemon Game: channel
Gamesetrver.

7.2 Endpoint

For |a specific.example, see the Transport Connection
Endpoint in-the Transport Protocol descriptions.

would be written as:
output SAP[1].ConReq(Addri, Addr2; QOS)

For a specific example, see the Transport Protocol: [inter-
action points TCEP.

7.2.2 LOTOS Representation

An Endpoint is representédin LOTOS in events of the|form: .

S ¢ Sap ! Ep &~

where:

a) Ep-is.the identifier of an Endpoint, and would be de-.
scribed just as for Sap:

" type EpType is
sorts EpSort

-> EpSért
EpSort -> EpSort

BaseEp :
NextEp :

opns

endtype

For a specific example, see the Transport Protocol:| type
TCEndpointidentifier.

7.2.3 SDL Representation

in SDL, the representation of an Endpoint can be hjdden
in the Service Access Point, since the channel construct
supports several instances.

if with Endpoint it is necessary to connect differen{ SDL
Services {(or processes) each representing a given get of
communications, then the Endpoint is represented jusing
the SIGNALROUTE construct:

SIGNALRQUTE F'nripn-‘n nti

7.21 —Estelle Representation

As noted above, in the simplest case, an Endpoint corre-
sponds to a Service Access Point, and thus is represented
in Estelle as an external interaction point. More generally,
however, a Service Access Point may contain many end-
points. In this case, a single Endpoint corresponds to a
single element in an array of interaction points.

A slight modification of the Estelle example above shows
an array of Endpoints.

10

FROM ERV TO Serv1ceEnt1ty1
WITH Eventi, ...;

FROM ServiceEntityi TO ENV
WITH EventN, ...;

SIGNALROUTE Endpoint2

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

FROM ENV TO ServiceEntity2
WITH EventX, ...;

" FROM ServiceEntity2 TO ENV
WITH EventM, ...;

CONNECT Endpointl AND Sap;
CONNECT Endpoint2 AND Sap;

Depending on the choice in representing a Service (or Pro-

ISO/IEC TR 10167 : 1991 (E)

For a specific example, see the Transport Protocol: type
TransportAddress, as used in type BasicTSP with opera-
tion TCONReq.

7.3.3 SDL Representation

Service Primitive Parameters are vanables of a given type
defined, for example, as:

tocol) Entity as a process or as an SDL Service, it is nec-
essary|to connect the:signalroute to a channel (when using
a procgss) or to a signalroute that is the continuation of the
channgl to the block embedding the SDL Services.

For a specific example, see the Transport Protocol: variable
CEP._ID.

7.3

The example used is a set of Quality of Service (QoS)
requirdments. For a specific example, see the Connec-
tion Request Called Address parameter in the Transport
Protogol descriptions.

Service Primitive Parameter

7.3.1

Service Primitive Parameters are described in Estelle as
parameters of interactions. In the Estelle example in 7.4.1,
Addr1| Addr2, and QOS are Service Primitive Parameters.

For a fpecific example, see the Transport Protocol: type

Estelle Representation

TADDRESS, as parameter of interaction TCON_REQ of
chann¢l TS_INTERFACE.

7.3.2

A Se
of so

LOTOS Representation

ice Primitive parameter in LOTOS is simply a value
sort, for example:

typq QoSSetFormalType is Set renamedby
sqrtnames QoSSetSort for Set

end1ype‘

type QoSSetType is, (oSSetFormalType

attuéli;edby QoSType, Boolean using

sortnames QoSSort for Element
‘Bool for Fbool

NEWFFRE—Typenan
N e

ENDNEWTYPE;
For example:

NEWTYPE (oSSet Set (QoS)

ENDNEWTYPE;

where:

a) QoS defines Quality of Service values; and
b) Set is defined’in the usual fashion.
For a_specific éxample. see the Transport Protocol:

type TADDRESS, as used in type TPDU with operator
BUILD_TCR.

7.4 Service Data Unit

For a specific example, see the Medium Data Request
parameter in the Sliding Window Protocol descriptior

»

7.4.1 Estelle Representation

A Service Data Unit is representedin Estelle as one or more
interaction parameters. Consider the following example:

channel SAP(user, provider);

by user: .
CONNECTrequest(Addrl, Addr2, QO0S);
CONNECTresponse(Addri, Addr2, QOS);
DATArequest (UserData : UserDataType);
DISCONNECTrequest;

by provider:
CONNECTindication(Addr1l, Addr2, QO0S);
CONNECTconfirm(Addril, Addr2, QO0S);
DATAindication(UserData : UserDataTypg);

endtype

where:

a) Set is the standard library daté type; and
b) QoS isthe type which defines Quality of Service values.

In the above, a set of Quality of Service values is first named
by renaming the standard sort Set, then the formal param-
eters Element and Fbool are instantiated.

DISCUNNEUTINdICAatIon,

In this example, the DATArequest and DATAindication
Service Primitives each have Service Data Units repre-
sented as the interaction parameter UserData, which is
defined to be of type UserDataType.

For a specific example, see the Sliding Window Protocol:
type DTPDUType, as parameter of interaction DT in chan-
nel M.

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.4.2 LOTOS Representation

A Service Data Unit is represented in LOTOS as a value of
some particular sort which is considered to be Service User
data. In a Service description, a Service Data Unit has only
operations which construct values. See 7.12.2 and 7.13.2
for what is involved in a Protocol description. A Service
Data Unit might be described as:

type SduType is OctetString

St Sap ! Ep ! Sp (...)

where Sp is an operation which constructs some value of
the sort corresponding to the Service Primitive, for example:

DatInd (UserData)

where:

endtype

where:
a) OctetString is the standard library data type for a string
of octets.

e PduType, as used in type MPType with operation

FE a specific example, see the Sliding Window Protocol:
eq.

7/4.3 SDL Representation

AlService Data Unit is represented in SDL as a variable of
a type which is considered to be Service User Data. For
example, a Service Data Unit might be described as:

NEWTYPE Sdu
INHERITS OctetString ALL;

ENDNEWTYPE;

where:

Q0

OctetString is defined in the usual fashion for octet
strings.

For a specific exémple, see the Sliding Window Protocol:
type DataType, as used in signal MDTreq.
715 Service Primitive

The general example used is a Data Indication. For a spe-
cific example, see.the Score signal in the Daemon Game
dgscriptions.

7.5.1 Estelle Répresentation

A Serwce anmve is descnbed in Estelle as an mterac-

b) UserData holds the value corresponding to thJ data to

be delivered.

For a specific example, see the Daemon Game operation
Score in type SignalType.

7.5.3 SDL Representation

A Service Primitive can be representedin SDL as a freation
of a signal instance e.g.;

OUTPUT Sp (Sap, Ep, DatInd (...));

However, it js'usual to simplify the form of the svgnai so that
in the specific case it might be:

QUTPUT DatInd (UserData):

where:

a) UserData holds the value corresponding to the data to
be delivered.

The corresponding reception by the Service User would be
with the statement:

~ INPUT DatInd (Vari);

where:

a) Var1 would have to be the same sort as UserD ta.

7.4.1, CONNECTrequest, CONNECTresponse etc. are
all Service Primitives.

For a specific example, see the Daemon Game: interaction
Score in channel Gameserver.

7.5.2 LOTOS Representation

The occurrence of a Service Primitive corresponds to a
LOTOS event of the form:

12

Score in system Daemongame.

7.6 Protocol Entity

The example used is a Protocol Entity which is composed
with other Protocol Entities and the underlying Service to
yield the required Service. For a specific example, see the
transmitter Protocol Entity in the Sliding Wmdow Proto-
col descriptions.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

7.6.1 Estelle Representation

A Protocol Entity usually corresponds to an Estelle mod-
ule. Such a module may be refined into sub-modules. A
module is described in two parts, a header and a body.
The header is introduced with the keyword module and in-
dicates the external visibility of the module, by listing the
exported (shared) variables, the parameters, and the ex-
ternal interaction points of the module. Each associated
body describes an allowable behaviour of the module. As
an example, consider the following:

ISO/IEC TR 10167 : 1991 (E)

7.6.3 SDL Representation

A Protocol Entity is representedin SDL by a block containing
one or more processes. For example:

BLOCK ProtocolEntity;
SIGNALROUTE RLSap
FROM ProtocolProc TO ENV WITH LReq;
FROM ENV TO ProtocolProc WITH LInd;

mqdule M process;
ip SAP : NSAP(provider);
end;

bqdy MBody for M;
end;

This| describes a module M with a single interaction point
SAH and the most uninteresting body possible, MBody.

For p specific example, see the Sliding Window Protocol:
module Transmitter.

7.6.2 LOTOS Representation

A Prptocol Entity is modelled in LOTOS by giving the con-
straints on behaviour at the boundaries of its upper and
lowdr Services, and the relationship it maintains between
behaviour at these. For exampie:

pYocess ProtocolEntity [U, L]
USapSet : USapSetSort, LSapSet
! noexit :=

: LSapSetSort)

UConstraints [U] (USapSet)
1{ull

ULConstraints [U, L]

(qult

LConstraints [L] (LSapSet)

erldproc

where:

a) U and L are the gates for communication at the Upper
nd Lower Service boundaries of the Protocol Entity;
nd

b) USapSet.and LSapSet are the sets of identifiers for the
pper.and Lower Service Access Points supported by
the Protocol Entity; and

SIGNALRQUTE R"QAP

FROM ProtocolProc TO ENV WITH Ulnd;
FROM ENV TO ProtocolProc WITH URegq;

CONNECT RUSap AND USap;
CONNECT RLSap AND LSap;

PROCESS ProtocolProc REFERENCED;

ENDBLOCK ProtocolEntity;

where:

a) USap is the channel representing the Service Atcess
Point of the'Layer; and

b) LSap is-the channel representing the Service Atcess
Point.of the underlying Layer; and

c) RLSap and RUSap are signaliroutes connecting the
channels LSap and USap respectively to the prpcess
ProtocolProc, and conveying the signals LReq, [LInd,
UReq, and Ulnd.

For a specific example, see the Sliding Window Pratocol:
block sender_entity.
7.7 Protocol

The example used is a set of Protocol Entities which sup-
port a Service using two underlying Services. For a specific
example, see the Abracadabra Protocol descriptior}s.

7.7.1 Estelle Representation

In Estelle, the rules, procedures, and data strugtures
neededto representa Protocol are contained in the descrip-
tion of one or more modules and their associated bodies.

specification ProtocolExample;

default individual queue;

¢) UConstraints, LConstraints, and UL.Constraints con-
strain the Upper and Lower Services, and the mapping
between them.

At a lower level of description, each constraint would be
expanded to deai with individual Endpoints.

For a specific example, see the Sliding Window Protocol:
process TransmitterEntity.

const
MaxSapl = any integer;
MaxSap2 = any integer;

channel Lichan(user, provider);
by user:
Ulrequest;
by provider:
Ulresponse;

13

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

¢channel L2chan(user, provider);
by user:
U2request;
by provider:
U2response;

module L1 process;
ip L1Sap: array [1..MaxSapi] of
Lichan(provider);
end;

process Protocol [U, L1, L2]
(UsapSet : USapSetSort,
LiSapSet : LiSapSetSort,
. L2SapSet : L2SapSetSort)
: noexit :=

ProtocolEntities [U, L1, L2]
(USapSet, LiSapSet, L2SapSet)
1[L1, L2l
(

module L2 process;
ip L2Sap: array [1..MaxSap2] of
L2chan(provider);
end;

module U process;
ip U1Sap: array [1..MaxSapl] of
Lichan(user);
U2Sap: array [1..MaxSap2] of
L2chan(user) ;
end;

body Libody for Li;
end;

body L2body for L2;
end;

body Ubody for U;
end;

var i : integer;

modvar
Liinstance: L1;
L2ingtance: L2;
“Uinstance: U;

initialize
begin
init Liinstance with Libody;
init L2instance 'with L2body;
init Uinstance) with Ubody;
for i := { to MaxSapl do
confie¢t Lliinstance.L1Sap{i] to
Uinstance.UiSap[il;
for i := 1 to MaxSap2 do _
connect L2instance.L2Sap[i] to
Uinstance.U2Sap[i];

end;
end

UService |L1] (Llsapoet)
10

UService [L2] (L2SapSet)
)

endproc

where:

a) U, L1, and L2 are the gates for communicatig
supported Service.and the two underlying Sen
spectively; and

b) USapSet, L1SapSet, and L2SapSet are th
Service Access point identifiers for the corre
Servicesyand

n at the
ices re-

sets of
ponding

c) ProtocolEntities is the composed behaviour gf the in-

dividual Protocol Entities; and

d)."UService is the Service derived from either 0
derlying Services.

the un-

For a specific example, see the Abracadabra Protocol:

overall behaviour as represented by the compositio
cesses Service, Protocol, and CMService.

7.7.3 SDL Representation

A Protocol is represented in SDL by a set of bloc|
block representing a Protocol Entity. The blocks

n of pro-

s, each
re con-

nected to each other indirectly via the underlying [Service.

Normally a Protocol contains two blocks which a
images of each other. In this case it is sufficient td
the description of one block only. For example:

SYSTEM Protocol;
NEWTYPE UserDataType ... ENDNEWTYPE;
SIGNAL ConReq, DatReq (UserDataType),

SIGNALLIST ToUser = ConInd, ... ;

e mirror
provide

For a specific example, see the Abracadabra Protocol:
module Abra.

7.7.2 LOTOS Representation

A Protocol is modelled in LOTOS as a set of Protocol En-
tities composed with a set of underlying Services. For ex-
ample:

14

SIGNALLIST FromUser = ConReq, ... ;
BLOCK ProtocolEntity;

CHANNEL USap
FROM ENV TO ProtocolEntity
WITH (FromUser);
FROM ProtocolEntity TO ENV
WITH (ToUser);

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ENDCHANNEL USap;
CHANNEL MSap
FROM ENV TO ProtocolEntity WITH UnitInd;
FROM ProtocolEntity to ENV UnitReq;
ENDCHANNEL MSap;
ENDBLOCK ProtocolEntity;

ENDSYSTEM Protocol;

ISO/IEC TR 10167 : 1991 (E)

type PduType is Boolean, OctetString
sorts PduSort

opns Dt : Bool, OctetString -> PduSort
DtEot : PduSort -> Bool
DtData : PduSort -> OctetString

Bool, Ud :

eqns forall Eot : OctetString

ap is the channel representing the Service Access
int of the Layer, and conveying the signals contained

itReq and Unitind; and
c) ProtocolEntity is a block representinga Protocol Entity.

For a|specific example, see the Abracadabra Protocol: sys-
tem giagram Abracadabra.

7.8 | Protocol Data Unit

The gxample used is a Data Transfer Protocol Data Unit
(DT };PDU), with End of Transfer (EOT) and User Data
parameters. For a specific example, see the Protocol Data
Unit handling in the Transport Protocol descriptions.

7.8.1 Estelle Representation

In Estelle, a Protocol Data Unit is realised as an ercoded
piecq of information contained in a Service Data-Unit. A
Protacol Data Unit may be described using the User Data
Management procedures and functions described in Annex
B of [SO 9074. The following example is based on this:

. copst MaxData = any integer;

type octet =0 .. 2557
LenType = 0 /.. MaxData;
IdType = 1 7" MaxData;
DataType =
record
1\ /LenType;
d\: array [IdTypel of octet
end;

oIsort Bool

DtEot (Dt (Eot, Ud)) = Eot
ofsort OctetString

DtData (Dt (Eot, Ud)) ='Ud

endtype

where:

a) Boolean and'OctetString are the standard library data
types; and

b) DtPdu‘represents a Data Transfer Protocol Data|Unit;
and ‘

¢) Dt is used to construct these Data Transfer Prqgtocol
Data Units; and :

d) DtEot selects the End of Transfer flag; and

e) DtData selects the User Data field.

This description gives the abstract encoding of the Prgtocol
Data Unit. A lower level description would be given |f the
concrete encoding were needed (i.e. fisld order, field gizes,
bit patterns, etc.).

For a specific example, see the Transport Protocol: | type
BasicBlock.

7.8.3 SDL Representation

A Protocol Data Unit is simply a value of some sort, for
example:

NEWTYPE Dt STRUCT
DtEot BOOLEAN;
DtData OctetString;

For a specific example, see the Transport Protocol: type
TDATA.

7.8.2 LOTOS Representation

A Protocol Data Unit is represented in LOTOS as a value
of some sort which is used to construct underlying Service
Data Units. For example:

ENDTYPE DtPdu;

which defines a sort of Data transfer Protocol Data Units
with constructor Dt and selectors for the various parame-
ters. Such a description gives the abstract encoding of a
Protocol Data Unit.

For a specific example, see the Transport Protocol: type
TPDU.

15

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.9 Connection

The example used is a single connection between two Ser-

. vica Users. For a specific example of the single-connection
case, see the Connection handiing in the Abracadabra
Protocol descriptions. For a specific example of the
multiple-connection case, see the Transport Protocol de-
scriptions.

7.9.1 Estelle Representation

b) Sap1, Sap2, Ep1, and Ep2 are the identifiers of the pair
of interconnected Service Access Points and Endpoints;
and

c) EpConstraints and EeConstraints constrain activities
at one Endpoint and end-to-end between two End-
points.

For specific examples, see the Abracadabra Protocol and
the Transport Protocol: processes Connection and TCEP-
Connections, respectively.

As used in communications protocols, a Connection be-
tween peer Protocol Entities is established through the ex-
change of Protocol Data Units, as defined for a given Pro-
tocol. These Protocol Data Units are encoded in Service
Data Units and exchanged through the Service provided by
lower Layers. This meaning is distinct from the connect
keyword of Estelle, which is used to associate interaction
points of modules.

Typically, a Connection, as viewed by the Protocol Entities
involved, goes through various phases such as: opening,
data transfer, and closing. Each of these phases is usu-
ally represented by in Estelle as a state of the module that
represents the Protocol Entity. The number of states used
depends on the complexity of the Protocol, the level of ab-
straction required, etc.

For specific examples, see the Abracadabra Protocol and
the Transport Protocol: the states and transitions of mod-
ules Station and PARENT, respectively.

7.9.2 LOTOS Representation

The phases of a Connection are described in LOTOS in the
following genera! form:

Connect >> (Data [> Disconnect)

in such a description, connection refusalis properly handled
as part of Connect and not Disconnect.

The behaviour of a Connectionisdecomposedinto the inde-
pendent behaviour of its Endpoints (Ep) and its End-to-End
behaviour (Ee). For example:

process Connection [S]
(Sapl, Sap2'\:SapSort, Epl, Ep2
: noexit/ie=

: EpSort)

(

EpConstraints [S] (Sap1l, Ept)
M

EpConstraints [S] (Sap2, Ep2)

7.9.3 SDL Representation

A Connection is represented in SDL,by the combined be-
haviour of two process instances{each representing the
active component of a Protocol Entity. When the Layer can
provide several simultaneous/Connections, thep a process
instance is created for each_Connection in eagh Protocol
Entity. These process instances are created by g dispatcher
process that exists pérmanently from system start-up time.

For specific examples, see the Abracadabra Frotocol and
the Transport (Protocol: the states and transitions of pro-
cesses SenderReceiver and T_MANAGER, rgspectively.

7.10. Muitiplexing

The example used is a Multiplexing/Demultiplexing Func-
tion which mutltiplexes data from one Service pnto an un-
derlying Service.

7.10.1 Estelie Representation

In Estelle, Multiplexing applies to interactions of fwo or more
Users who request a Service (by Service Primijves) attwo
or more interaction points. These interactions gre mapped
by a Protocol Entity onto one underlying interaction point of
the underlying Service Provider.

In the simplest case, multiplexing data from se

fragment gives two transitions, one to multiplexffrom any of
NUsers Users onto the underlying Server, and the other to

demultiplex from the Server onto the Users.

trans {multiplex}

)
I

EeConstraints [S] (Sapl, Ep1, Sap2, Ep2)
endproc

where:

a) S is the gate for communication at the Service; and

16

any id : 1 .. NUsers do
vhen User([id)] .UDataReq(UserData)
begin)
output
Server.SDataReq(id, UserData)
end;

trans {demultiplex}
when Server.SDatalnd(id, UserData)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

begin
output
User[id) .UDataInd(UserData)
end;

7.10.2 LOTOS Representation

A simple multiplexer/demultiplexer accepts data from differ-
ent sources, distinguished by their identifier, and forwards
it with a tag indicating its source. For example:

ISO/IEC TR 10167 : 1991 (E)

7.10.3 SDL Representation

Multiplexing can be handled in SDL by mapping Protocol
Data Units from different Associations onto a single Asso-
ciation (channel and receiver identity), tagging each PDU
with a final destination identifier.

PROCESS Multiplexing;

INPUT PDU (Pari, Par2, Par3);

Jrocess MuxDemux [U, L]
(USap : USapSort, LSap :
: noexit :=

LSapSort)

Mux (U, L] (USap, LSap)
11
Demux [U, L] (USap, LSap)

where
process Mux [U, L]

(USap : USapSort, LSap :
: noexit :=

LSapSort)

choice UEp : UEpSort, Ud :
(
U ! USap ! UEp ! UDataReq (Ud);
L ! LSap ! LDataReq (UEp, Ud);
Mux [U, L] (USap, LSap)
)

OctetString []

endproc (* Mux *)

process Demux [U, L]

(USap : USapSort, LSap : LSapSort)
: noexit :=
choice UEp : UEpSort, Ud i OctetString []
(

L ! LSap ! LDataInd. (UEp, Ud);
U ! USap ! UEp ! ‘UDatalnd (Ud);
Demux [U, L] (USap, LSap)

)

endproc (* Demux *)

[0}

hdproc (¥ MuxDemux *)

whagre:

OUTPUT MediumPDV (Part, Parz, Par3, RefNo);
PROCESS Demultiplexing;

INPUT MediumPDU (Pari, Par2, Par3, RefNd);
DECISION (RefNo);
(Patha) :
OUTPUT PDU (Pari, /Par2, Par3) VIA PATHA;
(PathN) :
OUTPUT PDU (Pari, Par2, Par3) VIA PATHN;
ENDDECISION

7.11 Splitting

The example used is a Splitting/Recombining Function
which-splits data over a number of Service Access|Points
in an underlying connectionless Service.

7.11.1 Estelle Representation

in the simplest case, splitting data from one User onfo sev-
eral interactions points of the underlying Service is gccom-
plished by accepting interactions from a User, anfd then
sending them through one of several interaction pqints of
the underlying Service. Recombining data in the opposite
direction is accomplished by sending the incoming interac-
tions to the User.

The following example assumes that the necessanf chan-
nels, types, variables, etc. have been defined. This Estelle
fragment gives two transitions, one to split the data via one
of NServers underlying Servers, and the other to tecom-
bine it the data. Itis further assumed that the functionjselect
chooses an underlying interaction point on which to joutput
the data.

trans {split}
when User.UDataReq(UserData)
begin
output
Server[select].SDataReq(UserData)

a) Uand L are the gates for communication at the Upper
and Lower Services; and '

b) USap refers to the Upper Service Access Point identi-
fier, and LSap refers to the Lower Service Access Point
identifier; and

c) UEp refersto the Upper Service Endpoint identifier; and

d) OctetStringis the standard library sort, used for Service
Data Units.

end;

trans {recombine}
any id : 1 .. NServers
when Server{id].SDataInd(UserData)
begin
output
User.UDatalnd(UserData)
end;

17

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

7.11.2 LOTOS Representation

A simple splitter/frecombiner accepts data and forwards it
via different routes. For example:

process SplitRecombine [U, L]
(USapl : USapSort, LSaps : LSapSetSort)
: noexit :=

Split [U, L] (USap1, LSaps)

7.11.3 SDL Representation
Splitting in SDL can be reprasented as follows:

PROCESS Splitting;

DECISION Split;
(1): OUTPUT A VIA SAP_1;
(2): OUTPUT B VIA SAP_2; -

rH
Recombine [U, L} (USapi, LSaps)

where

process Split [U, L]
(USap1 : USapSort, LSaps : LSapSetSort)
: noexit :=

choice USap2 : USapSort, LSap : LSapSort,
Ud : OctetString []
[LSap IsIn LSaps] ->
(
U ! USapl ! UDataReq (USap2, Ud);
L ! LSap !
LDataReq (Dt (USapi, USap2, Ud));
split [U, L] (USapi, LSaps)
)

endproc (* Split *)

process Recombine [U, L]
(USapi : USapSort, LSaps : LSapSetSort)
: noexit :=

choice USap2 : USapSort, LSap : LSapSort,
Ud : OctetString (I
[LSap IsIn LSaps] ->
(N
L ! LSap !
LDataInd (Dt (USap2, USapi, Ud));
U ! USapl ! UDatalnd (USap2, Ud);
Recombine [U; L] (USapi, LSaps)
)

endproc (*(Recombine *)
endproc_ (¥ SplitRecombine *)

where:

a)-U'and L. are the gates for communication at the Upper

Recombining is represented by converging charn
signalroutes) to a process.

7.12 Concatenation
The example used is a Concatenation/Separatio!

which concatenates Protocel Data Units into o
Data Unit of the underlying Service.

7.12.1 Estelle Representation

nels (and

Function
Service

tity combining'a set of Protocol Data Units intg a single

In Estelle, Concatenation is carried out by a Pr{tocol En-

interaction-sent to an underlying Service Provide
lowing ‘example is based on Annex B of 1SO 9(
thé DataType definition in 7.8.1:

{ append the data contained in "addition"
variable "base", setting "addition" to
null data type }

procedure assemble
(var base : DataType; var addition : Dat
var TotLength : integer;
Index : LenType;

begin
TotLength := base.l + addition.l;
if TotLength > MaxData
then TotLength := MaxData;
for index := 1 to TotLength - base.l
base.d [index + base.l] :=
addition.d {index];
base.l := TotLength;
null (addition)
end

7.12.2 LOTOS Representation

. The fol-
74, using

to the

the

hType) ;

o

Concatenation and Separation correspond in LO1

[OS to op-

—andtower-Setvices;and

b) USap1 and USap2 are the source and destination Up-
per Service Access Point identifiers, and LSaps gives
the identifiers of the Lower Service Access Points which
may be used for splitting; and

c) Dt is used to construct a datagram from the source
address, destination address, and user data; and

d) OctetStringisthe standard library sort, used for Service
Data Units.

18

erations which relate Protocol Data Units to Service Data

Units of the underlying Service. For example:

type SduType is OctetString
opns

=> OctetString
SeparatePdu : OctetString -> Oct

ConcatenateSdu : OctetString, OctetString

etString

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

SeparateSdu : OctetString -> OctetString
eqns

forall Pdu, Pdul, Pdu2, Sdu : OctetString
ofsort OctetString

SeparatePdu (<>) = <>;
SeparatePdu (ConcatenateSdu (Pdu, <>)) =
Pdu;

ISO/IEC TR 10167 : 1991 (E)

AXIOMS
FOR ALL Pdu, Pdul, Pdu2, Sdu IN OctetString
(

SeparatePdu (NullSdu) == NullPdu;

SeparatePdu (ConcatenateSdu (

Pdu, NullSdu) ==
Pdu;

SeparatePdu (ConcatenateSdu (Pdui,
ConcatenateSdu (Pdu2, Sdu))) ==

—SeparztePau (Concatenatesau (PAut;
ConcatenateSdu (Pdu2, Sdu))) =

SeparatePdu (
ConcatenateSdu (Pdu2, Sdu))

SeparateSdu (<>) = <>;
SeparateSdu (ConcatenateSdu (Pdu, <>)) =
<y
SeparateSdu (ConcatenateSdu (Pdui,
ConcatenateSdu (Pdu2, Sdu))) =
ConcatenateSdu (Pdul, SeparateSdu (
Concatenate (Pdu2, Sdu)))

endtype

uType defines a Service Data Unit of the underlying

¢) <
d) ConcatenateSdu appends a Protocol Data Unit to-a

This defines Concatenation and\Separation to be inverse
operations: Protocol Data Units-are separated in the same
order as they were concatenated.

7.12.

The cpncatenation of Protocol Data Units can be repre-
sented in SDLBY operators defined on those Protocol Data
Units.

SDL Representation

Separaterdu (
ConcatenateSdu (Pdu2, Sdu));

SeparateSdu (NullSdu) == NullSdu;
SeparateSdu (ConcatenateSdu \(Pdu,
NullSdu)) ==
NullSdu; _
SeparateSdu (ConcatenateSdu (Pdui,
ConcatenateSdu (Pdu2, Sdu))) ==
ConcatenateSdu (Pdul, SeparateSdu
(ConcatenateSdu (Pdu2, Sdu)));
)
ENDNEWTYPE SduType;

where the operations and sorts are much as in the LOTOS
example.

7.13.. Segmentation

The example used is a Segmentation/Reassembly Fungtion
which segments one Service Data Unit into multiple Prpto-
col Data Units of the supporting Protocol. For a spegific
example, see Segmentation and Reassembly Functipns
in the Transport Protocol descriptions.

7.13.1 Estelle Representation

In Estelle, Segmentation is. realised by decomposing pne
Service Data Unit into two or more Protocol Data Units, pnd
sending them as two or more interactions via an underlying
Service Provider. The following example is based on Annex
B of 1SO 9074, using the DataType definition in 7.8.1:

{ segment the data in "old" by moving the firs
"len" octets to "head", leaving the tail (pf
length “length (o0ld) - len") in "old"

L3

}

procedure segment
(var head : DataType; var old :
len : LenType);

DataType;

NEWTYPE SduType

LITERALS NullSdu;

OPERATORS

ConcatenateSdu : OctetString, OctetString
~> QOctetString;

SeparatePdu : OctetString -> OctetString;

SeparateSdu : OctetString -> OctetString;

var index, length :
begin
if len > o0ld.1
then length := o0ld.l
else length := len;
create (head, length);
if length > 0
then
begin

LenType;

19

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

for index :=
1 to length do
head.d [index] := old.d [index];
for index :=
1 to old.1 - length do
0old.d [index] :=
0ld.d [index + lengthl;
for index :=
0ld.1l - length + 1 to old.1l do
old.d [index] := 0;

c) OctetString s the standard library sort, used for Service
Data Units and Protocol Data Units of the supporting
Protocol; and

d) <> is the representation of an empty octet string; and

e) SegmentPdu and SegmentSdu yield a Protocol Data
Unit and the remainder of the Service Data Unit respec-
tively, after segmentation of the original Service Data
Unit; and

f) ReassembleSdu appends a Protocol Data Unit to a

sld I = olad Yength
end

end;

For a specific example, see the Transport Protocol: proce-
dure D.FRAGMENT as used in trans TC22 and procedure
D_ASSEMBLE, as used in trans TC28.

7.13.2 LOTOS Representation

Segmentation and Reassembly correspond in LOTOS to
operations which relate Service Data Units to Protocol Data
Units of the supporting Protocol. For example:

type PduType is SduType

opns
SegmentPdu : OctetString -> OctetString
SegmentSdu : OctetString -> OctetString
ReassembleSdu : OctetString, OctetString
-> OctetString
eqns

forall Pdu, Pdul, Pdu2, Sdu : OctetString

ofsort OctetString

SegmentPdu (<>) = <>;
SegmentPdu (ReassembleSdu (Pdu, <>)) =
Pdu;
SegmentPdu (ReassembleSdu (Pdul,
ReassembleSdu (Pdu2, Sdu))) =
SegmentPdu/(ReassembleSdu (Pdu2, Sdu))

SegmentSdu (<>) = <>;
SegtientSdu (ReassembleSdu (Pdu, <>)) =
<>
SegmentSdu (ReassembleSdu (Pdui,
ReassembleSdu (Pdu2, Sdu))) =
ReassembleSdu (Pdul, SegmentSdu (
ReassembleSdu (Pdu2, Sdu)))

This defines Segmentation and Reassembly,to be inverse
operations: Service Data Units are reassembled in the
same order as they were segmented,

For a specific example, see the Transport Protogol: opera-
tions ReplaceTop and AddSegment in type TSPUS.

7.13.3 SDL Representation

The'segmentation of.a)Service Data Unit can be repre-
sented by ad hoc.operators defined for the Sgrvice Data
Unit.

NEWTYPE PduType

LITERALS NullPdu;

OPERATORS
SegmentPdu : OctetString -> OctetPtring
SegmentSdu : OctetString -> OctetPtring
ReassembleSdu : OctetString, OctetString
-> OctetString
AXIOMS
FOR ALL Pdu, Pdul, Pdu2, Sdu IN OctefString
(

SegmentPdu (NullSdu) == NullPdu;
SegmentPdu (ReassembleSdu (Pdu,
NullSdu)) ==
Pdu;
SegmentPdu (ReassembleSdu (Pduil,
ReassembleSdu (Pdu2, Sdu))) ==
SegmentPdu (
ReassembleSdu (Pdu2, Sdu));

SegmentSdu (NullSdu) == NullSdu;
SegmentSdu (ReassembleSdu (Pdu,
NullSdu)) ==
NullSdu;
SegmentSdu (ReassembleSdu (Pdui,
ReassembleSdu (Pdu2, Sdu))) ==

endtype

where:

a) SduType defines a Service Data Unit; and

b) PduType defines a Protocol Data Unit of the supporting
Protocol; and

20

ReassembleSdu(Pdul, SegmentSdu (
ReassembleSdu (Pdu2, Sdu)));

)
ENDNEWTYPE PduType;

where the operations and sorts are much as in the LOTOS
example.

For a specific example, see the Transport Protocol: proce-
dure DATA.PHASE.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

7.14 Service

The example used is a Service which hides its supporting
Protocol and the underlying Service. For a spacific example
of a Service viewed as a black box, see the Abracadabra
Service descriptions. For a specific example of a Service
viewed as a Protocol combined with the underlying Service,
see the Sliding Window Protocol plus Medium descrip-
tions.)

ISO/IEC TR 10167 : 1991 (E)

endproc

where:

a) EpConstraints and EeConstraints constrain activities
independently at each Endpoint and end-to-end be-
tween two Endpoints.

For specific examples, see the Abracadabra Service and

714

In Esfelle, a Service is represented by one or more module
definilions whose inputs and outputs are Service Primitives
for the Layer described. Module behaviour, as defined in
relevant module bodies, maps Service Primitives sent by
one Service User to Service Primitives received by the cor-
respanding peer Service User. Services that are unique
to a layer are realized by algorithms described within the
moduyle bodies.

7.142 LOTOS Representation

A Service description in LOTOS may be a Protocol descrip-
tion with the internai details hidden (i.e. the communication
at gates corresponding to the underlying Services). For
example:

prqcess Service [U)
(UsapSet : USapSetSort, LSapSet
noexit :=

: LSapSetSort)

Ride L in Protocol [U, L] (USapSet, LSapSet)

endproc

where:

a) Uland L are the gates for communication at the Upper
Ed Lower Services; and

apSet and LSapSet define which Upper and Lower
rvice Access Points are supported by the supporting
Ptotocol.

However, a Service may also be described in LOTOS with-

Sliding Window Protocol plus Medium: overall behayiour
as reprasented by the composition of the processes Con-
nection and Backpressure; and overall behayiouras|rep-
resented by the composition of the processes Transmifter-
Entity, ReceiverEntity, and Medium, respectively.

7.14.3 SDL Representation

A Service can be represented in'SBL. by means of two ipter-
working processes, which are mirror images of each other.
Each represents the behayviour of the Service Providgr as
seen by a Service User.\The processes interact by m};ans
of internal signals, conveyed on a bi-directional signalipoute
and mapping the Service User Primitives. Using two [pro-
cesses instead of.one single process is essential in grder
to model faithfully the time delay in the Service Proyider
between @ Request at one side and the corresponding In-
dication-at the other.

For.specific examples, see the Abracadabra Service|and
Sliding Window Protocol plus Medium: system diagfams
AbraService and SlidingWindowProtocol, respectively.

example:

process Service [U]
(UsapSet : USapSetSort) : noexit :=
EpConstraints [U] (USapSet)

|
EeConstraints [U] (USapSet)

21

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

8 Daemon Game Example

This illustrates a small self-contained system. Although not
presented as a Service or Protocol example, this is a gentle
lead-in to later, more realistic examples.

8.1 Informal Description

This is a simple game having several players. The game
iz
gystem.

Ip the system there is a daemon that generates Bump sig-
als randomly. A player has to guess whether the number
of generated Bump signals is odd or even. The guess is
ade by sending a Probe signal to the system. The sys-
m replies by sending the signal Win if the number of the
jenerated Bump signals is odd, otherwise by the signal
ose.

he system keeps track of the score of each player. The
score is initially zero. It is increased by 1 for each success-
ful guess (signal Win is sent), and reduced by 1 for each
nsuccessful guess (signal Lose is sent). A player can ask
or the current value of the score by the signal Result, which
js answered by the system with the signal Score.

Before a player can start playing, the player must log in.
his is accomplished by the signal Newgame. A player
ogs out by the signal Endgame. The system allocates a
player a unique identifier on logging in, and de-allocates it
bn logging out. The system cannot tell whether different
dentifiers are being used by the same player.

B.2 Deficiencies in the Informal.Descrip-
tion
8.2.1 Presence of Daemon (Clause 8.1)

B.2.1.1 Deficiency

Should the daemon be an integral part of the description,
br is it an artefact of the informal explanation?

8.2.1.2 Resolution

|t was not intended that the daemon be part of the system
fescription.

8.2.2 tLoginto a Current Game (Clause 8.1)
B.2.2:1 Deficiency

8.2.3 Attempt to play before Login (Clause 8.1)

8.2.3.1 Deficiency

What should happen if a player issues any signal other
than Newgame before logging into a game? The informal
description says that a player must first login, but does not
say what happens if Newgame is not the first signal.

8.2.3.2 Resolution

when a game is not curr

A : ndgame
ent, but to igno

se.s{gnals.

8.2.4 Identification of Players and |Games
(Clause 8.1)

8.2.4.1 Deficiency

result in a new game.(This contradicts the inte
haviour as described(n 8.2.2. Presumably some
are needed, but-how should they be allocated pnd what
should they distinguish?

8.2.4.2 Resolution

The inténded behaviour was that each game ghould be
distinguished from the system’s point of view by some iden-
tifior. The system was not intended to be able to ftell which
player (or even players) were issuing signals fo a game.
A player should therefore be able to play multipfe games
simultaneously without the system knowing: the players
should be an anonymous part of the environmént of the
system.

8.2.5 Player Use of System Signals (Clause 8.1)

8.2.5.1 Deficiency
What should happen if the player issues Win, |Lose, or
Score signals?

8.2.5.2 Resolution

The intention was to disallow such behaviour: it sitnply must
not happen, as opposed to happening but be igngred.

8.2.6 Interruption of Probe or Result (Clduse 8.1)

8.2.6.1 Deficiency

Should it be allowable for another signal to be grocessed
by the system between Probe and Win/Lose, of between
Result and Score?

Whatshoutd-happenif-aplayer-who-is-atreadyfogged-in
tries to issue Newgame again? The informal description
does not clearly cover this case.

8.2.2.2 Resolution

The intention was to treat games like ‘Bingo’ game panels
with buttons for input and indicators for output. Newgame
should therefore be allowed to happen in a current game,
but should be ignored.

22

8.2.6.2 Resolution

The intention was that Probe or Result should be followed
by their respective responses before any other signal is
processed.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

The Manager handles the instantiation and eventual re-
moval of game instances, as the players initiate and ter-
minate them. Once it has established the game, the Man-
ager attaches the Gameserver channel to the newly estab-
lished games, so that the remaining interactions between
the player and the game require no mediation on the part
of the Manager. The shared variable Done is used by the
game to indicate to its manager-parent that its user has
finished play, so the game should be removed (released).

: 0

- + oo +
|Player 1| |Player NGames|
+--G()--+ +====G()-m-mm +
i [
D P(#)-=== . . . =m—=- P(+)--=wmmmmme +
] | |]
I +--P()--+ +====P()=-=-= + !
| | Game 1 | . | Game NGames | i
| +--D()--+ 4+-~--D()----- + |
| - - |
| |] | Thi
| v v |
I 41-G()= . . -===G()===m- + |
i Distributor | |
| e e D()=mmmmmmmme e + |
| Mdnager | |
L -—— D(#)=-mmmmmmcmr e +
]
e L D()-=mcmmmmecmmnem +
i Daemon |

Figure 8]1: Architecture of the Daemon Game in Estelle

8.2.7 Counting of ‘Bump’ Signals (Clause 8.1)

Deficiency
img whether a player wins or loses, is it necessary

indicated by{parentheses and labelled by their
hose marked'with a + symbol are bound both by
a conne¢t and an attach and thus logically continue the
path of irfteractions to or from a child module. The specifi-
cation of ManagerBody illustrates the dynamic structuring
capabilities-of Estelle. Declaring the Manager module to be

show the use of shared variables.

The game modules simply implement the rules of the.gal
as given in the informal description. The Distributor moq
ule distributes the daesmon’s Bump to each of the'games

8.3.3 Formal Description

specification Daemongane;
const NGames = any integel;

channel Daemonserver. (User, Provider);
by Provider:

Bump;
channel Gaméserver (Player, Machine);
by Player:
Probe; { Player takes a turn }

Result; { Player requests score }
Newgame; { Player initiates game }
Endgame; { Player terminates game }

by Machine:
Win; { tells Player he won }
Lose; { tells Player he lost }

Score (nwon: integer); { in response to
Result, tells Player his score }

module Daemon systemprocess;
ip D: Daemonserver (Provider)
individual queue;
end; { Daemon }

body DaemonBody for Daemon; external;
module Player systemprocess;
ip G: Gameserver (Player)
individual queue;

end; { Player }

body PlayerBody for Player; external;

a systemprocess is a way {o guaraniee fairness in the ser-
vice provided to the players, because the Game modules
will be synchronised.

8.3.2 Explanation of Approach

Definitions of bodies for the Player and the Daemon are
left unspecified, as these are not relevant to the descrip-
tion: each may behave in any way consistent with the cor-
responding channel definition.

module Manager systemprocess;
ip P: array [1..NGames] of
Gameserver (Machine)
common queue;
D: Daemonserver (user)
common queue;
end; { Manager }

body ManagerBody for Manager;

23

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

module Distributor process;
ip G: array [1..NGames] of
Daemonserver (provider)
common queue;
D: Daemonserver (user)
common queue;
end; { Distributor }

body DistributorBody for Distributor;

{ *#* Player is done *** }
when P.Endgame
from EITHER to same
begin
Done := true
end;

{ #** Player requests new game *%k }
when P.Newgame

trans
when D.Bump
begin
{ distribute bump to all games }
all i: 1 .. NGames do
output G[i].Bump
end;
end; { DistributorBody }

module Game process;
ip P: Gameserver (machine) common queuse;
D: Daemonserver (user) common queue;
export
Done: boolean;
end; { Game }

body GameBody for Game;
wvar NCorrect: integer;
state EVEN, ODD; { records parity of
bumps }
stateset EITHER = [EVEN, ODD];

initialize
to EVEN
begin
NCorrect :=.0}
Done := false;
end;
trans

{ *** Player makes guess *** }
when P.Probe
from EVEN to EVEN
begin
NCorrect := NCorrect -~ 1;
output P.Lose

from EITHER to same
begin
{ ignore Player’s drror }
end;

{ #*** Daemon bumped *** }
when D.Bump
from EVEN to ODD
begin
end;
from ODD to EVEN
begin
end;
end; { GameBody }

{ Actual Manager description beging here }
modvar
GameInstance: Game;
DistributorInstance: Distributqr;

state MANAGING;

initialize
to MANAGING
begin
init DistributorInstande
with DistributoxBody;
attach D
to DistributorInstande.D;
end;

trans
any GaneNumber: 1i..NGames do

{ *** Player requests game |*#* }
when P[GameNumber] .Neugame
begin

init GameInstance

with GameBody;
attach P[GameNumbex]
to Gamelnstance.H;
connect—Gamelnstandge.D

end;
from 0DD to ODD
begin
NCorrect := NCorrect + 1;
4 -EA- B _lin
eutput—P-Win
end;

{ **x Player wants score **x }
when P.Result
from EITHER to same
begin
output
P.Score(NCorrect)
end;

to DistributorInstance.G
[GameNumber] ;
end;

{ #*x Ignore Player’s errors *** }
when P[GameNumber] .Probe

begin

end;
when P[GameNumber].Result

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

e + o +

begin iPlayer 11| . |Player NGamesl|

end; +==G()--+ pmm==G(Yume—- +

vhen P[GameNumber] .Endgame | |

begin L P(4)rmm = . . . P(+) +
end; 1 i | 1
trans | +=-P()--+ +====P()====- + |
{ *** Clean up after game *** } I | Game 1 | | Game NGames | |
provided exist GameBody: Game] fomm————— + femm—————————— + |
suchthat GameBody.Done | |
begin | Manager [
all GameBody: Game do + +

if GameBody.Done then
release GameBody
end;
end;| { Manager }

{ here is the body of the specification
itself }

modvar

DaemonInstance: Daemon;
ManagerInstance: Manager;
PlayerInstance: array [1..NGames]
of Player;

initfialize
begin
init DaemonlInstance
with DaemonBody;
init ManagerInstance
ith ManagerBody;
all i: t ..
begin
init PlayerInstance[i]
with PlayerBody;
connect ManagerInstance.P[i]
- to PlayerInstance[i].G
end;
connect DaemonlInstance.D
to ManagerInstance.D;

=

NGames do

end ;
end.| { specification Daemongame }

8.3.4 Alternative Formal Description

This [alternative approach-of specifying the Daemon Game
avoids explicit representation of the dasmon. The descrip-
tion given earlier was written to reflect the informal descrip-
tion more naturally. However, it was recognized that there
was ho way-a-player could distinguish between a system
that had a central daemon and a system where the effect of
the daemon was purely non-determinism. The architecture
of th) - ; ;

in Figure 8.2.

specification Daemongame;
const NGames = any integer;
channel Gameserver (Player, Machine);

by Player:
Probe; { Player takes a turn }

Figure 8.2: Alternative Architecture of -the Dagmon
Game in Estelle

Result; { Player’ requests score }

Newgame; { Player) initiates game }

Endgame; { Player terminates game }

by Machine:

Win; { tells Player he won }

Lose; { tells Player he lost }

Scoré)(nwon: integer); { in respomse [to
Result, tells Player his score }

module ‘Player systemprocess;
ip G: Gameserver (Player) individual queup;
end; { Player }

body PlayerBody for Player; external;

module Manager systemprocess;
ip P: array [1..NGames] of
Gameserver (Machine) common queuej;
end; { Manager }

body ManagerBody for Manager;

module Game process;
ip P: Gameserver (machine) common quedue;
export
Done: boolean;
end; { Game }

body GameBody for Game;
var NCorrect: integer;
state EVENor0ODD; { records parity of
bumps }

e

to EVENorODD
begin
NCorrect := 0;
Done := false;
end;

trans

{ **#* Player makes guess *** }
vhen P.Probe

25

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

26

begin
NCorrect := NCorrect - 1i;
output P.Lose

end;

when P.Probe
begin
NCorrect := NCorrect + 1;
output P.Win

end;)
vhen P[GameNumber].Result
begin
end;
vhen P[GameNumber] .Endgame
begin
end;
trans
{ #%* Clean up after game *** }
provided exist GameBody: Game

end;

{ *%* Player wants score **x }
when P.Result
begin
output P.Score{NCorrect)
end;

{ **% Player is done *#¥x* }
when P.Endgame
begin
Done := true
end;

{ **x Player requests new game *¥* }
when P.Newgame

begin ,

{ ignore Player’s error }

end;

fend; { GameBody }

{ Actual Manager description begins here }
podvar
Gamelnstance: Game;

ptate MANAGING;

initialize
to MANAGING
begin
init DistributorInstance
with DistributorBody;
attach D
to Distributorinstance.D;
end;

Lrans
any GameNumber: 1..NGames do

{ wokx Playér requests game ¥¥* }
when P[GameNumber] .Newgame

hes-i n

suchthat GameBody.Done
begin
all GameBody: Game do
if GameBody.Done/qthen
release GameBody
end;
end; { Manager }

{ here is the body of the’specification

itself }
modvar
ManagerInstances \Manager;
PlayerInstance:” array [1..NGames] of
Player;
initializé
begin

init ManagerInstance
with ManagerBody;
all i: 1 .. NGames do
begin .
init PlayerInstancelil
with PlayerBody;
connect ManagerInstance.P[i]
to PlayerInstance(i].G
end;
connect DaemonlInstance.D
to ManagerInstance.D;
end;
end. { specification Daemongame }

8.3.5 Subjective Assessment

The Daemon Game was originally invented as a graded
series of examples, each more complex than the nekt, to
explain Estelle. In its original, simplest version, the game
had no beginning and no end: it allowed one player, gnd it
did not report a score. In this case, it is unnecessary to have
the complex structure given here since there are only empty
daemon and player modules, and a game module that has
states and no variables. Each version of the game in the se-
ries forced the use of more complex Estelle constructs until

init GameInstance
with GameBody;
attach P[GameNumber]
to GameInstance.P;
end;

{ *** Ignore Player’s errors **x }
when P[GameNumber].Probe
begin

the most complete version of the game (approximating the
one given here) made use of a fairly large subset of Estelle.
The informal description of the game given here was initially
written by augmenting the old, original informal description;
perhaps that affected some of the design choices.

8.4 LOTOS Description

(k=== -

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

8.4.1 Architecture of the Formal Description

The top-level structure of the LOTOS description is.as fol-
lows:

8.4.1.1 QGates

P for all communication between players and the system;
interactions are tagged with the identifier of a game in
order to distinguish them

purely by synchronlsat'on at D, i.e. there is no Bump
valye in the event

'8.4.1.2| Data Types

Identifier for distinguishing games

Identif;lrSet for indicating which games may be used
Integer for scoring

Sfgnal for interactions between players and the
system

8.4.1.3 Processes

System for explaining the top-level specification be-
haviour; this is decomposed into the indepen-
dent constraints on permitted games

NoGamle for describing the behaviour of a game which is
not current (i.e. not logged into)

Game for describing the behaviour of a current game
(i.e. logged into)

Daeman for describing the behaviour of the daemon

8.4.2 |Explanation of Approach

The mdjor decision taken in the writing of the description
was whpther to explicitly represent the daeman.in the fol-
lowing description, the daemon is explicitly represented as
a procepss which interacts with game processes. The dae-
mon process is responsible for generating Bump signals.
The degcription was written this way_in order to reflect the
informa| description more naturally.” However, the philos-
ophy of LOTOS is to describé-only observable behaviour,
so this style of description is'unnatural in LOTOS. An alter-
native description without an explicit daemon is therefore
given in| 8.4.4. '

8.4.3 |FormalDescription

The whole-description of the system is parameterised by the
gate at Lhigh external communication occurs with players

ISO/IEC TR 10167 : 1991 (E)

Boolean, Set (* ‘'use standard library *)

endlib

o -

The following type defines game identifiers. The only formal
property which identifiers have is that they are distinct. This
is explained by giving a base value (Baseld) and an opera-
tlon for reachlng alI olher ndentlfler values (Nextld) Equallty

------------------ k)

type IdentifierType is Boolean
sorts IdSort

opns
Baseld : => IdSort
NextId : IdSort ->{ IdSort
-eq., .ne. : IdSort; IdSort -> Bool
eqns

forall Id, Idi, Id2": IdSort
ofsort Bool
BaseId eq\Baseld = true;
Baseld ;eq NextId (Id) = false;
NextId (Id) eq Baseld = false;
NextId (Id1) eq NextId (Id2) =
Id1l eq Id2;
Id1 ne Id2 = not (Idl eq Id2)
endtype

(Fmm e m e m e e -

The following type renames the standard library data type
Set, still with formal sorts Element and FBool

type IdentifierSetFormalType is Set renamedby
sortnames IdSetSort for Set
endtype

The following type defines sets of game identifiers as gn
actualisation of the parameterised type ldentifierSetFor-
malType. A set of game identifiers is a parameter to the
overall description.

{(P), and by the set of game identifiers whnch may be used
(ids).

specification Daemongame [P]
(ids : IdSetSort) : noexit

library

type IdentifierSetType is
IdentifierSetFormalType
actualizedby IdentifierType, Boolean using
sortnames '
IdSort for Element
Bool for FBool
endtype

(-~

27

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

The following type defines
terms of a zero value, an *
‘subtract one’ operation (de

he integers (..., -1, 0, 1, ...) in
dd one’ operation (inc), and a

C).

type IntegerType is
sorts IntSort

process System [P, D]
(ids : IdSetSort) : noexit :=
choice id : IdSort []
[(Card (ids) eq Succ (0)) and
(id IsIn ids)] ->
NoGame [P, D] (id)

(* one id *)

0

[(Card (ids) gt Succ (0)) and

opns '
0 . => IntSort (id IsIn ids)] -> (* several ids *)
inc, dec : IntSort|-> IntSort S
eqns NoGame [P, D] (id)
forall n : IntSort I [D1})
ofsort IntSort System [P, D] (Remove (id, ids)
inc (dec (n)) =|n;) '
dec (inc (n)) =|n
where

endtype

Fhe following type defines {
End the system. With the ex
re constants.

(o o a1 o s o e o S e e o O O

he signals beh)veen the players
ception of Score, these signals

type SignalType is In
sorts SigSort
opns
Neugame, Endgame,
Result : -> SigS
Score : IntSort -
endtype

tegerType

Probe, Win, Lose,
oxrt

> SigSort

(%

The following behaviour

pame. It is parameterise
dentifiers. The internal ga|
between the daemon and s

xpression (specifies the entire
by the given gate and set of
e D is_used for communication
ystem processes.

behaviour (
hide D in
System,fP, D] (id

where

s) |[D]| Daemon [D]

(4o

(kmmmmmmmmm e oo --

The following process specifies the behaviour df a game
when it is not current (i.e. logged into). The process is
non-terminating; since on completion of a game |t offers to
start a new,game. Unwanted signals from the pldyer or the
daemon are discarded while a game is not in progress.

-------------------------- *)
process NoGame [P, D]
(id : IdSort) : noexit :=
P ! id ! Newgame;
((* score 0, even Bumps *)
Game [P, D]
(id, 0 of IntSort, false)
>>
NoGame [P, D] (id)
)
0 '
P ! id ! Probe; NoGame [P, D] (id)
0
P ! id ! Result; NoGame [P, D] (id) .
(]
P ! id ! Endgame; NoGame [P, D] (id
0
D; (* Bump sfignal *)

NoGame [P, D] (id)

where

C -

The following process spe

ifies the overall behaviour of the

system. It sets up games |ndependently in paralle! one by
one, assigning each of them a unique identifier. However,
the games must all synchrgnise on signals from the daesmon

at gate D. The process i
games are.

non-terminating, since all the

28

The Tollowing process specifies the behaviour of a current
game. Only the parity of the number of Bump signals is
relevant, so the actual number of the signals is not stored.
The process is entered after Newgame, and terminates
once Endgame is received.

__*)

process Game [P, D]

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

(id : IdSort, total : IntSort, odd : Bool)
: exit :=

P ! id ! Newgame;

Game [P, D] (id, total, odd)

ISO/IEC TR 10167 : 1991 (E)

not be determined to be simultaneous in the real world, the
players could not observe whether there were one or many
daemons in the system. This illustrates a deep difference
found between some FDTs. FDTs such as LOTOS mo-
del concurrency by interleaving of events, whereas others
model simuitaneity using the concept of ‘true concurrency’.

An alternative formal description has therefore been pro-
vided with one daemon per game process. However, since
the daemon is simply a source of non-determinism, it can be
dispensed with altogether in the LOTOS description. The

0
P ! id ! Probdbe;
(
[odd] ->
P!t id ! Win;
Game [P, D] (id, inc (total), odd)
i3
[not (odd)] ->
P ! id ! Lose;
Game [P, D] (id, dec (total), odd)
)
1

P ! id ! Result;
P ! id ! Score (total);
Game [P, D] (id, total, odd)
0
P ! id ! Endgame; exit
0
D; (* Bump signal *)
Game [P, D] (id, total, not (odd))
endproc (* Game *)

eéndproc (* NoGame *)
endproc (* System *)

(#=-1---

The fpllowing process specifies the behaviour of the dae-
mon.| It simply generates an endless series of event offers
at thg D gate, corresponding to Bump signals.

prqcess Daemon [D] : noexit :=

I; Daemon [D]
endproc (* Daemon *)

endspec (* Daemongame *)

G R

8.4.

It wap recognised that there was no way a player could
distinguish.between a system that had a central daemon
and h i n rgam

Alternative Formal Description

or Lose signal after a Probe. It is therefore not necessary to
model the Bump signals (which are, after all, invisible|from
the outside), nor to count whether an odd.or even number
has occurred. Such non-determinism is(simply hiddan as
an internal event in the LOTOS description. This degcrip-
tion therefore dispenses with the internal gate D angd the
Daemon process.

manifestation of the daemon is that a player receives 1Win

specification Daemongame [P]

(ids : IdSetSoxrt) : noexit
library
BooXean, Set (* use standard library *)
endlib
(*

The following type defines game identifiers. The only fgrmal
property which identifiers have is that they are distinct.| This
is explained by giving a base value (Baseld) and an opera-
tion for reaching all other identifier values (Nextld). Equality
(eq) and inequality (ne) are defined for game identifiefs.

type IdentifierType is Boolean
sorts IdSort

opns

Baseld : => IdSort

NextId : IdSort ~> IdSort

-eq., _ne_ : IdSort, IdSort -> Bool
eqns

forall Id, Id1i, Id2 : IdSort
ofsort Bool
Baseld eq Baseld = true;
BaseId eq NextId (Id) = false;

NextId (Id) eq Baseld = false;

process. Since there is no concept of absolute time or si-
multaneity in LOTOS, a description could not differentiate
between the behaviour of these two systems. If two play-
ers sent Probe at almost the same time and one received
Win while the other received Lose, they would conclude
that the system had internally generated Bump in between
the two signals. This would be true no matter how close
in time the two Probe signals were. Since the two Probe
signals could never be simultaneous in LOTOS, and could

Nextld (ldl) eq Nextld (ld2) =
Idl eq Id2;
Id1l ne Id2 = not (Idi eq 1d2)
endtype

The following type renames the standard library data type
Set, still with formal sorts Element and FBoot

29

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991

(E)

type IdentifierSetForma
sortnames IdSetSort f
endtype

1Type is Set renamedby
or Set

(o

The following type defines s
actyalisation h

ts of game identifiers as an
ised type ldentifierSetFor-

The following behaviour expression specifies the

entire

game. It is parameterised by the given gate and set of

ot

sortnames

Bool for FBool
gndtype

ype IdentifierSetType |i
IdentifierSetFormalType
actualizedby IdentifierType, Boolean using

IdSort for Element

€ R

The following type defines th
ter
‘su

o

ype IntegerType is
sorts IntSort
opns
inc, dec : IntSort
eqns forall n :
ofsort IntSort

inc (dec (n)) = 1
dec (inc (n)) = n

e integers (..., -1, 0, 1, ...) in

s of a zero value, an ‘add one’ operation (inc), and a
tract one’ operation (dec).

0. : => IntSaort

-> IntSort

IntSqrt

-

identifiers.
______ *)
behaviour System [P] (ids)
where
The following process spacifies the overall behaviour of the

system.

by one, assigning each of them a unigque identifief.

process is non-terminating, since allthe games are.

process System [PR]

It sets up games independently in paralfel one

The

---------------)

(ids : IdSetSprt) : noexit :=
choice id & -IdSort []
[id IsIn“ids] ~->
(
NoGame [P] (id)
It
System [P] (Remove (id, ids))
)
where
(koo B ettt mC T

The following process specifies the behaviour of §

game

when it is not current (i.e. logged into). The progess is
non-terminating, since on completion of a game it offers to

start a new game. Unwanted signals from the play
discarded while a game is not in progress.

endtype
(% g0 S, process NoGame [P]
(id : IdSort) : noexit :=
,) . P ! id ! Newgame;
The following type_defines the signals between the players ((* scord
anj the system, \With the exception of Score, these signals Game [P] (id, 0 of IntSort)
are constants: s> .
NoGame [P] (id)
B B *))
8
type SignalType is IntegerType P ! id ! Probe; NoGame [P] (id)
sorts SigSort 0

opns
Newgame, Endgame, Frobe, Win, Lose,
Result : -> SigSort
Score : IntSort ->|SigSort

endtype

(mmm

30

P ! id ! Result; NoGame [P] (id)
0
P ! id ! Endgame; NoGame [P] (id)

where

(G

er are

S — - @

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

The following process specifies the behaviour of a current
game. The Bump actions of the daesmon are not explicitly
modelled since their external effect is only non-determinism.
For this reason, there is no central daemon which sends
Bump signals to game processes. The process is en-
tered after Newgame, and terminates once Endgame is
received.

ISO/IEC TR 10167 : 1991 (E)

the emphasis in LOTOS on observational behaviour. A
well-written LOTOS description will focus on the sequences
of interactions which can be externally observed, and will
avoid unnecessary and implementation-dependent detail.
To this extent, the informal description is weak because
it describes a particular mechanism for implementing the
system, not the externally required behaviour. The informal
description is an example of over-specification, which must
be carefully avoided in International Standards.

process Game [P]

(id : IdSort, total
1 exit := ‘
P ! id ! Newgame; Game [P] (id, total)

: IntSort)

]
P ¢ id ! Probe;

(
i; P! id ! Lose;

i; P! id ! Win;

Game [P] (id, inc (total))
o |

Game [P] (id, dec (total))
)

1
P ! id ! Result; P ! id ! Score (total);
Game [P] (id, total)

] : .

P ! id ! Endgame; exit
gndproc (* Game‘*)

endproc (* NoGame *)
endpgoc (* System *)

endspeq (* Daemongame *)

8.4.5 [Subjective Assessment

The LOTOS description shows a clear, separation between
‘static agpects (the data typing) and.dynamic aspects (the
behavigur). The data typing draws on already established
data typges, which are defined\in an Annex to the LOTOS
Standand. The description, of the data types concerns it-
self wit implementation independent aspects for exam-

8.5 SDL Description

8.5.1 Architecture of the Formal Description

The Daemongame system contains only.one block, called
Blockgame. This block has two process types, called Mgn-
itor and Game. Of Monitor there is one single process that
is created at the same time when the system is created (ini-
tial process). Of Game_a dyhamic process is created for
each player.

A player is regarded as’a process in the environment of the
system. Each process in SDL is given a unique identity
(of the sort Pld), and each signal carries the identity|of
the sending-process. Thus, when a player logs in by the
signal Newgame, his identity is known to the system. [n the
system\a'Game process is created for him. The procdss
‘presents itself’ by sending the signal Gameid to the player
andtakes care of the rest of the game session.

The Monitor process has the task of creating Game pfo-
cesses and distributing Bump signais to all the Game pfo-
cesses.

Note that an SDL system may ignore some possible ge-
quences of signals coming from the environment, for]n-
stance a Probe signal coming from a player who has not
logged in is ignored by Daemongame. In other words, the
allowed behaviour of the environment is specified indiregtly
by the SDL system description.

8.5.2 Explanation of Approach

The architectural approach above is rather natural. |A
unique Monitor process is necessary to receive signals
from the environment (Newgame and Bump) which cannpot
be addressed to a specific process (these signals are sgnt
without an address).

The relation between the Monitor and Game procesges

which are then comblned using the approprlate LOTOS op-
erators. In this specification, the overall system behaviour
is expressed in terms of game behaviours. These in turn
are expressed in terms of the login/logout behaviour and
game-playing behaviour. The data typing also shows a
similar modularity, whereby more complex data types (e.g.
IdentifierSetType) are built out of simpler ones.

The fact that there should be no central daemon process,
or for that matter any daemon processes at all, reflects

Game processes passrng the sugnal to the Game process
in question. However, this would require a coupling be-
tween a player and the corresponding Game process inthe
Monitor process.

A main feature of this game is the non-deterministic reply
to a Probe signal. Since an SDL system behaves in a
deterministic way, this non-determinism must be modelled
by signals sent (from a daemon in the environment) to the
system.

31

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

8.5.3 Formal Description

The SDL description is given in both concrete representa-
tions, SDL/GR and SDL/PR. In both representations, use is
made of remote definitions, allowing the SDL description
to be structured as an overview part and a set of remote
definitions giving the detailed description. Actually it is only
the overview part which is specific for a representation; the
remote definitions in SDL/GR and SDL/PR can be used in-
terchangeably (e.g. a remote block definition (in SDL/PR)

The structure of the Daemongame system is described in
SDL/GR by a system diagram and a remote block dia-
gram. The behaviour of the system is described in SDL/GR
by a remote process diagram for each process type.

In SDL/PR there is a cofresponding system definition,
block definition and praocess definition. However, the
macro definition for Datatypedef is common to both
SDL/GR and SDL/PR.

The following SDL description is in SDL/PR:

[Ak sk sk o ko ok Aok ok ok e ko ok ok sk ksl sk ok ook Aok ik kskok ok /

Jaxf SYSTEM Daemongame; /*x/
skl ok koo R ok ok kAo ok ok ok KOk /

SIGNAL
Newgame, Probe, Result, Endgame, Gameid,
Win, Lose, Score(Integer), Bump;

CHANNEL Gameserver.in

FROM ENV TO Blockgame

WITH Newgame, Prohbe, Result, Endgame;
ENDCHANNEL Gameserver.in;

CHANNEL Gameserver.ogut

FROM Blockgame TO ENV

WITH Gameid, Win, |Lose, Score;
ENDCHANNEL Gameserver.out;

CHANNEL Daemonserver
FROM ENV TO Blockgame
WITH Bump;

ENDCHANNEL DaemonsServer;

BLOCK Blockgame REFERENCED;
ENDSYSTEM Daemongame ;

AR Aok o oK oo ok Ao o o Aok ok ok s ko ook o o ok Kok ok K ok ok ok ok ok f
[/ BLOCK Blockgame; /#x/
a8 o ke sl e o sl b o ke o oo ok okl e ol o o oo ok ok o o o o o e ok ok ok ok ok /

WITH Probe, Result, Endgame;

SIGNALROUTE R3
FROM Game TO ENV
WITH Gameid, Win, Lose, Score;

SIGNALROUTE R4
FROM ENV TO Monitor
WITH Bump;

IGNALROUT

FROM Monitor TO Game
WITH Bump, Gameoverack;
FROM Game TO Monitor
WITH Gameover;

CONNECT Gameserver.in AND'Ri, R2;
CONNECT Gameserver.out) AND R3;
CONNECT Daemonserver AND R4;

PROCESS Monitor((1, 1) REFERENCED; .
PROCESS Game~(0',) REFERENCED;

ENDBLOCK (Blockgame;

[3sde Rk ok sk s ok sk okl ok ook sk ok kool sk ke ks ke ok ok o s o sk ke sk ok f

/%%, PROCESS Monitor (1, 1); /%*/
/*********{k****#************************i*******/

/" This process registers new players, creates a Game pro-
cess for each of them, and distributes Bump signals to all
the Game processes. If a registered player trieq to ‘log in’,
then no action is taken. Note that no record is Kept for the
coupling between a player and the corresponding Game
process. */

DCL player PId; /% The identity of the
corresponding player is stored
temporarily in this variable ¥/

DCL userset, /* Keeps record of the players */

gameset, /* Keeps record of the Game
processes */

copygameset Pidset;

MACRO Datatypedef;

START;
NEXTSTATE Idle;

STATE Idle;
INPIUT Neusame :

SIGNAL Gameover, Gameoverack;

SIGNALROUTE R1
FROM ENV TO Monitor
WITH Newgame;

SIGNALROUTE R2
FROM ENV TO Game

32

DECISION (SENDER IN userset);
(True): NEXTSTATE -;
(False): CREATE Game(SENDER);
TASK gameset :=
Incl(OFFSPRING, gameset);
TASK userset :=
(SENDER, userset);
NEXTSTATE =-;
ENDDECISION

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

INPUT Gameover(player);
TASK gameset := Del (SENDER, gameset);
TASK userset := Del(player, userset);
OUTPUT Gameoverack TO SENDER;
NEXTSTATE -;
INPUT Bump;
TASK copygameset := gameset;
1: DECISION (copygameset = empty);
(True): NEXTSTATE -;
(False): OUTPUT Bump TO

ISO/IEC TR 10167 : 1991 (E)

INPUT Endgame;
OUTPUT Gameover(player);
NEXTSTATE Wait.for.ack;

STATE Wait.for.ack;
INPUT Gameoverack;
STOP;

ENDPROCESS Game;

take{copyganeset);
TASK copygameset :=
Del (take(copygameset),
copygameset) ;
JOIN 1;
ENDDECISION

ENDPROCESS Monitor;

ARk Ak Ak ks ok kK ko sk ok s sk Rk o sk ok sk ok e ok sk ko R ok ok f

/*x PROCESS Game (0,); /*x/
/***/

" Trl;s process is created for a new player, and takes care
of the rest of the game session. The identity of the player is
given as the formal parameter player. When a player ‘logs
out’,|the Monitor process must be informed (in order not to
send Bump signals to the process) before the process can
termjnate. */

FHAR
player PId;

DQL
count Integer := 0; /* Counter to keep track
of the score */

START;
OUTPUT Gameid TO player;
NEXTSTATE Even;

STATE Even;

INPUT Probe;
OUTPUT Lose TO player;
TASK count := ount - 1;
NEXTSTATE -;

INPUT Bump;
NEXTSTATE(0dd;

The corresponding Tepresemtation is given |n fig-

ure 8.3.

8.5.4 Subjective Assessment

The SDL description is separated into'a ‘static descfiption
(represented by a system diagram.and a block diagram)
and a dynamic description (represented by process dia-
grams). The static description‘gives a clear structyre of
the SDL system, reducingits overall complexity, so that it
can be studied one part at-a time. This feature of SDL
is reinforced by the use remote definitions. The graphical
representation greatly.improves the readability of the
description.

SDL does not have constructs to express non-determjnism.
The use of state machines to express behaviour contriputes
to userfriendliness, but at the same time this may Igad to
over-specification.

8.6 Assessment of the Application of
the FDTs :

It is remarkable that such an apparently simple example
should result in so many different interpretations. If took
several iterations among the authors of the informgl and
formal descriptions to determine exactly what the ofiginal
intentions were. The conclusions from this small example
are:

a) How difficult it is to be precise about even simple thing.

b) How easy it is to forget to specify all error cases| Fail-
ure to do so often results in problems of incomp
between implementations of a complex descriptign.

¢) How easy it is to be unclear about the responsibilities of
different parts of a system, and how these parts ghould
view each other.

d) How easy it is to colour the description of a system

STATE ,0dd; with unnecessary implementation detail which exgludes
INPUT 'Bump; valid implementations.
NEXTSTATE Even;
INPUT Probe; These conclusions apply even more so to complex descrip-

OUTPUT Win TO player;
TASK count := count + 1;
NEXTSTATE -;

STATE *(Wait.for.ack);
INPUT Result;
OUTPUT Score(count) TO player;
NEXTSTATE ~;

tions (e.g. International Standards). The application of the
FDTs to this small example has shown how the writing of
a formal description can identify ambiguities, errors, and
over-specification.

33

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SYSTEM D.

mongame

SIGNAL N
S

lewgame, Probe, Result, Endgame, Gameid, Win, Lose,
core(Integer), Bump;

Daemonserver

[Bur:p]

Blockgame
s &
Newgame, || = .
pmvg,g, g 2 Gameid,
Result, 3 2# Win,
Endgame g g %g:fe’
) =1

34

Figure 8.3: SDL Specification of Daemon Game

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NEWTYPE Pidset Powerset (P1d)
ADDING

OPERATORS
take! : Pidset PId -> PId;
take : Pidset -> PId;

AXIOMS
take(empty) == Error;
take(Pidset)'== take!(Pidset, null);
take!(empty,PId) == Error;
take!(Pidset,PId) == IF PId IN Pidset
then PId
else take!(Pidset,unique!(PId));
7*The take operator returns an element of the Pidset. */

DEFAULT empty;

BLOCK Blockgame
SIGNAL Gameover,
Gameoverack;
RS '-Bump, 7
[Gameove{l # #'_Gameoverack_l
b5
2
2 R4 Monitor (1,1)
2 R
= [Bump]
S
[Newgama R1 gvﬁleld’
Lose,
Score
Gameserver.in Gameserver.out
MACRODEFINITION Datatypedef

ENDNEWTYPE Pidset;
ENDMACRO Datatypedef;

Figure 8.3 (continued)

35

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS Monitor

/* This process registers new players, creates a Game
process for each of them, and distributes Bump

signals to all the Game processes. If a registered player
tries to "log in", then no action is taken. Note that no

jiv o

1 wila playcx d.lld tllC
corresponding Game process. */
DCL vplayer PId; /*The identity of the corresponding

player is stored temporarily in this variable*/
DCL userset, /*Keeps record of tle players /*

gameset, /*Keeps record of the Game processes */
copygameset Pidset;

1dl
MACRO Datatypedef; ©
I I |
Gameover
> Newgame (player) > Bump
gameset := copygameset
Del(SENDER,gameset) 1= gameset
userset :=
Del(playerf, userset)
Game Gameoverack

TO SENDER

(SENDER)

gameset ;=

Incl(OFFSPRING,
gameset),

userset ;=

Incl(SENDER, userset)

copygameset :=
Del(take(copy _
gameset),
copygameset)

/* The hyphen in the nextstate
symbol means return to the
same state (Idle in this case). */

36

Figure 8.3 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS Game
FPAR player PId

/*This process is created for a new
player, and takes care of the rest of

the game session. The identity of the
player is given as the formal parameter
'player’.When a player "logs out”, the

Monitor process must be informed

(in order not to send Bump signals to

DCL count Integer := 0;
/* Counter to keep
track of score */

the process) before the process can

ferminate. */

> Probe

count .=
count - 1

=

indicated. */

/*The asterisk in the
state symbol means
any state except those

[Lose
TO player
I

> Probe

B Win
ven TO player

TO player

> Endgame

Gameover
(player)

Wait.for.ack

count :=
count+1

Gameover |

7 ack

X

Figure 8.3 (continued)

37

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

9 Sliding Window Protocol
Example

This illustrates an important flow-control and error recovery
technigue which is present in many real Protocols. In addi-

tion, it illustrates the description of a Protocol in relation to
its underlying Service.

9.1

receiver
<--- window size --->
ol o
S 5 P D, . 1.///.
| |
NextRequired HighestReceived

Figure 9.2: Receiver Window Parameters

9.1.1 Overview

The [following prose description was derived from the initial
work by Stenning [Stenning 1976). The description was
produced from the narrative and Pascal-like programs in
the paper.

The [Sliding Window Protocol suppo:ts a unidirectional flow
of data with a positive handshake on each transfer, and
use pf an acknowledgement window for flow control. The
protocol operates over a medium which may lose, duplicate,
-order messages. It is assumed that the corruption
essages can be reliably detected. Connection and

as shown in Figure 9.1.

This|gives the lowest sequence number for which an Ac-
knowledgement is awaited, and the highest sequence num-
ber $o far used. The wiridow size is limited to the value
TWS.

The transmitter behaves initially as a) below, and then Joops
doing b), ¢) and d) where possible:

a) LowestUnacked is setto 1, HighestSent to 0 and[TWS
to an implementation-definedvalue (> 1).

b) If the current window size (i.e. HighestSent —
LowestUnacked) is less than TWS, then a megsage
with the next sequence number (i.e. HighestSenft +1)
may be transmittgd: \In this case, HighestSent is incre-
mented and a timer for that message is started.

¢) if an Acknowledgement is received which is not cor-
rupted and-whose sequence number is not less| than
LowestUnacked, then all timers for messagesJJp to
and including that sequence number are cancelidd. In
this case, LowestUnacked is set to the sequence pum-
ber following the acknowledged one.

d) If a time-out occurs, then the timers for all mes1ages

transmitted after the timed-out one are cancelled. All
these timed-out messages are re-transmitted (in se-
quence, starting with the earliest) and have timers
started for them.

9.1.4 Receiver Behaviour
The receiver maintains a window of sequence numbers as
shown in Figure 9.2.

This gives the lowest sequence number which is awaited
andthe highest sequence number which has been recdived.
The window size is limited to the value RWS.

The receiver behaves initially as a) below, and then loops
doing b) and c) where possible.
a) NextRequired is initialised to 1, and TWS tp an

implementation-defined value (> 1)
b) If a message is received which is not corrupted, which

transmitter
£--- yindow gize —-->
/71 S 74
TN) o
I i
LowestUnacked HighestSent

Figure 9.1: Transmitter Window Parameters

38

’ g
to but not including the first unreceived message are
delivered to the receiving user. (There may be no such
messages if there is a gap due to misordering). In this
case, NextRequired is set to the sequence number of
the next message to be delivered to the receiving User.

¢) If a message is received under any circumstances, an
Acknowledgement giving the last delivered sequence
number (i.e. NextRequired ~ 1) is returned.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

9.2 Deficiencies in the Informal Descrip-
tion

9.2.1 Underlying Medium (Clause 9.1.1)

9.2.1.1 Deficiency

Is the description of the underlying medium an ihtegral part
of the description of the Sliding Window Protocol?

9.2.1.2 Resolution

ISO/IEC TR 10167 : 1991 (E)

9.2.5 Value of Time-Out Period (Clause 9.1.3)

9.2.5.1 Deficiency

Is the time-out period fixed for all implementations, fixed for
one implementation, or dynamically variable?

9.2.5.2 Resolution

It was the intention that the time-out period be left unspeci-
fied (i.e. to be specified at a lower level of description).

The description of the underlying medium is provided as
techn|cal justification for the design of the protocol, and so
is not|an integral part of its description. However, it should
be in¢luded so as to illustrate the relationship between a
Protofol and its underlying Service.

9.2.2| Window Size (Clauses 9.1.3 and 9.1.4)

9.2.2(1 Deficiency

Do thp Transmit and Receive Window Sizes (TWS, RWS)
have [o be the same? What should happen if these param-
eters pre not greater than 0?7

9.2.212 Resolution

The window sizes are intentionally allowed to be different.
if the window size is not greater than 0, the protocol should
simply fail to transmit (TW'S < 0} or receive (RWS < 0)
any njessages.

9.2.3] Flow Control (Clause 9.1.4)

9.2.311 Deficiency

The ipformal description is unclear as to what ‘delivery’
means. Does it mean dispatch by the receiver to its-user,
or redeipt by its user? These may not be the same'if there
is buffering or delay between the receiver and its user.

9.2.312 Resolution

Since] the interface between the receiver and its user is an
implenentation-dependent matter,_it is not reasonable to
restri¢t the meaning of ‘delivery’ in'the informal description.
Similgrly, the concept of ‘delivery’ in the formal descriptions
depends on the most natural style in the FDT used.

9.2.4 Delivery.of Corrupted Messages (Clause
9.1.1)

9.2.41 Deficiency
Does|the medium deliver corrupted messages, or are they

9.2.6 Consistent Use of NextRequired (CleJuse
9.1.4)

9.2.6.1 Deficiency

Is the ‘next lowest sequence number which is awaited' the
same as NextRequired?

0.2.6.2 Resolution

NextRequired should have’ been used consistently
throughout the informal description.

9.2.7 Receive Window Size (Clause 9.1.4 a))

9.2.7.1 Deficiency
Should thé teceiver initialise RWS, or TWS as stated?

9.2.7.2 Resolution

The'use of TWS was a typographical error: RWS wap in-
tenhded.

9.2.8 Sequence of Operations (Clauses 9.1.3 and
9.1.4)

9.2.8.1 Deficiency

Do the phrases ‘b), ¢) and d)’ and ‘b) and ¢)’ mean g se-
quence in time, or a set of operations which may be cafried
out in paraliel?

9.2.8.2 Resolution
A sequence in time was intended.
9.2.9 Transmit Window Size (Clause 9.1.3)

9.29.1 Deficiency

The diagram and the definition of ‘current window sizef are
inconsistent.

9.2.9.2 Resolution

discarded within the medium?

9.2.4.2 Resolution

The medium was intended to deliver corrupted messages,
and the Protocol to detect this by some unspecified means.

The value ‘HighestSent —Lowest Unacked + 1 shouid
have been used for the current window size.

9.2.10 Receive Window Size (Clause 9.1.4 b))

9.2.10.1 Deficiency

Processing of a message is said to be allowed if its se-
quence number lies within the ‘maximum receive window’.
Is the upper bound of this (i.e. NextRequired + RWS)

39

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

included in this range?

9.2.10.2 Resolution

The upper bound is not included. The text should have
read ‘within the current receive window (Next Required +
RWS - 1).

9.2.11 Corruption of Messages (Clause 9.1.1)
9.2.11.1 Deficiency

Can Acknowledgements as well as Data messages be cor-
rupted in the medium?

9.2.11.2 Resolution
The intention was that this could happen.

8.2.12 Transfer of Data and Acknowledgements
(Clause 9.1.1)
9.2.12.1 Deficiency

Does the medium support ‘Data’ and ‘Ack’ Service Primi-
tives, or does the Protocol have to encode this information
in Protocol Data Units?

9.2.12.2 Resolution

The intention was that ‘Data’ and ‘Ack’ be distinguished by
the medium.

9.2.13 Retransmission on Timeout (Clause 9.1.3
)
9.2.13.1 Deficiency

it is unclear what ‘all these timed-out messages} are; only
one message has in fact timed out. The phrase might also
mean all the messages following, but not including, the
timed-out one.

9.2.13.2 Resolution

The intention was that the timed-out message and all later
messages be retransmitted.

9.3 Estelle Description

9.3.1 Architecture of the Formal Descriptions

The architecture of the formal descriptions is shown in Fig-
ure 9.3. The Protocol description is found in 9.3.3 and the
Medium description is found in 9.3.4. All the modules of
the description are systemprocesses, and so run asyn-

+ -+ domcemm e ———— +
| TransmitterUser | | ReceiverUser |
S U()=-=m=-- + o U()----- +
’ -~
v |
tomm e U()------ + B et + +—==U()=~-=+
| Transmitter ip T<->ip T Timer | | Receiver |
Fm———— CT()--=~-- + et + +=-=CR()---+
’ -~
v |
+-=CT() SR — CR()--+
I medium |
e e ——————————————— Y

Figure 9.3: Architecture of the Sliding Window Protocol
in Estelle

use these; and

b) it seemed to modal more closely the informal require-.
ments of the-Rrotocol.

9.3.2 Explanation of Approach

The Sliding Window Protocol is unusual in several ways.
Foryexample, its data flow is uni-directional, leading to a
few peculiarities in the architecture of the formgl descrip-
tion, such as having distinct and different modyles acting
as peers.

Unless cancelled, the timer module generatesan interaction
for each DT interaction which arises, in order to ensure re-
transmission,

The Communications Medium is described quite|simply as
a single module. Its unreliable behaviour is midelled by
the procedure mung, which is defined only informally. (See
the description of procedure mung for the meaning and
supposed stymology of this word.)

9.3.3 Formal Description of the Protocd|

specification SlidingWindowProtocol;
default individual queue;

type SeqType = integer; { sequence number type;
will always be >= 0 }
UserDataType = ...;
DTPDUType = record
Seq: SeqType;
Msg: UserDataType;

chronously. As these modules are not refined INto SUDMOod-
ules, the global behaviour would not change if they were
designated systemactivities. The crucial point is that they
are distinct systems. An explicit Timer module was chosen
for two reasons:

a) it shows a way to manage timeouts that does not de-
pend directly on the use of delay clauses, although an
Estelle description of a timer module would obviously

40

end;

AKPDUType = record
Seq: SeqType;

end;

channel UT(user, provider);
by user:

DataRequest(Data : UserDataType);

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

channel UR(user, provider);
by provider:
DataIndication(Data : UserDataType);

{ this one channel, M, takes the place of the
tvo separate channels, MT and MR, used in
other specifications }
channel M(DTSender, DTReceiver);
by DTSender:
DT(PDU : DTPDUType);

ISO/IEC TR 10167 : 1991 (E)

state SENDING;

{ save user data in buffer until
Acknowledegment }
procedure BufSave(
s : SeqType; d : UserDataType);
primitive;

{ free user data buffer entry after

by DTReceiver:
AK(PDU : AKPDUType);

channel TimerChan(user, provider);
by user:

TimerRequest(Seq : SeqType);

TimerCancel(Seq : SeqType);
by provider:

TimerResponse(Seq : SeqType);

npdule TransmitterUser systemprocess;
ip U : UT(user);
end;

-

o

bdy TransmitterUserBody for TransmitterUser;
kternal;

[

mpdule ReceiverUser systemprocess;
ip U : UR{user);
ehd; .

o

bdy ReceiverUserBody for ReceiverUser;
kternal;

]

mpdule Cms systemprocess;
ip CT : M(DTReceiver);

CR : M(DTSender);
ehd;

{| the body for the Cms module.is given in the
following clause}

bdy CmsBody for Cms;

kternal ;

o o

mpdule Timer systemprocess;
ip T : TimerChan(provider);
end;

o

bdy TimerBody for Timer;
kternals

o

Acknowledegment }
procedure BufFree(s : SeqType);
primitive;

{ retrieve user data entry from buffer|}

function BufRetrieve(s : SeqType)
¢ UserDataType;

primitive;

{ returns true if the PDU is corrupted|}

function corrupted(PDU : AKPDUType)
boolean;

primitive]

{ congtruct a DT PDU from the user data and
sequence number }

function
PDUDT(s : SeqType; d : UserDataType)
DTPDUType;
primitive;
var

LowestUnacked : SeqType;
HighestSent : SeqType;
TWS : integer;

initialize
to SENDING
provided (TransmitterWindowSize >
0)
begin
LovestUnacked := 1;
HighestSent := 0;
TWS :=
TransmitterWindowSize;
end;

trans

{ transmit while window not full }
from SENDING to same

mbdule Transmitter systemprocess;
ip U : UT(provider);
CT : M(DTSender);
T : TimexChan(user);
end;

{ Transmitter module body }
body TransmitterBody for Transmitter;

const TransmitterWindowSize = any integer;

when U.DataRequest
provided HighestSent -
LowestUnacked + 1 < TWS
begin

HighestSent :=
HighestSent + 1;

output T.TimerRequest(
HighestSent);

output CT.DT(PDUDT(
HighestSent, Data));

41

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

BufSave(HighestSent,
Data);
end;

{ receive Acknowledgement }
from SENDING to same
when CT.AK
provided (PDU.Seq >=
LowestUnacked) and
(PDU.Seq <= HighestSent)

module Receiver systemprocess;

end;

ip U : UR(provider);
CR : M(DTReceiver);

{ Receiver module body }
body ReceiverBody for Receiver;

const ReceiverWindowSize = any integer;

and not corrupted(PDU)
var S : SeqType;
begin
for 8 := LowestUnacked
to PDU.Seq do
begin
output
T.TimerCancel(S);
BufFree(S);
end;
LowestUnacked :=
PDU.Seq + 1;
end;

{ receive ack not in window }
provided otherwise
begin
{ ignore this ack }
end;

{ Timer response }
from SENDING to same
when T.TimerResponse
provided (Seq >= LowestUnacked)
and (Seq <= HighestSent)
var S : SeqType;
begin
for S := Seq
to HighestSent do
begin
ountput
T.TimerCancel(S);
output CT.DT(
PDUDT(S,
BufRetrieve(
DN
output T.
TimerRequest (S);
end;
end;

idad +haraios

state RECEIVING;

{ construct an AK PDU, given the sequegce

number }
function PDUAK(S
primitive;

: SeqType) “: AKPDUTypq

{ retrieve the PDU of sequence number §
from buffer. , If)it is not in the buf

return a PDU(with seq number set to
function PDURetrieve(S : SeqType)
DTPDUTypes;
primitive;

{ Sdve the PDU in the buffer }

procedure PDUSave(PDU : DTPDUType);

primitive;

{ returns true if the PDU is corrupted

function corrupted(PDU : DTPDUType)
boolean;

primitive;

{ Return the user data from the given-}
function UserData(

p : DTPDUType) : UserDataType;
primitive;
var
NextRequired : SeqType;
HighestReceived : SeqType;

RWS : integer;

initialize
to RECEIVING
provided ReceiverWindowSize > (
begin
NextRequired := 1;
HighestReceived := 0;
RWS := ReceiverWindowSi}

ond

pro¥ otherwis

begin

{ ignore timer response for
sequence number outside
window; can happen when
AKX arrives just as timer
responds }

end;

end; { TransmitterBody }

42

trans

{ receive message in window }
from RECEIVING to same
when CR.DT
provided (PDU.Seq >=
NextRequired) and
(PDU.Seq <

.o

fer,

0}

DU}

ze;

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NextRequired + RWS) and

not corrupted(PDU) initialize
var begin
S : SeqType; init TransmitterUserInstance
TPDU : DTPDUType; with TransmitterUserBody;
Done : boolean; init ReceiverUserInstance
begin with ReceiverUserBody;
PDUSave (PDU) ; init TransmitterInstance
S := NextRequired; with TransmitterBody;
Done := false; init Receiverlnstance
{ Retrieve each PDU from with ReceiverBody;
buffer and send it to init CmsInstance with CmsBody;
user. Stop at first init TimerInstance with TimerBody;
gap in buffer, i.e.
the first PDU not connect TransmitterUserInstance.l
received. PDURetrieve to TransmitterInstance.U;
returns a PDU with connect ReceiverUserInstance.U
sequence number 0 if to Receiverlnstance.U;
desired PDU is not in connect TransmitterInstance.CT
buffer. } to CmsInstance.CT;
connect‘RaceiverInstance.CR
repeat to Cmslnstance.CR;
TPDU := conhect TransmitterInstance.T
PDURetrieve(S); to TimerInstance.T;
if TPDU.Seq = S then end;
begin end. { specification SlidingWindowProtocol }
{ extract user data
from PDU and send 9.3.4 . Formal Description of the Medium
to user }
output U. body CmsBody for Cms;
DataIndication(const MaxDelay = any integer; { maximum
UserData(TPDU)); delay }
S =8 + 1 QueueData = record
end Seq: SeqType;
else Msg: UserDataType
{ reached gap ih end;
buffer }
Done := truej; { The next several procedures and
until Done; ' functions manipulate queues in the
NextRequired := S; usual fashion. The details are left to
output-CR./AK (PDUAK(the reader. }
NextRequired - 1));
end; procedure initqueue(var q: QueueType);
{ receive message not in window primitive;
or“is corrupted }
provided otherwise procedure enqueue(
begin Data: QueueData; var q: QueueType);
output CR.AK(PDUAK(primitive;
NextRequired - 1));
end; procedure dequeue(
var Data: QueueData; var q: QueueType);
end ;' {ReeceiverBody—3} primitive;
{ main body for Sliding Window specification } function isempty(q: QueueType): boolean;
modvar primitive;
TransmitterInstance : Transmitter;
ReceiverInstance : Receiver; ‘ { The procedure "mung" is invoked to
TransmitterUserInstance : TransmitterUser; model the unreliability of the medium.
ReceiverUserInstance : ReceiverUser; Each time it is invoked, it may drop,
CmsInstance : Cms; reorder, duplicate, or corrupt some of
TimerInstance : Timer; : the entries of the queue, q. 0Of course,

43

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

‘BtoT: QueueType; { queue for data from
Receiver to Transmitter }

initialize
provided (MaxDelay > 0)
‘begin { 1}
initqueue(TtoR);
initqueue(RtoT);
end;
trans
when CT.DT
var QueueElement: QueueData;
begin { 2 }
QueueElement.Seq := PDU.Seq;
QueueElement .Msg := PDU.Msg;
enqueue(QueueElement, TtoR);
end;
when CR.AK
var QueueElement: QueueData;
begin { 3 }
QueueElement.Seq := PDU.Seq;
enqueue (QueueElement, RtoT)s
end;
trans

provided not isempty(TtoR)
delay(0, MaxDelay)
var PDUtoSend:: DTPDUType;
QueueElement: QueueData;
begin { 4-}
mung (TtoR) ;
if not isempty(TtoR) then
begin
dequeue(QueueElement,
TtoR);
PDUtoSend.Seq :=

end; { CmsBody }

9.3.5 Subjective Assessment

In the description of the Sliding Window Protocol, t
module was not described because it was felt th
make the text longer without réally adding much in
to the example.

One could argue that'the Communications Medium need ‘

not be described in.order to understand the workir
Sliding Window: Protocol; it suffices to know its p
However, it.was’decided to include the descripti
medium forcompleteness.

it may also leave the queue unaltered. mung (RtoT) ;
Again, details are left to the reader. if not isempty(RtoT) then
It is reputed that the acronym "mung'" begin
comes from the phrase "modify until no dequeue(QueueElement,
good". } RtoT);

procedure mung(var ¢: QueueType); AKtoSend.Seq :=

primitive; QueueElement .Seq;

output
var CT.AK(AKtoSend)
_ TtoR: QueueType; { queue for data from end

Transmitter to Receiver } end;

he Timer
it would
ormation

gs of the
operties.
bn of the

Nevertheless, the medium descriptidn was writt

n so as

to ayoid irrelevant details such as how to re-orderfthe mes-
sages in the medium, how to lose a message in the|medium,
etc. This is all hidden inside the procedure ming. To
understand the workings of the system, it is necessary to
understand the workings of mung. Indeed, in g¢neral an
Estelle description is parameterised in terms of its primitive
procedures and functions. For example, if therel were no
guarantee that mung would eventually allow sonething to

exit the queue unaltered, then there would be n
the Protocol to work.

9.4 LOTOS Description

way for

(* : -

9.4.1 Architecture of the Formal Descriptions

The formal description of the Protocol is given in 9
architecture of the Protocol is decomposed into th

4.3. The
ee major

entities, as reflectedin Figure 9.4. This structure is|reflected

in LOTOS as shown in Figure 9.5.

44

QueueElement.Seq; The top-level structure of the Protocol description is as fol-
PDUtoSend.Msg := lows:
QueueElement .Msg;
output 413 G'a'fes
CR.DT(PDUtoSend) ; ut for interactions between the sending user and the
end transmitter
end;
ur for interactions between the receiving user and the
provided not isempty(RtoT) receiver
delay(0, MaxDelay) . .)
mt for interactions between the transmitter and the
var AKtoSend: AKPDUType; medium
QueueElement: QueueData;
begin { 5 } mr for interactions between the receiver and the medium.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

===l Yt >e==—=+
|] [|
| TRANSMITTER | | RECEIVER |
| | |]

+e==< Mt >---- - < mr >~-=-+

+===C ur >--—t

ISO/IEC TR 10167 : 1991 (E)

9.4.1.2 Datatypes
UserData Service User Data
SP Service Primitive
MP Medium Service Primitive
Pdu Protocol Data Unit
PduQueue First-in First-out queue of PDUs
SegNumberSet Set of Sequence Numbers

| }
| MEDIUM |
| |

Figure 9.4: Architecture of the Sliding Window Protocol
in LOTOS

spgcification SlidingWindowProtocol
[4t, ur, mt, mr] (...) : noexit

fadd

ehaviour

TransmitterEntity [ut, mt] (...)
I

ReceiverEntity [ur, mr] (...)

where

process TransmitterEntity
[ut, mt]l (...) : noexit :=

endproc
process ReceiverEntity

[ur, mr]l \(>..) : noexit :=

endproc

endspec

TimerSignal Signals to communicate with the'limers

EnrichedNat Enrichment of the Naturalnumbeys with
the 1 operation

NatMod Enrichment of the Natural numbers with
the Mod operation.{modulo).

PduSet—Set o PDYs i

The outline structure shown.in Figure 9.5 is further decom-
posed into processes as shown in Figure 9.6.

9.4.1.3 Medium

The Medium of the-Sliding Window Protocol is described in
9.4.4. Only those parts of the formal description whlch are
additional to the formal description of the Protocol arg given
for the Medium.

The place of the Medium in the overall architectur:
medium is shown in Figure 9.4. The two entities,

Window Service Users. In LOTOS this fact is described as
shown in Figure 9.7. Notice that the gates through which
the Medium is accessed are hidden to reflect the [fact of
non-observability.

This view of the Sliding Window Protocol can be mofe con-
venient since it is an asymmetrical Protocol. The upderly-
ing Service of any Protocol must be described somewhere,
although it may be considered a non-integral part| of the
Protocol description itself.

In Figure 9.8 the process decomposition for the Medium
description is shown. Only processes which are adgitional
to those of the Protocol are included.
9.4.1.4 Abbreviations

The following abbreviations are used in the descriptjons:

Figure 9.5: Outline Decomposition of the Sliding Win-
dow Protocol in LOTOS

tws transmitter window size
rws receiver window size

lu lowest unacknowledged message
hs highest sent message

nr next required message

sn sequence number

rq queue for re-transmissions

45

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

specification SlidingWindowProtocol
[ut, ur] (...) : noexit

behaviour

hide mt, mr in

(
TransmitterEntity [ut, mt] (...)
11 :

StidinghimiowProtocot
|
___________ feeccmeeee
I ‘ I

TransmitterEntity ReceiverEntity
R |
| | i |
Service Global Service Global
Con:Eraints Constraints Constraints Constraints
I D i SR P |
i I | | | |
TES TEMS I RES REMS !
I s R
| | | I
Transmitting PDU Receiver .Ignored
Constraints Acceptance | PDU
JEO DU I |
[| Deliver |
i | Messages . |

Transmitter AllTimers | }

|
|
!
| AnyTimer Identification
|
| AnySetTimer

|

Sender IgnoredPdu AckRec TimeQut

Figu

| I
| Retransmission
__________ S
| ! |
AckAccept ReleaseQieue ReleaseTimers
| !

ReleaseQueuel ReleaseTimer

9.6:_Processes of the Sliding Window Protocol

in LOTOS

Receiverkntity lur, mr] (...)
)
]
Medium [mt, mxr]) (...)

where

process TransmitterEntity,
[ut, mt] (...) : noexift\ =

enéﬁéoc
process ReceiverEntity
[ur, mr] (..%)”: noexit :=
enéé;oc
process Medium [mt, mr] (...) : noexit :=
en&ééoc
endspec

Figure 9.7: Outline Decomposition of Sliding Window
Medium in LOTOS

SlidingWindowMedium
' ®

i i I
Medium Transmitter Receivgr
S P Entity Entity

I | I |

MAcceptance MTransfer

46

MAccept MHalfTransfer
|
MHolder

Figure 9.8: Processes of Sliding Window Medium in
LOTOS

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

.c) furt

sns sequence numbers set
ps pdu set
up User Service Primitive
mp Medium Service Primitive
pdu Protocol Data Unit.

9.4.2 Explanation of Approach

These are TO aintonentea ae pUonS. actur-
ing method has been extensively used with LOTOS. It pro-
vides a|well-structured description, having several advan-
tages, ihcluding:

a) the description is clearer and better structured; and

b) the [description is separated into different constraints,
logiIaIIy related ones being groupedin a single process;
and

er constraints may be added with little effort; and

d) the Hescription is relatively abstract because no internal
structure is defined.

The qugues are used in such a way that constructor-selector
problems with the data types are avoided. That is, in order
to prevent the proliferation of error values in sorts, queues
are always referredto by explicit construction rather than by
the usugl ‘head’ and ‘tail’ operations (which yield error val-
ues with an empty queue). This decision was not extended
to other data types, such as Service Primitives, in order not
to jeopqrdize the description.

9.4.3 |Formal Description of the Protocol

At the Highest level, the protocol is accessed through gates
ut and yr. Gates mt and mr are for communication between
these two entities through the Medium. The specification
is parameterised by the transmitter and receiver window
sizes, r

specification SlidingWindowProtocol

[ut, wr, mt, mr] (tws(i-Nat, rws : Nat) : noexit

(xe- --- -

Abstract DataJypes: imported from the Standard Library.

ISO/IEC TR 10167 : 1991 (E)

*)

type UserDataType is OctetString renamedby
sortnames UserData for OctetString
opnnames No_Octets for <>

endtype (* UserDataType *)

type has the usual structure for OSI Serv’icesr specifi,ed in
LOTOS.

_— —— - T 4 W £)
type SPType is UserDataType, Boolean
sorts SP
opns
Sreq, Sind : UserData -> SP
IsSreq, IsSind :/SP ~-> Bool
Data \SP ~> UserData
eqns
forall sp :\SP, udata : UserData
ofsort Bool
IsSreq (Sreq (udata)) = true;
18Sreq (Sind (udata)) = false;

IsSind (sp) = not (IsSreq (sp));
ofsort UserData
Data (Sreq (udata)) = udata;
Data (Sind (udata)) = udata;
endtype (* SPType *)

(x- -

Medium Service Primitive: description of the Service
Primitives of the Medium; this is also a common structdre
in OSI Services, especially for Connectionless-Mode.

--- %)
type MPType is PduType, Boolean

sorts MP

opns
Mreq, Mind : Pdu -> MP
IsMreq, IsMind : MP -> Bool
Pdu : MP -> Pdu

eqns
forall mp : MP, pdu : Pdu

ofsort Bool
IsMreq (Mreq (pdu)) = true;
IsMreq (Mind (pdu)) = false;

library
NaturalNumber, Element, String, OctetString,
Boolean, Set

endlib

Sliding Window Service Data: a definition of user data;
based on the standard BitString type.

IsMind (mp) Not (IsMreq (mp));
ofsort Pdu
Pdu (Mreq (pdu))
Pdu (Mind (pdu))
endtype (¥ MPType *)

pdu;
pdu;

< memmemm e

PDU Type: the Medium Service Primitives as PDUs instead
of normal data. The only thing which can be described is

47

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

the PDU types and parametsrs. The actual encodings of
these PDUs have not been defined in the informal text.

(*

Set of Sequence Numbers: used by the receiver. A vari-
able of this type will hold the sequence numbers of the
PDUs already received. It is based on the standard types
Set and Nat.

e o o e S i o 4P Dl S e e *)
type PduType is UserDataType, NaturalNumber,
Boolean
sorts Pdu
opns
— MakeDTPAU T Userbata, Nat—> PAau
MakeAKPdu . : Nat ~-> Pdu
Data : Pdu =-> UserData
SN : Pdu -> Nat
IsDTPdu : Pdu -> Bool
IsAKPdu : Pdu -> Bool
-eq. : Pdu, Pdu -> Bool
ne : Pdu, Pdu -> Bool
eqns
forall
sn, sni, sn2 : Nat,

data, datl, dat2 : UserData,
pdu, pdul, pdu2 : Pdu
ofsort Bool
IsDTPdu (MakeDTPdu (data, sn)) = true;

IsAKPdu (MakeAKPdu (sn)) = true;
IsDTPdu (MakeAKPdu (sn)) = false;
IsAKPdu (MakeDTPdu (data, sn)) = false;
IsDTPdu (pdul), IsAKPdu (pdu2) =>

pdul eq pdu2 = false;

MakeDTPdu (datl, snl) eq
MakeDTPdu (dat2, sn2) =

(datl eq dat2) and (snl eq sn2);
MakeAKPdu (sni) eq
MakeAKPdu (sn2) = snl eq sn2;
pdul ne pdu2 = not (pdul eq pdu2)y

ofsort Nat
SN (MakeDTPdu (data, sn)) = sn;
SN (MakeAKPdu (sn)) =7gn;

ofsort UserData
Data (MakeDTPdu (datay“sn)) = data;
endtype (* PduType *)

Queue of PDUs;- used when re-transmission of PDUs is
necessary. Thedype is an instantiation of the standard
ligrary type String.

type SeqNumberSetType is Set actualizedby
NaturalNumber using
sortnames
Nat for Element
Bool for FBool
SeqNumberSet for Set
endtype (* SeqNumberSetType *)

(k- ----

Set of PDUs: also used by the recsiver. It holds PDUs
already received.

typevPduSetType is Set actualizedby
PduType using
sortnames
Pdu for Element
Bool for FBool
PduSet for Set
endtype (* PduSetType *)

G --

TimerSignal: the signals used to communicate ith the
timers via the t gate.

type TimerSignalType is
sorts TimerSignal

opns
set : => TimerSignal
cancel : -> TimerSignal
expired : -> TimerSignal

endtype (* TimerSignalType *)

Type Pdu(ueuelype is String acvualizedby
PduType using ‘
sortnames
Pdu for Element
Bool for FBool
PduQueue for String
opnnames
No_Pdus for <>
Pdu for String
endtype (* PduQueueType *)

48

NatModType: natural numbers enriched with the Mod op-
eration; used for the identification of timers. The auxiliary
operation ‘-’ is introduced to help in the definition of Mod.

type NatModType is NaturalNumber
opns

Mod : Nat, Nat -> Nat

T - -

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

(*

Pr

ISO/IEC TR 10167 : 1991 (E)

poses on the acceptance of Service Primitives from the
Medium at gate mt (i.e. by the transmitter).

The constraint is that a Data PDU will be sent first; after
that, more Data PDUs may be sent, or Indications may be

noexit :=

mt ? mp : MP rTng_gq_(_mp\ and

eqns

forall m, n : Nat

ofsort Nat
0 -n = Q;
Suce (m) - 0 = Suce (m); accepted in any order.
Succ (m) - Succ (n) = m - n;
m Mod O = 0;
mlt n =
n ;euz? : gt 0 = = m process TEMS [mt] :

m Mod n = (m - n) Mod n

dtype (* NatModType *)

gtocol Behaviour: the general constraint that both the

transmitter and the receiver window sizes must be greater
thah zero. The general decomposition into Transmitter and
Regeiver is also expressed here.

_______ *)

behaviour

(*

[(tws gt 0) and (rws gt 0)] ->
(
TransmitterEntity [ut, mt] (tws)
11

ReceiverEntity [ur, mr] (rws)

TrapsmitterEntity: the Transmitter Entity decompgsed into
the following constraints:

atl)| the service constraints at gate ut; and
a2)| the service constraints at gate mt. endproc (* TES %)
a3)| the protocol constraints relating events at gates ut and
mt. (* ——
- B *) TransmittingConstraints: decomposition of the transmit-
ter into two processes: an actual transmitter process}nd all
process TransmitterEntity [ut, mt] (tws : Nat) the timers needed for the time-outs. These two pro
: noexit := synchronise through the t gate.
(
TES _[utl
(RN
TEMS [mt] process TransmittingConstraints [ut, mt]
) (tws : Nat) : noexit :=
(B hide t in

(*

IsDTPdu (Pdu (mp))];
TEMS1 [mt]

where

process TEMS1 [mt] : noexit
mt ? mp : MP [IsMreq (mp)
IsDTPdu (Pdu (mp))d;
TEMS1 [mt]
(0]
nt ? mp :
TEMS1 [mt]
endproc (¥)TEMS1 *)

endproc(* TEMS *)

MP.\[IsMind (mp)];

(x -

=

and

Transmitter gate constraint: acceptance of Service Re-

quests at all times.

process TES [ut] : noexit :=

ut ? up : SP [IsSreq (up)];
TES [ut]

- *)

058es

-__*)

TransmittingConstraints [ut, mt] (tws)

where

Protocol Entity-Medium Constraint: expressing the tem-
poral ordering of Service Primitives that the protocol im-

Transmitter [ut, mt, t]

(tws, 0, Succ (0), No_Pdus)

(R3]
AllTimers [t] (tws, 0)

where

(*

49

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

AllTimers: forking into all possible timers. The number of
timers needed is tws.

process AllTimers [t]
(MaxId : Nat, TimerId : Nat)
[TimerId 1t MaxId] ->
(

. noexit :=

time; a LOTOS internal event is used. When AnySetTimer
exits (due to cancellation or expiry), AnyTimer repeats its
behaviour.

process AnyTimer [t] : noexit :=
t 7 AnyId : Nat ! set;
AnySetTimer [t] (AnyId)

LN

AL1TS [4] (MaxId, S (TimorId))
L
Timer [t] (MaxId, TimerId)

(hmmfmmmmmm e e

Timer: decomposed into the following constraints:

nyTimer the behaviour of a generic timer; and

Identification a constraint that uniquely identifies each
particular timer.

U *)

process Timer [t]
(MaxTimer : Nat, TimerId : Nat)
. noexit :=
AnyTimer [t]
11

Identification [t] (MaxTimer, TimerlId)

where

SR L O S S

Identification: selection of the signals.sent to the timer
Timeyld.

T *)

process Idéntification [t]
(MaxTimér:) Nat, TimerId: Nat)
: noexit :=)
t/? Identifier : Nat ?
ArySignal : TimerSignal [TimerId =
(Identifier Mod MaxTimer)] ;
Identification [t]
(MaxTimer, TimerId)

AnyTimer [t]
where

process AnySetTimer [t]
(AnyId : Nat) : exit):=
t ! AnyId ! cancel;
exit

0
i;
t ! Anyld’ ! expired;
exit

endproc (* AnySetTimer *)

endproc (* AnyTimer *)
endproc (* Timer *)

endproc (* AllTimers *)

Transmitter: decomposed into the following constraints:

Sender how the protocol sends data, maqdify-
ing the parameters HighestSent and| Re-
transmissions Queue; and

AckRec receipt of an Acknowledgement, modifying
the parameters HighestUnacked and Re-
transmissions Queue; and

TimeOut behaviour when a time out occurs; and
ignoredPdu ignoring out-of-order PDUs.

process Transmitter [ut, mt, t]
(tws : Nat, hs : Nat, lu : Nat,

endproc (* Identification *)

RS

AnyTimer: triggered initially with a set event, after which it
behaves like AnySetTimer. While set, a timer may be can-
celled (if re-transmission becomes necessary before expiry)
ormay expire. The elapsedtime between setting and expiry
is not defined since LOTOS abstracts away from absolute

50

rq : PduQueue) noexit :=
(

Sender [ut y Y 0 0 3
>>

accept hs : Nat, rq : PduQueue in

Transmitter [ut, mt, t]
(tws, hs, 1u, rq)
)
(1

(

AckRec [mt, t] (hs, lu, rq)
>>

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

accept lu : Nat, rq : PduQueue in : exit (Nat, PduQueue) :=
Transmitter [ut, mt, t] AckAccept [mt] (hs, 1lu, rq)
(tws, hs, lu, rq) | mt]]
) ReleaseQueue [mt] (xq)
0 | (mt] |
N ¢ ReleaseTimers [mt, t] (lu)
TimeOut [mt, t] (hs, 1lu, rq) >>
>> accept lu : Nat, rq : PduQueue in
Transmitter [ut, mt, t] exit (lu, rq)
. (+ug' hn' 111' 'r-r}\
) where
(]
((*==mm= e o e e o e B i e e
IgnoredPdu [mt] (hs, 1lu)
>> AckAccept: acceptance of an Acknowledgement, provided
Transmitter [ut, mt, t] that its sequence number is between the.values LowestU-
: (tvs, hs, lu, rq) nacked and HighestSent.
where o TTTTTTTTITTTTTEEET)

(B e o

Sendey: if there is room enough (the maximum window size
tws is njot fully used), a new Service Primitive from the user
is accepted and its corresponding PDU is sent. The PDU
is adddd to the re-transmissions queue. The HighestSent
value i§ incremented. A timer is started.

process Sender [ut, mt, t]
(tws : Nat, hs : Nat, lu
rq : PduQueue)
: exit (Nat, PduQueue) :=
[(1u + tws) gt Succ (hs)] ->
ut 7 up : SP;
(
let pdu : Pdu = MakeDTPdu (
Data (up), Succ_(hs)) in
mt ¢ Mreq (pdu);
t ! Succ (Hs)) ! set;
exit (Suce)(hs), pdu + rq)

: Nat,

)

endproc (* Sender *)

e

AckRegp: reception of an Acknowledgement decomposed
into thel follewing constraints:

process AckAccept [mt]
(hs : Nat;"lu : Nat, rq : PduQueue)
: exit. (Nat, PduQueue) :=
nt(?'mp : MP [(SN (Pdu (mp)) ge 1lu)
and (SN (Pdu (mp)) le hs)];
exit (any Nat, any PduQueue)
endproc (* AckAccept *)

ReleaseQueue: release from the queue of all PDUs frpm
the received sequence number to LowestUnacked (lu).
The new value of LowestUnacked and the quaue itself are
results.

process ReleaseQueue [mt]
(rq : PduQueue)
: exit (Nat, PduQueune) :=
mt ? mp : MP;
(
ReleaseQueuel (SN (Pdu (mp)), rq)
>> accept rq : PduQueue in
exit (Succ (SN (Pdu (mp))), rq

~

a) acceptance of Acknowledgements; and
b) release PDUs from the re-transmissions queue; and
¢) release of timers.

process AckRec [mt, t]
(hs : Nat, 1lu : Nat, rq : PduQueue)

ReleaseQueue1: release from the queue of all the PDUs
up to the sequence number received. The mechanism for
releasing is by a choice of exactly that queue which is
equal to the tail of the current queue. This may be hard to
understand, but it avoids the constructor-selector problem.

- *)

51

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process Release(Queuel
(sn : Nat, rq : PduQueue)
: exit (PduQueuve) :=
choice newrq : PduQueue,
pdu : Pdu []
[rq eq (newrq + pdu)] ->
(
[S¥ (pdu) 1t sn] ->
ReleaseQueuel (sn, newrq)
[

process TimeOut [mt, t]
(hs : Nat, lu : Nat, rq : PduQueue)
: exit :=
t ? sn : Nat ! expired [(sn le hs) and
(sn ge 1w];
Retransmission [mt, t] (sn, rq, set)

where

(% -

[SN (pdu) eq sn] ->
exit (newrq)

)

endproc (* ReleaseQueuel *)

endproc (* ReleaseQueue *)

(ke e e e e -

ReleaseTimers: release of all timers from that for Lowes-
tUnacked to that for the received sequence number.

process ReleaseTimers [mt, t]
(lu : Nat) : exit (Nat, PduQueue) :=
mt 7 mp : MP;
ReleaseTimer [t] (SN (Pdu (mp)), 1u)
>
exit (any Nat, any PduQueue)

vwhere

process ReleaseTimer [t]
(Last : Nat, First : Nat) » exit :=
[First le Last] ->
(
t ! first ! cancel;
exit
IH
ReleageTimer [t]
(Last, Succ (First))
)
[l
[First gt Last] ->
exit
endproc (* ReleaseTimer *)

endproc (* ReleaseTimers *)

endproc (* AckRec *)

Retransmission: re-transmission of all timed lut PDUs.

The elements of the queue are processed inthe $ame way,
except that the timer does not need\to. be carjceiled for
the first one. Re-transmission is notwndertaken|for earlier
messages whose timers have notyet expired.
--- *)
process, Retransmission [mt, t]
(sn {\Nat, rq : PduQueue,
sig)! TimerSignal) : exit :=
{
choice newrq : PduQueue,
pdu : Pdu []
[rq eq (newrq + pdu)] ->
(
[sn gt SN (pdu)] ->
Retransmission [mt,| t]
(sn, newrq, sig)
(]
[sn le SN (pdw)] ->
(
[sig = set] ->
mt ! Mreq (pdu)|;
t ! SN (pdu) ! Bet;
RetransmissionaEmt, t]
(sn, newrq, cancel)
01
[sig = cancel] ->|
t ! SN (pdu) ! kancel;
mt ¢ Mreq (pduwl; .
t ¢ SN (pdu) ! pet;
RetransmissionaEmt, t]
(sn, newrq, cahcel)
)
)
)
0
[rq eq No_Pdus] ->
exit
emdproc - RetTamsmission)

(x

TimeOut: a time out for the sequence number sn has ex-
pired. The timer for the first sequence number has to be

set.

52

endproc (* TimeDut *)

S —

ignoredPdu: ignoring the incoming PDUs not accepted by
the AckRec process. The discarding of corrupted PDUs
is modelled by non-deterministically forcing a PDU to be
accepted but ignored.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

process IgnoredPdu [mtl
(hs, 1lu : Nat) : exit :=
mt ? mp : MP [(SN (Pdu (mp)) 1t 1lu) or
(SN (Pdu (mp)) gt hs)];

exit

0
i; (* PDU assumed to be corrupted *)
mt 7 mp : MP;

ISO/IEC TR 10167 : 1991 (E)

process RES [ur] : noexit :=
ur ? up : SP [IsSind (up)];
RES [ur]

endproc (* RES *)

(o -

Receiver: decomposition of the constraints at both gates
into the acceptance of valid PDUs, the constraints on in-

(*

R
0

exXit
endproc (* IgnoredPdu *)

endproc (* Transmitter *)

endproc (* TransmittingConstraints *)

jendproc (* TransmitterEntity *)

ceiverEntity: decomposed into the constraints at each
e of the gates, and those at both gates.

--- *)
process ReceiverEntity [ur, mr]
(rws : Nat) : noexit :=
(
RES [ur]
11l
REMS [mx]
)

I
Receiver [ur, mr] (rws, Succ (0),
{} of SeqNumberSet, {} of PduSet)

where

(*--____-__.._-_-__-__-__-___-_______; ____________

Receiver Entity-Medium Constraint: transmission of an
Adknowledgement after any-Indication is sent.

process REMS [mr] : noexit :=
mr<2mp : MP [IsMind (mp)];
mr/? mp : MP [IsMreq (mp) and
IsAKPdu (Pdu (mp))];

REMS [mx]

voming vatid-PBUs;amnd-theconstraint orrigrroring invalid

PDUs.
------------------------- I
process Receiver [ur, mr]
(rws : Nat, nr : Nat, smns.: SeqNumberSpt,
ps : PduSet) : noexit :=
(
Receiverl [ux; mr] (rws, nr, sns, ps)
| [mr] |
PduAcceptance [mr] (rws, nr, sns)
)
0
(
IgnoredPdu [mr] (rws, nr, sms)
>>
Receiver [ur, mr] (rws, nr, sns, ps
)
vwhere

Receiver1: acceptance by the receiver of a valid PIl

DU. The

sequence number is inserted into a set, and the pdy itself is
inserted in another set. These sets are given to a process
which delivers data to the user.
--- - %)
process Receiveri [ur, mr]l
(rws : Nat, nr : Nat, sns : SeqNumberSet,
ps : PduSet) : noexit :=
mr 7 mp : MP;
DeliverMessages [ur, mr]
(nr, Insert (SN (Pdu (mp)), smns),
Ingert (Pdu (mp), ps))
>>
accept nr : Nat, sns : SeqNumberSet|,
ps : PduSet in
Receiver [ur; mr] (xws, nr, smns, pps)

endproc (* REMS *)

Receiving User Constraint: transmission of Indications to

th

e user at any time.

where

——— o o e ek e e e o

DeliverMessages: delivery of all the received messages
to the user if they are in order. All ordered messages are

delivered. An Acknowledgement is issued after

delivery

even if no message has been indicated to the user.

53

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process DeliverMessages [ur, mr]

(nr : Nat, sns : SeqNumberSet,

ps : PduSet)

: exit (Nat, SeqNumberSet, PduSet) :=
[nr IsIn sns] ->

(
choice pdu : Pdu []
[(SN (pdu) eq nr) and

IgnoredPdu: ignoring PDUs which are outside the window,
duplicated, or corrupted. An Acknowledgement of Nex-
tRequired minus one is sent. (See process SendAck).
The discarding of corrupted PDUs is modelled by non-
deterministically forcing a PDU to be accepted but ignored;
in this case, no Acknowledgement is sent.

(pdu IsIn ps)] ->
ur ! Sind (Data (pdu));
DeliverMessages [ur, mr]
(Succ (nr), Remove (nr, smns),
Remove (pdu, ps))
; ,
]
[nr NotIn sns] ->
(
SendAck [mr] (nr)
>>
exit (nr, sns, ps)
)

endproc (* DeliverMessages #)
endproc (* Receiverl *)

[— S—

SenglAck: transmission of an Acknowledgement of the next
required minus one.

process SendAck [mr] (sn : Nat) : exit-:=
choice 1d : Nat []
[sn eq Sucec (1d)] ->
mr ! Mreq (MakeAKPdu (1d).);
exit
endproc (* SendAck *)

(e e e S e e e

Pdufcceptance: acceptance of an incoming PDU if its
seqyence number is¢within the window and if it has not
beer] already received:

process PduAcceptance [mr]

{rws : Nat, nr : Nat, sns : SeqNumberSet)

- ST — %)
process IgnoredPdu [mrl
(rws : Nat, nr : Nat, sns : SeqNumber$et)
¢ exit =
mr ? mp : MP [(SN (Pdu (mp)) ge

(nr + rws)) or ((SN (Pdu (ip)) 1t nI) or
(s¥ (Pdu (mp)) IsIn sns))D;
SendAck [mr] (nr)

0
i; (* PDU assumed to be corruptdd *)
mr 7 mp : MP;
exit

endproc (* IgnoredPdu *)
endproc (* Receiver *)
endproc ,(*.ReceiverEntity *)

endspe® ‘(* SlidingWindowProtocol *)

9.4.4 Formal Description of the Medium

o — ———- -

This is not a self-standing description of the Medium. It
relies on definitions which are given in the description pf the
Protocol, but which, for brevity, have not been copied into
the Medium description. At the highest level, the pratocol
is accessed through gates ut and ur. Only the user gates
are now visible. The specification is parameterised by the
transmitter and receiver window sizes, respectively tw$ and
rws.

specification SlidingWindowProtocol [ut, ur]
(tws : Nat, rws : Nat) : noexit

T S——

Medium Objects: common in OSI Service descripfions,
as well. The Medium transfers objects from one Sdrvice

: noexit :=
mr ? mp : MP [IsMReq(mp) or (IsMInd (mp)
and ((SX (Pdu (mp)) 1t (nr + rws)) and
((SN (Pdu (mp)) ge nr) and
(SN (Pdu (mp)) NotIn sns))))];
PduAcceptance [mr] (rws, nr, sns)
endproc (* Pdulcceptance *)

€ e it T

54

Access Point to another. The relationship between these
objects and the Medium Service Primitives is expressed by
means of the functions Object and Indication. The equa-
tions for Indication state that a medium object corresponds
to a Medium Request or Medium Indication with the same
PDU. The second equation for Indication is also required
so that the operation Object is specified as total.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

type MOType is MPType, PduType

sorts MO
opns
Object : MP -> MO
Indication : MO -> MP
eqns

forall mp : MP, mo : MO, pdu : Pdu
ofsort MP

Indication (Object (Mreq (pdu))) =

ISO/IEC TR 10167 : 1991 (E)

process MAcceptance [mt, mr] : noexit :=
MAccept [mt]
Y

MAccept [mr]

where

(-

Mind (pdu);
Indication (Object (Mind (pdu))) =
Mind (pdu);

endtype (* MOType *)

(K= dm e e e ——————

Protocol Behaviour: decomposed in a new way. The

Mediy

Servige User.
The Hrotocol has the general constraint that both the trans-

mitter|
zero.

behpviour
[(tws gt 0) and (rws gt 0)] ->
(
hide mt, mr in
(
TransmitterEntity [ut, mt] (tws)
i
ReceiverEntity [ur, mr]l (zxws)
)
I
Medium [mt, mr]
)

whe

.

e

m and the Service gates to it are hidden from the

and the receiver window sizes must be greater than

Accept: acceptance of Indications or Requests atall times.

process MAccept [m] : noexit :=
m ? mp : MP [IsMreq{(mp)];
MAccept [m]

a
m ? mp : MP [IsMind (mp)];
MAccept [m]

endproc (* (MAccept *)

endproc, (¥)MAcceptance *)

Transfer: decomposition of the constraints related tg
transfer of data into two identical halves.

process MTransfer [mt, mr] : noexit :=
MHalfTransfer (mt, mr]

11
MHalfTransfer [mr, mt]

where

(-

HalfTransfer; acceptance of a Medium Service Primi

----------- %)

ive.

*)

Mediym: decomposed into the constraints related to the ; ol a ive !
acceplance of Service Primitives and the constraints related It transforms the Service Primitive into an object to be trans-
to the lactual transferof-data. ferred, then creates a process to hold this object.
__ *) e e o o o o e 7 2 o om0 ————
profess ‘Medium [mt, mr] : noexit := process MHalfTransfer [t, r] : noexit :=
MAcceptance [mt, mrl t 2 mp: MP [IsMreq (mp)];
I (

MTransfer [mt, mr]

where

Acceptance: decomposed into the constraints at each of

the gates.

MHalfTransfer [t, r]
i

MHolder [r] (Object (mp))
)

where

(-

55

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Holder: discarding, duplication, corruption, or delivery of
an object. Corruption is modelled by non-deterministically
replacing the object by another one.

LOTOS to decompose a system into a number of parts and
to describe these individually. Two separate ideas make this
possible. For the data typing, the mechanisms of enrich-
ment (building on existing data types), renaming (copying
existing data types), and actualization (instantiating a pa-
rameterised data type) make it possible to build complex
data types out of simpler ones. For the behaviour descrip-
tion, the process combinators (notably [],]I, >>,and[>)
make it possible to build compiex behaviours our of sim-
pler ones.

- *)
process MHolder [r]
(obj : MO) : noexit :=

(
i; (* Object discarded *)
stop

{1
i; (* Duplication of objects *)
r ! Indication (obj);
MHolder [r] (obj)

8]
i; (* PDU corruption *)
(

choice corrupted_obj : MO []
MHolder [r] (corrupted.obj)

)

1
i; (* Object delivery *)
xr ! Indication (obj);
stop
)

endproc (* MHolder *)
endproc (* MHalfTransfer *)
endproc (* MTransfer *)

endproc {* Medium *)

(]

hdspec (* SlidingWindowProtocol *)

.4.5 Subjective Assessment

e LOTOS description of the Sliding Window Protocol is
good example of how the ‘constraint-oriented’ style can
applied to a large and complex problem, breaking it
down into many small and manageable pieces. This allows
description to be undefstood and analysed in a highly
odular fashion. However, it should be said that by such
etonomical means._it-is possible to construct from simpie
parts some very-complex behaviours which may be diffi-
clt to understand in their entirety. The constraint-oriented
style is therefore appropriate to a component-engineering
approach;-feminiscent of that used in the Engineering disci-
plines. \Although a constraint-oriented description is de-
sjgned top-down, it may be necessary to understand it

blottom-=upl
ORGH=UP

9.5 SDL Description

9.5.1 Architecture of the Formal'Descriptions

The SlidingWindowProtocol system is modellefl as the
composition of the following three blocks: sender. entity,
receiver._entity, and medium. The sending and receiv-
ing users are located in the‘environment: they interact with
the system via two Sefvice Access Points, modelled by
means of two channels ut (from the environment to the
sender_entity) and\ur (from the receiver_entity to the
environment). [The/channels ut and ur carry thg signals
UDTreq andUDTind respectively, which model the|simplest
interaction imaginable between the User and the Provider
of a uni<directional data transfer Service.

The)sender.entity puts Data (MDTreq signal) on the
Medium and gets Acknowledgements (MAKind sighal) from
ibby using a bi-directional channel mt. Conversely, the re-
ceiver_entity gets Data from the medium (MDTind signal)
and puts Acknowledgements (MAKreq signal) opto it by
using a bi-directional channel mr.

The sender_entity block consists of a process tyfle trans-
mitter, instantiated just once at system start-up time. The
receiver. entity block consists of a process type neceiver,
instantiated just at once at system start-up timp. The
medium block consists of two ‘queue manager’ processes
(one for the Data and the other for the Acknowledgements)
and two ‘hazard’ processes (to model abnormal bghaviour
in manipulating objects). The description of the [Protocol
is given in 9.5.3. The description of the Medium|is given
separately in 9.5.4 because it is not an integral part of the
Protocol.

9.5.2 Explanation of Approach

The architecture described in the previous clause is quite a
natural mapping between static SDL semantics and some
layering concepts of OSI.

9.5.2.1 Medium description

The LOTOS style used in the descriptions is typical of that
which has evolved through a large amount of experience in
describing OS! Standards in LOTOS. This style is a distilla-
tion of many debates among LOTOS and OSlI experts. Al-
thoughmany other approaches are possible, and have been
tried, the style used in these examples is recommended to
future specifiers.

As shown by the descriptions, it is quite straightforward in

56

Although the formal description of the Protocol does not re-
quire a formal description of the Medium, the description of
the Medium is useful for understanding some of the features
of the Protocol, and would be essential in order to simulate
the Protocol or to validate it against the required Service.
indeed, the Protocol features are based on the assumption
that the Medium may lose, re-order, corrupt, and duplicate
objects.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

9.56.2.2 Signal definition

The informal description of the Protocol suggests no names
for Protocol Data Units. In the SDL description the follow-
ing identifiers are used: MDT (Medium Data) and MAK
{Medium Acknowledgement).

In a pure OSI approach, the sender_entity and the re-
ceiver._entity would normally interact with the Medium via
two Service Primitives (say, data.req and data_ind) in or-
der to convey Protocol Data Units For the sake of sim-

MD req (standlng for data req (MDT)) MDT'nd (stand-
ing for data_ind (MDT), MAKreq (standing for data_req
(MAK)), and MAKind (standing for data_ind (MAK)).

Four corresponding signals have been defined. From this
point of view, the Medium can be thought of as just a block
perfporming transfer and re-naming of signals (Requests be-
coming Indications in both directions).

9.52.3 Timer management

Thelinformal description of the Sliding Window Protocol re-
quires an individual timer to be set for each message sent.
Thig is managed in SDL by using a timer tim with multiple
instances referred to by a value in the range [0 .. tws].
The|indexing value is used either to set/reset a given in-
starjce or to detect which timer instance has expired. When
timer primitives SET and RESET are used, a duration value
shotld be specified. If specifying a value is undesirable,
such primitives cannot be used; alternatively, three exter-
nal gignals (say set._timer, reset_timer, and timer_expiry)
could be used between the process sender and the envi-
ronrhent. The timing mechanism would then be located in
the pnvironment. Unfortunately, this solution would intro*
duce an unacceptable level of detail into the overall system
blogk interaction diagram, and was thersfore not ‘adopted.
However, it should be noticed that in the Sliding-Window
Protocol descriptions using the other FDTs; timers are de-
scribed without giving any fixed delay.

9.5/3 Formal Description of the Protocol

The]n SDL/GR description of the Protocol and some support-
ing macro and type definitions are shown in figure 9.9.

9.5/4 Formal Description of the Medium

The| SDL/GR description of the Medium is shown in fig-
ure P.10. Fron the viewpoint of SDL syntax and semantics,
the description cannot be considered in isolation, but as a
part of the\previous system description. Nevertheless, it is
n |n a separate clause in order to emphasuse the fact

scription of the Medlum could be avonded sumply by Iocatmg
it in the environment.

9.5.5 Subjective Assessment

The SDL description consists of a static part, represented
by the system diagram and the block diagrams (which faith-
fully describe the essential architecture of the real system),

ISO/IEC TR 10167 : 1991 (E)

and a dynamic part, represented by the process diagrams
(which algorithmically describe the behaviour of the active
components of the system). This distinction greatly helps
to ease understanding of far more complex systems than
the Sliding Window Protocol.

The dynamic description is, to some extent, oriented to-
wards an implementation; consider, for example, the use
of concrete data structures such as arrays and queues.
Thls |mplementat|on onented bias can hardly be avoided

nde irable

too much bias towards procedural details.

Timer management is performed in a natural and e
way. This is not necessarily true of every-FDT and should
therefore be considered an importantfeature of SDL fin de-
scribing real Protocols, where timers are used extengively.

Finally, it can be stated that the SDL description is| quite
effective for the purpose,of clearly understanding the sys-
tem in question. In addition, it is also friendly and self-
explanatory; very fewgomments are needed within the for-
mal text in order to-assist comprehension.

9.6 Assessment of the Application of
the FDTs

This.example is fairly typical of the style of Protocpl de-
scriptions. The deficiencies found in the informal dgscrip-
tion included the usual straight errors or lack of information.
However, some interesting types of errors were foung:

a) It is easy to be imprecise in natural language jabout
whether the bounds of a range are included or excluded.

b) The word ‘and’ can be ambiguous in natural landuage.
For example, it is commonplace in restaurant mepus to
see that a meal is followed by ‘coffee and tea’t

c) ltis easy in natural language to lapse into ‘elegantjvaria-
tion’ ([Fowler 1968]). For example, the same thing may
be called a ‘unit’, a ‘component’, a ‘sub-system’, jand a
‘module’. Although this is acceptable in a literary|work,
such a style leads to imprecision in a specificatiop.

d) A much deeper problem was to how to interprpt the

‘time-out’ parameter. The informal description reErs to

‘a timer’ being started. Does the word ‘a’ reflect the
fact that each message has an individual timef, that
some particular value be used for each message|timer,
or that any timer value (perhaps different from|timer
values used on other occasions) be used?

anon- determlnlstac specufucauon and a partial specifica-
tion. A non-deterministic specification of such a timer
could say that a timer value would be chosen (by means
which could not be determined). A partial specification
could indicate that a single timer value would be used,
but that the precise timer value would be defined when
the specification was made total (i.e. at a later stage in
the design).

57

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SYSTEM SlidingWindowProtocol

/* A unidirectional data transfer protocol having

ut

the-fottowing featuresisdescribed:

- transmit window mechanism
- positive acknowledgement
- individual timers

- retransmission on timeout */

SIGNAL

UDTreq (DataType), UDTind (DataType),
MDTreq (SegnoType,DataType,datacrc),
MDTind (SeqnoType,DataType,datacrc);
MAKTreq (SegnoType,ackrc),
MAKind (SeqnoType,ackrc);

MACRO DataTypeDef;

>
[UDTreq]

sender_entity receiver_entity

ur

e

[MAKind 1 A A [MDTind]
mi mt
> medium <
[MDTreq] [MAKreq]

[UDTind]

58

Figure 9.9: SDL Specification of Sliding Window Protocol

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

MACRODEFINITION DataTypeDef; ISO/IEC TR 10167 : 1991 (E)
GENERATOR queue (TYPE item); '

LITERALS gnew;

OPERATORS
gadd: item,queue =-> queue;
gfirst: queue -> item;
grest: queue -> queue;
gconcat: queue,queue —-> queue;
gdelete: integer,queue -> queue;
gempty: queue -> boolean;

AKIOMS
gfirst (gnew) == ERROR!;
gfirst (qadd (x,gnew)) == X;
gfirst (qadd (x1,qadd (x2,q))) == gfirst(qadd(x2,q));
grest (gnew) == gnew
grest (gqadd (x,gnew)) == gnew;
grest (gadd (x1,qadd (x2,q))) == gadd (x1, gqrest (qadd (x2,q))) ;
gconcat (gnew, q) == J;
gconcat (gadd (x1,q9l) ,q92)) ==
gadd (x1,gconcat (ql,g2));

gdelete (0,q) == q;
FORALL i in NATURAL

(gdelete(i,q) == gdelete(i-1,qrest(q)));
gempty (gnew) ;
NOT (gempty (gqadd (x,q))) i
ENDGENERATOR queue;

JYNTYPE positive=INTEGER;
CONSTANTS > 0;
ENDSYNTYPE positive;

n

YNTYPE index=INTEGER;
CONSTANTS 1:lmax;
ENDSYNTYPE index;

n

YNTYPE datacrcindex =\JINDEX;
CONSTANTS 1l:dlendatacrc;
HNDSYNTYPE datacrcdndex;

in

YNTYPE ackcrcindex = INDEX;
CONSTANTS 1:lenackcrc;
ENDSYNTYPE ackcrcindex;

10

YNTYPE t£&n = INTEGER /* integer in range O..tws-1 */;
CONSTANTS O:tws-1
ENDSYNTYPE tsn;

LA BT ITLR N
WUNGLO L AIN

ENDSYNTYPE rsn;

SYNTYPE rsn = INTEGER /* integer in range 0..rws-1 */;
5

al 1
Ve LWO -

SYNTYPE sequence number = natural;
ENDSYNTYPE sequence number;

NEWTYPE datacrc ARRAY (crcindex,bit)
Figure 9.9 (continued)

59

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

OPERATORS dcheck: sequence number, bitstring => datacrc

field */
ENDNEWTYPE datacrc;

NEWTYPE ackcrc ARRAY (crcindex,bit)
OPERATORS acheck: sequence number -> ackcrc
/* for a sequence number to beinserted irn a
data unit builds the crc field */

AXIOMS /* undefined */
ENDNEWTYPE ackcrc;

NEWTYPE msgqueue queue (bitstring);
ENDNEWTYPE msggueue;

NEWTYPE DataType STRING(bit,\")
ENDNEWTYPE bitstring;

NEWTYPE bit
LITERALS 0,1;
ENDNEWTYPE bit;

ENDMACRO DataTypeDef;

/* for a given pair of se&uence_number and userdata to bsg
inserted in a MDT protocol data unit builds the c¢xc

MAK protocd

Figure 9.9 (continued)

60

1

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

BLOCK sender_entity
s_sap
ut transmitter
[UDTreq]
[MAKind] A
S
[MDTreq]
[eq v
mt
Figure 9.9 (continued)

61

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

62

BLOCK receiver_entity

receiver

r-sap

[MDTind]

A

[MAKreq]

[UDTind]

>

mr

ur

Figure 9.9 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

{u :=8eqgno + 1

window_closed

Figure 9.9 (continued)

PROCESS transmitter 1(2)
I* This process consists of two D DCL hs, tu, seqno SeqnoType,
states: data-transfer, wh ere data " "cq msgqueus, !
transfer normally occurs, and data DataType,
window_closed, where data acrc ackere;
tranif:r"ls slusp'?ndad because
by the current transmit window */ i ttsm)

hs =0,
Iu =t
release_timers
retransmit data_transfer
MAKind
UDTreq tim
(data) {seqno,acrc) (8eqno)
talse! release_timers
hs = hs+1 feteel (s8qno, he)
MDTreq (hs, retran:mlt
data, dcheck (seqno, hs, cq}
(hs,data)) :
q:i= qadd release_timers
{data, cq) (lu, seqno)
I]
SET (NOW+delta, ©q := qdelete
tim (hs mod tws)) (seqno - v + 1, ¢cq)
(talse)

63

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

data_transfer

PROCESS transmitter 2(2)
MAKind tim
UDTreq (data) (seqno,acrc) (seqno)
(false) (true)
release_timers
(seqno, hs}
retransmit
(seqno, hs, ¢q)
release_timers
(lu, s6qno)
1
©q = gdelete
(seqno - lu + 1, cq)
]
Iu = soqno + 1

Figure 9.9 (continued)

64

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCEDURE release_timers FPAR IN si,sj SeqgnoType;

DCL r tsn,
k natural;

K:=sj-si+1,

r :=si mod tws

RESET (tim(r))

r:=(r+1) modtws,
ki=k*1

(true)

(false)

Figure 9.9 (continued)

65

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCEDURE retransmit FPAR IN p,v SeqnoType, cq msgqueue;

DCL k natural,
inf DataType;

ki=p-lu+1

1

inf := dfirst(cq),
cq = grest(cq),

| cq = qadd(inf,cq),
k1 :=k1-1

kK=v-p+1

>

inf := gfirst (cq),
cq := qrest (cq),
cq := gadd (inf, cq)
I

MDTreq(p, inf,
dcheck(p, inf))

|
p = p mod tws,
SET (NOW+delta,

tim (p))
|

p := (p+1) mod tws,

K= k-1
(false) /\ (true)
k>0
\ /

~_—

Figure 9.9 (continued)

66

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS receiver

deliver_messages

—————

ni=
r

1
=0

DCL D

nr, segno SeqnoType,

data DataType,

already_received ARRAY (rsn, boolean),
recbuf ARRAY (rsn, DataType),

dcrc datacre;

already_received := false

[= T+1

(data_transfer)

“MDTind
(seqno,

data,dcrc)

<

MAKreq (nr - 1,
acheck (nr - 1))

MAKreq (nr - 1,
acheck (nr - 1))

L

state. In order to cope with sequential
delivery of messages to its local user, it
mairtains an array recbuf whose components
buffer messages according to their sequence

number and a boolean array akeady_received

whose components flag the status (old/new)

of the homologous components in'recbuf /

aready_received
{segno mod rws)

(false)

MAKreq (pr - 1,
acheck {nr - 1))

(false)

recbuf(seqno
mod rws):= data

1
already_received
(seqno mod rws) :=

true
1

deliver_messages
(nr, seqno, recbuf,
already_received)

v

Figure 8.9 (continued)

67

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

68

PROCEDURE DeliverMessages FPAR IN/OUT xnr, xseqnr SeqnoType,
recbuf ARRAY (rsn, DataType),
already_received ARRAY (rsn, boolean);

(false) (true)
xseqnr = xnr

¢

UDTind(recb
(xnr mod rw

MAKreq
(xnr,acheck(xnr))

already_received
(xnr mod rws) :=
false

xnr = xnr + 1

(false) (true)

already_
received

(xnr mod rws)

Figure 9.9 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

BLOCK medium

SIGNAL ANormal,
Alose,
ADup,
AReord,

MNomal,
MLose,

MDup,
MReord,
MCcm mi

AConupt,

AN

&

MsgHazard
/* not defined */

SIGNALLIST LA=

LM)]

smr

mt

mt |e

[MDTreq]

MsgManager

SIGNALLIST LM =

ANormal
Alose,
ADup,
AReord,
ACorrupt;
MNormal,
MLose)
MBup,
MReord,
MCorrupt;

rmr

N A

sar

[MAKind]

AckManager

P
[MDTind]

aa

mr

mr

7T N\ 70, N\

I'\\.ll\l lﬂl-ClI U

/* not defined */

rar
[MAKreq]

Figure 9.10: SDL Specification of Sliding Window Medium

69

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

A

({(maub ‘wayb)ppeb
‘bui) 1eauoab = bw

wab Apow Awopuey,

|

{osop‘eiRpioubas)
puldn

4

4

+

ojwayb=: 219p
‘gjwisyb =: eep
‘sjwayb =: oubas

*

(bw) 159ib =: bw
‘(bw) 1sutb = wayb

((bw) 1s31b)

‘buy) 1s1b) ppeb =: bw

{bw ‘{bw)
1s4ib) ppeb =:bw

(bw) 1591b =: bw

(bw) 3s91b =: bw
(bw) sub = wayb

(bwwayb) ppeb =: bw
(210p ‘elep ‘oubas’)

whb
{2500 "ejep
dn 850 ‘oubas)
1dnuog i plosH an N FRULONI s
A 19jsue) \v
IoeRp 9P
‘adk1eeq ®]
‘odf | oubsg S
i) abeuepNBSI S$
‘onanpBspeiN bw 10a 4 WOSW S$3004d

Figure 9.10 (continued)

70

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

+

({maub ‘wayb)ppeb
‘2w } eouodb = ew

Aslb Aupow Kjwopuey,

4

+

+

(o108 ‘oubas)
PUMYIN

olusyb = op0R
‘'sjwayb =: wbas

4

{(ew) 1521b =t eW
(ew) sugb =: woyb

{{(ew}) 31s81b
‘{ew) 1s5b) ppeb =: ew

(ew {ew)
181b) ppeb =: ew

(ew) 1s0.b =i ew

(ew) 1501b = ew
‘(ew) Jsiyb =: wayb

{ew ‘wayb) ppeb =: ew
{0108 *Jubas) =: wayb

dnuo dn _—_— (o10egubas)
] v piosyy Qv ooy [RWIONY st
A lajsue)) v
IR 0P
‘odf | oubag oub
‘obessopyunipay way
onenOVPa Bl 100 oBEUBHPPY S5IO0Hd

Figure 9.10 (continued)

7

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10{1.1

. STATION | ABRACADABRA | STATION
10 Abracadabra Service and | SERVICE |
Protocol Example | pRovibER
: | I
This example illustrates the familiar Alternating Bit Proto- | [
col, which is a precursor to some real Protocols. It also ConReq > ConInd =->
illustrates extra features found in connection-oriented Pro- | | |
tocols. The example presents the description of a Protocol | | |
in relation to the Service it provides. ConConf < ConResp <-
| I
.1 Informal Description ! !
DatReq > Datlnd
introduction : |
|
Many people have studied the Alternating Bit protocol which DisReq S-DisInd

bports a unidirectional flow of information with a pos-
itive handshake on each transfer. This protocol is too
ple to represent a number of complexities found in
redl communications protocols. This example describes a
more realistic protocol which has Alternating Bit sequence
numbers, Retransmission on timeout, Acknowledgements,
Cohnection And Disconnection.

10{1.2 Service Description

The Abracadabra Service operates between a pair of sta-
tions, addressed as A and B. Each station is presumed to
support a local user interface to the Protocol Entities. The
senvice offered is a reliable, connection-oriented service be-
twgen a pair of Service Users. The Service Primitives sup-
ported are:

ConReg/ind
ConResp/Conf

Connection Request/Indication
Connection Response/Confirmation
DatReq/ind Data Request/Indication
DisReq/Ind Disconnect Request/Indication

Onjy DatReq and Datind carry a parameter, which is a
Sef{vice Data Unit (SDU). The Service Primitives are related
as shown in Figure 10.1.

tion simultaneously initiates™a connection then each end
segs only ConReq, ConConf. A connection establishment
attempt may be abandoned by the initiator by sending Dis-
Reqy, before receiving)ConConf. A connection establish-
mept attempt may/also be abandoned by the responder,
serjding a DisRegq following Conind.

Onte a connection is established, either station may send a
DatRegq which will be delivered as Datind. Data messages
arel preserved in sequence and content, except when a
'G“:":‘ OCCUTrS: 2 his ‘:‘::‘-‘C:‘:; oS
of data messages already in the Service may be lost. Data
transfer is subject to flow control by back-pressure.

Either station may terminate an established connection by
issuing DisReq. This is normally matched by a Disind at
the other station, but if the other station issues DisReqin the
meantime then the connection is terminated immediately.

The Service Provider itself may abandon a connection at-

72

Figure 10.1: Relationship between Abracadabta Ser-
vice Primitives

PDU | Meaning Corresponding
Primitives

CR Connection Request ConReg/Ind

CC Connection Confirmation ConResp/Conf

DT Data Transfer DatReg/Infl

AK Acknowledgement -

DR Disconnection Request DisReq/Ind

DC Disconnection Confirmation | -

Figure 10.2: Abracadabra Protocol Data Units

tion which knows of the connection (attempt) is informed of
this by Disind. However, if the station issues DisRedj in the
meantime then the DisInd is not delivered.

Once a connection has been terminated, either party may
initiate a new connection with ConReq.

tempt or may terminate the connection. Normally ejfnh sta-

10.1.3 Protocol Description

10.1.3.1 General

The protocol operates over a full-duplex, unreliable commu-
nications medium between two stations. The two stations
communicate by transfer of Protocol Data Units (PDUs).
The communications protocol is two-way simulta
symmetrical and reliable. Communication takes p|

AA 4]

and Error.
Only the PDUs shown in Figure 10.2 are permitted. Only DT
and AK carry parameters : both carry a one-bit sequence
number, and DT carries a Service Data Unit. Each Abra-
cadabra Service Data Unit is carried in one DT Protocol
Data Unit. Each Abracadabra Protocol Data Unit is carried
in one Service Data Unit of the underlying medium.

The Abracadabra Protocol is parameterised by two con-

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

stants. N (> 0) defines the maximum number of at-
tempts to transmit a PDU without receiving an acknowl-
edgement. P (which exceeds the round-trip transit delay)
defines the time period which should elapse before attempt-
ing re-transmission.

10.1.3.2 Connection Phase

A connection attempt is made following ConReq by sending
a CR. if a CC is received, a ConConf is issued and the
Data Transfer Phase is entered; the same i e if CR i
received instead. If DR is received or DisReq occurs, the
Dis¢onnection Phase is entered. If any PDU other than
CC, CR or DR is received, it is ignored. If no response to
CR fis received within period P, the CR is re-transmitted. A
maximum of N connection attempts (i.e. N periods of value
P) gre permitted. After this, the Error Phase is entered.

When no connection is set up, receipt of a CR causes a
Conind; any other PDU is ignored. If a ConResp follows,
then CC is sent and the Data Transfer Phase is entered.
if, however, the connection attempt is abandoned with Dis-
Regq, then the Disconnection Phase is entered.

10.1.3.3 Data Transfer Phase

A DatReq leads to a DT being sent. On receipt of the
corlesponding AK, a further DatReq may be accepted. If
the gorresponding AK is not received within period P, the DT
is ré-transmitted. A maximum of N transmission attempts
(i.e] N periods of value P) are permitted. After this, the
Errgr Phase is entered.

DTq and AKs carry a one-bit sequence number which is
indeépendent for each direction of transmission. The ses:
quence number starts at 0 after connection. The correct
ackhowledgement to a DT bears the next (i.e. other)'se-
quence number. If an AK with the wrong sequence.number
is rgceived, then the Error Phase is entered.

When a DT is received, it is acknowledgedwith AK (with the
next sequence number after the one in the DT). However,
if a ffurther DT is received before the AK is sent, the Error
Phdse is entered. If the DT bears the sequence number
whigh is expected, a Datind is issued. Otherwise the DT is
not delivered to the User.

If a further CR is received before any DTs or AKs, a CC is
sen}. If a DR is receiyedby either station the Disconnection
Phgse is entered. Af any PDU apart from DT, AK, CR (ini-
tial fe-transmission only), or DR is received, then the Error
Phgse is entered.

10.[1.3.4 \(Disconnection Phase
A QisBeq leads to a DR being sent. On receipt of DC

ISO/IEC TR 10167 : 1991 (E)

STATION | COMMS | STATION
| MEDIUM i
|SERVICE PROVIDER |
| | —
| |
| |
UnitReq > UnitInd
| {
| |
gure 10.37 Communications Medlt grvice Primi-
tives

When a DR is received, it is acknowledged with DLC. If a
connection is established, a Dislnd\js issued. Afterthis, a
new connection may be attempted. Any PDU othgr than
DR or CR which arrives subsequently is ignored.

10.1.3.5 Error Phasé

A Protocol error leads 1o the Error Phase being entered and
DR being sent. This'is identical to the Disconnectiothase
except that the station which detected the error also |ssues
DisInd before-sending the DR.

10.1.4 Communications Medium Serviceg De-
scription

The Communication Medium Service operates between a
pair of stations, addressed as a or b. The Communigations
Medium Service is connectionless, and is accessed by Uni-
tReq and Unitind (Unit Request and Indication) Service
Primitives, which carry Service Data Units corresppnding
to Abracadabra Protocol Data Units. The communigations
medium is full-duplex and transparent, but does nof guar-
antee delivery. Messages may be lost, but may not e mis-
ordered, corrupted, invented, or duplicated. The Service
Primitives are related as shown in Figure 10.3.

Either station may issue UnitReq, which may be delivered
as Unitind or may be lost.

10.1.5 Model
The Service and Protocol should be modelled as shpwn in
Figure 10.4.

10.2 Deficiencies in the Informal| De-
scription

the connection is terminated and a new connection may
be attempted; the same is true if DR is received instead.
If a further DR is recesived, then DC is sent. Any other
kind of PDU is ignored. If no response to DR is received
within period P, the DR is re-transmitted. A maximum of
N disconnection attempts (i.e. N periods of value P) are
permitted. After this, the connection is considered to have
been terminated and a new connection may be attempted.

10.2.—Flow Controt(Clause 10:1:2)
10.2.1.1 Deficiency

Is it reasonable that the informal description should stipulate
that flow control by back-pressure be modelled?

10.2.1.2 Resolution

Flow control by back-pressure is an implicit feature of many
Osil Service definitions, although it is not normally referred

73

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

- - - -

| SERVICE | | SERVICE | ;

| UsER | | USER | 10.2.3.2 Resolution

I | b i Any current retransmission on timeout of a PDU should

| | cease on entry to the Error Phase.
AB | SDU AB | sDU
- I I 10.2.4 Retransmission Limit and Period (Clause
I - le... Abracadabra T I 10.1.3.1)
| AB | PROTOCOL | Service | PROTOCOL | AB | .
| PDU | ENTITY | | ENTITY | PDU | 10.2.4.1 Deficiency
[[— I | What should be the behaviour of the protocol if the param-
I ! f f oters N.and P are negative?
| CM | SDU CM | sSDu |
: | : < |I o : 10.2.4.2 Resolution
. Medi

| | | O::vi c: e i I I The intention was that the protocol should'refuse to accept
| | | | | | or transmit any messages.
| | Y S l | |
I I e} I 10.2.5 Repeated ConReq(Clause 10.1.2)
- ittt ' 10.2.56.1 Deficiency

STATION A STATION B Should ConReq be accépted while a connection is|being

Figure 10.4: Abracadabra Service and Protocol Model

to Ry this explicit name. The mechanisms for realising
flow control by back-pressure lie partly within the Service
Provider (i.e. the Protocol) and partly in the inter-Layerinter-
facq between the Service Users and the Service Provider.
Althpugh the former is subject to standardisation, the\lat-
ter is implementation-dependent and therefore notsubject
to standardisation. Therefore, although the precise mech-
anigms for achieving flow control by back-pressure would
not hormally be included in a Service description, it is per-
missible to refer to the end-to-end effect of these.

10.2.2 Premature Transmission of DT (Clause
10.1.3.3)
10.2.2.1 Deficiency

Is itireasonable that the informal description should regard
the feception of a further DT before an AK can be transmit-
ted ps an error?

10.2.2.2 __Resolution

The| intention was to trap misuse of the protocol by the
transmitter, or to detect that the timeout period was too

attempted or is current? More generally, should the be-
haviour of the Sepvice' under incorrect use by the Service
User be described?

10.2.5.2 /Resolution

The intention was that a ConReq should be issued only
once to establish a connection. More generally, the Ectual
FDT being used affects how Service User misbehpviour
should be most naturally described.

10.2.6 DR when Disconnected (Clauses 10}1.3.2
and 10.1.3.4)
10.2.6.1 Deficiency

The informal description says that receipt of any PDU other
than CR is ignored in the Connection Phase. Howeyer, in
the Disconnection Phase it says that receipt of DR ghould
result in DC. Which is right?

10.2.6.2 Resolution

The description of the Disconnection Phase is rightt The
intention was that receipt of DR when not connected should
result in DC.

10.2.7 Connection Refusal (Clause 10.1.3.2)

10.2.7.1 Deficiency

It DR is received in response to CR, should a Disipd be
given to the User?

short. However, this intention was probably misguided; this
case should not have been regarded as an error.

10.2.3 Stopping Retransmission on Error
(Clauses 10.1.3.2 and 10.1.3.3)

10.2.3.1 Deficiency

Should retransmission of a CR or DT be stopped if the Error
Phass is entered?

74

10.2.7.2 Resolution

The intention was to inform the User by Disind if the con-
nection was refused by DR.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

10.2.8 Connection Refusal (Clause 10.1.3.2)

10.2.8.1 Deficiency

Should the Disconnection Phase be entersd if the connec-
tion is refused by the other party (i.e. is the sequence CR,
DR, DC correct as stated)?

10.2.8.2 Resolution

Although the informal description is viable, it was intended

ISO/IEC TR 10167 : 1991 (E)

that copnection refusal be by CR, DR only. The intormal
description should refer to a DR being sent and the ‘not
connecled’ state being entered, rather than the Disconnec-
tion Phase being entered.

10.2.9| Ignoring Out-of-sequence Data (Clause
10.1.3.3)

10.2.9]1 Deficiency

it the|Datind rather than the DT which is not delivered to
he User if the received sequence number is wrong?

10.2.9/2 Resolution

It should be the Datind; the informal description is a bit
loose.

10.3 | Estelle Description
10.3.1

The modules in the descriptions are systemprocesses,
and sojrun asynchronously. As these modules are not re-
fined into submodules, the global behaviour of these de-
scriptiohs would not changed if they were designated sys-
temactivities. The crucial point is that they are distinct
systems.

Architecture of the Formal Descriptions

10.3.1{1 Architecture of the Service Description

The modules and interaction points for.the Abracadabra
Servicg description are shown in Figure 10.5. The Abra-
adabra Service Provider in Estelle’is modelled by two
identical processes, one for each SAP. Of course, there
are other solutions possible which only use one process.
The reason for choosing-two processes is that there may
be a ppssible delay between the reception of a Service
Primitive by the Setvice Provider and the sending of the
corresgjonding Sérvice Primitive to-the respective Service
User. [This delay is modelled by the communication via
channel INTERNAL between the two SAPmanagers. The
Abracadabra Service is described in 10.3.3.

10.3.1.2 Architecture of the Protocol Description

The modules and interaction points for the Abracadabra
Protocol description are shown in Figure 10.6. The Abra-
cadabra Protocol is described in 10.3.4.

S e + S —— +
| module | | module |
| User UA | | User UB |
+----ip Ur===- + +====ip U----- +
| channel SAP . channel SAP |
v v
+----ip USERA ip USER~-==-= +
} ! module—AbraService— |} |
| +---ip USER=---+ +---ip USER-<=4 |
| | module | channel | module) | |
| ISAPmanagerA ip INchn<->ip INchn SAPmanagerBl| |
| 4o e + INTERNAL L L 4+ |
$rmmmmmm e m e e c etk - ——— -+
Figure 10.5: Architecture of the Abracadabra Service in
Estelle
+ -— + +
| mddule | | module |
| User UA | | User UB |
B e e u()------ + R et U()=-=--- -+
| |
A USER(+)-~---- + oo USER(+) ------| -+
| module | | | module | |
| Abra A v |] Abra B v |
| +--=-USER()---+ | | +---USER()-~---+| |
I module [[module Hl
| | Station S | | | | Station S |||
1 (for A) I | (for B) (NN
| +----PEER()---+ | | +-=-PEER()=---+| |
| - | | - |
| i | | | i
| v | | v |
I Up()---+ | | + Up() +| |
o module | | I module || |
| | TransCode XC | | | | TransCode XC | | |
[(for A) [I (for B) (N
| +----Down()---+ | | +==-Down()--=-+{ |
| - | | -]
| | | | | |
Hommme MEDIUM(+)====== + +-===MEDIUM(+) ===~~~ -+
| |
v v
CMA() CMB()------- +

T
| module CM |
| comms. medium service |

Figure 10.6: Architecture of the Abracadabra Protocol
in Estelle

75

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.3.2 Explanation of Approach

10.3.2.1 Explanation of Service Approach

If an Abracadabra Service description were produced using
only one process for the Service Provider, time constraints
would have to be introduced for the sending of Service Prim-
itives corresponding to received ones. The two-process
solution has been used for the sake of simplicity.

When one SAPmanager recelves a Servnce Primitive from

the UnitData of a Unitind that the communications medium
provides into a peer-to-peer communication.

This structuring is done using features of Estelle that make
the sub-structures ‘invisible’ to the rest of the system.
Note that the module Abra serves simply to form the sub-
structures and connect them together; it does not have any
transitions. Note also that the TransCode module has only
one (unnamed) state, thus from and to clauses are unnec-
essary for its transitions.

t e SAPmanager for the other Servuce Access Point, wh|ch
ill the result in a Service Primitive being sent to the User
at this Service Access Point. For example, a ConReq from
ser A will invoke an IConReqind, which will result in a
Gonind to User B. The names for the internal messages
dre defined in a straightforward manner, and are believed
be self-explanatory.

he main difference between the Abracadabra Service and
Abracadabra Protocol descriptions can be seen in the fact
that the Service is an abstraction of the Protocol. The inter-
face to the User is, of course, identical in both cases. Inthe
ervice description there are no re-transmissions and there
i3 no alternating bit, because these things cannot be seen
hy the User. Therefore, it is possible to omit them in order
to abstract from the Protocol. Furthermore, the processes
df the Service Provider at the Service Access Points do not
ave to communicate through an unreliable medium, which
i$ the Service Provider of the underlying Layer. Instead,
the inability of the Service Provider to establish or maintain
g connection in some cases (the cases where in the Pro=
tpcol’s N re-transmissions have failed) is modelled in the
Jervice description by the use of non-determinism.

0.3.2.2‘ Explanation of Protocol Approach

lhe structure of the Abracadabra Protocol description is
ghosen to illustrate a way to solve the common problem of
fJeer-to-peer communication. Specifically, the problem is
this: normally, peers are considered to communicate with
dach other, but within the OSI reference model, they cannot.
An (N)-entity cannot communicate directly with another (N)-
gntity; rather it communicates”’with an (N-1)-entity, which
rovides the necessary/Service to convey the peer-to-peer
dommunications. When-describing Protocols, therefore, it
is not possible for-an-(N)-entity to ‘send a CR’. Instead, it
ust package a’CR"up into an (N-1) Service Data Unit, and
ils peer must Unwrap the CR from the (N-1) Service Data
nit.

e deseription is broken up into severalmodules. The Pro-
tcol ltself is descnbed in the Station module. The reader

Although back-pressure flow-control has a giobal, end-
to-end effect, its precise realisation is @, lgcal and
implementation-dependent matter. The Protocol descrip-
tion given in 10.3.4 does not therefore deal wijth back-
pressure flow-control. The changes to-describe th(s in gen-
eral terms are as follows.

The approach taken is based on\the introduction|of primi-
tive predicates (i.e. boolean“valuedfunctions). Thgse func-
tions are ‘true’ when the. intended receiver of an interaction
wishes to assert back-pressure flow-control. These primi

tive functions are given’names like ReceiverBlo¢ked. By
their nature, these)clearly show that back-pressure flow-
control is indeed a local implementation issue which de-
pends on the availability of local resources. it is npcessary
to make the/firing of those transitions that have ¢utput on
a channel subject to back-pressure flow-control dgpend on
the'value of these primitive functions.

Note that these primitive functions are necessarily primitive:
it is unlikely that they could be written in Estelle. From the
point of view of the formal semantics of Estelle, 8 descrip-
tion is technically incomplete until all primitive functions and
procedures have been formally described in terms pf the se-
mantic model. However, for an implementation it is enough

be formalised in terms of the Estelle semantic model: it

ject to flow-control; instead the Station module is made the
locus of this activity. The effect on the sending Uper or on
the Communications Medium has not been shown|since the
actions of these modules are left unspecified. However, the
changes that would be required to describe back{pressure
flow-control in these modules should be clear fron the ex-
amples.

this module The Abracadabra Station modules have been
written as though they were communicating directly, so they
can ‘send a CR’ or ‘receive an AK'. To accommodate the OSI
architecture, a TransCode module has been interposed be-
tween each Abracadabra Station and the communications
medium. This TransCode module encodes (‘packages’)
the peer-to-peer communication from the Station into the
UnitData of a UnitReq that the communications medium re-
quires. The TransCode module also decodes (‘unwraps’)

76

The specific changes to the Abracadabra Protocol descrip-
tion to implement back-pressure flow-control in this way are
as follows:

¢ Two boolean-valued functions should be declared in the
body StationBody for Station. The effect of these func-
tions can be described in terms of the queues of the
Communications Medium module (CM) and the Users
(UA and UB).

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

function MediumBlocked : boolean;
primitive;

function ReceiverBlocked : boolean;
primitive;

o Two provided clauses in the body StationBody for Sta-
tion should be modified as follows. Transitions 13 and
16 then become:

{ send data in DT PDU }

ISO/IEC TR 10167 : 1991 (E)

DatInd(UserData: UserDataType);
DislInd;

channel INTERNAL (A, B);
by A, B:
IConReqlnd;
IConRespConft;
IDat (UserData: UserDataType);
IDis;

from ESTAB to same
when USER.DatReq
provided not Sending and
not MediumBlocked
- begin { 13 }
0ldData := UserData;
output
PEER.DT(SendSeq, OldData);
0ldSendSeq := SendSeq;
SendSeq :=
(SendSeq + 1) mod 2;
Sending := true;
{ turn on retransmission
timer }
DTRetranRemaining := N-1;
end;

{ receive data in DT PDU }
from ESTAB to same
when PEER.DT
provided not ReceiverBlocked

begin {16 }
if Seq = RecvSeq then
begin
output

USER.DatInd(UserData) ;
RecvSeq :=
(RecvSeq # 1) mod 2;
end;
{ send AK with<next expected
sequence number }
output PEER.AK(RecvSeq);
DTorAK := true;
end;

10.3{3 Formal Description of the Service

speclfication AbracadabraService;

module USer S8ystemprocess;
ip U: SAP(user);
end;

body UserBody for User;
end;

module AbraService;
ip USERA: SAP(provider);
USERB: SAP(provider);
end;

body AbraServiceBody for AbraService;

module (SAPmanagerA systemprocess;
ip USER: SAP(provider);
INchn: INTERNAL(A);
end; i

body SAPmanagerBodyA for SAPmanagerA;
state
DISCONNECTED, CALLED, CALLING
CONNECTED;
stateset
DISoccurs =
[CALLED, CALLING, CONNECTED];
initialize
to DISCONNECTED
begin end; { no variables|}
trans

{ *** Connection Phase **x }

from DISCONNECTED to same
vhen USER.ConReq

default (individual queue; begin { 1 }
type, UserDataType = ...; output USER.DisIznd;
end;

channel SAP (user, provider);

by user:
ConRegq;
ConResp;
DatReq(UserData: UserDataType);
DisReq;

by provider:
Conlnd;
ConConf;

from DISCONNECTED to same
when INchn.IDat(UserData)

begin { 2 }
output INchn.IDis;
end;

from DISCONNECTED to CALLING
when USER.ConReq
begin { 3 }
output

77

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

INchn.IConReqInd;
end;
from DISCONNECTED to CALLED
when INchn.IConReqInd

begin { 4 }
output USER.ConInd;
end;

from CALLED to CONNECTED
when USER.ConResp

{ spontaneous disconnection

by the Provider }
begin { 13 }

output USER.DisInd;
output INchn.IDis;

end;

from DISoccurs to DISCONNECTED

when USER.DisReq
begin { 14 }

begin { 5 } output INchn.IDis;
output INchn. end;
IConRespConf; from DISoccurs to DISCONNECTEIL
end; when INchn.IDis

from CALLED to CONNECTED
when USER.ConReq
{ collision situation }
begin { 6 }
output USER.ConConf;
output INchn.
IConRespConf;
end;
from CALLING. to CONNECTED
when INchn.IConRespConf

begin { 7 }
output USER.ConConf;
end;

from CALLING to CONNECTED
when INchn.IConReqInd
{ collision situation }
begin { 8 }
output USER.ConConf;
output INchn.
IConRespConf;
end;

{ *** Data Phase *** }

from CONNECTED to same
when USER.DatReq(UserData)
begin. { 9 }
output INchn.
IDat(UserData);
end;
from CONNECTED to same
when INchn.IDat(UserData)
begin { 10 }
output USER.
DatInd(UserData);
end;
from CONNECTED to DISCONNECTED
vhen USER.DatReq(UserData)
begin { 11 }

begin { 15%}

output USER.D]

end;

end; { SAPmanagerBodyA“}

module SAPmanagerB, systemprocess;
ip USER(: ,SAP(provider);
INchn: INTERNAL(B);
end;

body SAPmanagerBodyB for SAPmanagerB
state
DISCONNECTED, CALLED, CALJ
CONNECTED;
stateset
DISoccurs =
[CALLED, CALLING, CONNE(
initialize
to DISCONNECTED
begin end; { no variaj
trans

{ *** Connection Phase *** }

from DISCONNECTED to same
when USER.ConReq

begin { 1 }
output USER.Dj
-end;

from DISCONNECTED to same

sInd;

L ING,

ITED] ;

les }

when INchn.IDat(UserDa
begin { 2 }
output INchn.
end;

Dis;

78

output USER.DisInd;
output INchn.IDis;
end;
from Connected to CALLED
when INchn.IConReqInd
begin { 12 }
output USER.ConlInd;
end;
from DISoccurs to DISCONNECTED

when USER.ConReq
begin { 3 }
output INchn.
IConReqlInd;
end;
from DISCONNECTED to CALLED
when INchn.IConRqund
begin { 4 }

output USER.ConlInd;

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

end;
from CALLED to CONNECTED
when USER.ConResp

ISO/IEC TR 10167 : 1991 (E)

end;
from DISoccurs to DISCONNECTED
vhen USER.DisReq

begin { 5 } begin { 14 }
output -INchn. output INchn.IDis;
IConRespConf; end;
end; from DISoccurs to DISCONNECTED
from CALLED to CONNECTED vhen INchn.IDis
when USER.ConReq begin { 15 }
{ collision situation } output USER.DisInd;
begin { 6 } end;

output USER.ConConf;
output INchn.
IConRespConf;
end;
from CALLING to CONNECTED
when INchn.IConRespConf

begin { 7 }
output USER.ConConf;
‘end;

from CALLING to CONNECTED
when INchn.IConReqInd
{ collision situation }
begin { 8 }
output USER.ConConf;
output INchn.
IConRespConf;
end;

{ *%% Data Phase *¥* }

from CONNECTED to same
when USER.DatReq(UserData)
begin { 9 }
output INchn.
IDat(UserData);
end;
from CONNECTED to same
when INchn.IDat(UserData)
begin {110 }
output USER.
DatInd(UserData);
end;
from CONNECTED to DISCONNECTED
when USER.DatReq(UserData)
begin { 11 }
output USER.DisInd;
output INchn.IDis;
end;

from Connected to CALLED

R R a2

begin { 12 }

output USER.ConInd;
end;
from DISoccurs to DISCONNECTED

{ spontaneous disconnection

by the Provider }

begin { 13 }
output USER.DislInd;
output INchn.IDis;

end; { SAPmanagerBodyB }
{ main body for AbraServiceBody\}
modvar

A: SAPmanagerai;
B: SAPmanagerB;

initialize

begin
init A with SAPmanagerBodyA;
init B with SAPmanagerBodyB;
attach USERA to A.USER;
attach USERB to B.USER;
connect A.INchn to B.INchxy;

end;

end; { AbraServiceBody }

{ main body for specification
AbracadabraService }

modvar
UA, UB: User;
AS : AbraService;
initialize
begin
init UA with UserBody;
init UB with UserBody;
init AS with AbraServiceBody;
connect UA.U to AS.USERA;
connect UB.U to AS.USERB;
end;

end. { Specification AbracadabraService }

10.3.4 Formal Description of the Protocol

specification AbracadabraProtocol;

timescale seconds;

const
N = any integer; { number of transmission
attempts }
P = any integer; { delay amount for
timers }

type

79

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

1SO/IEC TR 10167 : 1991 (E)

SeqType = 0..1; { sequence number type }

UsexrDataType = ...;
PduType = (CR, CC, DT, AK, DR, DC);

UnitDitaTypé = recoxrd

ip USER : USAP(provider);
PEER : PeerCode(peer);

body StationBody for Station;

Pdu : PduType; state
SeqNo : SeqType; CLOSED, CRSENT, CRRECV, ESTAB,
UData. : UserDataType DRSENT;
end;
' stateset

channel USAP(user, provider);

by user:
ConReq;
ConResp;
DatReq(UserData : UserDataType);
DisReq;

by provider:
Conlnd;
ConConf;
DatInd(UserData : UserDataType);
DisInd;

channel PeerCode(peer, coder);
by peer, coder:
CR;
CC;
DT(Seq : SeqType; v
UserData : UserDataType);

CRignore = [CRRECV];
CCignore =

(CLOSED, CRRECV, DRSENT];
DTignore =

[CLOSED, CRSENT, CRRECV, DRSENT];
AKignore =]

[CLOSED CRSENT, CRRECV,
DCignore ‘=

[CLOSED, CRSENT, CRRECV]; ‘
ConRéqlgnore =

[CRSENT, CRRECV, ESTAB, DRSENT];
ConResplgnore =

(CLOSED, CRSENT, ESTAB, DRSENT];
DatReqIgnore =

{CLOSED, CRSENT, CRRECV, IRSENT];
DisReqlgnore =

[CLOSED, DRSENT];

RSENT] ;

AK(Seq : SeqType); var
DR; Sending : boolean;
DC; SendSeq, RecvSeq : SeqType;
OldSendSeq : SeqType;
channel MSAP(user, provider); CRRetranRemaining : integer;
by user: DTRetranRemaining : integer;
UnitReq(UnitData: UnitDataType); DRRetranRemaining : integer;
by provider: O0ldData : UserDataType;
UnitInd(UnitData: UnitDataType); DTorAK : boolean;
module User systemprocess; procedure InitVar;
ip U : USAP(user); begin
end; o Sending := false; ‘
SendSeq := 0;
body UserBody for ‘User; RecvSeq := 0;
end; { setting the followi
_ counters to -1 guaramtees
module Cms systemprocess; the predicates that [check
ip CGMA; CMB : MSAP(provider); them will fail. }
end; 'CRRetranRemaining := -i;
DTRetranRemaining := -{1;
body CmsBody for Cms; DRRetranRemaining := -i;
| external : DIorAK—= false
end;
module Abra systemprocess;
ip USER : USAP(provider); initialize
MEDIUM : MSAP(user); to CLOSED
end; begin { 1 }

body AbraBody for Abra;

module Station process;

80

{ Variables are initialized
when leaving CLOSED state,
since the protocol module
may cycle through CLOSED

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

repeatedly. }
end;

trans
{ *** Connection Phase *** }
{ user requests connection }

from CLOSED to CRSENT
when USER.ConReq

ISO/IEC TR 10167 : 1991 (E)

last CR }
begin { 8 }
{ enter error phase }
output USER.DisInd;
output PEER.DR;
CRRetranRemaining :=
-1;
DRRetranRemaining :=
N-1;
end;

begin { 2 F
{ initialize module
variables whenever
leaving CLOSED }
InitVar;
output PEER.CR;
CRRetranRemaining := N-1;
end;
{ other user accepted connection }
from CRSENT to ESTAB
when PEER.CC
begin { 3 }
output USER.ConConf;
CRRetranRemaining := -1;
end;
{ colliding CRs }
from CRSENT to ESTAB
when PEER.CR
begin { 4 }
output USER.ConConf;
CRRetranRemaining := -1;
end;
{ other user rejected connection }
from CRSENT to CLOSED
wvhen PEER.DR
begin { 5 }
output USER.DisInd;
CRRetranRemaining := ~1;
end;
{ sender requests disconnection }
from CRSENT to DRSENT
when USER.DisReq
begin){ 6 }
output PEER.DR;
CRRetranRemaining := -1;
DRRetranRemaining := N-1;
end;
{\retransmission timer for CR
fires }
from CRSENT to same
provided CRRetranRemaining > 0

{ receive connect request from
peer entity }
from CLOSED to CRRECV
vhen PEER.CR
begin { 9 }

{ initialize module
variables whenever
leaving CLOSED }

InitVar;

output USER.Conlnd;

end;
{ user \accepts connection }
from CRRECV to ESTAB
when USER.ConResp

begin { 10 }
output PEER.CC;
end;

{ user rejects comnection }
from CRRECV to CLOSED
when USER.DisReq
begin { 11 }
output PEER.DR {just
once }
end;
{ other user disconnected }
from CRRECV to CLOSED
when PEER.DR
begin { 12 }
output USER.DisInd;
output PEER.DC;
end;

{ *%* Data Transfer Phase #** }

{ send data in DT PDU }
from ESTAB to same
when USER.DatReq
provided not Sending
begin { 13 }
O0ldData := UserData
output PEER.

delay (P) DT(SendSeq, 0ldDatfia);
begin { 7 } 0ldSendSeq := SendSeq;
CRRetranRemaining := SendSeq :=

CRRetranRemaining - 1;
cutput PEER.CR;
end;
{ terminate retransmission of CR }
from CRSENT to DRSENT
provided CRRetranRemaining = 0
delay (P) { allow time for

(SendSeq + 1) mod 2;
Sending := true;

{ turn on retrans-
mission timer }
DTRetranRemaining :=

N-1;
end;

81

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

82

{ receive ack with correct sequence
number in AK PDU }
from ESTAB to same
vhen PEER.AK
provided Seq = SendSeq
begin { 14 }
Sending := false;
{ turn off retrans-
mission timer }

N-1;
end;
from ESTAB to DRSENT
when PEER.CC
begin { 19 }
{ enter error phase }
output USER.DisInd;
output PEER.DR;
DTRetranRemaining := -1;

DTRetranRemaining :=
_1;
DTorAK := true;
end;

{ receive acknowledgement with
incorrect sequence number }
from ESTAB to DRSENT
when PEER.AK
provided Seq <> SendSeq
begin { 15 }
{ enter error phase }
output USER.DisInd;
output PEER.DR;
DTorAK := true;
DTRetranRemaining :=
-1;
DRRetranRemaining :=
N-1;
end;
{ receive data in DT PDU }
from ESTAB to same
when PEER.DT
begin { 16 }
if Seq = RecvSeq then
begin
output USER.
DatInd(UsexData);
RecvSeq :=\(RecvSeq
+ 1) mod 2;
end;

{ send- AKX with next
expected sequence
number }

output PEER.AK(RecvSeq);

DTorAK := true;

DRRetranRemaining = N-1i;
end;
when PEER.DC
begin { 20 }
{ enter error ‘phase |
output USER.DisInd;
output PEER.DR;
DTRetranRemaining :=| -1;
DRRetranRemaining := N-1;
end;
{ retransmission timer for DT
firesv}
from ESTAB to same
provided DTRetranRemaining|> 0
delay (P)
begin { 21 }
DTRetranRemaining :=
DTRetranRemaining - 1;
output PEER.
DT(01dSendSeq, 0ldDpta);
end;
{ terminate retransmission of DT }
from ESTAB to DRSENT
provided DTRetranRemaining|= 0
delay (P)
begin { 22 }
{ enter error phpse }
output USER.DisIpd;
output PEER.DR;
DTRetranRemaining :=

-1;
DRRetranRemaining :=
N-1;

end;

output PEER.DR;

DTRetranRemaining :=
-1;

DRRetranRemaining :=

end; { #** Disconnection Phase **x }
from ‘ESTAB to same
when PEER.CR { receive disconnect request fyom
provided not DToxAK user }
begin { 17 } from ESTAB to DRSENT
output PEER.CC; when USER.DisReq
end; begin { 23 }
—__ Irom ESTAB to DRSERNT output PEER.DK;
when PEER.CR DTRetranRemaining :=
provided DTorAK -1;
begin { 18 } DRRetranRemaining :=
{ enter error phase } N - 1;
output USER.DislInd; end;

{ receive DC }
from DRSENT to CLOSED
when PEER.DC
begin { 24 }

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

DRRetranRemaining := -1;
end;
{ receive DR }
from DRSENT to CLOSED
when PEER.DR
begin { 25 }
DRRetranRemaining := -1;
end;
{ receive DR }
from ESTAR to CLOSED

ISO/IEC TR 10167 : 1991 (E)

end;
from ConReqlgnore to same
when USER.ConReq
begin { 35 }
end;
from ConResplgnore to same
when USER.ConResp
begin { 36 }
end;

from DatReqlgnore fo same.

when PEER.DR
begin { 26 }
output USER.DisInd;
output PEER.DC;
DTRetranRemaining := -1;
end;
{ reply to retransmitted DR }
from CLOSED to same
when PEER.DR

begin { 27 }
output PEER.DC;
end;
{ retransmission timer for DR
fires } :

from DRSENT to same
provided DRRetranRemaining > 0
delay (P)
begin { 28 }
DRRetranRemaining :=
DRRetranRemaining - 1;
output PEER.DR;
end;
{ terminate retransmission of DR }
from DRSENT to CLOSED
provided DRRetranRemaining'= 0
delay (P)
begin { 29 }
{ The connection is
regarded as closed. }
DRRetranRemaining := -1;
end;
{ ignore other PDU’s }
from CRignore /to same
when."REER .CR
begin { 30 }
end;
from'CCignore to same
when PEER.CC
begin { 31 }
end;
from DTignore to same

when USER.DatReq
begin { 37 }
end;)
from DisReqlgnore to same
vhen USER.DisReq
begin { 38}
end;
end; { StationBody }

{ #*** The TransCode section k#x }.

{ See the Explanation of Approach, describir

the structure of the specification }

module TransCode process;
ip Up : PeerCode(coder);
Down : MSAP(user);
end;

body TransCodeBody for TransCode;
var SDU: UnitDataType;

procedure BuildCR(
var SDU: UnitDataType);
begin
' SDU.PDU := CR
end;

procedure BuildCC(
var SDU: UnitDataType);
begin
SDU.PDU := CC
end;

procedure BuildDT(

Seq: SeqType; Data: UserDataType;

var SDU: UnitDataType);

'8

when PEER-DT
begin { 32 }
end;
from AKignore to same
vhen PEER.AK
begin { 33 }
end;
from DCignore to same
vhen PEER.DC
begin { 34 }

begin
SDU.PDU ;= DT;
SDU-SegNo T Soq;
SDU.UData := Data
end;

procedure BuildAK(

Seq: SeqType; var SDU: UnitDataType);

begin
SDU.PDU = AK;
SDU.SeqNo := Seq
end;

83

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

procedure BuildDR(
var SDU: UnitDataType);
begin
SDU.PDU := DR
end; .

procedure BuildDC(

vhen Down.UnitInd
provided (UnitData.PDU = AK)
begin { 10 }
output Up.
AK(UnitData.SeqNo)
end;
when Down.UnitInd
provided (UnitData.PDU = DR)

var SDU: UnitDataType); begin { 11 }
begin output Up.DR
SDU.PDU := DC end;
end; when Down.UnitInd
provided (UnitData.PDU)=-DC)
trans begin { 12 }
vhen Up.CC output Up.DC
begin {1 } end;
BuildCC(SDU); end; { TransCodeBody }
output Down.UnitReq(SDU)
end; { main body for AbraBody }
when Up.CR modvar
begin { 2 } S : Station;
BuildCR(SDU); XC : TransCode;
output Down.UnitReq(SDU) initialize
end; bégin
when Up.DT { instantiate the modules }
begin { 3 } init S with StationBody;
BuildDT(Seq, UserData, SDU); init XC with TransCodeBody;
output Down.UnitReq(SDU)
end; { make connections }
vhen Up.AK attach USER to S.USER;
begin { 4 } connect S.PEER to XC.Up;
BuildAK(Seq, SDU); attach MEDIUM to XC.Down;
output Down.UnitReq(SDU) end;

end;
when Up.DR
begin { 5 }
BuildDR(SDU) ;
output Down.UnitReq(SDU)
end;
when Up.DC
begin { 6 }
BuildDC(SDUY’;
output- Down.UnitReq(SDU)
end; :

when Down.UnitInd
provided (UnitData.PDU = CR)

begin { 7 }
output Up.CR
end;

when Down.UnitInd

84

provided—(Yritbata PP =€) connect—UB-U—to B-YSER;—

begin { 8 }
output Up.CC
end;

when Down.UnitInd
provided (UnitData.PDU = DT)
begin { 9 } '
output Up.DT(UnitData.SeqNo,
UnitData.UData)
end;

end; { AbraBody }

{ main body for specification
AbracadabraProtocol }
modvar
A, B : Abra;
UA, UB : User;
CcM : Cms;

initialize
provided (N > 0) and (P > 0)
begin { 1 }
init UA with UserBody;
init UB with UserBody;
init A with AbraBody;
init B with AbraBody;
init CM with CmsBody;
connect UA.U to A.USER;

connect A.MEDIUM to CM.CMA;
connect B.MEDIUM to CM.CMB;
end;

end. { Specification AbracadabraProtocol }

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

specification AbracadabraService
[a] (stationa, stationb : Address) : noexit

(* type definitions *)

ISO/IEC TR 10167 : 1991 (E)

specification AbracadabraProtocolEntity [a, m]
(N : Nat, P : Nat, station : Address) : noexit

(* type definitions *)

behaviour behaviour
Connection [a] (stationa, stationb : Address)
I Service [a] (station)
Backpressure [a] {fall
Protocol [a, m] (N, P)
viiere [lm}]
CMService [m]
ptocess Connection [a]
stationa, stationb : Address) : noexit := process Service [al

eddproc

process Backpressure [al : noexit :=
enéééoc

endspec

Figure 10.7: Outline Decomposition of the Abracadabra
Seryice in LOTOS

10.3.5 Subjective Assessment

The|writing of the Abracadabra Protocol description in Es-
was fairly straightforward. The reader will note that the

received and no connection is established; this lead
deficiency report. In addition, it\was noted that the
phrase ‘the disconnection phase is entered’ was unclear,
and|it was necessary to guess the,correct interpretation to
write the formal description; clearly different interpretations
were necessary at differentpoints in the Protocol.

After the first version of the description was complete, it was
analysed using automated tools, and additional deficiencies
werT found. Subséquent discrepancies were noted in the
course of coordinating the three descriptions.

10.4 ~LOTOS description

(station : Address) : noexit :«
enéé;oc
process CMService [m] <\noexit :=
enéé;oc
process Protocol-[a, m]

(N : Nat, P\;“Nat) : noexit :=
enéé;OC

endspec

Figure 10.8: Outline Decomposition of the Abracagdabra
Protocol in LOTOS

The Abracadabra Service is described in 10.4.3. top-
level structure reveals one gate a for communication, with
an address value to distinguish the stations. The behpviour
of the description is described in two interleaved main pro-
cesses: Connection, which controls the handling af con-
nections; and Backpressure, which controls the flow of
data.

The Abracadabra Protocol is described in 10.4.4. The top-
level structure reveals two gates for communication with the
User and with the underlying Medium:

a this is the upper Service gate to the Abracadabra Ser-
vice User

m this is the Communications Medium gate

The structure of events at these gates is the usual onje:

o T

(et

10.4.1 Architecture of the Formal Descriptions

The description is divided into the description of the Ser-
vice and of the Protocol. Both are self-contained and inde-
pendent. The architecture of the descriptions follows that
suggested in the informal description. The decomposition
of the Service description is - given in Figure 10.7, and that
of the Protocol is given in Figure 10.8.

a ! Station ! ASP (...)
m ! User ! MSP (...)

where:

a) Station is the station identification; and

b) ASP constructs a value for the Abracadabra Service
Primitive sort; and

85

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

c) User is the user identification; and

d) MSP constructs a value for the Medium Service Primi-
tive sort.

The behaviour of the description is described in three inter-
leaved main processes: Service and CMService describe
the behaviour at the gates and a and m respectively; and
Protocol describes the behaviour of the Protocol itself. The
behaviour of Protocol is split into the following processes:

The additional use of a construction-oriented style is justi-
fied as follows. Protocols are usually considered as state
machines. The informal description, for instance, states
facts according to the so-called Phase in which the entity
is. This may be regarded as a macro state.

The general style of a construction-oriented description is
to derive one process per phase (roughly) such that the
Protocol Entity starts behaving according to the first phase,
moves to the next one under certain conditions, etc. The

Connect and DataTransfer, which describe their respec-
tive |phases; and Disconnect and TryDisconnect, which
cover the Disconnection Phase. The ‘not connected’ state
is also described in the Connect process.

Althbugh some of the data types are common both to the

10.4.2 Explanation of Approach

The| descriptions use a mixture of ‘constraint-oriented’ and
‘construction-oriented’ styles. Complex systems may be
desgribed as a collection of constraints that filter out only
thoge action denotations may take place at a given gate at
each moment. Requirements may be easily translated into
consgtraints. This approach is thus a requirement-oriented
philpsophy. More formally, a constraint is a behaviour, i.e.
list pf actions imposed on a gate. It is a higher level of
congern than that of the basic sequencing (;) and choice
([1)|operators.

Constraints (i.e. requirements) on a gate may be put to-
gether using synchronised composition: . ;

constraintl [gl ...
1]l ,
constraint2 [g] ...

or by means of interleaving:

constraintl [g] W\
H

constraint2 [glv...

Notice the difference from this ‘parallel or' and the ‘just one

constraintl [g] ..

new phase is a ‘continuation’ of the current one.

10.4.3 Formal Description of the Service

The description itself is parameterised by the addresses of
both stations.

- — _..*)

specification AbracadabraService [a]
(stationa, stationb‘: Address) : noexit

Standard Library: imports some data types from thel Stan-
dard Library.

_____ ,__*)

~ library .
NaturalNumber, Boolean, Set, DecDigit,
OctetString
endlib

Abracadabra Service Addresses: defines the known ad-
dresses that the stations may have.

*)

type AddressType is Boolean
sorts Address

opns
A, B : => Address
eq, _ne_ : Address, Address -> Bool

eqns forall al, a2 : Address
ofsort Bool

A eq A = true;

(]

constraint2 [g] ...

The compact versions of the parallel operator are frequently
used: 11 for ‘and’ composition on every gate of each be-
haviour expression, and |{| for ‘or’ composition with no
synchronisation at all. This style of description is quite
terse. Usually, very few gates are considered, although
synchronisation often involve many behaviours. The multi-
way synchronisation feature of LOTOS is essential to this.

86

A eq B = false;

B eq A = false;

B eq B = true;

al ne a2 = not (al eq a2)
endtype (* AddressType *)

(*

Abracadabra Service Data Units: defines Service User
data in terms of the standard type OctetString.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

type UserDataType is OctetString renamedby
sortnames UserData for OctetString
endtype (* UserDataType *)

(+--

ISO/IEC TR 10167 : 1991 (E)

map (ConConf)

map (DatReq (d))

map (DatInd (d))

map (DisReq)

map (DisInd)
ofsort Bool

LI B I
~N OO

typ

m—— -- -- IsConReq (sp) = map (sp) eq 0 ;

IsConInd (sp) = map (sp) eq 1 ;

Set of Addresses: used by the Backpressure process. IsConResp (sp) = map (sp) eq 2 ;
IsConConf (sp) = map (sp) eq 3 ;

) IsDatReq (sp) = map (sp) eq 4 ;
IsDatInd (sp) = map (sp) eq 5 ;

X . IsDisReq (sp) = map (sp) eq 6);

b SetOfAddressFormalType is Set renamedby IsDisInd (sp) = map (sp) eq/7 ;

end

typ

end

=

brtnames SetofAddress for Set
Lype (* SetOfAddressFormalType *)

e Set0fAddressType is SetOfAddressFormalType
ctualizedby AddressType, Boolean using
sortnames

Address for Element

Bool for FBool
Lype (* SetOfAddressType *)

Abra
SP,

adabra Service Primitives: defined as values of sort
ith some operations to extract information from the

Servige Primitives. There is also a mapping to DecDigit in
order to simplify the definition of the recognition predicates.

Notic

that any injective mapping would suffice.

typ

o

b SPType is Boolean, UserDataType, DecDigit
brts SP

pns

ConReq, ConInd, ConResp, ConConf): -> SP
DatReq, DatInd : UserData > SP

DisReq, - DisInd => SP
IsConReq, IsConlnd, IsConBesp, IsConConf,
IsDatReq, IsDatlnd,

IsDisReq, IsDisInd'; SP -> Bool

IsReq, IsInd : SP -> Bool

data : SP -> UserData

-==_ : SP, SP +> Bool

map : SP {\=> DecDigit

ans forall d : UserData, sp : SP
ofsort UserData

(*

Abracadabra Service Objects:
which ‘arenused to represent the information in

endtype (* SPTypé *)

IsReq (sp) =
IsConReq (sp) or
(IsConResp (sp) or (IsDatReq (sp) dr
IsDisReq (sp)));

IsInd (sp) = not (IsReq (sp));
sp == sp = trué;

defines the Objects
ran-

sit on_a connection between its entry to the [Ser-
vice.as Requests/Responses and its delivery as Indica-
tions/Confirmations. A distinct form of Object is defjned
for each pair of Service Primitive Request and Indication

(or, Response and Confirmation respectively).

type ObjectType is SPType

__-__*)

sorts Object
opns
object : SP -> Object
indication, altindication :
IsCon, IsCak, IsDat, IsDis :
.==_ : Object, Object -> Bool
eqns
forall sp : SP, obj
ofsort Bool
IsCon (object (sp)) =
IsConReq (sp) or IsConInd (sp);
IsCak (object (sp)) =
IsConResp (sp) or IsConConf (sp);

Object -> SH
Object -> Bool

: Object, data : UserData

data (ConReq) = <>; IsDat (object (sp)) =

data (ConInd) = <>; IsDatReq (sp) or IsDatInd (sp);

data—{Conkesp) <> FsDis—(Cobject—Esp))

data (ConConf) = <5 IsDisReq (sp) or IsDisInd (sp);

data (DatReq (d)) = d ; obj == obj = true;

data (DatInd (d)) =4 ; ofsort SP

data (DisReq) = <O; indication (object (ConReq)) = Conlnd;

data (DisInd) = <> indication (object (ConInd)) = ConlInd;
ofsort DecDigit indication (object (ConResp)) = ConConf;

map (ConReq) =0 ; ~indication (object (ConConf)) = ConConf;

map (ConInd) =1 ; indication (object (DatReq (data))) =

map (ConResp) =2 ; DatInd (data);

87

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

indication (object (DatInd (data))) =
DatInd (data);

indication (object (DisReq)) = DisInd;

indication (object (DisInd)) = DislInd;

process CEPs [al

(stationa, stationb : Address) : noexit :=

altindication (object (ConReq)) = CEP [a] (stationa) ||| CEP [a] (stationb)
ConConf;

altindication (object (ConInd)) = where
ConConf;

altindication (object (ConResp)) = (* ———
Conlnd;

altindication (object (ConConf)) = CEP: decomposed into the disjoint constraints én a single
ConInd; Connection Endpoint at a given address (station):

altindication (object (DatReq (data))) =
DatInd (data);
altindication (object (DatInd (data))) =
DatInd (data);
altindication (object (DisReq)) = DisInd;
altindication (object (DisInd)) = DisInd;
endtype (* ObjectType *)

(€ e L L E L LS Lt T

Behaviour: decomposed into the following constraints:

the Connection that the Service Provider can offer; and

application of Service Provider backpressure flow con-
trol.

=2k)

behaviour
Connection [a] (stationa, stationb)

Backpressure [a]

where

Connection: decomposed into the dependent conjunction
of|the following constraints:

0

the two associated Connection Endpoints; and
the correct bi-directional Service Primitive transfer.

o

process-Connection [a]
(stationa, stationb : Address) : noexit :=
CEPs [a] (stationa, stationb)

a) the order in which Service Primitives\occur at the CEP;

and

b) the constraint regarding the address at which the Ser-

vice Primitives occur.

The ordering of Service Primitives is constrained ag follows

for a calling (and called) endpoint:

a) the first event may only be a ConReq (Conind); and
b) the eventfoliowing the initial ConReq (Conind) may be

a ConConf (ConResp); and

c) following occurrence of a ConConf (ConResgp), any

sequence of DatReqs and Datinds may occur; and

d).at any point after the initial ConReq (Conind), a|DisReq

or a Dislnd may occur; and

e) after either a DisReq or DisInd, the whole behaviour

may be repeated.

The constraint on the address at which the Service Primi-

tives occur is simply that:

a) all Service Primitives must occur at the address given

in the parameter.

- -— -----*)

process CEP [a]
(stationx : Address) : noexit :=
PrimitiveOrdering [a]

I
Addressing [a] (stationx)

where

process PrimitiveOrdering [a] : nogxit :

421

a ? station : Address ? spl : SP
)

Association [a] (stationa, stationb)

where

(€ et L itatadetd
CEPs: decomposed into the constraints on the sequence

of Service Primitives and addressing possible at the Con-
nection Endpoints of each station.

[IaCuuRuq(api) oY IsCquud(apa T
(
a 7 station : Address 7 sp2 : SP
[(IsConReq(spl) implies
IsConConf(sp2)) and
(IsConInd(spl) implies
IsConResp(sp2))];
DataTransfer [a)
>

Disconnect [a]

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

)
where

process DataTransfer [a] : noexit :=
a ? station : Address ? sp : SP
{IsDatReq(sp) or IsDatInd(sp)];
DataTransfer [a]
endproc (* DataTransfer *)

ISO/IEC TR 10167 : 1991 (E)

In addition, a further constructor is defined for a medium in
the form of a first object and the following medium. Note
that all media of this form may also be expressed in form b)
above.

Lastly, a Boolean equality function, ==, is defined for the
Medium.

pIoCEsE Disconmect E!j T Noexit ¥

a 7 station : Address 7 sp : SP
[IsDisReq(sp) or IsDisInd(sp)];
PrimitiveOrdering [a]
endproc (* Disconnect *)

endproc (* PrimitiveOrdering *)

process Addressing [a]
(stationx : Address) : noexit :=
a ? station : Address ? sp : SP

[station eq stationx];

Addressing [a] (stationx)

endproc (* Addressing *)

endproc (* CEP %)
endproc (* CEPs *)

G R

Asspciation: represents the correct bi-directional transfer,
of Service Primitives. It is decomposed in two independent
congtraints, relating Requests (and Responses) at one-End-
point to Indications and Confirmations at the other, foneach
diregtion.

Each one of these Associations can be represented as the
onejway transfer of Service Primitives through a Medium.

process Association (a]
(stationa, statiofnb): Address) : noexit :=
Assoc [al (statipna, stationb, empty)

I

Assoc [a] “(stationb, stationa, empty)
where

(k= mpimstmnn

*)
type BasicMediumType is ObjectType, Boolean
sorts Medium
opns
empty ~> Medium
-+--_ : Object, Medium -> Medium
-~-+_ : Medium, Object ‘<> Medium
== : Medium, Medium -> Bool
eqns
forall sm, smi, sm2 : Medium,
obj, obj1, obj2 : Object

ofsort Medium
obj +-~)‘empty = empty --+ obj;
(obj2) +-- (sm --+ obj1)) =
(Cobj2 +-- sm) --+ objl);
ofsort Bool
sm == sm = true;
(obj2+--sm2) == empty = false;
empty == (objl+--sml) = false;
(obj2+-~3m2) == (objl+--sml) =
((obj2 == obj1) and (sm2 == sm}));
endtype (* BasicMediumType *)

(k=== --

Provider Disconnection of the Abracadabra Sgrvice
Medium: contains the information relating to the Sprvice
Provider’s ability to cause a (Provider) DisInd at any time
during the lifetime of a connection.

--..--*)

type DisconnectedMediumType is
BasicMediumType
opns
-MayDisconnect,_ :
Medium, Medium -> Bool
eqns
forall obj, objl : Object,
sm, sml : Medium
ofsort Bool
empty MayDisconnect empty = true

Basic Abracadabra Service Medium: defines a simple
FIFO medium, used to relate the order of output Service
Primitives to input Service Primitives. The basic medium
type allows expression of Medium objects as either:

a) an empty medium (empty); or

b) a medium, asm, to which a further object, aso, has
been added (aso + — — asm).

empty MayDisconnect (obj+--sm) =
false;
(obji+~-smi) MayDisconnect sm =
(((obji+--smi) == sm) or
(IsDis(objl) and
(sm1 MayDisconnect empty)));
endtype (* DisconnectedMediumType *)

89

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Reorderings of the Abracadabra Service Medium: con- endtype (* MediumType *)

tains the information relating to the Service Provider’s ability

to reorder the messages in transit. An object (e.g. a Dis- (>

connect) may advance through the medium, destroying the

objects it overtakes (operation destroy). In some circum- Uni-directional Primitive Transfer: defines the behaviour
stances (e.g. a Disconnect and a Connect), two objects as accepting an object to be transferred or delivering an
may mutually destroy each other (operation cancel). object at the other end, plus the possible reorderings of the
The Boolean function, isReorderingOf, returns true if its Medium itself.

first argument could have been derived from its second in

actia:dama_with_ma_mrdaﬁng.mhsmmm -x)
Senvice, otherwise it returns false.

process Assoc [a] ;
(stationa, stationb : Address,
sm : Medium) : noexit :=
(

transferin [a] (stationa), sm)

type MediumType is DisconnectedMediumType

opns 0
-negates_, _destroys_ : >
Object, Object -> Bool ;ransferout [a] (stationb, sm)
< i :
<<,) _IsReorc.iennng_ 5> .
Medium, Medium -> Bool accept smi "Medium in

eqns (
forall m, ml, m2 : Medium, choted sm2, sm3: Medium [J
obj, objO, objl, objoa, objla : Object [(sm2 Ma;Disconnect sm1) and
ofsort Bool .
obj1 destroys objo = (ims IsReordering0f sm2)] ->
IsDis(obj1) and (not(IsCon(obj0)));

objl negates objo = choice sm4 : Medium,

obj : Object []

IsDis (obj1) and IsCon (objO0); :
empty << empty = true; [8?3 (smé --+ obj)] ->
empty << (objO+~--empty) = false; :
empty << (obj1+-=(objO+--m)) = hosoc o) (stationa,

(obj1 negates obj0) and 0 ’

(empty << m); .)
(obj+--empty) << empty = false; [Iz?ls~(°bj)] >
(obj+--empty) < (obJO+-—empty) A;soc [a] (stationa

(obj == 0bj0); . ’
(obj+--empty) <<) stationb, sm4)

(objl+=-(objO+--m)) =)

((obj == obj1) and)

(empty << (objO#--m))) or
((obj1 negates obj0) and
((obj+--empty) << m)) or
((objt destroys obj0) and " o
((obj+--empty) << (- -
(obj1+--m)));
(objlat+t--(objOa+--m)) << empty =
false;
(objla+--(objoa+--m)) <<
(objO+~--empty) = false;

(objlat=-(objOat+--m1)) << a) A Service Primitive may occur provided that it is 4 Re-
(objls==(objOs==p2)) = quest (or R_e_ap_o_sﬂ_amuh_e_mmmudmg_emict is

((objla == obj1) and sent over the Medium associated with the Connection.

((objoa+--m1) << (objO+--m2))) or
((objl negates objO) and
(((objla+--(objOa+--m1)) <<

where

Acceptance of Requests and Confirmations: definds the
constraint associated with the acceptance of a Requ st or
Response Service Primitive as follows:

----*)

m2))) or ((objl destroys objo0) process transferin [a]
and (station : Address, sm : Medium)
(((objlat+--(objOa+--m1)) << : exit (Medium) :=
(obji+--m2)))); a ! station ? sp : SP [IsReq(sp)];
mi IsReordering0f m2 = ml << m2; exit ((object(sp)) +-- sm)

90

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

endproc (* transferin *)

(b= - -

Delivery of Indications and Confirmations: defined as
the constraint on the delivery of Service Primitives to the
receiving User:

a) Whatever object, if any, is foremost in the Medium may

ISO/IEC TR 10167 : 1991 (E)

10.4.4 Formal Description of the Protocol

There are two parameters to the description: the re-
transmission limit, and the period for timeouts. The unit
for timeouts is not defined since LOTOS cannot describe
absolute time. These two parameters are of sort Nat from
the standard library. A further parameter is used to identify
the Protocol Entity as an Abracadabra station.

Medium (Endpoint) identification is not directly described,
but is dynamically decided on the first event at the m gate.

] plupﬁ
e Indication (or Confirmation). The foremost object is
moved from the Medium as it is delivered.

e r e —————————————————— *)

process transferout [al
(station : Address, snm :
: exit (Medium) :=
choice undelivered : Medium,
deliver : Dbject []
[sm = (undelivered --+ deliver)] ->
a ! station 7 sp : SP
[(sp == indication(deliver)) or
(sp ==
altindication(deliver))];
exit (undelivered)
endproc (* transferout *)

Medium)

endproc (* Assoc *)
pndproc (* Association *)

enfiproc (* Connection *)

(€ Rt L e LT LT

Backpressure: defined as the constraint which is associ-
ated with provider backpressure flow control:

a) a DatReq primitive may be refused at either Connection
Hndpoint at any time.

The Bervice User has ho control over whether DatReq Ser-
vice Primitives arevéfused.

prpcess Backpressure [a] : noexit :=

- -----*)

specification AbracadabraProtocolEntity [a, ﬂ]
(N : Nat, P : Nat, station : Address) : noexit

(* -

Standard Library: imports,some data types from the [Stan-
dard Library. Boolean s needed everywhere, Natural-
Number is for the specification parameters, DecDIgit is
used to simplify the description of objects by mapping|them
onto digits, and OctetString is used for Service User|data.

- - = o o] _-.*)

library
Boolean, NaturalNumber, DecDigit, OctetString
endlib

Abracadabra Service Addresses: defines the known ad-
dresses that the stations may have.

_______ --*)

type AddressType is Boolean
sorts Address

opns
A, B : => Address
.eq_, .ne_ : Address, Address -> Bool

eqns forall al, a2 : Address
ofsort Bool

A eq A = true;

A eq B = false;

B eq A = false;

B eq B = true;

al ne a2 = not (al eq a2)
endtype (* AddressType %)

choice RefuseDatReq : SetofAddress []
i;
a 7 station : Address ? sp : SP
[(IsDatReq(sp) implies
(station NotIn RefuseDatReq))];
Backpressure [a]

endproc (* Backpressure *)

endspec (* AbracadabraService *)

R

Behaviour: considers the constraints introduced by the
Abracadabra Service, plus those of the Communications
Medium Service and the internal ordering imposed by the
Abracadabra Protocol.

91

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

map (DatInd (d)) = 5 ;

behaviour map (DisReq) =6 ;
Service [a] (station) map (DisInd) =7 ;
H{all ofsort Bool
Protocol [a, m] (N, P) IsConReq (sp) = map (sp) eq O ;
| [m] | IsConInd (sp) = map (sp) eq 1 ;
CMService [m] IsConResp (sp) = map (sp) eq 2 ;
IsConConf (sp) = map (sp) eq 3 ;
vhere IsDatReq (sp) = map (sp) eq 4 ;
IsDatInd (sp) = map (sp) eq 5 ;
(* == TSDIsReq (3p) * Wap (8p) &4 6 T
IsDisInd (sp) = map (sp) eq 7 ;
sp == sp = true;

da

Aiacadabra Service Data Units: defines Service User

in terms of the standard type OctetString.

1
q

(-

SP

No

ype UserDataType is OctetString renamedby
sortnames UserData for OctetString
ndtype (* UserDataType *)

1

endtype (* SPType *)

(--

Abracadabra Protocol Data Units: defined rather fike the

Service Data Units.

type PDUType is-UserDataType, Boolean, De
. . sorts PDU
Abracadabra Service Primitives: definedas values of sort opns ¢
with some operations to extract information from the CR, CC -> PDU
Sefvice Primitives. There is also a mapping to DecDigit in bT : UserData, Bool -> PDU
orger to simplify the definition of the recognition predicates. 2K Bool -> PDU
ice that any injective mapping would suffice. DR, DC -> PDU
. data : PDU ~> UserData
- *) bool : PDU ~> Bool
IsCR, IsCC, IsDT, IsAK, IsDR, IsDC :
ype SPType is Boolean, UserDataType, DecDigit PDU -> Bool - i
sorts SP map : PDU -> DecDigit
opns eqns forall d : UserData, b : Bool, pdu|:
ConReq, ConInd, ConResp, ConConf :'=> SP ofsort UserData
DatReq, DatInd : UserData -> SP data (CR) = <>
DisReq, DisInd -> SP data (CC) = <>;
IsConReq, IsConInd, IsConResp, IsConConf, data (DT (4, b)) =4 ;
IsDatReq, IsDatInd, . data (AK (b)) = <>;
IsDisReq, IsDisInd : SP\-> Bool data (DR) = <>
IsReq, IsInd ;" SP -> Bool data (DC) = <>;
data : SP -> UserData ofsort Bool
== : SP, SP -»_ Bool bool (CR) = false;
map : SP -> DecDigit bool (CC) = false;
eqns forall d :)UserData, sp : SP bool (DT (d, b)) =b ;
ofsort UserData - bool (AK (b)) =b ;
data-(ConReq) = <>; bool (DR) = false;
data\{ConlInd) = <> bool (DC) = false;
data (ConResp) = <5 ofsort DecDigit
data (ConConf) = <>; map (CR) =0 ;
data (DatReq (d)) = d ; map (CC) =1 ;
data (DatInd (d)) = d ; map (DT (d, b)) = 2 ;
data (DisReq) = <>; map (AK (b)) =3 ;
data (DisInd) = <>; map (DR) =4 ;
ofsort DecDigit map (DC) 5 ;
map - (ConReq) =0 ; ofsort Bool
map (ConInd) =1 ; IsCR (pdu) = map (pdu) eq O ;
map (ConResp) =2 ; IsCC (pdu) = map (pdu) eq 1 ;
map (ConConf) =3; IsDT (pdu) = map (pdu) eq 2 ;
map (DatReq (d)) = 4 ; IsAK (pdu) = map (pdu) eq 3 ;

92

PDU

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

IsDR (pdu) = map (pdu) eq 4 ;
IsDC (pdu) = map (pdu) eq 5 ;
endtype (* PDUType *)

Communications Medium Service Primitives: defined
explicitly without use of any mapping to DecDigit, since this
type is simpler than that for Abracadabra Service Primitives.

ISO/IEC TR 10167 : 1991 (E)

where

process StickTo [m]
(user : Address) : noexit :=
m ! user ? cmsp: CMSP;
StickTo [m] (user)

endproc (* StickTo *)

endproc (* CMService *)

4

ype CMSPType is PDUType, Boolean
sorts CMSP
opns
UnitReq, UnitInd :
pdu : CMSP -> PDU
IsUnitReq, IsUnitInd :
eqns forall d : PDU, cmsp :
ofsort PDU
pdu (UnitReq (d)) =4 ;
pdu (UnitInd (d)) =4 ;
ofsort Bool
IsUnitReq (UnitReq (d)) = true ;
IsUnitReq (UnitInd (d)) = false ;
IsUnitInd (UnitReq (d)) = false ;
IsUnitInd (UnitInd (d)) = true ;
ehdtype (* CMSPType *)

PDU -> CMSP

CMSP -> Bool
CMSP

O e

Abracadabra Service Constraints: decomposed into con-
strajnts on the station addressing, as well as on the ordering
of Service Primitives. Unlike the Service description, only
the jaddressing constraint is considered. The.ordering of
Seryice Primitives is to be deduced from the Protocol. The
conptraint on the addressing is to accept only transactions
for this station. In the remainder of the description, it is then
posgible to forget about which station-is'involved.

process Service [a]

(station : Address) : noexit :=
a ! station(?.sp: SP ;

Service [a]»(station)

endproc (¥ Service *)

e -

Abracadabra Protocol Constraints: defines the Protocol
behaviour in a more constructive manner, i.e. instead of
a composition of constraints, there iS\a traversal of states.
The natural language description clearly distinguishes four
phases. The entity starts in the'Connect Phase and moves
to other phases according to interactions with the environ-
ment.

process Protocol [a, m]
(N, P/: Nat) : noexit :=
Cornnect [a, m] (N, P)

where

Connection: may be started by either station. Nofmally,
the Protocol Entity proceeds to data transfer, wherg it re-
mains for ever, unless a disconnection is requested or an
error rises. As processes give control to each other,|a rea-
son is given to explain the cause of the disconnectiop.

-— ——— *)

process Conmnect [a, m]
(N, P : Nat) : noexit :=
(* this station starts %)
a 7 8 : Address ! ConReq;
(
TryConnect [a, m] (0 of Nat, N, P)
>
(
m ? u : Address ! UnitInd (DR);
a ? 8 : Address ! DisInd;

Connect [a, m] (N, P)
0

Connections Medium Service Constraints: obtains a
User (Connection Endpoint) identifier on the first event, and
then sticks to it for all subsequent events.

: noexit :=
CMSP;

process CMService [m]
m ? user : Address ? cmsp :
StickTo [m] (user)

a ? s : Address ! DisReq;
GiveUp [a, m] (N, P, UserDisc)
)
)
0

(* the other station starts *)

m ? u : Address ! UnitInd (CR);
a 7 s : Address ! ConInd;
(

93

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

a ? 8 : Address ! ConResp;
m ? u : Address ! UnitReq (CC);
DataTransfer [a, m] (N, P)

>
Disconnect [a, m]

>>
accept r: reason in

GiveUp [a, m] (N, P, x)
)
1

[IsUnitInd (cmsp) and

(IsCC (pdu (cmsp)) or

IsCR (pdu (cmsp)))];
a ? 8 : Address ! ConConf;
DataTransfer [a, m] (N, P)
.)

. [)
Disconnect [a, m]
>>

accept r : reason in

(* any other incoming message is ignored *)
m ? u : Address 7 cmsp : CMSP
[IsUnitInd (cmsp) and (IsCC (pdu (cmsp))
or IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)) or
IsDC (pdu (cmsp)))];
Connect [a, m] (N, P)
(]
(* however, DRs are replayed *)
m ? u : Address ! UnitInd (DR) ;
m ? u : Address ! UnitReq (DC) ;
Connect [a, m] (N, P)

vwhere

(*

reasons for Connection Release that are passed between

Reagons to release a Connection: defines the several
the{)rocesses of each phase.

type ReasonType is
sorts reason

opns
UserDisc, (* from Abracadabra user *)
CMDisc, (* from Comms. Medium *)

error : -> reason
(* unexpected(incoming message *)
endtype (* ReasonType(x*)

(*

this ptation starts.up. The number of connection attempts

Try }: Connect: attempts a connection up to N times, when
so far is held in"This. The timeout period is P.

*)

GiveUp [a, m] (N, P, 1)
0
(* timeout *)
()
‘Wait (P)
>>
TryConnect [a, m]
(Succ (This)¢ N, P)
)
)
{1
[This ge N])->
GiveUp~[a, m] (N, P, error)

where

process StandBy [m] : noexit :=
m ? u: Address ? cmsp: CMSP
[IsUnitInd (cmsp) and
(IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)) or
IsDC (pdu (cmsp)))];
StandBy [m]
endproc (* StandBy *)

endproc (* TryConnect *)

(*
Data Transfer: decomposed into three constraints:

a) the transmission of data (downward flow); and
b) the reception of data (upward flow); and
c¢) the acceptance of CR only before any DT or AK.

which are composed in the obvious way:

CRFlow [m] .
| [m] 1
(

DownwardFlow [a, m]

—process—TryComect =,]
(This, N, P : Nat) : noexit :=
[This 1t N] ->
m ? u : Address ! UnitReq (CR);
(
(* loop *)
StandBy [m]
>
(
m ? u: Address ? cmsp : CMSP

94

I
UpwardFlow [a, m] .
)

where the first is an ‘and’ composition and the second a
‘parallel or’ one. This normal transfer may be disrupted by
unexpected incoming messages, leading to the next phase.

Each of the Protocol Data Units that may arrive in Unitinds
is ‘captured’ by a separate part of the description:

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

(This i$ a schematic description, not syntactically correct
LOTOS.) Each process B, would exit with its proper code,

CR CRFlow and UpwardFlow)
CC unexpected incoming messages | [)] |
m
DT UpwardFlow and CRFlow (
AK DownwardFlow and CRFlow (
DR Disconnect DownwardFlow [a, m] (N, P, false)
>
DC unexpected incoming messages. (
UnitRegs are controlied by DownwardFlow, UpwardFiow Ch?m:: d: w;m P
d c \ ownj -
an ’ exit (w, any reason)
It is nepessary to have three processes running in parallel)
to model the composition of the constraints. Any of these)
procesges may find an error and, consequently, may want 1l
to exit] But LOTOS requires that every process in a par- (
allel cgmposition must synchronise on the exit. It would UpwardFlow [a, m] (false)
be helgful if LOTOS had an abrupt termination of parallel [>
composition, i.e. a non-synchronised exit: if any of the pro- (
cesses| exited, the others would be disabled. But for the choice w : ‘who []
ime bding, there is no such a facility in LOTOS. [w <>, ap) >
The following outline style of description has therefore been exit (v, any reason)
used tq emulate the desired behaviour: ,)
()
)
B 5>
R . accept w : who, r : reason in
chbice i : Nat [1 [i ne 1] -> exit (i) oxit (r)
) >
IL... 0 m ? u: Address ? cmsp: CMSP
([IsUnitInd (cmsp) and
[>B2 (IsCC (pdu (cmsp)) or
C (pd H
) chpice i : Nat [] [i ne 2] -> exit (i) exit izzroig u (cnsp)))]
l[&"ll where
B3, N = _
> (*
chbice i : Nat [] [i ne 3] ->‘exit (i)
) Who: distinguishes who exits from the Data Trangfer
‘I[...]I Phase.
...... *)

type WhoType is Boolean, DecDigit

i.e. 1for B1, 2 for B2,%etc. Using this approach, the whole sorts who
Data Transfer phase‘may be modelled as follows. opns
‘ up, down, crflow : -> who
-=- e e e *) map : who =-> DecDigit
_ <O : who, who =-> Bool
wtﬂrawh] oqns foralti—wit;—w2—+who
(N, P : Nat) : exit (reason) := ofsort DecDigit
(map (up) =0 ;
(map (down) =1 ;
CRFlow [m] (true) map (crflow) = 2 ;
> : ofsort Bool
(wl <> w2 = map (wi) ne map (w2) ;
choice w : who [] endtype (* WhoType *)

[w <> crflow] ->
exit (w, any reason)

95

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

DownwardFlow [a, m]

Constraint on Flow of CR PDUs: following the informal
(N, P, not (seq))

description, defines that CRs are accepted before the first
DT or AK. CRFlow monitors gate m to fulfill this constraint.]
Any UnitReq is ignored.

m ? u : Address !
UnitInd (AK (seq));
exit (down, error)

_____ *)
[
process CRFlow [m] (* timeout *)
(initial : Bool) : exit (who, reason) := (.
m 7 U : Address 7 cmsp & CMSP Hait (P)
[IsUnitReq (cmsp)]; >>
CRFlow [m] (initial) TryData [a, n]
8| (Succ (This), N, P,"d, Seq)
m 7 u : Address ! UnitInd (CR);) :
()
[initial] -> o -
m 7 u : Address ! UnitReq (CC); [This ge N] ->

exit (downerror)

CRFlow [m] (initial)
endproc (* TryData *)

0
[not (initial)] ->
exit (crflow, error)

endproc (% DownwardFlow *)

)
(
m ? u : Address ? cmsp :
[IsUnitInd (cmsp) and
(1sDT (pdu (cmsp)) or
IsAK (pdu (cmsp)))];
CRFlow [m] (false)
endproc (* CRFlow *)

(- ‘ 4------
CMSP

from the.Communications Medium. As an added agtivity, it
musfaccept any CR received and treated by CRRlow, as
wall as any CC generated as an answer. Events with these
are offered to avoid blocking, but nothing is done with them.

Constraint ‘'on Upward Flow: takes care of inconggg data
1

0 S — 4-=--
Cpnstraint on Dou,nwprd FIO\y:‘ takes care.of sending pi:‘::sf gﬁ::;dflzziiazwﬂ’ reason) |:=
data to the Communications Medium. It mostly fitsthe usual
ti eoug pat.tern, bu} t!'lere is no Standby process as else- m 7 u : Address 7 cmsp : CMSP
where in this description to absorb unwanted Protocol Data [IsUnitInd (cmsp) and
Uhits. (IsDT (pdu (cmsp)))];
(
------ *) (* begin *)
let dr : UserData =
process DownwardFlow [a, m] data (pdu (cmsp)), seqr : Bool =
(N, P : Nats seq : Bool) bool (pdu (cmsp)) in
: exit (who; reason) := m ? u : Address !
a ? s/ \Address 7 sp : SP UnitReq (AK (not (seqr)));
[IsDatReq (sp)l; I ¢
Trybata [a, m] : [seqr eq seq] ->
a 7 s : Address ! DatInd|(dr);

(0 of Nat, K, P, data (sp), seq)
UpwardFlow [a, m] (not (Beq))

where :]
[seqr ne seq] ->

13 1139 |l
Upwardrlow—La; nﬂ—éseq%—

process TryData [a, m]

(This, N, P : Nat, d : UserData,)
seq : Bool) : exit (who, reason) := 0
m ? u : Address 7 cmsp : CMSP

[This 1t N] -> {IsUnitInd (cmsp) and

m ? u : Address ! (IsDT (pdu (cmsp)))];

UnitReq (DT (d, seq)); exit (up, error)

(, (* end *)

m ? u : Address !)
UnitInd (AK (not (seq))); 0

96

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

(* absorb CRs *)
m 7 u : Address ! UnitInd (CR);
UpwardFlow [a, m] (seq)

0
(* absorb CCs *)
m ? u : Address ! UnitReq (CC) ;
UpwardFlow [a, m] (seq)

endproc (* UpwardFlow *)

endproc (* DataTransfer *)

ISO/IEC TR 10167 : 1991 (E)

(This, N, P : Nat) : noexit :=
[This 1t N] ->
m 7 u : Address ! UnitReq (DR) ;
(
StandBy [m]
>
m ? u : Address ? cmsp : CMSP
[IsUnitInd (cmsp) and
(IsDR (pdu (cmsp)) or
IsDC (pdu (cmsp)))];

(*
Disconnection Phase: releases an established Connec-
tionl on a Disconnection Request or due to an error. The
Disgonnection Requests are captured by Disconnect.
*)
process Disconnect {a, m]
: exit (reason) :=
a ?7 8 : Address ! DisReq;
exit (UserDisc)
]
m ? u: Address ! UnitInd (DR);
exit (CMDisc)
endproc (* Disconnect *)
€ ——
GiveUp: performs the actual release.
- *)

process GiveUp [a, m]
(N, P : Nat, r : reason) : noexit :=
[r = UserDisc] ->
TryDisconnect [a, m] (0 ‘of Nat, N, P)
(]
[r = CMDisc] ->
m ? u : Address ! UnitInd (DC);
a 7 s : Address)' DisInd;
Connect [a, 'm]) (N, P)
0
[r = error] ->
a ?7 8 ¢ Address ! DisInd;
TryDisconnect [a, m] (0 of Nat, N, P)

where

(* ------------------------------

Conm 3 3
0]
(* timeout *)
(
Wait (P)
>>
TryDisconnect) [a), m]
(Succ (This), N, P)
)
)
0
[This ge'N)'->
Connect [a, m] (N, P)

where

process StandBy [m] : noexit :=
m ? u : Address 7 cmsp : CMSP
[IsUnitInd (cmsp) and
(IsCR (pdu (cmsp)) or
IsCC (pdu (cmsp)) or
IsDT (pdu (cmsp)) or
IsAK (pdu (cmsp)))];
StandBy [m]
endproc (* StandBy *)

endproc (* TryDisconnect *)

endproc (* GiveUp *)

Wait: this models a timeout for period P. Because LOTOS
abstracts away from time, the actual delay cannot bq spec-
ified. The effect is only of an internal event.

TryDisconnect: this uses the familiar timeout pattern.
Standby ignores unwanted Protocol Data Units during dis-
connection.

process TryDisconnect [a, m)

process Wait (P : Nat) : exat :=
exit
endproc (* Wait *)
endproc (* Connect *)

endproc (* Protocol *)

endspec (* AbracadabraProtocolEntity *)

97

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.4.5 Subjective Assessment

The LOTOS descriptions show a clear separation between
those aspects modelled using Abstract Data Types and
those aspects modelled using behaviour expressions. The
data types given in the formal dascriptions match those
given in the informal description.

The constraint-oriented style in LOTOS has been amply
demonstrated in earlier examples. - However, there are
many other styles open to the specifier, for example: ‘data-
orignted’, in which the emphasis is on the description of data
types and their operations; ‘process-oriented’, in which the
emphasis is on the description of the dynamic behaviour;
‘regource-oriented’, in which the emphasis is on the descrip-
tior) of resources in the system (Service Access Points, Pro-
tocpl Entities, etc.); and ‘verification-oriented’, in which the
emphasis is on structuring the description to ease formal
verffication.

A gonstraint-oriented style has been used for the Abra-
cadabra Service description, and in part for the Abra-
cadabra Protocol description. However, the Abracadabra
Prdtocol description also uses a ‘construction-oriented’ style
which emphasizes the construction of the system in terms
of a number of states. Estelle, LOTOS, and SDL are all
exgmples of Labelled Transition Systems. Estelle and
SDL tend to emphasize the states of the systems, whereas
LOFOS tends to emphasize the transitions between states
of the system. In fact, state is generally implicit in a LOTOS
degcription, being embodied in the currently permitted be-
haviour (loosely, the processes which are active). The LO-
TOB process operators are the means whereby sequences
of potential events can be given a compact representation.
This can lead to concise descriptions if the basic problenyis
notftoo state-oriented. Service definitions are often given in
a black-box, requirements-orientedfashion, so-a constraint-
orignted style is appropriate. Protocol definitions.are often
given in a state-oriented and rule-orientedfashion, so a mix-
turg of styles is appropriate. The construction-oriented style
lengs itself well to describing the division into phases of the
overall Protocol behaviour, where the-phases may be com-
pared to states. The constraint-oriented style works well
for describing the possible sequences of actions that may
ocdur within a phase. These.constraints are then combined
using the LOTOS process operators.

LOTOS abstracts away,from absolute time; this is the mean-
ing|of the term Temporal Ordering in the title of LOTOS.
It ig therefore not'possible to express absolute timeouts in
LOTOS. It is.certainly possible to specify a timer process
which accepts set or cancel events and which responds
timeout events. However, since such a timer process
wolldbe hidden from external view, the events it engages

between ticks could not be specified, nor indeed that the
ticks occurred at regular intervals.

A large majority of errors in Protocol design. are logic er-.
rors, not timing errors. Therefors, the inability of LOTOS to
describe absolute time is not a serious-issue. Work, how-
ever, is already in hand on timed models of LOTOS which
will allow the description of delays or time limits in a more
meaningful fashion.

10.5.1 Architecture of the Formal Descriptjons

10.5.1.1 Architecture of the Service'Descriptipn

The Abracadabra Service is described.in 10.5.3. It|is mo-
delled as a system AbraService, consisting of ong| single
block Serv. This communicates with the environnjent by
means channels SAP A and‘SAP B, which represept Ser-
vice Access Points. Service Users are located in the en-
vironment. Service Primitives are represented by means
of signals. According\to the informal description, oply the
DatReq and Datind /carry parameters, namely a|User-
DataType parameter. The Service Provider may Behave
non-deterministically by refusing connection attempts and
disrupting/established connections on its own initiat|ve, for
some ‘internal reason’. In order to model this, thel chan-
nels AServOnOff and BServOnOff from the envirgnment
to-block Serv are meant to convey, asynchronousgly and
unpredictably, two possible signals ServiceOn anfd Ser-
viceOff. These cause the Service to become avail@ble or
unavailable respectively.

Block Serv includes two processes which are always active
from system-startup. These mirror-image processps are
SAPManagerA and SAPManagerB; they model the be-
haviour of the Service at the two user sides. Channels to or
from the environment are mapped onto corresponding sig-
nalroutes within the block. Peer processes SAPManagerA
and SAPManagerB communicate via the signalroutg inter-
nal. The implicit underlying queue mechanism modgls the
delay it takes for a Service Primitive issued at ong SAP
to be converted into the corresponding Service Primitive
at the remote SAP. Signalroute Internal may transfpr four
possible objects in both directions: Connection Rpquest
or Indication, Connection Response or Confirmation| Data,
and Disconnection. The distinction between ‘from-user’ and
‘to-user’ Service interactions is obviously meaningless at
the level of communication between the peer processes.
Since SAPManagerA and SAPManagerB behave [identi-
cally, they are described by means of an SDL macrq SAP-
ManagerDef.

in would be hidden, thus turning into internal events. Rather
than make the description too constructive by introducing
and hiding such a timer process, timeouts are therefore
generally described directly as internal events.

it is possible to ‘simulate’ the passage of time in LOTOS as
a number of time-ticks. A clock process could be defined
which distributed ticks to other parts of the system. This
would give a measure of relative time. But the interval

98

10.5.1.2 Architecture of the Prbtocol Description

The Abracadabra Protocol is described in 10.5:4. It is mo-
delled as a system Abracadabra, consisting of only one
block Station, which represents a Protocol Entity. Accord-
ingly, the boundary of the system is represented by the user
Service Access Point (channel USAP) and by the Service
Accass Point to the Medium (channel MSAP).

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

Block Station is refined into two processes: Sender-
Receiver and Transcode. SenderReceiver describes the
Protocol Entity as an extended finite state machine which
relates input Service Primitives and/or Protocol Data Units
to output Service Primitives and/or Protocol Data Units.
Transcode describes the lowest level of functionality of the
Protocol, i.e. PDU encoding and decoding. The PduType
and UserDataType components of a Protocol Data Unit are
encoded into the parameters of a UnitReq, or are decoded
from the parameters of a Unitind.

ISO/IEC TR 10167 : 1991 (E)

10.5.2.2 Explanation of Protocol Approach

The approach taken consists of formally describing the Pro-
tocol by expressing the behaviour of just one party. This is
sufficient due to the symmetry of the Abracadabra Protocol.
it would not be the case for unsymmetrical protocols, where
it would be necessary to describe the individual behaviour
of the two parties.

Interactions with the Medium use only the signals UnitReq
and Unitind, meaning Protocol Data Unit transmission and

Process SenderReceiver has five states:

Closed the Protocol Entity is ready to accept a Connec-
tion Request

CRsent the Protocol Entity is waiting for a Connection
Confirmation from the peer Protocol Entity

CRregv the Protocol Entity is waiting for a Connection
. Response from its User

Se]d data transfer is permitted

Wait data transfer is delayed until previous data is ac-

knowledged; in the meantime, data transter re-
quests from the User are buffered.

A timer is needed in order to count down the maximum de-
lay for/Connection Confirmation and for Data acknowledge-
ment. | The SDL built-in constructs for timer management
are usid with an instance called Timer1.

Procegs Transcode consists of just one state, Transwait.
In fact, encoding or decoding is always enabled and the
mappipg function does not require any memory of past con*
ditions.

10.5.2 Explanation of Approach

10.5.2.1 Explanation of Service Approach
A Seryice description must always coveritwo key aspects:

’ « logal behaviour of the Service, li.e. the correct sequenc-

ing of Service Primitives at(one Service Access Point

+ end-to-end behaviour-of.the Service, i.e. the correct
relationship betweenrService Primitives at different Ser-
vige Access Points.

The DL description expresses both aspects. Local be-
haviour is expressed independently by processes SAP-
ManagerA.and SAPManagerB. End-to-end behaviour is
expregseéd by the mapping that each process performs be-

Teception respactively—The Mediumr istmpticitly assumed
to be ready for transmission or reception at all times.

. Isolating low-levelfeatures of the Protocol such asencogling

and decoding greatly improves readability of the formal de-
scription. The partitioning of block Station-into procegses
SenderReceiver and Transcode serves this purpose, with-
out necessarily imposing this structure.on an actual imple-
mentation.

10.5.3 Formal Description of the Service

The formal descriptionofthe Service is shown in figure 10.9.

10.5.4 Formal Description of the Protocol

The formal description of the Protocol is shown in|fig-
ure 10.105

10,5.5 Subjective Assessment

The SDL description of the Abracadabra example shpws
how SDL can satisfactorily express both Services and Pro-
tocols. Nevertheless, it is interesting to note how the| ap-
proaches taken in describing a Service and a Protocol nay
differ substantially. As far as the Service description is gon-
cerned, an end-to-end view was considered approprjate,
whereas with the Protocol description a local view was ¢ho-
sen. Adopting a local description for the Service would have
resulted in incomplete specification: the distributed nature
of the Service Provider, with its property of delaying infor-
mation exchange between Service Users, would have Qeen
left out. As a consequence, some legal sequences of Ser-
vice Primitives would not have been modelled. Conversely,
an end-to-end description for the Protocol, describing both
Protocol Entities, would have caused duplication in the de-

tween Service Primitives and objects on the inter-process
signalroute. This communication structure implicitly models
the intrinsic delay between related Service Primitive inter-
actions at different Service Access Points.

Signals ServiceOn and ServiceOff may be independently
received by either of the two processes. This explains why
two distinct but equivalent channels have been chosen at
the system level in order to model non-determinism in the
Service. '

mapplng between channels and physncal pathways for in-
formation is no longer valid. However, the approach chosen
for the description of the Protocol turned out to be quite nat-
ural: all the SDL features which have been used are easily
justified and intuitively comprehensible.

99

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SYSTEM AbraService

* The Abracadabra service is specified as a block communicating with A
two users by means of two channels, SAP A and SAP B, representing
service access points. Users themselves are located in the environment
and non-deterministic behaviour of the service is modeled by means of
two signals ServiceOn ServiceOff issued from the environment either
via channel AServOnOff or via channel BServOnOff */

SIGNAL ConReq, Conind, ConResp, ConCont, B
Disreq, Disind,
DatReq (UserDataType), Datind (UserDataType),
ServiceOn,ServiceOff;

SIGNALLIST InSP = ConReq, ConResp, DisReq, DatReq;

SIGNALLIST OutSP = Conind, ConConf, Disind, Datind;

NEWTYPE UserDataType ARRAY (NATURAL, bit);

ENDNEWTYPE UserDataType;

NEWTYPE bit

LITERALS 0,1;
ENDNEWTYPE bit;

SAP A SAP B
— N Serv . >
[(OutSP)] . [(iINSP)] [(InSP)] [(OutSP)]

[ServiceOn,

l[ServiceOn,
ServiceOff]

ServiceOff]

>

AServOnOff BServOnOff

Figure 10.9: SDL Specification of Abracadabra Service

100

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

1991 (E)

ISO/IEC TR 10167

BOuUOAIDSH HOUOMOSY
jJouoneSHY HOUQAIBSYY
[Ho®oiAIeg [Ho®oIMl8g
{punieq ‘upeoinieg] ‘upeoineg] {guneq
‘puisiq reqi'siai v ‘puisiq
‘Juoguo) ‘juopdssyuo)) 4ugnuon
‘pujuog] gdesy ‘pujbsguog)] BB} ydesy ‘Pyiuoo]
g dvs & giobeuepNdvS viebeuepdvS >

[beyieq eai'sial [beyieq

‘beysiq ‘jucpdseyuo)] ‘beysiq

‘gsayjuon ‘pujbsyuo)y] ‘dsayuo)

‘beyuo)] ‘beyuo)]

‘Juopdsayupo

(edAperRpIOsn)ieq) .m*m
‘pujbeyglion] IVNDIS

UoIBULCY ‘UoiedIpuj/isanbay UOIDeULOY (SISIGo BuiMOlj0) By}l S8JEPOWIIOSOE YOIUM
ananb e sjopow ajnol jeubls sy ‘WIod-pus Jay10 a1 e sAlLId 81AI8S JuapuodselI00
£ OJUl POLISAUOD 8q O} JUIod-pua SUO Je panss| aAfiulld 8d1AI8S € 10 Saxe] Il aLul ejul
ey} S|opowW yojyM ‘feulsiul enol [eubis [euoioalIpiq € BiA Sleojunwwiod sessedoid esey)

A_ sinoiAeyaq [eoo| oyl Buiquasap Ajoelisqe sesse00id JOLIW OMI O SISISUOD %00(q SIYL .,/

/. Udiibauucosi(‘ele(‘uonewijuoD/esuodsey

*s1osn ay1.0} psebas Yim aoIAIBS By} JO

MRS YO

)19

V dVS

Figure 10.9 (continued)

101

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

alp|

{d sa

| { rpusa

q

/

AN

/

N\

V HO®dIABS

JOAIBS NOLLINIIZAOHOVIA

joqiabeuepndvs

/. Juod-pus auo Je 80IAIeS JY) JO ._:o__>w;mn
8y} saquosep Ajjoelisqe sseooid siy| L/

giebeuepdvs SSHO0OH

jaqiebeuendys

/. u10d-pus auo Je 9JIAI9S 8Y} JO JNoIABYSq
8y} saquosap Apoesjsqe sssooud sty |

visbeuepdys SSEO0H

Figure 10.9 (continued)

102

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

pajen Bujied
-
alp| pujuod pujbayuo?|
a AN
HO9dIMBS Vv:_cwmcoo_ bayuo)n

(6 e

pajoauu0siqg

joqiebeuepdvS NOILINIFIAOHIVA

siai

+

pusig paioauuoosIq

)

pujbayuo|

bayuo) UQOINISS

A\ A

9Ip]

AN

odA | eleQUOBN BlEQIOSN 1DA

7.yelqissod si ajsuel) eleq] :palosuuo)

paysljqeise Buleq si jesn sjowWa) 8y} AQ PeeIlul UOIOAULIOD i (pajieD
poysiiqeise Buieq st 1esn [e00] Ui g paleniul uoilosupioo v :Buyed
aAljoe Jo sse1b0id Ul UOIIOBUUOD OU {BjGB|IEAR 80IAJBS :POI0BUUCTSI

ajqelreAR JoU 821AI9S (Ip}
saje]s-8Al, JO sisisupo ssaooid 8y ./

Q1

JoquebeueNdYS Z—O_._._Z_n_m_OOmO<2

Figure 10.9 (continued)

103

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

MACRODEFINITION SAPManagerDef 3 (5)

Calling

!

IConRespConf) -
IConReqlnd IDis DisReq ServOff
ConConf DisInd IDis
Connected Disconnected Disconnected
~ Figure 10.9 (continued)

104

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

pajosuuo)
I
pajosuuodsIq pajoauuoosiq JuoQuopd poa1osuuo))
! 1 1
sIql pujsig juondsayuo)y Juondsayug)|
BOMBSS baysiq sIal beyuon dseyuog)
pejie)d

(S)y anmmcm_\,_n_«.m_ NOILINIZIA0HIVIN

Figure 10.9 (continued)

105

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ps8128uL09sIg

p8losuuoosIq

a

1

a

a

sl I N
JOMBS beysiq sl aﬁm%ma awwmmm_a
pajoauuo)
(9) g joquebeuBNdYS NOILINIZZAOH]YIN

Figure 10.9 (continued)

106

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

SYSTEM Abracadabra :
: #[(FromU)]
Usap
NEWTYPE UserDataType String(Bi," ¥ [\
ENDNEWTYPE; SIGNAL ConReg, Conlnd, & [(Tou)] -
NEWTYPE Bit ConConf, ConResp,
| LITERALS 0,3; DatReq(UserDataType),
OPERATORS Datind(UserDataType),
"NOT™ Bit -> Bit; Disind,
[AXIOMS UnitReq(UnitDataType),
NOT(0) == 1; Unitind{UnitDataType); Station
| NOT(1)==¢;] SIGNALLIST ToU =
ENDNEWTYPE Bit; Conind, ConConf,
NEWTYPE PduType Datind, Dising;
i LITERALS DC,CC,AK.DT,CR,DR: SIGNALLIST FromU =
ﬁ%’ﬁ‘gg I{JPED taType STRUCT Potiug ot
nitDataType DatReq, DisRe ;
Pdu PduType; ® ¢ y [UnitReq]
Udata UserDataType;
ENDNEWTY PE; Msap
4 [Unitind]
Usap
BLOCK Station [(ToU)]
[(FromU})]
SIGNAL DC,CC,AK(Bit),
CR,DR,DT(UserDataType); .
SIGNALLIST Lis = SenderRecelver
DC,CC,AK,.CR.DR,DT; (1,1)
— R[Lis)]
Rint
[{Lis)]
Transcode
(1.1)
ﬁunjnnd]
Rmsap
[UnitReq]
Msap

Figure 10.10: SDL Specification of Abracadabra Protocol

107

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver

TIMER Timerf;
SYNONYM P Duration = EXTERNAL;
SYNONYM N Natural = EXTERNAL; /* the
" maximum number of retransmissions for
CR.DR and DT */
DCL Seq Bit;
DCI UserData UserDataType:;

1(6)

DCL DTorAK Boolean; DT or AK received */

DCL CRremaining, DRremaining, DTremaining
Integer; /* indicates the remaining number
of retransmissions for CR,DR and DT

DCL SendSeq, RecvSeq Bit; /" sequence number */

respectively */ Theprocess Is waiting
Closed =1 for connection request
I | |
> CorReq > CR > DR
CR Conind > DC
SET(NOW+P, DTorAK := False,
Timer1) SendSeq:= 0,
RecvSeq:= 0

DTorAK := False,
SendSeq = 0,
RecvSeq:=0

CRremaining := N

108

Figure 10.10 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver

=

If CR is received, then both
— stations request connection
at the same time

The process is waiting
(CRsent)— for connection confirmation

2(6)

| '-> CRCC

ConConf

RESET (Timer1)

>Dn

> Timer1

Disind >
RESET(Timer1)
CRremaining i=
CRremaining - 1
{True)

CRremaining> 0

> DisReg

Disconnect
(DR)

Disconnect
(*DR,DisInd")

CR >
The process
pm === == =1 rgtransmits a CR
SET(NOW+P,
Timer1)

Figure 10.10 (continued)

109

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

PROCESS SenderReceiver 3(6)

The process is watting
CRrecv for ConResp from the user

I I I | |
> ConResp > DR > ConReq > DisReq

CC,
ConConf

“ |

DR

cc

Figure 10.10 (continued)

110

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver 3 4(6)
‘ Send,Wait ’

I 1 I [
> DR > ccoe > CR > DisReq
4 4. | p 4 y 4

DC, Disconnect Disconnect
Disind {"DR,Disind") (DR)
RESET(Timer1) (False)
(*DR,DisInd")
DT
(UserData)

DTorAK := True,

Seq:= UserData

(Length(UserData})

The correctness of the
= == T Ysequence number is checked
(True) (False)
AK RecvSeq:=
(RecvSeq) , NOT(RecvSeq)
AK
(RecvSeq)
UserData := bor |
Substring(UserData, 1, |- — The sequence number is
Length{UserData)-1) removed from UserData
Dratind
(UserData)

Figure 10.10 (continued)

111

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

< |) |The process is < Wait) .
Send prepared to send DT 2

PROCESS SenderReceiver

DatReq
/(UserData)

DT
(UserData)

5(6)

The process is watting for
acknowledgement of DT;
DatReq are saved in the
input port of the process

SET(NOW + P,
Timer1)

RESET(Timer?1),
DTorAK := True

SendSeq:=
NOT(SendSeq),
DTremaining := N

|

Send

(False)

Disconnect
("DR,DisInd*)

> Timer1

DTremaining :=
DTremaining - 1
1

(True)

DT
(UserData)

SET(NOW + P,
Timer1)

—

DTremaining

>0

_(False)

Disconnect
(*DR,Dislnd")

—

112

Figure 10.10 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

___1SO/IEC TR 10167 : 1991 (E)

PROCESS SenderReceiver 6(6)
If DR is received,
then both stations . -
] . . The process is watting for the

Ir ::?#Zitacri:‘s:g&r;ectlon (DRsent)’ = disconnection confirmation DC

1

|

l

I

1 N\ ‘

e — —= DCDR / Timer1 l

RESET DRremaining :=
(Timer1) DRremaining - 1
SET(NOW + P,
Timer1)
MACRODEFINITION Disconnect
FPAR sig
sig >
SET(NOW + P,
Timert)
I
DRremaining := N

Figure 10.10 (continued)

113

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR.10167 : 1991 (E)

PROCESS Transcode

DCL Sdu UnitDataType;

1(2)

(=

DCL UserData UserDataType;
DCL Seq Bit; :
. Assembling protocol data
TransWait 7] units into service primitives
l I I I |
‘\ DT
> CR > cc > bc > DR > (UserData)
Sdu:=
Sdu:= (.CR/") Sdu:= (CC'") Sdu:=(DC'") Sdu:= (DR, (.DT,UserData.
I I I I |
UnitReq UnitReq UnitReq UnitReq UnitReq
(Sdu) (Sdu) (Sdu) (Sdu} (Sdu)

) (=

) (L=

)

v v

=)

> AK
(Sea)

Sdu = (.AK,
MkString(Seq).)

UnitReq
{Sdu)

114

Figure 10.10 (continued)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

PROCESS Transcode 2(2)
; Extracting protocol data
< TransWait >"' - ‘{-l-mis fron? gervice primitives D A
Unitind
> (Sdu)
(CR) (CC) (DC) (AK) (DR) (DT)
OT \
cC DC DR {SdulUdata) D
> > LY

I
_,
AN

| e
"
AN

| |

! !
=) =)

Seq:= SdulUdata
(Length{SdulUdata))

AK
(Seq)

Figure 10.10 (continued)

115

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

10.6 Assessment of the Application of

the FDTs

Considering the comparative complexity of this example,
the variety of errors found was quite small. The following
interesting, general classes or errors were found:

a)

There are often ‘phase change' problems, when the
boundary between different phases of a Protocol is not

ture to find that in error cases one Protocol Entity has a
different view of the state of connection from the other
Protocol Entity (e.g. the so-called ‘half-open connec-
tion’). It is important to describe these cases clearly.

It is also important to relate the behaviour of a Service
to its underlying Protocol properly. By theoretical verifi-
cation, it is possible to show using FDTs that a Service
is indeed satisfied by its Protocol. A degree of confi-
dence in this may also be established by ‘simulation’
(symbolic execution) of the Service and Protocol formal
descriptions.

It is a difficult issue as to how to handle misbehaviour
of a Service User. Because Services are not necessar-
ily visible in an implementation, informal Service def-
initions tend to avoid defining what happens in such
cases. However, a formal description has to ascribe
some meaning to these cases. A common approach.
is to omit an explicit description of invalid Service User
behaviour. However, the formal description still implic-
itly has some meaning. The approach depends on the
FDT:

1) In Estelle, such invalid behaviour would result in
deadliock. Estelie experts therefore prefer to de-
scribe invalid Service User interactions as'being ac-
cepted but ignored.

2) In LOTOS, such invalid behaviour would also result
in deadlock. However, bacause LOTOS experts
prefer to take as implementation-independent view
as possible, no explicit 'description would normally
be included for Service.User misbehaviour.

3) In SDL, such invalid behaviour cannot arise from
the point of view-of the Service. (The invalid sig-
nals cannot'be’ received by the Service: they are
discarded’bsfore even entering the system.)

116

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

11 A Transport Protocol Example

This example is based on the CCITT T.70 Transport Proto-
col in order to illustrate how real Protocols may be formally
described. It is, however, only an example and is not defini-
tive with regardto T.70 as to either the informal or the formal
descriptions.

11.1 Informal Description

ISO/IEC TR 10167 : 1991 (E)

6) purge.
¢) termination of a Transport Connection.

NOTE — Not all of the above functions wili be available in the basic
Transport Service (see 11.1.2.3).

11.1.2.2 Transport Protocol Classes
Transport Layer functlons are grouped (for ease of ne-
| f Ti

11.1.1 Origins

Theffollowing prose description is an abridgement of CCITT
Recommendation T.70. The abridgement has been made
by removing or revising references to ‘further study’ work
and|other versions of T.70, paragraph numbers, figure num-
bers, table numbers, state tables, CCITT introductory mate-
rial, |and network considerations. Specifically, this abridge-
merijt is based on clause 5 and Table B-4 (E5) of T.70. The
abrifigement has been made and reproduced in this Tech-
nical Report for the following reasons:

a) to provide self-contained text which is integrated into
his Technical Report; and

b) to avoid confusion due to references to items for ‘further
study’ or to other versions of T.70; and

¢) to emphasise that this example is notto be taken as an
[uthoritative statement of T.70.
Exc

pt as indicated in 11.2 of this Technical Report, this
example is intended to be identical to the Transport Protocol
defined in T.70.

11.1.2 Transport Functions

11.1.2.1 General

The| Transport Layer will perform all those functions that
are hecessary to bridge the gap between the services pro-
vidgd by the Network Layer and the-services needed by
the PBession Layer. Therefore, thelfunctions performed are
depgndent on two criteria: the services provided by the un-
derlying Network Layer and the services required by the
Session Layer.

ltis the responsibility of the Transport Service User to select
a gjven Quality of Service, which may imply the use of
certhin Transport layer functions such as:

a) pstablishment of a Transport Connection:

1)~ Transport Connection identification; and

Classes whereby Classes occupying superior positipns in
the hierarchy implement functions of the lower Clasges to-
gether with the optional functions identified.for thefr own
Class. During Transport Connection estabiishment the use
of a given Transport Protocol and optionahfunctions gshould
be negotiated according to the following'rules:

a) the calling terminal indicates-the Trarisport Prptocol
Class and (if applicable) optional functions requiref; and

b) the called terminal{indicates the Transport Prptocol
Class and (if applicable) optional functions that it |s will-
ing to support;-and

c) all parameters-to be used in the Transport Connection
must be explicitly indicated, otherwise default values will

apply:

11.3.2:3 The Basic Transport Service (TS)

Allimited set of Transport Layer functions is defined for a
basic Transport Service. The basic Transport Seryice is
provided by Transport Layer functions which are performed
by Transport Layer Protocol Elements. Transport Prptocol
Data Units (TPDUs) carrying Transport Service (TS) User
information or Control information are called blocks. Jrans-
port Layer block types are as follows:

a) Transport Connection Request (TCR) block; and
b) Transport Connection Accept (TCA) block; and
¢) Transport Connection Clear (TCC) block; and

d) Transport Data (TDT) block; and

e) Transport Block Reject (TBR) block.

The TCR and TCA blocks are used to indicate the Proto-
col Class, and optional functions, applying to a Trapsport
Connection. The TCC block is used to indicate the rpason
for refusing a Connection establishment. The TDT|block
carries information of the Transport Service User. The TBR
block is used to report procedure errors to the remote ter-
minal.

b) data transfer:

1) sequence control; and

2) error detection; and

3) error recovery; and

4) segmenting and reassembling;'and
5) flow control; and

11.1.2.4 Transport Layer Functions

Basic Class functions and associated Transport Layer Pro-
tocol Elements, i.e. blocks, include:

a) Transport Connection establishment, Transport Con-
nection identification, optional extended addressing and
optional Transport Data Block Size negotiation (TCR,
TCA and TCC blocks); and

117

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

b) data delimitation, segmentation/reassembling of arbi-
trarily long Transport Service Data Units (TSDUSs).
These. are contained within TDT blocks. The end of
a TSDU is indicated by a TSDU End Mark in the last
data block; and

¢) detection and indication of procedural errors (TBR
block). |

|
Other characteristics ‘pf the basic Transport Service are:

If a terminal receives the request for an optional TDT block
size it may either:

a) indicate its support by reproducing the requested value
in the TCA block; or

b) request in the TCA block the use of a shorter allowable
TDT block - the calling side either accepts this size by
sending the first TDT block or disconnects the Network

|
d) maintenance of TSDU integrity; and
e) pverflow: if the

ser cannot absorb new data and if
he appropriate btfffers are not available, flow control is
erformed at Nethork or Data Link Layer as appropriate;
nd |

f) prror: no mechaﬁism is provided within the Transport
ayer to facilitate recovery from detected errors. Where
uch errors are detected the user of the Transport Ser-
ice should be informed so that appropriate recovery

ction may be taken.

11.1.3 Connection Establishment and Termina-
tion Procedures

11.1.3.1 General |

The Transport Layer Connection Establishment and Termi-
natibn procedures shall also be used for negotiating Trans-
por{ Protocol Class and, if applicable, optional Transport
Connection functions. - For the basic Transport Service,
megdns are provided to establish a Transport Connection
using a TCR block and a TCA block. This exchange pro-
vidgs:

way to negotiate Options; and

Transport Connection identification. The Transport
Connection is identified by use of cross-references.
Fach end of the Connection is responsible for select-
ng a suitable TraT-sport Connection ldentifier.

por{ Connection independent of-any Network Connection
identification and therefore provides independence from the
life pf the Network Connection. The binary value 0 should
not pe used as an identifier:

|

Th:i mechanism also provides an identification of the Trans-

11.1.3.2 Transpoﬂt Connection Request (TCR)
Block
The| calling terminal shall indicate a Transport Connection

Redquest by-transferring a TCR block to the remote termi-
nal.| The"TCR block includes the Transport functions (e.g.

Connection; or

¢) not accept the requested TDT Block Size\pargmeter
value by sending a TCA block without a TDT Block Size
parameter. Therefore, the standardised TDT blogk size

will apply.

A TCR requesting an optionalTDT block size not supported
by the called side should not be answered with TBR.

11.1.3.4 Transport.Connection Clear (TCC) Block

If a Transport Connection cannot be established, the called
terminal shall respond to the TCR block with a TCC plock.
The clearing cause shall indicate why the connection was
not accepted. It is up to the calling side whether the rpceipt
of a TCC_will cause complete disconnection or whether a
new.TCR with a parameter different from the first ope will
be sent (e.g. another extended Layer 4 address).

is directly correlated with the life-time of the supporting
Connection.

11.1.3.5 Transport Connection Collision

If the calling terminal receives a TCR block, it shall transfer
a TBR block to notify the called terminal of the progedure
error.

11.1.3.6 Extended Addressing

The Extended Addressing capability may be used {o ad-
dress terminals in a multi-terminal configuration. The gxten-
sion addresses for called terminals are optional parameters
to TCR and TCA. The receiving terminal shall respond with
a TCA as shown in Figure 11.1.

The calling terminal may, when receiving a called tefminal
address in the TCA, act as specified in Figure 11.2.

11.1.4 Description of Data Transfer Procedrres

Sou llass, and optional functions) for ne-
gotiation of the characteristics of the Transport Connection
being established.

11.1.3.3 Transport Connection Accept (TCA) Block

The called terminal shall indicate its acceptance of the
Transport Connectioﬁ by transferring a TCA block to the
remote terminal. The LI'CA block includes the Transport pa-
rameters applying to the connection and to be used by the
calling terminal.

118

General

The data transfer procedure described in- the following
clauses applies only when the Transport Layer is in the
Data Transfer Phase, i.e. after completion of Transport
Connection Establishment and prior to Clearing.

1TL1.4.1

NOTE — When a connection is cleared, Transport Data blocks
may be discarded. Hence, it is left to the Transport Service User to
define Protocols able to cope with the various possible situations
that may occur.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

Receiver Reaction

addressing 1) | terminal

i |

| |

| ' | |

Received TCR | Multi-terminal | Stand- (
| with extended | alone |

| | |

I] |

| | |

Witheu Send—TCA
extended | extended | without |
addressing | addressing | extended |
| | addressing |
Y R, S, |
	1	
With	Send TCA with	Send TCA
extepded	extended	without
addréssing	addressing 2)	extended
	addressing	
‘ ________________ e e |
NOTES
1 Multi-terminal configuration, with capability for extended address-
ing.

2 If the called terminal is occupied or out of order, the call should be
routed|to a default terminal or mailbox. The sender will then be
informpd of the routing by the extension address of the connected
terminpl. The receiver of TCR may also in this case react by
sendirlg TCC.

Figure [11.1: Receiving Terminal Reaction to TCR Ad-
dressing Options

Sent	TCR:	Calling Terminal Reaction
	IR . \. AT	
	TCA received wWith' extended	
q	addressing:	
Absent	(Correct	Incorrect

U B | (O Y D |
| Without | OK l'Neglect extension 1) |
| extended | i !
| addressing | | |
R DU | < | _— |
With IV1) | 0K 1) |
extended, 7l | |

{ |]

|]]

I
|
| addr¢ssing
|

ISO/IEC TR 10167 : 1991 (E)

11.1.4.2 Transport Data Block (TDT) Length

The standard maximum TDT block length to be supported
by all terminals is 128 octets including the data block header
octets. Other maximum data field lengths may be supported
in conjunction with an optional TDT block size negotiation
connaction function (see 11.1.6.4 and 11.1.6.5). Optional
maximum data field lengths shall be chosen from the fol-
lowing: 256, 512, 1024, and 2048 octets. If the requested
optional TDT block size cannot be supported, a shorter al-
OWwWanie = PDTOC gize—must-be—selected-{see —1-3)
The agreed maximum TDT block size should be aimed at
for TDT blocks having the TSDU End Mark set to 0;.a-n
ber of octets less than the agreed maximum shall'not cayse
the receiving Transport Entity to reject this TDT block.

11.1.4.3 Transport Service Data Unit (TSDU) End

The TSDU End Mark is used to preserve the integrity| of
the TSDU. The TSDU End Mark\is'sst to binary 1 in t
last TDT data block carrying information related to a certain
TSDU. Exceptionally, this TDTF block may be sent withgut
carrying user informatiornrfor an immediate termination of a
TSDU in certain errorconditions.

In case of a TSDU: that comprises a single TDT block
TSDU End Mark'is also set to 1. In all other cases,
TSDU End Mark is set to zero.

e

11.1.5\Treatment of Procedure Errors

A terminal shall send a TBR block to the remote terminal to
feport the receipt of an invalid or not implemented block (if
not explicitly specified otherwise in this description). During
the establishment of a Transport Connection, terminals shall
not send a TBR block upon the receipt of a TCR bigck
whose parameters or parameter values are invalid or fot
implemented. In this case, terminals shall act as if no err¢rs
have occurred and send the appropriate response (if any).

A terminal receiving a TBR block shall take appropriate
recovery action.

NOTE — A TBR whether invalid or valid shall not be answered|by
sending a TBR block.

11.1.6 Formats

11.1.6.1 General

Transport Protocol Data Units (TPDUs) carrying Transpprt
Service (TS) User information or Control information are
called blocks (see 11.1.2.3). All blocks contain an integral
number of octets.

Bits of an octet are numbered 8 to 1 where bit 1 is the

NOTES
1 Reaction left to the discretion of the calling terminal.
2 Aterminal may react by releasing the network connection.

Figure 11.2: Calling Terminal Reactionto TCA Address-
ing Options

low order bit and is transmitted first. Octets of a block are
consecutively numbered starting from 1 and are transmitted
in this order.

TDT block(s) are used to transfer a Transport Service Data
Unit (TSDU) transparently whilst maintaining the structure
of the latter by means of the TSDU End Mark.

Control blocks (TCR, TCA, TCC, TBR) are used to control
the Transport Protocol functions, including optional func-

119

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

0 i : | | |
11 Parameter Code | 1 Length (octets) |
c | -1 | N
| | | |
T 2 | Parameter Length Indicator | 211 1 1 0o o0 0 0 011
| | i |
E | |] | |
3 | 31 Not used (set to 0) |
P—|—Parm=tu Yatve ; € : ________________ :
| I | |
5 n | | T 4| Not used (set to 0)]
| i
. E | I
Figure 11.3: Parameter Element Coding Structure 5 | Source |
T e N |
| i
Octet 1 Octet 2 Octet 3...N Octet N + 1...M s 6 | Referernice I
| |
k ! ! |
—————————— 710 0 0~ o0 o0 0o oI
| 1 | | | T N I
| Length | Block | Functional | Parameter or | R |
| indi- | type | code field | data field | 8 | |
| lcatoxr | | (fixed | (variable | | Paraneters (optional) 12
| | | format) | format) | | |
I, | U, [N | D | h |
) I Block NOTES
Figure 11.4: General Block Structure 1 Block type : TCR
2 The parameter field is present only when the terminal is[request-
ing an optional Transport Connection function.
tions. Figure 11.6: Transport Connection Request Block
A parameter field is present in all control blocks within the
basic Transport Service to indicate optional functions. The
pdarameter field contains one or more parameter elements.
The first octet of each parameter element contains a param-

eter code to indicate the function(s)requested. The general
cading structure is as shown in Figure 11.3.

THe parameter code field is binary coded and, without ex-
tension, provides for a maximum of 255 parameters. Pa-
rameter code 11111111 is reserved for extension of the
parameter code.

Octet 2 indicates the length, in octets, of the parameter
value field. The\parameter field length is binary coded and

.......... hea ‘n |nr\hr\n

indicator is a binary number that represents the lgngth in
octets of the control block (including parameters) and the
header length in octets of data blocks (excluding any sub-
sequent user information). In both cases, this length does
not include octet 1. The basic LI value shall be restficted to
a maximum of 127 (i.e. a binary value of 01111111)). Octet
2 contains the block type code. 1to 4 of octet 2 are|setto 0
for all Transport Layer blocks currently defined. Octét 3 and
subsequent octets contain functional codes in a fixed for-
mat as per the block type. A parameter field or a data field
containing Transport Service (TS) user data may ogtionally
follow the functional code field.

bemg requested

11.1.6.2 Structure of Transport Control and Data
Blocks

Figure 11.4 illustrates the general structure of Transport
Layer blocks. A summary of Transport Layer blocks is given
in Figure 11.5.

Octet 1 contains the length indicator (LI). The value of this

120

11.1.6.3 Concatenation
Concatenation of Transport Control and/or Transport Data
blocks is not applicable.

11.1.6.4 . Transport Connection Request (TCR)
Block Format

The format of a TCR block is shown in Figure 11.6.
A separate parameter is provided for the indication of Calied

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Dctet 1 Dctet 2 Octet 3 Octet 4 Octet 5 Octet 6 Octet 7

TCR

!	1]]		
Length[11100000 [00000000 {00000000	Source 100000000	Para-~	
]]	Reference f Imtrs.	

Octet 1 Octet 2 Octet 3 Octet 4 Octet 5§ Octet 6 Octet 7

TCA

o | | | | | | O
|Lengthl11010000] Destination | Source 100000000 |Para-|
| | | reference | Reference | |mtrs. |

| DR, | S, | | D I S P 1 P P I

Octet 1 Octet 2 Octet 3 Octet 4 Octet 5 Octet 6 (Octet 7

TCC

| l | | |

|Length|10000000] Destination | Source |Clearing|Para-|
| i | reference | Reference | cause |[mtrs.!
‘ |

Octet 1 Octet 21 Octet 3 Octet 4 “Octet 5 Octet 6 Octet 7

1 i | t [|
iLength{01110000} _Destination | Reject | Parameters
| | | reference | cause |

P | | I IO .- - -

Octet 1 Octet)2 Octet 3 Octet 4 Octet & Octet 6 Octet 7

DT

LS50 | i
|Length|11110000| {00000000}| Data

|.. TSDU End Mark

NOTE “<The terms ‘Source’ and ‘Destination’ refer to the initiator and the recipient of the Transport Protocol Data Unit (TPDU), respeptively.
The value of the Source Relerence Is a local system parameter. The Source Relference of a received Transport block is to be used as
Destination Reference in the response to that Transport block.

Figure 11.5: Transport Layer Blbck Types

121

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

8 7 6 5 4 3 2 1

0 | Extension Address Parameter | { |
1| Type | 1| Length (octets) |
c | -1 | -
| | | |
T 2| Parameter Length Indicator | 211 1 0 t 0o 0 O Ol
1 el | |
E | | 0 | |
31 | 3 Destination |
f | IAG Digits 1 ... n I C I
! | | ; i
5 | | T 41| Reference {
| |
NQTE — The Extension Address Parameter is ‘11000001’ for call- E | |
ing address type or ‘11000010’ for called address type. 5 | Source |
T R N\ |
Figure 11.7: Extended Addressing | (
s 61| Reference |
U A S |
8 7 6 5 4 3 2 1 ‘ '
710 o0 0 o0 o0 oI
D | Parameter Type Code ° | B |
111t t 0 0 0 0 0 o0 ' '
£ | -l 8| |
| Parameter Length Indicator | | Parameters (optional) F2)
r 210 0 0 0 0 0 0 1] | '
|) L S |
3 | Transport Data Block Size |
310 0 0 0 X X X X | NOTES
r I I 1 Block type: TCA.
2 The parameter field is present only when the terminal is fequest-
] ing or confirming an optional Transport Connection function.
{1011 = 2048 octets
{1010 = 1024 octets Figure 11.9: Transport Connection Accept Block
XXXX{1001 = 512 octets
{1000 = 256 octets
{0111 = 128 octéts

Figure 11.8: Transport Data Block Size Parameter

Extension Addressés) The coding of this parameter is
shpwn in Figure<¥1:7. The setting of bit 8 for extended

(see 11.1.6.4).

11.1.6.6 Transport Connection Clear (TCC) Block
Format

The format of a TCC block is shown in Figure 11.1Q.

The Additional Clearing Information parameter is provided
to allow additional information relating to the cleTing of

the connection. The coding of this parameter is shown in
Figure 11.11.

shown in Flgure 11.8.

11.1.6.5 Transport Connection Accept (TCA) Block
Format

The format of a TCA block is shown in Figure 11.9.

The Extended Addressing parameter is as for TCR (see
11.1.6.4).

The Transport Data Block Size parameter is as for TCR

122

11.1.6.7 Transport Block Reject (TBR) Block Format
The format of a TBR block is shown in Figure 11.12.

The mandatory Rejected Block parameter is used to indi-
cate the bit pattern of the rejected block up to and including
the octet that caused the rejection. Only the first detected
procedural error or parameter which cannot be acted upon
shall be indicated by this method. The coding of this pa-
rameter is shown in Figure 11.13.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

.‘F'

ISO/IEC TR 10167 : 1991 (E)

| . |
1 Length (octets) | .
| | 0 | |
| 1 1| Length (octets) |
211 0 0 0 0 0 0 o0l ' '
I o |l C i |
o | | 210 1 1 1 0 0 0 o011
3| Destination | I |
c | I T ! '
I Tt TTT ‘| 31 Destination |
T 4] Reference | I I
I . I E | |
E I I 4 | Reference |
| Source | l I
T l ________________ | T I '
I | 5 { Reject cause | 2)
s §1 Reference | I I
Do I S | |
| i 6 | |
T Clearing Cause 1 2) I Parameter Field l
I . 1 | ‘ |
| | n | -— |
8 | . |
| Parameters (optional) | NOTES
[| 1 Block type:-TBR
N O | 2 RejectCause:]
87654321
NOTES
1 Blocl] type: TCC ¢) - Reason not specified =00000000
2 Cleaiing Cause: 1 - Function not implemented =0 0000001
87664321 '
2 - Invalid block =00000010
0 1 Reason not specified =00000000
3 - Invalid parameter =00000011
1 1 Terminal occupied =0000000¢% '
2 | Terminal out of order = 0 0 0 0 0 6.4 0 Figure 11.12: Transport Block Reject Block
3 T Address unknown =09000011
igure 11.10: Transport Connection Clear Block
8 7 6 5 4 3 2 1
8 7 6 o5-/4 3 2 1
‘ — - 0 | Parameter Code I
0 | Parameter Code I 111 &t 0 o0 0 o0 o 1]
L | 1 1 1 0 0 0 0 o | C l_- - l
c I e m e m————— | | ; |
| | T 2 | Parameter Length Indicator |
T 2~ Parameter Length Indicator | { o
pEp— — E I f
E I | 31 |
3| | T | Rejected Information |
T] Additional Information | | |
| | S nli |
S nli |

Figure 11.11: Additional Clearing Information Parame-

ter

Figure 11.13: Rejected Block Parameter

123

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

2.5.1) its value is not equal to 07 (hexadeci-
mal), in response to a TCR block without

0 | | ; .
o Length (octets) l gwre Transport Data Block Size parameter;
c : ""I 2.5.2) its value does not correspond to the
T 211 1 1 1 0 0 0 ol nflesof11..1.:?.3;or
I 1 2.5.3) its value is different from the values 07,
E |'TSDU| i 08, 09, OA, 0B (hexadecimal); or
3iEndf 0 0 0 0 0 0 012 2.5.4) the PLIis not equalto 1.
T | 1 R or
' | 2.6) Llis notequalto (6+2 x N+ (sumvofall PLIs)),
s 41, | where N is the number of parameters.
[Data | Y
| | 3)1CC .
ol - 3.1) ‘The value of Octet 1 (L1)
NOTES 3.1.1) is not equal to the number of|the TCC
1 Block type: TDT. block octets minus 1; or
2 TSDU End: indicates the End of TSDU when setto 1. 3.1.2) is greater than 127; or
3.1.3) .is:smaller than 6.
Figure 11.14: Transport Data Block or '
3.2) see6) below; or
3.3) The values of Octets 3 and 4 are nof equal to
Octets 5 and 6 respectively of the agpropriate
11.1.6.8 Transport Data Block (TDT) Format TCR block; or P y prop
The format of a TDT block is shown in Figure 11.14. 3.4) Llis notequalto (642 x N + (sum of all PLIs)),
where N is the number of parameters.
11.1.7 Invalid TPDUs
)) 4) TBR
11.1.7.1 Invalid TPDUs due to Syntactic Errors 4.1) The value of Octet 1 (LI):
) TCR 4.1.1) is not equal to the number of|the TBR
1:1) The value of Octet 1 (LI): block octets minus 1; or
1.1.1) is not equal to the number of the TCR 4.1.2) s greater than 127; or
‘block octets minus 1; of 4.1.3) is smaller than 6.
1.1.2) is greater than 127;of or :
1.1.3) is smalier than 6. 4.2) see 6) below; or
or 4.3) The values of Octets 3 and 4 are no{ equal to
Octets 5 and 6 respectively of the ap propria’
1.2) see 6) below. TC establishment block (TCR or TCA){receive
from the peer entity; or
D
2)TCA 4.4) The value of the LI minus 6 is not egpal to the
2.1) . The value of Octet 1 (Ll): value of the PLI; or
2.171) is not equal to the number of the TCA 4.5) The Rejected Block parameter is not gresent.
biock octets minus 1; or
’ See also the NOTE in 11.1.5.
2.1.2) is greater than 127; or
2.1.3) is smaller than 6. - 5)TDT ,
of 5.1) The vaiue of the Lis notequalto 2, or
2.2) see 6) below; or 5.2) The TSDU End Mark is 0 and the information
2.3) The values of Octets 3 and 4 are not equal to field is empty; or.)) .
Octets 5 and 6 respectively of the appropriate 5.3) The TDT plock size is larger than negotiated in
TCR block; or the establishment phase.
2.4) The value of Octet 7 is non-zero; or 6) No Identified Block
2.5) The parameter Transport Data Block Size is The value of the TPDU Octet 2 is not equal to one of EQ,

124

present, and:

EO, 80, 70, FO (hexadecimal).

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

11.1.7.2 Invalid TPDUs due to Procedure Errors
The following are failure cases:

1) After sending a TCR
1.1) Reception of not a TCA; or
1.2) Reception of not a TCC; or
1.3) Reception of not a TBR.

ISO/IEC TR 10167 : 1991 (E)

11.2.1 Service Definitions (Clauses 11.1.2.1,
11.1.23 and 11.1.2.9)

11.2.1.1 Deficiency

Following the definitions of the OSI Reference Model,
soundness and completeness of a Protocol definition re-
quire reference both to the Service provided and to the Ser-
vice used. Apart from the aforementioned clauses, there is
no reference as to which Network Service is used, nor to
which Transport Service is provided. In particularno relation

2) After sending a TCA
.1) Reception of not a TDT; or

.2) Reception of not a TBR.

3) After sending a TDT
.1) Reception of not a TDT; or

.2) *Reception of not a TBR.

‘ 4) After sending a TCC

Recgption of not a TCR.

5) After sending a TBR
Recgdption of not a TDT while in the Data Phase.

6) After receiving a TDT with EM = 1
Recgption of an empty TDT with EM = 1.

7) After receiving an empty TDT with EM = 1
Recgption of an empty TDT with EM = 1.

8) After N-CONNECT response
Recgption of not a TCR.

11.2 Deficiencies in the Informal De-
scription
Most of the deficiencies found in-the informal description

were| gaps in information. These-have been resolved by
reference to existing International Standards, in particular:

a) the OSI Connection=oriented Transport Service, as de-
fined in 1SO 8072and CCITT X.214; and

b) Glass 0 of the OSI Connection-oriented Transport Pro-
tocol, asdefined in 1ISO 8073 and CCITT X.224; and

c) tlLe OslI'Connection-oriented Network Service, as de-
fined/in 1SO 8348 and CCITT X.213.

is specified between Blocks, on the one hand, and Trans-
port Service Primitives (TSPs) or Network Service Rrimi-
tives (NSPs) on the other. Actually, the very-descr(ption
of a Service by way of Protocol Data Units((PDUs, tefmed
Blocks in this case) seems debatable. Given this gap, it
also appears that even the relation between Blocks oply is
not complete.

11.2.1.2 Resolution
a) Services

In 11.1.2.1 both the Transport Service provided ang the
Network Service used-should be defined or referencgd (if
they are standardised). For this Technical Report, the gap
is filled by inserting the following paragraphs in 11.]1.2.1,
after the first’paragraph:

The Transport Service provided to the Sessio
Layer is a subset of the OS! Connection-Orientg
Transport Service defined in 1ISO 8072 and CCI
X.214. In particular, the Transport Expedited Data
facility is not provided. For other restrictions see bp)
below.

[oNl=]

The Network Service used is a subset of the
0S| Connection-Oriented Network Service defined
in 1ISO 8348 and CCITT X.213. In particular, the
Network Expedited Data and Receipt Confirmation
facilities are not used. For other restrictions, see by)
below.

b) Service Primitives

In 11.1.2.3 the TSPs used in the description should bg de-
fined. Also the NSPs used in the description shoujd be
defined, perhaps in the same clause. For this Technicagl Re-
port, the gap is filled by inserting the following paragfaphs
in 11.1.2.3, at the beginning:

A basic Transport Service (TS) is provided. This
is a subset of the TS defined in ISO 8072 and CClI
X.214, according to the following restrictions:

As a general criterion, it was agreed that the Protocol is a
slight simplification, but also extension, of T.70. The main
motivation for introducing simplifications is to be found in
the tutoriai purpose of these Guidelines. Resolution of de-
ficiencies that could not be achieved by reference to 11.1
was based upon the procedures of the Class 0 of the OSI
Transport Protocol, simplified if necessary according to the
same motivation.

and neither Expedited Data Option nor Qual-’
ity of Service parameters are defined in the T-
CONNECT Service Primitives; and

b) no User Data parameter is defined in the T-
CONNECT Service Primitives; and

¢) no parameter is defined in the T-CONNECT
response, T-CONNECT confirm, and T-
DISCONNECT Service Primitives.

125

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

To provide the basic Transport Service, this
Transport Protocol makes use of a subset of the
Network Service, which is defined in 1ISO 8348 and
CCITT X.213, accordingto the following restrictions:

a) neither Expedited Data nor Receipt Confirma-
tion facilities are used; and

b) in N-CONNECT request and indication Ser-
vice Primitives the only parameters defined are
—the Addresses; and

“An implicit connection termination procedure is
made use of, by which the lifetime of the Transport
Connection and the lifetime of the Network Con-
nection are directly correlated. Furthermore, error
recovery is not supported, so that the occurrence of
an N-RESET indication leads to termination of the
Transport Connection.

When a TCR block is sent, a timer is started. If
this timer expires before receipt of a TCA or TCC

¢) a limited form of N-RESET facility is used: only
N-RESET indication and response primitives
are used, with no parameters; and

d) no parameters are defined in the N-CONNECT
response, N-CONNECT confirm, and N-
DISCONNECT Service Primitives.

In 11]1.2.4 both the blocks and the relation between blocks,
TSPg and NSPs should be defined. The gap is filled as
follows:

a) the current content of 11.1.2.3 should be moved at the
beginning of 11.1.2.4; and

b) at the end of existing paragraph a), replace the text in
parentheses with:

TCR, TCA and TCC blocks; T-CONNECT,
N-CONNECT and N-DATA service primitives

¢) in existing paragraph b), replace the second sentence
with:

These are contained in T-DATA service prim-
itives, and each of them is transferred by way-of
a sequence of TDT blocks.

d) al the end of existing paragraph c), replace the text in
parentheses with:

TBR block; T-DISCONNECT, N-RESET and
N-DISCONNECT Service Primitives.

e) at the end of existing paragraph f), replace the text ‘the
uper ...’ through tothe-end with:

the TS~ 'User is informed by a T
DISCONNECT indication and the Network
Connection is released.

11.2}2”Description of Procedures (Clause 11.1.3)

biUb]
informed by sending a T-DISCONNECT indicatiot

and the Network Connection is released by)an N
DISCONNECT request.

11.2.3 Protocol Classes (Clause 11.1.2.2)

11.2.3.1 Deficiency

There is no specification of the, Protocol Classes, npr of
Class negotiation.

11.2.3.2 Resolution

In fact, the Protocolcaters for only one Class; the encqding
of the Class and.Options parameter in the TCR and [TCA
blocks is fixed-as a zero-value octst. However, fof the
sake of compatibility and interoperability with other Protocol
Classes,itis requiredin 11.1.5 that terminals shall not send
a TBR.block upon receipt of a TCR block whose parameters
or‘parameter values are invalid or not implemented. Fgrthe
same reason, TC identification references are excharjged.
The following statement should be appendedto 11.1.3.2:

Terminals that comply with this protocol suppo
only Class 0, but may interoperate with terminal
that support other Classes and Class negotiatio
(see 11.1.5).

=)

11.2.4 Missing Definitions (Clause 11.1)

11.2.4.1 Deficiency
There are no definitions of several terms used, includipg:

a) Transport Layer Protocol Element; and
b) TPDU; and

¢) Transport Layer blocks; and

d) Transport Layer functions; and

e) Transport Layer procedures; and

11.2.2.1 Deficiency

The relation between the Connectibn Establishment proce-
dure and the Data Transfer procedure is not defined. Fur-
thermore, the Termination procedure is not described.
11.2.2.2 Resolution

Remove the notein 11.3.4 and appendatthe end of 11.1.3.1
the following text:

126

f) Transport Connection collision; and
g) TSDU integrity; and

h) called and calling terminal; and

i} Protocol error; and

j} control block; and

k) mailbox; and

I) sender and receiver.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

11.2.4.2 Resolution

All terms should be defined, either in the description itself,
or by reference to a document in which they are defined. It
was decided not to fill the gap in this Technical Report.

11.2.5.1 Deficiency
The following functrons are referenced without explanation

ISO/IEC TR 10167 : 1991 (E)

11.26 Non-Use of Concatenation (Clause
11.1.6.3)

11.2.6.1 Deficiency

The non-use of concatenation should not be defined in the
format section, but be introduced in 11.1.2.4 amongst the
functions. The concept of concatenation is not described at
all.

11.2.6.2 Resolution

as bejny = plUIUUUI

b) sequence control; and
c) efror detection; and
d) segmenting; and
e) flow control; and
f) ptyrge; and
‘ @) how to inform the user of an error; and
h) cnnectron rdentrfrcatron and

11.2.5 Unspecified Functions (Clause 11.1)
|

and

ultiple, possibly concurrent, Transport Connections
ay be supported by orie Transport Protocol Entity.
se or non-use of extended addressing in the TCR and
TICC blocks is rélatéd to this possibility, which is non-
deterministic. \In"'the TCR and TCC blocks, both the
Clalled Address and the Calling Address are optional.

hen.a TBR block is sent or received, the TS User is
i formed by a T-DISCONNECT indication. A Trans-
ceiving a TBR block releases the Network

c)

The text of 11.1.6.3 should be movedto 11.1.2.4 as follows:

g) concatenation: concatenation-of, Transpoft
control and/or Transport data blocks is not af
plicable, so that receipt of concatenated blocks
is treated as a procedure error (see 11.1.5).

11.2.7 Responding Address (Clause 11.1.3.6 b))

11.2.7.1 Deficiency

it is not clear whether-the Called Address parameteq in a
TCA may be differerit from that in a TCR if the call s re-
routed.

11.2.7.2°_Resolution
It is dssumed that they are the same.

11.2.8 Multiple SAP Connections (Clarrse
11.1.23)

11.2.8.1 Deficiency

May a Transport Protocol Entity support more than one
Transport Connection at a TSAP or an NSAP?

11.2.8.2 Resolution
It is assumed that this is permissible.

11.2.9 Reaction to Incorrect TCA (Clause 11.1.3
and Figure 11.2)

11.2.9.1 Deficiency

It is not stated which forms of reaction are allowed by the
expression: ‘left to the discretion of the calling ternjinal’.
Allowing any reaction is too vague.

11.2.9.2 Resolution

The interpretation followed in this Technical Report ig that
an invalid parameter in the TCA is treated as for Qroc;dure

Connectron by means of an N-DISCONNECT request.
The Transport Entity sending a TBR block starts a timer.
When this timer expires the Network Connection is re-
leased. On receipt of an N-DISCONNECT indication
the timer is stopped.

Receipt of an N-RESET indication is answered with
an N-RESET response, followed by release of the Net-
work Connection; the TS User is informed by means of
a T-DISCONNECT indication.

errors (see 11.1.5).

11.3 Estelle Description

11.3.1 Architecture of the Formal Description

The top level architecture of the description is shown in
Figure 11.15. This architecture is made up of three kinds of
modules:

127

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

whose concrete (integer) value is left to be defined (i.e.
is implementation-dependent).

The description also illustrates the dynamic structuring ca-
pabilities of Estelle. One pair of module instances, whose
types are respectively TC_T and NC_T, is created dynami-
cally by each Transport Protocol Entity during the establish-
ment phase of a Transport Connection. These module in-
stances communicate (i.e. exchange interactions) through

S + $mmmm———— +
i [I |

| USER1 | | USER2 |

] l J |
R C e + prmm——— +

]
]

tommmeem—— + fromme———— +
| PARENT | | PARENT |
| | | |
[L [eweee- |
1T || EECEE :
[I [11
=eee--		-		
==	R			
tLoxe		{1l N		
	I i			
wmm——		———---		
o ————— + $ommm—————— +

I I I

P I I
el L R B et N et B B B Rt
[I I I | [T O I
| NETWORK |
o -——t

Figure 11.15: Architecture of A Transport Protocol in
Hstelle

g) two instances of type USER._T representing the \Trans-
port Service Users; these instances are referred to
through module variables USER1 and USERZ2; and

B) two instances of type PARENT._T -fepresenting the
Transport Protocol Entities; both instances are created
using the same module variable PARENT; and

¢) one instance of type NETWORK:T representingthe un-
derlying Network Service;-this instance is referred to
through module variable NETWORK.

his architecture remains static once created during the
Bstelle description initialisation. Because of the nature of
the Protocol, the bodies of modules USERI and NETWORK
are not specified: Several external interaction points are
defined for fepresenting the inter-layer communication:

4) TCEP; which is an array of external interaction points
declared in both USER T and PARENT T modules,

be establlshed on behalf of some User The upper bound
of the array is defined by constant MAXTCEP whose
concrete (integer) value is left to be defined (i.e. is
implementation-dependent).

b) NCEP, which is an array of external interaction points
declared in the PARENT. T module header, represents
all potential Network Connections that may be estab-
lished from the associated PARENT module. The up-
per bound of the array is defined by constant MAXNCEP

128

PARENT._T module. (The index within the array represents
the Transport Connection Endpoint identifier.) Thel result of
this attachment is that the interactions related to a Transport
Connection are sent directly.to the module instarces that
must process them. Similarly the other external in eractiou’
point, declared in the module header NC_T, is attached to
ons of the interaction points declared within the NCEP array.

Module instances of type USER.T, PARENT.T and
NETWORK.T are system instances that behaye asyn-
chronously with respect to each other. Module instances of
type PARENT. T are systemactivities, as the infdrmal de-
scription of the Protocol gives no reason for synchronising
the. behaviour of several Transport Connections managed
by the same Transport Protocol Entity. Similar r¢asoning
motivates the use of the systemactivity class fof module
instances of type USER_T and NETWORK_T.

11.3.2 Explanation of Approach

This approach was motivated by the desire to [illustrate
some features of Estelle, e.g. structuring medhanisms
(both dynamic and static). The PARENT, USER, gnd NET-
WORK modules are created (statically) and bound in the
initialize part of the description. The TC and NC modules
(children within PARENT) are created (dynamically) and
bound during the Connection Establishment Phage. The
are described in the transitions of the trans part(of PAR-
ENT. (Note that all the transitions in the description have
unique names.) When the Connect Request comes from
the local User, the mechanisms required to manage the lo-
cal connection endpoint are created in one transitign (trans
PR2), i.e. both the TC and NC modules are created and

connection endpoint are created in two transitio
the NC module |s created and the attach is perfc

NC module requests the PARENT to create the Tc in trans
NC9. Later, the PARENT notices such a request and cre-
ates the TC module, performing the connect of interaction
points TC.IP and NC_.IP.

This example also uses the delay transitions (trans TC12
and TC39) to illustrate the use of the timer notion and its
representation in Estelle.

A User may make a transition override some others, by

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

giving the priority clause. An example of this is trans
NC15 in which the Transport Connection Request of the
remote User could not be fulfilled locally, therefore a TCC
is sent in answer to the TCR.

There are several examples of non-deterministic choices of
transitions; one significant case is when the Network Con-
nection Indication is either accepted (trans PR3) or rejected
(trans PR4).

11.3.3—Formal-Deseription

ISO/IEC TR 10167 : 1991 (E)

TBR: (DREF3:REF_T;

REASON : TBR_REASON ;

TPDU:DATA_T)
end;

channel TS_INTERFACE(USER,PROVIDER);
by USER:
TCON_REQ(T_CALLING,
T_CALLED:TADDRESS) ;
TCON_RESP;

specification TP;
default individual queue;
timescale SECONDS;

const
MAXPRIORITY=O;
NUM_USER=any INTEGER;
NUM_NETWORK=any INTEGER;
MAXDATA=any INTEGER;
MAXCEP=any INTEGER;
MAXTCEP=MAXCEP;
MAXNCEP=MAXCEP;
type
TADD=array [1..MAXDATA] of CHAR;
TADDRESS= :
record
L:INTEGER;
VAL:TADD
end;
NADDRESS=...;
TBR_REASON=(INVALID_PDU);
OCTET=0. .255;
LEN_T=0..MAXDATA;
ID_T=1..MAXDATA;
DATA_ T=
record
L:LEN_T; -
D:array [ID_T] of OCTET
end;
REF_T=0..65535;
TLV_PAR=(P_CALLINGP_CALLED,
MAX_BL,CL_INFO,REJ_PDU) ;
CLEAR_C=(NONLSPEC,0CCUPIED,OUT_OF_ORD,
UNKNOWR)';
BLOCK_T=(TCR,TCA,TCC,TDT,TBR) ;
PDU_T=
record
case CODE:BLOCK_T of
TCR,TCA: (DREF1,SREF1:
REF_T;
———————————————————T_CAELINGTTADDRESS;

TDT_REQCISDU:DATA_1);
TDIS_REQ;
by PROVIDER:
TCON_IND(T_CALLING,
T_CALLED: TADDRESS),;

TCON_CONF;
TDT_IND(TSDU:DATA:T) ;
TDIS_IND;

channel NS_INTERFACE(USER,PROVIDER);
by USER:
NCON-REQ(N_CALLING,
N_CALLED:NADDRESS) ;
NCON_RESP;
NDT_REQ(NSDU:DATA_T);
NRST_RESP;
NDIS_REQ;
by PROVIDER:
NCON_IND(N_CALLING,
N_CALLED:NADDRESS) ;
NCON_CONF;
NDT_IND(NSDU:DATA_T);
NRST_IND;
NDIS_IND;

function TCON_REQ.OK(
CALLING,CALLED:TADDRESS) :
BOOLEAN ; primitive;

function MAP_TADDRESS(ADD:TADDRESS):
NADDRESS ;primitive;

function SET_DTLENGTH(
MAX_BLOCK_SIZE:INTEGER):
INTEGER; primitive;

function IS_VALID_TPDU(PHY_PDU:DATA_T):
BOOLEAN; primitive;

function GET_CODE(PHY_PDU:DATA_T):
BLOCK_T;primitive;

T_CALLED:TADDRESS;
MAX_BLOCK_SIZE:
INTEGER) ;
TCC: (DREF2,SREF2:REF_T;
CAUSE:CLEAR_C;
CL_OPT:DATA_T);
TDT: (EOT : BOOLEAN;
DATA:DATA_T);

module PARENT_T systemactivity;
ip
TCEP:array [1..MAXTCEP] of
TS_INTERFACE(PROVIDER) ;
NCEP:array [1..MAXNCEP] of
NS_INTERFACE(USER) ;
end;

body PARENT_BODY for PARENT_T;

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

const
MAXDTLENGTH=any INTEGER;

type

REQUEST_T=(UNDEFINED,REJECTED,
CREATED, REQUESTED) ;
TC_IMAGE_T=
record
CALLING,CALLED: TADDRESS;
DREF:REF_T;
MAX BLOCK SIZE:INTEGER

procedure D_COPY(
FROM_DATA:DATA_T;
var TO_DATA:DATA_T);
var
INDEX:INTEGER;
begin
for INDEX:=1 to MAXDATA do
TO_DATA .D[INDEX] :=
FROM_DATA .D[INDEX];
TQ_DATA.L:=FROM_DATA. L

end;

channel PDU_CHANNEL(TC,NC);

by TC:
NDIS_REQ;

by NC:
INVALIDPDU(INVALID:DATA_T) ;
NCON_CONF;
NDIS_IND;

by TC,NC:
TPDU(PDU:PDU_T) ;

module TC_T activity(TC_CALLING,

end;

body

TC_CALLED:TADDRESS ;
TC..SREF ,TC_DREF:REF_T;
TC_MXBL_S:INTEGER) ;
ip
TCEP: TS_INTERFACE(PROVIDER) ;
TC_IP:PDU_CHANNEL(TC) ;
export
TC.RELEASE_REQ:BOOLEAN;

TC_BODY for TC_T;

const .)
TCR_TIMER=60;
TBR_TIMER=60;

state
IDLE,CLOSED,WFNC,WFND,WFTCA,
WFTRESP,OPEN;ERROR,
PRE_RELEASE;

var
PDU_SEND:PDU_T;
TSDU_SEND,TSDU_RCVD:DATA_T;
ITPDU:DATA_T;

function D_LENGTH(DATA:DATA_T):
LEN_T; ’
begin
D_LENGTH:=DATA.L
end;

end;

procedure D_CREATE(
var DATA:DATA_T;LENGTH:ID_.T);
begin
D_NULL(DATA)
DATA.L:=LENGTH
end;

function_ D_GET(
DATADATA_T;OFFSET:ID_T) :OCTET;
begin
if OFFSET>DATA.L then
D_GET:=0
else D_GET:=DATA.D[OFFSET
end;

—_

procedure D_PUT(
var DATA:DATA_T;OFFSET:ID_T
VALUE:O0CTET) ;
begin ;
if OFFSET<=DATA.L then
DATA.D[OFFSET] : =VALUE
end;

procedure D_ASSEMBLE(
var BASE:DATA_T;
var ADDITION:DATA.T);
var
TOT_LENGTH:INTEGER;
INDEX:LEN_T;
begin
TOT_LENGTH:=
BASE.L+ADDITION.L;
if TOT_LENGTH>MAXDATA thén
TOT_LENGTH :=MAXDATA
for INDEX:=1 to
TOT_LENGTH-BASE.L do
BASE.D[INDEX+BASE.L]:=
ADDITION.D[INDEX]
BASE.L:=TOT_LENGTH;

130

procedure D_NULL(var DATA:DATA_T);
var
INDEX:INTEGER;
begin
for INDEX:=1 to MAXDATA do
DATA.D[INDEX]:=0;
DATA.L:=0
end;

D_RULLTADDITIOR)
end;

procedure D_FRAGMENT(
var HEAD:DATA_T;var OLD:DATA_T;
LEN:LEN_T);
var
INDEX,LENGTH:LEN_T;
begin
if LEN>OLD.L then

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

LENGTH:=0LD.L
else LENGTH:=LEN;
D_CREATE (HEAD, LENGTH) ;
if LENGTH>0 then
begin
for INDEX:=1 to
LENGTH do
HEAD.D[INDEX]:=
OLD.D[INDEX];

£ INDEY et 4
0L (o

ISO/IEC TR 10167 : 1991 (E}

function OPT_LENG(P:SIZE_BL):
OCTET;
type
POWER_T=0. .4;
begin
end;

function OPT_PAR_TYPE(
OPT:TLV _PAR) :QCTET:

\ a4

OLD.L-LENGTH do
OLD.D[INDEX]:=
oLD.D[
INDEX+LENGTH] ;
for INDEX:=
OLD.L-LENGTH+
to OLD.L do
OLD.D[INDEX] :=0;
OLD.L:=0LD.L-LENGTH
end
end;

procedure BUILD_TCR(SREF:REF_T;
CALLING,CALLED:TADDRESS;
MAX_BLOCK_SIZE:INTEGER;
var NSDU:DATA_T);
const
TCR_CODE=224;
type
SIZE_BL=
(L128,L256,L512,L1024,
12048);
OPT_PAR_T=
record
case OPT:TLV_.PAR of
P_CALLING,
P_CALLED:
(ADDR: TADDRESS) ;
MAX_BL:
(L:SIZE_BL);
CL_INFO:
(C:CLEAR_C);
REJ_PDU:
(ER:DATA_T)
end;
var
LENGTH,LG1:INTEGER;

begin
end;

function CODE_LENGTH(
S:INTEGER) : SIZE_BL;
begin
end;

procedure TLV_ENCODE_PAR(
OP:TLV_PAR;var EOP:DATA_T;
var L:INTEGER);
var
I:INTEGER;
begin
case 0P of
P_CALLING,P_CALLED:
begin i
L:=
OPT_PAR_VAL|
. ADDR.L
end;
MAX_BL:
begin
L:=1
end
end;
D_CREATE(EOP,L+2) ;
D_PUT(EOP,1,
OPT_PAR_TYPE(OP))|;
D_PUT(EOP,2,L);
case QP of
P_CALLING,P_CALLED:
begin
for I:=1 to L do
D_PUT(EOP,2+]
ORD(OPT_PAR_VAL.
ADDR.VAL[I1))

-

0CT1,0CT2:0CTET; end;

NSDU1:DATA_T; MAX_BL:

OPT_PAR_VAL:OPT_PAR_T; begin

D_PUT(EOP, 3,
function FHS(CODE:INTEGER): OPT_LENGY(
INTEGER; OPT_PAR_VAL.L))
begin end
end; end;
L:=L+2

procedure ENCODE_REF(end;

REF:REF_T;

var LOW,HIGH:OCTET);
begin
end;

begin
LENGTH : =FHS (TCR_CODE) ;
D_CREATE(NSDU,LENGTH+1) ;

131

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ENCODE_REF (0,0CT1,0CT2);
D_PUT(NSDU,3,0CT1);

D_NULL(TSDU_SEND) ;
D_NULL(TSDU_RCVD)

D_PUT(NSDU,4,0CT2) ; end;
ENCODE_REF (SREF,0CT1,0CT2) ;
D_PUT(NSDU,5,0CT1); trans
D_PUT(NSDU,6,0CT2) ; from WFNC
D_PUT(NSDU,7,0); to WFICA
OPT_PAR_VAL.ADDR:=CALLING; vhen TC_IP.NCON_CONF
OPT_PAR_VAL.ADDR:=CALLED; var
OPT_PAR_VAL.L:= PRE_PDU:DATA_T;
CODE_LENGTH(name TC2:
MAX_BLOCK_SIZE); begin
OPT_PAR_VAL.OPT:=P_CALLING; BUILD_TCR(
TLV_ENCODE_PAR(TC_SREF; TC_CALLING,
P_CALLING,NSDU1,LG1); TC_CALLED,
LENGTH :=LENGTH+LG1; TC.MXBL_S,PRE_PDU) ;
D_ASSEMBLE(NSDU,NSDU1) ; TRANSFER (
OPT_PAR_VAL.OPT:=P_CALLED; PRE_PDU,PDU_SEND) ;
TLV_ENCODE_PAR(output TC_IP.TPDU(
P_CALLED,NSDU1,LG1); PDU_SEND)
LENGTH : =LENGTH+LG1; end;
D_ASSEMBLE(NSDU,NSDU1) ; to PRE_RELEASE
OPT_PAR_VAL.OPT:=MAX_BL; when TC_IP.NDIS_INQ
TLV_ENCODE_PAR(name TC3:
MAX_BL,NSDU1,LG1); begin
LENGTH :=LENGTH+LG1; output TCEP.TDIS|IND;
D_ASSEMBLE(NSDU,NSDU1) ; end;
D_PUT(NSDU, 1 ,LENGTH) when TCEP.TDIS_REQ
end; name TC1:
begin
procedure BUILD_TCA(output TC_IP.NDIS_REQ;
DREF,SREF :REF_T; end;
CALLING,CALLED:TADDRESS; from WFTCA
MAX_BLOCK_SIZE:INTEGER; to PRE_RELEASE
var RES:PDU_T); when TC_IP.NDIS_INI
external; name TC5:
begin
procedure BUILD_TCC(output TCEP.TDISJIND;
DREF :REF_T;var RES:PDU_T); end;
external; when TCEP.TDIS_REQ
name TC4:
procedure BUILD_TDT(begin
EOT :BOOLEAN ;DATA:DATA_T; output TC_IP.NDI§_REQ;
var RES:PDU_T); end;
external; from WFTCA
when TC_IP.TPDU
procedure BUILD_TBR(provided PDU.CODE=TCC
DREF :REF_T;REASON: TBR_REASON; to PRE_RELEASE
TPDU:DATA_T; name TC8:
var RES:PDU_T); begin
external; output
TC_IP.NDTS_REQ;

132

procedure TRANSFER(
var REC_DATA:DATA_T;
var REC_PDU:PDU_T);
external;

initialize
to IDLE
begin
TC_RELEASE_REQ:=FALSE;

output TCEP.TDIS_IND;
end;
provided PDU.CODE=TCA
to OPEN
name TC7:
begin
output .
TCEP.TCON_CONF;
TC_DREF :=PDU.SREF1;

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

TC.MXBL_S:=
PDU.MAX_BLOCK_SIZE

end;

provided PDU.CODE=TBR
to PRE_RELEASE

name TC10:

begin

output
TC_IP.NDIS_REQ;

output TCEP.TDIS_IND;

ISO/IEC TR 10167 : 1991 (E)

output
TC_IP.TPDU(PDU_SEND)
end;
to OPEN
when TCEP.TCON_RESP
name TC1i3:
begin
BUILD_TCA(
TC_DREF,TC_SREF,
TC_CALLING,TC_CALLED,

end;
provided PDU.CODE=TDT
to PRE_RELEASE
name TC9:
begin
output
TC_IP.NDIS_REQ;
output TCEP.TDIS_IND;
end;
provided PDU.CODE=TCR
to ERROR
name TC6:
begin
TC_DREF :=PDU.SREF1;
D_NULL(ITPDU);
output TCEP.TDIS_IND
end;
from WFTCA
to PRE_RELEASE
when TC_IP.INVALIDPDU
name TC1i:
begin
D_NULL(INVALID);
output TCEP.TDIS_IND}
output TC_IP.NDISCREQ;
end;

trans
from WFTCA
to PRE_RELEASE
delay (TCR_TIMER)

TC_MXBL_S,PDU_SEfD) ;
output
TC_IP.TPDU (PDU_SEND)
end;
from WFTRESP
to ERROR
when TC-IP.INVALIDPDY
name TC21:
begin
ITPDU:=INVALID;
output TCEP.TDIS_IND
end;
from WFTRESP
when TC_IP.TPDU
provided PDU.CODE<>TER
to ERROR
name TC16_.17_18_19:
begin
output TCEP.TDISLIND;
D_NULL(ITPDU)
end;
provided PDU.CODE=TBR
to PRE_RELEASE
name TC20:
begin
output TCEP.TDIS|IND;
output
TC_IP.NDIS_REQ
end;
from OPEN
to PRE_RELEASE

name TC12: when TC_IP.NDIS_IND
begin name TC24:
output TCEP.TDIS_IND; begin
output TC_IP.NDIS_REQ; output TCEP.TDIS_IKD;
end; end;
when TCEP.TDIS_REQ
trans name TC23:
from WFTRESP begin
to PRE_RELEASE output TC_IP.NDIS_REQ;
when TC_IP.NDIS_IND end;
name TCi8: to OPEN
begin when TCEP.TDT_REQ
output TCEP.TDIS_IND; var
end; DATA:DATA_T;
to WFND name TC22:
when TCEP.TDIS_REQ begin
name TC14: TSDU_RCVD:=TSDU;
begin vwhile D_LENGTH(
BUILD_TCC(TSDU_RCVD)>

TC_DREF,PDU_SEND) ;

TC._MXBL_S-3 do

133

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

begin to WFNC
D_FRAGMENT(begin
DATA,TSDU_RCVD, end;
TC_MXBL_S-3); provided TC_DREF<>0
BUILD_TDT(to WFTRESP
FALSE,DATA, begin
PDU_SEND) ; output TCEP.TCON_IND(
output TC_IP.TPDU(TC_.CALLING,TC_CALLED)
PDU_SEND) end;
end; from CLOSED
BUILD_TDT(to PRE_RELEASE
TRUE, TSDU_RCVD, when TC_IP.NDISLIND
PDU_SEND) ; name TC31:
output begin
TC_IP.TPDU(PDU_SEND) end;
end; from CLOSED
from OPEN when TCLIP.TPDU

when TC_IP.TPDU
provided (PDU.CODE=TDT) and
not PDU.EQOT
name TC28_1:
begin
D_ASSEMBLE(
TSDU_SEND,PDU.DATA)
end;
provided (PDU.CODE=TDT) and
PDU.EOT
name TC28_2:
begin
D_ASSEMBLE(
TSDU_SEND,PDU.DATA) ;
output TCEP.TDT_IND(
TSDU_SEND) ;
D_NULL(TSDU_SEND)
end;
provided (PDU.CODE<>TDT) and
(PDU . CODE<>TBR)
to ERROR
name TC25_26_27:
begin
output TCEP.TDIS_IND;
D_NULL(ITPDU)
end;
provided PDU.CODE=TBR

provided PDU.CODE=T(R
to WFTRESP
name TC32:
begin
TC_CALLING:=
PDU.T_CALLING
TC_CALLED:=
PDU.T_CALLED;
TC_SREF :=PDU.SRHF1;
TC_MXBL_S:=
PDU.MAX_BLOCK_|SIZE;
output TCEP.TCON_IND(
TC_CALLING,
TC_CALLED)
end;
provided PDU.CODE<>TCR
to PRE_RELEASE
name TC33_34_35_B6:
begin
output
TC_IP.NDIS_REQ[;
end;
when TC_IP.INVALIDPDU
name TC37:
begin
D_NULL(INVALID);
output TC_IP.NDIS_REQ;

134

to PRE_RELEASE end;
name TC29: from WFND
begin to PRE_RELEASE
output TCEP.TDIS_IND; when TC_IP.NDIS_IND
output name TC38:
TC_IP.NDIS_REQ; begin
end; end;
from OPEN to—PRE_REEEASE—
to ERROR delay(TBR_TIMER)
when TC_IP.INVALIDPDU name TC39:
name TC30: begin
begin output TC_IP.NDIS_REQ;
ITPDU:=INVALID; end;
output TCEP.TDIS_IND to WFND
end; when TC_IP.TPDU
from IDLE name TC42:
provided TC_DREF=0 begin

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

end;
-from ERROR trans
to PRE_RELEASE from IDLE
name TC41: provided INITIATOR
begin to WFNC
output TC_IP.NDIS_REQ; name NC1:
end; begin
to WFND output NCEP.NCON_REQ(
name TC40: NC_CALLING,NC_CALLED)
begin end;
BUILD_TBR(provided not INITIATOR
TC_DREF,INVALID_PDU, to OPEN
ITPDU,PDU_SEND) ; name NC2:
output begin
TC_IP.TPDU(PDU_SEND) end;
end; from WFNC
from PRE_RELEASE to OPEN
name TC43: when <NCEP . NCON_CONF
begin name NC3:
TC_RELEASE_REQ:=TRUE begin
end; output NC_IP.NCON_CONF
end; end;
to CLOSED
module NC_T activity(when NCEP.NDIS_IND
INITIATOR:BOOLEAN; name NC4:
"NC_CALLING,NC_CALLED:NADDRESS) ; begin
ip output NC_IP.NDIS_INL;
NCEP :NS_INTERFACE(USER) ; end;
NC_IP:PDU_CHANNEL(NC); to CLGSED
export when NC_IP.NDIS_REQ
' TC_CREATE_REQ:REQUEST_T; name NC5:
TC_IMAGE:TC_IMAGE_T; begin
NC_RELEASE_REQ:BOOLEAN; output NCEP.NDIS_REQj
end; end;
from OPEN
body NC_BODY for NC.T; to CLOSED
state when NCEP.NDIS_IND
IDLE,CLOSED,WFNC,OPEN; name NC7:
var begin
PDU_SEND,PDU_RCVD:PDU_T; output NC_IP.NDIS_INI;
end;
procedure ENCODE(to CLOSED
var D:DATA_T;R:PDU_T); when NCEP.NRST_IND
begin name NC6:
end; begin
output NCEP.NRST_RESY;
pfocedure DECODE(output NCEP.NDIS_REQ
D:DATA_T;var R:PDU_T); output NC_IP.NDIS_IND;
begin end;
end; to OPEN
when NC_IP.TPDU

procedure BYIED-TECE
DREF :REF_T;var RES:PDU_T);
external;

initialize
to IDLE
begin
NC_RELEASE_REQ:=FALSE;

TC_CREATE_REQ : =UNDEFINED

end;

DT:DATA_T;

name NC14:
begin
ENCODE(DT,PDU) ;
output NCEP.NDT_REQ(DT)
end;

to CLOSED

vhen NC_IP.NDIS_REQ

name NCi13:

135

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

begin
output NCEP.NDIS_REQ;
end;
from OPEN
when NCEP.NDT_IND
provided
IS_VALID_TPDU(NSDU) and

UNDEFINED)

to CLOSED
name NC12:
begin

output NCEP.NDIS_REQ;

end;

provided TC_CREATE_REQ=

(TC_CREATE_REQ=CREATED) REJECTED
name NC10: priority MAXPRIORITY
begin var
DECODE(NSDU,PDU_RCVD) ; DT:DATA_T;
output name NC15:
NC_IP.TPDU(PDU_RCVD) begin
, end; BUILDATCC(
from OPEN TCLIMAGE.DREF|,
when NCEP.NDT_IND PDU_SEND) ;
provided ENCODE (DT, PDU_BEND) ;
IS_VALID_TPDU(NSDU) and output
(TC.CREATE_REQ= NCEP.NDT_REQ[DT) ;

UNDEFINED) and
(GET_CODE(NSDU)=TCR)
name NC9:
begin
DECODE (NSDU,PDU_RCVD) ;
with PDU_RCVD do
begin
TC_IMAGE.CALLING:=
T_CALLING;
TC_IMAGE.CALLED:=
T_CALLED;
TC_IMAGE.DREF:=SREF1;
TC_IMAGE.
MAX_BLOCK_SIZE:=
MAX_BLOCK_SIZE
end;
TC_CREATE_REQ:=
REQUESTED
end;
provided
IS_VALID_TPDU(NSDU) and
(TCL.CREATE_REQ=

TC_CREATE_REQ:
UNDEFINED
end;
from CLOSED
name NC16:
begin :
NC_RELEASE_REQ:=TRUE
end;
end; :

type
USE_T=(0CCUPIED,FREE) ;
var : .
TCEP_ID:array [1..MAXTCEP]
USE_T;
NCEP_ID:array [i..MAXNCEP]
USE_T;
modvar
TC:TC_T;
NC:NC_T;

function NCACCEPT(FA,TA:NADDRESS):

bf

bf

UNDEFINED) and BOOLEAN;
(GET_CODE (NSDU) <>TCR) external;
to CLOSED o
name NC8: function TESTUD(U:DATA_T):
begin BOOLEAN;
output NCEP.NDIS_REQ; external;
end;
provided
not IS_VALID_TPDU(NSDU) initialize
and (TC_CREATE_REQ= begin
CREATED) all—F+1-—MAXCEP do
name NCii: begin
begin NCEP_ID[I] :=FREE;
output TCEP_ID[I] :=FREE
NC_IP.INVALIDPDU(end
NSDU) end;
end;
provided trans

not IS_VALID_TPDU(NSDU)
and (TC_CREATE_REQ=

136

any I:1..MAXCEP do
when TCEP[I].TCON_REQ

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

provided not TCON_REQ_OK(
T_CALLING,T_CALLED)
name PR1:
begin
output TCEP([I].TDIS_IND
end;

provided TCON_REQ_OK(
T_CALLING,T_CALLED)

ISO/IEC TR 10167 : 1991 (E)

trans
any I:1..MAXTCEP do

provided exist X:TC_T
suchthat X.TC_RELEASE_REQ
name PR5:
begin
forone X:TC.T suchthat

X.TC_RELEASE_REQ do

trans

name PR2: begin

begin release X;

forone J:1..MAXNCEP TCEP.IDLIJ:=FREE" |
suchthat NCEP_ID[J]= end
FREE do end;
begin

init NC with NC_BODY(
TRUE,MAP_TADDRESS(
T_CALLING),
MAP_TADDRESS (
T_CALLED));
attach NCEP[J] to
NC.NCEP;
init TC with TC_BODY(
T_CALLING,T_CALLED,I,
0,SET_DTLENGTH(

MAXDTLENGTH)) ;
connect TC.TC_IP to
NC.NC_IP;
attach TCEP[I] to
TC.TCEP;
NC.TC_CREATE_REQ:=
CREATED;

NCEP_ID[J] :=0CCUPIED;
TCEP_ID[I] :=0CCUPIED
end

otherwise
begin
output TCEP{I1].TDIS_IND
‘end

end;

any J:1..MAXNCEP do
when NCEP([J].NCON_IND
provided NCACCEPT(
N_CALLING,N_CALLED)
name PR3:
begin
NCEP_ID[J] :=0CCUPIED;
output NCEP[J].NCON_RESP;
init NC with NC_BODY(
FALSE,N_CALLING,

trans
any I:1..MAXNCEP 'do
provided jexist X:NC_.T
suchthat X.NC_RELEASE_REQ
name PR6:
begin
forone X:NC_T suchthat
X.NC_RELEASE_REQ do
begin
NCEP_ID[I]:=FREE;
release X
end
end;

trans
provided exist X:NC_T suchthgt(
X.TC_CREATE_REQ=REQUESTED)
name PR7:
begin
forone X:NC_T suchthat
X.TC_CREATE_REQ=REQUESTED} do
begin
forone I:1..MAXTCEP suchthat
TCEP_ID[I]=FREE do
begin
init TC with TC_BODY(
X.TC_IMAGE.CALLED,
X.TC_IMAGE.CALLING,I,
X.TC_IMAGE.DREF,
SET_DTLENGTH(
X.TC_IMAGE.
MAX_BLOCK_SIZE));
connect TC.TC_IP to
NC.NC_IP;
attach TCEP[I]to TC.TCEP;
X.TC_CREATE_REQ:=CREAI'ED;
TCEP_ID[I] :=0CCUPIED

}‘v_nn 1 rr\) + end
attach NCEP{J] to NC.NCEP othervise
end; X.TC_CREATE_REQ:=REJECTED
provided not NCACCEPT(end
N_CALLING,N_CALLED) end;

name PR4:

begin

output NCEP[J].NDIS_REQ
end;

end;

module USER_T systemactivity;
ip,

137

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

TCEP:array [1..MAXTCEP] of
TS_INTERFACE (USER) ;
end;

body USER_BODY for USER_T;external;

module NETWORK_T systemactivity;

ip
NCEP:array

end;
body NETWORK_BODY for NETWORK_T;external;

modvar
USER:array [1..NUM_USER] of USER_T;
PARENT:PARENT_T;
NETWORK : NETWORK_T;

initialize
begin
init NETWORK with NETWORK_BODY;
all I:1..NUM_USER do
begin
init USER[I] with USER_BODY;
init PARENT with PARENT_BODY;
all J:1..MAXTCEP do
connect USER[I].TCEP[J] to
PARENT.TCEP[J];
all J:1..MAXNCEP do
connect PARENT.NCEP[J] to
NETWORK.NCEP[I,J]
end
end;

end.

11.3/4 Subjective Assessment

The Estelle description shows clear separation of the dec-
laratipn part and the transition part.) The data may be fully
defined in a Pascal style or ignored to a first approximation

ture being described in terms of modules and channels. The
channel definition gives the list of interactions that it carries,
and the roles show the direction in which these interactions
are carried. The module header describes the view of a
module from the outside. The module body describes the
internal behaviour in terms of the transition system. The
hierarchy of modules is straightforward: a parent module
embodies a child module. This style allows the specifier to
describe a system in Estelle along the lines of the informal

138

Protocol description.

Although at first glance the description may appear to be
in Pascal style, a closer examination reveals that there is
a clear distinction between the Pascal constructs and the
specific Estelle constructs. In the declaration part, there are
Estelle features for data description (e.g. module variable,
interaction point, and state). The transitions have a spe-
cific Estelle structure with a list of clauses and a transition
block (begin ... end). There are also statements to handle

—LLMMWJ‘—MW o op-
NS_INTERFACE(PROVIDER) ; erations on modules, the attach and connect opéraions

for binding modules, and the output operationito ser|d an
interaction from one module).

The description should be regarded as Only an example:
some choices were made to illustrate-selected featurps of
Estelle. Other important features have not been illustrated,
just because the Protocol is not suited to these.

11.4 LOTOS Description

11.4.1 Structure of the Formal Description

The description is designed on basis of two major require-
ments, which together provide the appropriate framework
for the formal representation of the Transport Proto:{{ ar-
chitecture by means of the formal specification of a geperic
Transport Protocol Entity:

a) the specification is to be provably consistent with the
formal description in LOTOS [ISO TR 10023] of thg OSI
Connection-Oriented OSI Transport Service [ISO 8p72],
assuming a correct formal description in LOTOS df the
0SI Connection-oriented Network Service [ISO 8348];
and

b) the specification is to apply to any Transport Entity that
implements the Protocol.

The main aspects of the specification are:

specification parameters SAP addresses v
global types sorts of specification p]:am-

eters, and imported intefface
data types from Service gpec-
ifications
behaviour definition constraint-oriented specifica-

Already in the first descomposition of the constraints on the
arises: some of the components describe constraints that
apply to, and depend upon, the behaviour of the Protocol
Entity at only one of the two Service boundaries. These con-
straints will be referred to as Service constraints, whereas
the term Protocol constraints will refer to those which are
described by the other components. Notice that, in sub-
sequent dacomposition steps, the description of a Protocol
constraint may reveal further Service constraints among its
own components.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

+ | TSAPs | + + | TSAPs | -t
e + : e +
| |
+ + | L et T L PR + S ettt + |
| TCIldentification | =---|--- | TPETCAcceptance | | TCEP |-m---omm-e-e- |
tmmmmm e ——— e e + | + + D e +]
| I
| TPEConnections . | | RelationTSPandNSP |
] l
+ -+ | o= + Fomnm——— + |
| NCIdpntification | =--]=-=- | TPENCAcceptance | | NCEP | -=---=eneee-- |
+ + I+ + dovmeem— + |
| |
s + et +
R | NSAPs | + o | NSAPs |

Figure|11.16: Constraint-Oriented Decomposition of a
‘ansport Protocol Entity

The defomposition of the behaviour definition finds its most
complex component in process TPEConnections which
describles the constraints on provision of Transport Con-
nections in relation to usage of Network Connections. Pro-
cess TPEConnections comprises instances of the process
TPECadnnection combined in indefinite number by paraliel
interledving. The decomposition of process TPEConnhec-
tion is jllustrated in Figure 11.17. It enables a further sep-
aration|of concerns between:

a) Seivice constraints relating to a Transport Connection
Endpoint considered in isolation; and

b) Seivice constraints relating to a Network Connection
Endlpoint considered in isolation; and

¢) Pragtocol constraints that describe the required relation
between Transport Service Primitives\(TSPs) and Net-
wotk Service Primitives (NSPs).

11.4.2

This specificationis in a ‘constraint-oriented’ style. It applies
to all valid implementations of the Protocol, as it consists of
the formal descriptiontof-a generic Protocol Entity that can:

Explanation of Approach

a) acdess any given sets of Transport and Network Service
acdgess points; and

b) providé the Transport user with any number of Transport
Copnegctions; and

Figure 11.17: Decomposition’of Process TPEConngc-
tion

11.4.2.1 Service Interactions

Service interactions are described as events atthe tanfd n
gates. These)events are of the following form:

t ?2ta.; JAddress ?tcei: TCEI ?tsp : TSP
and:
n-?na : NAddress ?ncei: NCEI ?nsp : NSP.

11.4.2.2 Block Transfer

Blocks are transferred at the n gate in N-DATA NSPs on
Network Connection to which the Transport Connection i

nection identification by References is formally descri
however, according to the resolutionin 11.2.3.2.

11.4.2.3 Assignment of Transport Connections

The assignment of a Transport Connection to a Net
Connection depends upon the rdle of the Entity with re
to the Transport Connection. If the Entity is the initigtor
of the Transport Connection, it creates a Network Connec-
tion to which the Transport Connection is -assigned. In this
case the assignment ensures that blocks of that Transport
Connection are sent on the Network Connection to wHich

c) make use of any number of Network Connections.

The specification provides the reader with an abstract model
of the Protocol behaviour requirements, i.e. those require-
ments that apply to any instance of communication shown
by implementations of the specified Protocol Entity.

This description is sufficiently complete, although a few im-
provements could still be made. These are indicated by
footnotes

the Transport Connection is assigned. If the Entity is the
responder of the Transport Connection, the Transport Con-
nection is assigned to the Network Connection on which
the first block associated with this Transport Connection is
received.

11.4.2.4 Association of Blocks

All blocks received on a given Network Connection are as-
sociated with the Transport Connection which is assigned

139

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

to it, if any. Receipt of a block that performs assignment
generates the creation of a new Transport Connection, with
which the block is associated.

11.4.2.5 Negotiation of Class and Options
The only negotiations that take place are:

a) Class: The Entity accepts any TCR block but a Trans-

11.4.3 Formal Description
11.4.3.1 General

The t (n) gate represents the Transport (Network) Service
boundary accessed by the Entity. It models the totality
of TSAPs (NSAPs) at which the Entity interacts with the
TS user (NS provider). Each TSAP (NSAP) is uniquely
identified by a TSAP address (NSAP address) out of the
set tas (nas) Proper cooperatlon between Sessuon and

roposed Class. The Entity may only send TCR blocks

aort Connection may only be created if Class 0 is a
ith Class 0 as preferred Class and no alternative Class.

b) Block Size: The Entity negotiates the maximum block
ize according to the negotiation rules defined in the
Rrotocol.

¢) Extended Addressing: The Entity may' negotiate the
yse of extended addressing.

11.4.2.6 Segmenting and Reassembling

Segmenting and reassembling are described using the data
type| TSDUS, where a value of sort TSDUS is a queue of
octef strings. Each TSDU carried by a TDATA request
is added to the queue TSDUSdown as one new element
(OctptString). Blocks are formed from the oldest element
of TBDUSdown. When this block contains the End-Of-
TSDU indication, then it contains all remaining octets (pos-
sibly| none) of the oldest element, and this element is re-
moved from TSDUSdown. Otherwise only the octets con-
taingd in the block are removed from the oldest element
of T$DUSdown. The data octets of a received TDT-block
are added to the newest element of the queue- TSDUSup.
If thg block contains the End-Of-TSDU indication then the
newgst element is considered to be a complete TSDU for a
T-DATA indication, and a new and empty newest element
is added to TSDUSup. A T-DATA-indication containing
data|is generated only if TSDUSUDp,-deprived of its newest
element, contains at least one-possibly empty element.

11.4.2.7 Actual Block Transfer

Blocks are transferred by means of N-DATA NSPs. Func-
tiong are provided that specify the encoding of blocks as

ylibrary

cooperate with a Session Entity if they. feside in different
open systems.

specification TEntity[t, n]
(tas : TAddresses, 'nas : NAddresses) : noexilt

Boolean, Element, Set, String, NaturalNumbefr,
NatReprésentations, Bit, Octet, OctetStringr
endlib

(Fo3Smmmmmmmmm e

11.4.3.2 Service Data Types

This clause defines the specification parameters types| See
11.4.1,

Transport Address: No Transport address structyre is
specified in the Transport Service standard. The follpwing
definition allows representation an infinite number of Trans-
port addresses. See 11.4.3.2 for the definition of Genprall-
dentifier.

—— - - -_*)

type TAddress
is Generalldentifier renamedby

sortnames
TAddress for Identifier
opnnames
SomeTAddress for Someldentifier

AnotherTAddress for AnotherIldentifier
endtype (* TAddress *)

(%

that eva
encoding of a (possrbly glven) abstract block

11.4.2.8 Handling of Protocol Errors

Protocol errors are treated according to the informal de-
scription, together with resolutionin 11.2.5.2. Whenever an
error is detected, a TBR block is sent and the Transport and
Network Connection are disconnected. Data types deter-
mine syntactically invalid blocks and processes determine
ordering errors in block sequences are defined.

140

Transport Address Set: By the following definitions, any
value of sort TAddresses is a finite set of Transport Ad-
dresses.

type TAddresses
is Set actualizedby TAddress using

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

sortnames
TAddress for Element
TAddresses for Set
Bool for FBool

endtype (* TAddresses *)

(*

The definition of Network Address and Network Address
Set are similar to those of Trangport Address and Trans-

ISO/IEC TR 10167 : 1991 (E)

This classification is based on the type TSPSubsort, which
consists of a set of constants, each denoting a TSP name
in correspondence with Table 3 of the TS standard.

The type TSPClassifiers merges the previous construc-
tions and introduces the foliowing functions on TSPs:
a) Subsort, that yields the TSP name; and

b) boolean functions, termed ‘TSP (subsort) Classifiers’,
defined according to the Classification introduced by

port|Address Set.

typqd NetworkAddress
is Qeneralldentifier renamedby

sor{names
NAddress for Identifier
opnijames
SqmeNAddress for Someldentifier

otherNAddress for AnotherIdentifier
ype (* NetworkAddress *)

NAddresses
et actualizedby NetworkAddress using

sortlnames
NAddress for Element
Bgol for FBool
NAddresses for Set

ype (* NAddresses *)

igd in accordance with the resolution in-11.2.1.2. The
functions that yield values of sort TSP.are referred to as
‘TSR constructors’. This definition imports the definitions
thatlrelate to TSP parameters.

___.--_____-_--_-----_----------—--------; ----- *)

typg BasicTSP
is TAddress, OctetString

TSPSubsort.

NOTE — The auxiliary function h that maps TSP names 1¢ natu-
ral numbers is defined in order to simplify the specification|of the
boolean operations of equality on TSP names {as'well as on TSPs).
RicherNaturalNumber is an extension of NaturaiNumber with the
Odd and Even operations. See 11.4.3.3.

--- ——%)

type TSPSubsort

is RicherNaturalNumber

sorts
TSPSubsort

opns
TCONNECTrequest, TCONNECTindication,
TCONNECTresponse, TCONNECTconfirm,
TDATArequest, TDATAindication,
TDISCONNrequest, TDISCONNindicatiom :

~> TSPSubsort

h : TSPSubsort -> Nat

IsRequest, IsIndication : TSPSubsort -> Bogl

.eq_, .ne_ : TSPSubsort, TSPSubsort -> Boo]
eqns
forall

s, s1 : TSPSubsort, n : Nat

ofsort Nat
h(TCONNECTrequest) = 0;
h(TCONNECTindication) =
Succ (h(TCONNECTrequest)) ;
h(TCONNECTresponse) =
Succ(h(TCONNECTindication));
h(TCONNECTconfirm) = Succ(h(TCONNECTresponge));
h(TDATArequest) = Succ(h(TCONNECTconfirn));
h(TDATAindication) Succ(h(TDATArequest))
h(TDISCONNrequest) = Succ(h(TDATAindication));
h(TDISCONNindication) =

sorgs Succ(h(TDISCONNrequest))
TSP ofsort Bool

opn{g IsRequest(s) = Even(h(s));
TGONreq, TCONind : TAddress, TAddress =-> TSP IsIndication(s) = 0dd(h(s));
TdONresp, TCONconf : -> TSP s—og—s1= h{s) oq \(;1);
TDTreq, TDTind : OctetString -> TSP s ne sl = not(s eq st)
TDISreq, TDISind : => TSP endtype (* TSPSubsort *)

endtype (* BasicTSP *)

Transport Service Primitive Classification: A classifica-
tion of TSPs is defined, that enables to enrich the basic
construction with further functions in a simple way.

type TSPClassifiers

is BasicTSP, TSPSubsort

opns
IsTCON, IsTCON1, IsTCON2, IsTDT, IsTDIS,
IsTCONreq, IsTCONind, IsTCONresp, IsTCONconf,
IsTDTreq, IsTDTind,

141

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

IsTDISreq, IsTDISind, IsTReq, IsTind :

TSP ~> Bool
Subsort : TSP -> TSPSubsort
eqns
forall

a, al : TAddress, d : OctetString, t : TSP
ofsort TSPSubsort
Subsort(TCONreq(a, al)) = TCONNECTrequest;
Subsort (TCONind(a, a1)) = TCONNECTindication;
TCONNECTTre spon -7- 1)
= TCONNECTconfirm;
= TDATArequest;
= TDATAindication;
TDISCONNrequest;
TDISCONNindication .

ofs
IsTCON1(t) or IsTCON2(t);

a IsCalled0f TCONind(al, a2) = a eq a2;

not(IsTCON1(t)) => a IsCalledOf t = false
ofsort OctetString
Userdata(TCONreq(al, a2)) = <>;

Userdata(TCONind(al, a2)) = <>;
Userdata(TCONresp) = <>;
Userdata(TCONconf) = <>;
Userdata(TDTreq(d)) = d;
Userdata(TDTind(d)) = q;
Userdata ('l"hTanq\ = <>
Userdata(TDISind) = <>

endtype (* TSPParameterSelectors *)

(*

Transport Service Primitive Equality: Boolean eq
on TSPs is defined as the conjunction of:

uality

IsTCON1(t) = IsTCONreq(t) or IsTCONind(t);
IsTCON2(t) = IsTCONresp(t) or IsTCONconf(t); a) TSP name equality; and
IsTDT(t) = IsTDTreq(t) or IsTDTind(t); b) equality of TSP pararheters.
IsIDIS(t) = IsTDISreq(t) or IsTDISind(t);
IsTCONreq(t) = Subsort(t) eq TCONNECTrequest;
IsTCONind(t) = o TTTTTTTTTTmmoglEgTiomomomemsommoosooooeos *
ubsort(t) eq TCONNECTindication; X
ISTCONresp(t) = Subsort(t) eq TCONNECTresponse; ?ype TSPEquality
1sTCONconf(t) = Subsort(t) eq TCONNECTconfirm; is TSPPardgeterSelectors
IsTDTreq(t) = Subsort(t) eq TDATArequest; opns
Is[TDTind (%) = Subsort{(t) eq TDATAindication; -eq_, -ne_ : TSP, TSP -> Bool
IsTDISreq(t) = Subsort(t) eq TDISCONNrequest; eqns
IsTDISind(t) = Sorall ,
ubsort(t) eq TDISCONNindication; al, a2, a3, a4 : ?Address, t1, 2 : 18P,
Is[TReq(t) = IsRequest(Subsort(t)); di, a2 : OctetString
IgTind(t) = IsIndication(Subsort(t)) ofsort Bool
endtype (* TSPClassifiers *) TCONreq(al, a2) eq TCONreq(a3, a4) =
(a1l eq a3) and (a2 eq a4);
T - L TCONind(al, a2) eq TCONind(a3, a4) =
(a1l eq a3) and (a2 eq ad);
Transport Service Primitive Selectors: The construction TDTreq(d1) eq TDTreq(d2) = di eq d2;
of Transport Service Primitives presented above is enriched TDTind(d1) eq TDTind(d2) = di eq d2;
with ffunctions that allow to determine-the value of individ-
ual garameters of TSPs. The Address parameter selectors not(IsTCON1(t1) or IsTDT(t1) or IsTCON1(t2)| or
are glefined as boolean functions:” The reason for this in- IsTDT(£2)) =>
diregt representation is the completeness of the equational t1 eq t2 = Subsort(t1) eq Subsort(t2);
deﬁ ition. t1 ne t2 = not(ti eq t2)
endtype (* TSPEquality *)
----- *) (Kmmmmmm e e e .
typeg TSPParameterSelectors
is TSPClassifiers Transport Service Primitives Miscellaneous: IsValidT-
opn CONZ2For represents TS requirements that apply locally to
IsCallingdf, _IsCalledOf_ each TC Endpoint.
TAddress, ool
Userdata : TSP -> OctetString e e e m o —m oo *)
eqns
forall type TransportServicePrimitive

a, al, a2 : TAddress, d : OctetString, t : TSP
ofsort Bool

‘a IsCallingOf TCONreq(al, a2) = a eq al;
a IsCalling0f TCONind(al, a2) = a eq al;
not (IsTCON1(t)) => a IsCallingOf t = false;

a IsCalled0f TCONreq(al, a2) = a eq a2;

142

is TSPEquality

opns

.IsValidTCON2For_ : TSP, TSP -> Bool
eqns
forall

t1, t2 : TSP

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

h(NRESETresponse) =
Succ(h(NRESETindication));

ofsort Bool

IsRequest(s) = Even(h(s));

IsIndication(s) = 0dd(h(s));

s eq s1 = h(s) eq h(s1);

s ne 81 = not(s eq s1)
endtype (* NSPSubsort *)

ofsort Bool
t2 IsValidTCON2For ti1 =
IsTCONconf(t2) and IsTCONreq(ti) or
(IsTCONresp(t2) and IsTCONind(t1))
endtype (* TransportServicePrimitive *)

Network Service Primitives: The specification of Network

Service Primitives is very similar to the definition of Trans- type NSPClassifiers

port|Service Primitives above. The complete Network Ser- is BasicNSP, NSPSubsort
vicelis not specified, only the parts used in this description. opns
Subsort : NSP -> NSPSubsort
et Rt ittt *) IsNCON, IsNCON1i, IsNCON2,
IsNDT, IsNDIS, IsNRST,
type BasicNSP IsNCONreq, IsNCONind, IsNCONresp, IsNCUNconf,
is NetworkAddress, OctetString IsNDTreq, IsNDTind, IsNDISreq; IsNDISind,
sorts IsNRSTind, IsNRSTresp, IsNReq, IsNInd :
N§P NSP -> Bool
‘ opn$ eqns
N¢ONreq, NCONind : NAddress, NAddress -> NSP forall
NPTreq, NDTind : OctetString -> NSP a, al : NAddress);\d : OctetString, n : NSP|
N¢ONresp, NCONconf, NDISreq, NDISind, ofsort NSPSubsoTt
NRSTind, NRSTresp : -> NSP Subsort (NCONreq(a, al)) = NCONNECTrequest;
endtype (* BasicNSP x) Subsort (NCONind(a, al)) = NCONNECTindicatipn;
Subsoxt(NCONresp) = NCONNECTresponse|;
type NSPSubsort Subsort (NCONconf) = NCONNECTconfirm;
is RicherNaturalNumber Subsort(NDTreq(d)) = NDATArequest;
sorts Subsort (NDTind(d)) = NDATAindication;
| N§PSubsort Subsort(NDISreq) = NDISCONNrequest;
| opng Subsort(NDISind) = NDISCONNindicatipn;
| NCONNECTrequest, NCONNECTindication, Subsort (NRSTind) = NRESETindication|;
NLONNECTresponse, NCONNECTconfirm, Subsort (NRSTresp) = NRESETresponse
NDATArequest, NDATAindication, ofsort Bool
| NDISCONNrequest, NDISCONNindication, IsNCON(n) = IsNCON1(n) or IsNCON2(n));
| NRESETindication, NRESETresponse : ISNRST(n) ~ = IsNRSTind(n) or IsNRSTresp(n);
’ -> NSPSubsort IsNCON1(n) = IsNCONreq(n) or IsRCONind(n);
| h| : NSPSubsort -> Nat IsNCON2(n) = IsNCONresp(n) or IsNCONconf(n);
IpRequest, IsIndication : NSPSubsort -> Bool IsNDT(n) = IsNDTreq(n) or IsNDTind(n);
pq, _ne_ : NSPSubsort, NSPSubsort -> Bool IsNDIS(n) = IsNDISreq(n) or IsNDISind(n);
i eq IsNCONreq(n) = Subsort(n) eq NCONNECTrequest;
forpll IsNCONind(n) = '
s, s1 : NSPSubsort, n': Nat Subsort(n) eq NCONNECTindication;
ofsprt Nat IsNCONresp(n) = Subsort(n) eq NCONNECTresponse;
(NCONNECTrequest) = 0; IsNCOKconf(n) = Subsort(n) eq NCONNECTconflirm;
(NCONNECTindjcation) = IskDTreq(n) = Subsort(n) eq NDATArequesy;
Succ (h (NCONNECTrequest)); IsNDTind(n) = Subsort(n) eq NDATAindicafjion;
(NCONNECTresponse) = IsNDISreq(n) = Subsort(n) eq NDISCONNrequest;
Succ (K(NCONNECTindication)); IsNDISind(n) =
(NCONNECTconfirm) = Subsort(n) eq NDISCONNindication;
Succ(h(NCONNECTresponse)) ; IsNRSTind(n) = Subsort(n) eq NRESETindicdtion;
' (:"B;\T;\L uqucat) IsNRST (se;" "
Succ(h(NCONNECTconfirm)) ; IsNReq(n) = IsRequest(Subsort(n));
h(NDATAindication) = IsNInd(n) = IgIndication(Subsort(n))

Succ(h(NDATArequest));
h(NDISCONNrequest) =

Succ(h(NDATAindication));
h(NDISCONNindication) =

Succ(h(NDISCONNrequest));
h(NRESETindication) =

Succ (Succ(h(NDISCONNindication)));

endtype (* NSPClassifiers *)

type NSPParameterSelectors
is NSPClassifiers
opns

IsCallingOf, _IsCalledOf_

NAddress, NSP -> Bool

143

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

Userdata : NSP -> OctetString
eqns
forall
a, al, a2 : NAddress, d : OctetString, n : NSP
ofsoxrt Bool
a IsCallingOf NCONreq(ai, a2) = a eq al;
a IsCallingOf NCONind(ai, a2) = a eq al;
not (IsNCON1(n)) => a IsCallingOf n = false;
a IsCalledOf NCONreq(ai, a2) a eq a2;

11.4.3.3 Auxiliary Service definitions

The following definitions are used in the definitions above.
The RicherNaturalNumber is an extension of the Natural-
Number with Odd and Even functions. A Generalldentifier
specifies an infinite number of identifiers’.

type RicherNaturalNumber

a IsCalled0f NCONind(al, a2) = a eq a2;
ot (IsNCON1(n)) => a IsCalled0f n = false
ofgort OctetString

Userdata(NCONreq(al, a2)) = <>;
Userdata(NCONind(al, a2)) = <>;
Userdata(NCONresp) = <;
Userdata(NCONcont) = <>;
UYserdata(NDTreq(d)) = d;

Userdata(NDTind(d)) = d;

Userdata(NDISreq) = <;
Userdata(NDISind) = <>
Userdata(NRSTind) = <>
Userdata(NRSTresp) = <

endtype (* NSPParameterSelectors *)

typge NSPEquality

is [NSPParameterSelectors
opys

Jeq_, _ne_ : NSP, NSP -> Bool
eqis

foxall

41, a2, a3, a4 : NAddress,

d1, d2 : OctetString, ni, n2 : NSP

ofdort Bool

NCONreq(al, a2) eq NCONreq(a3, a4) =

(al eq a3) and (a2 eq a4);

NCONind(al, a2) eq NCONind(a3, a4) =

(al eq a3) and (a2 eq a4);

:]DTreq(di) eq NDTreq(d2) = d1 eq d2;
ot (IsNCON1(n1) oxr IsNDT(n1) or IsNCON1(n2) or
IsNDT(n2)) =>

nl eq n2 = Subsort(nl) eq\Subsort(n2);

11 ne n2 = not(nl eq n2)

endtype (* NSPEquality *)

tyde NetworkServicePrimitive
is [NSPEquality

oprs
JIsValidNCON2For_ : NSP, NSP -> Bool
eqrs
forall
1(-n2 : NSP

is NaturalNumber
opns
0dd, Even : Nat =-> Bool
eqns
forall
n : Nat
ofsort Bool
Even(0) = true;
Even(Succ(n)) = not(Even(n));
0dd(n) = not(Even(n))
endtype (* RicherNaturalNumber *)

type Generalldéntifier
is Boolean
sorts
Identifier
opns
Someldentifier : -> Identifier
AnotherIdentifier : Identifier -> Identifier
-eq_, .ne., .lt_ :
Jdentifier, Identifier -> Bool
eqns
forall
a, al : Identifier
ofsort Bool
Someldentifier eq Someldentifier =
true;
Someldentifier eq AnotherIdentifier(a) =
false;
Anotherldentifier(a) eq SomeIdentifier =
false;

AnotherIdentifier(a) eq AnotherIdentifier(al) = .

a eq al;
a ne al = not(a eq al);
endtype (* Generalldentifier x)

[it T L IE SPIUPIPRE ISR K

11.4.3.4 Global Behaviour

The process presented below describes the relatipnship
isi Con-

of sort—Bool
n2 IsValidNCON2For nl =
IsNCONconf(n2) and IsNCONreq(ni) or
(IsNCONresp(n2) and IsNCONind(ni))
endtype (¥ NetworkServicePrimitive *)

(*

144

nections), subject to Service constraints at both Service
boundaries. This process formally describes the structure
shown in Figure 11.16.

The Service constraints ensure, for instance, that the Ad-
dress component of an interaction at t (n) is a member of
the set tas (nas), that the identification of a Connection by
means of a Connection Endpoint Identifier is unique within

Tin this type, Jt_ has been included to ease checking with tools.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

the scope of any given Address, that the Entity is ready to
accept and support at least one Connection, and $o on.

The TS constraints are expressed by processes TClden-
tification and TPETCAcceptance: the former is imported
from the TS formal description, the latter is very similar to
the TCAcceptance process of the TS formal description,
but for the presence of a bound on the set of Transport
Addresses where TCs may be accepted. (This bound is

ISO/IEC TR 10167 : 1991 (E)

SomeTCEI for Someldentifier
AnotherTCEIl for AnotherIdentifier
endtype (* TCEndpointIdentifier *)

type TCEIdentification
is Pair actualizedby TAddress,
TCEndpointIdentifier using

behlaviour
TPEConnections [t, n]

GllobalConstraints [t, n]

(
TCIdentification [t]
I
TPETCAcceptance [t] (tas)

)
I
(
NCIdentification (n]

I
TPENCAcceptance [n] (nas)

)

where

11/4.3.5 Service Constraints
nection identification Data Types: No structure of

Seé¢ the definition of Pair in 11.4.3.9, and the definition of
Ge pr A te

sortnames
TAddress for Element
TCEI for OtherElement
Bool for FBool
TId for Pair
opnnames

TId for Pair
TA for First
TCEI for Second
endtype (* TCEIdentification ‘%)

type TCEldentifications
is Set actualizedby TCEIdentification using
sortnames
TId for Element
Bool for FBoolk
TIds for Set
endtype (* TCEIdentifications *)

(*-- --

The definition of NCEndpointidentifiers is very similar to
that of TC Endpointldentifiers.

- ___--*)

type NCEndpointIdentifier
is Generalldentifier renamedby

gsortnames
NCEI for Identifier
opnnames
SomeNCEI for Someldentifier

AnotherNCEI for Anotherldentifier
endtype (* NCEndpointIdentifier *)

type NCEIdentification
is Pair actualizedby NetworkAddress,
NCEndpointldentifier using

sortnames
NAddress for Element
NCEI for OtherElement
Bool for FBool
NId for Pair
opnnames

T4 £ Das
I FOITary

type TCEndpointIdentifier
is Generalldentifier renamedby
sortnames
TCEI for Identifier
opnnames

NA for First
NCEI for Second
endtype (* NCEIdentification *)

type NCEIdentifications
is Set actualizedby NCEIdentification using
sortnames

NId for Element

Beol for FBool

145

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

NIds for Set
endtype (* NCEIdentifications *)

(*

Connection' identification Processes: Processes TCl-
dentification and NCldentification prescribe that at no
Transport or Network address may any Endpoint Identifier
be assigned to more than one Connection at any given time.

" TCIdent [t] (Remove(ti, Use)))
endproc (* TCIdent *)
process NCIdentification[n] : noexit:=
NCIdent [n] ({} of NIds)
endproc (* NCIdentification *)

: NIds) : noexit:=
NCEI ?nsp : NSP

process NCIdent[n] (Use

n 7na : NAddress 7ncei :
[IsNCONL(nsp)—implies
k rsp

Any two distinct instances of TConnection that concurrently
accgss the same TSAP are distinguishable by the TS user.
This|is achieved by means of the TC Endpoint Identifier
(TCEI), which is passed together with every Service Primi-
tive Jt every TSAP. It is to be required, therefore, that:

t any given TSAP, no TCEI may be assigned to more
than one TConnection at any given time; and

b) 4t each TSAP, every TConnection employs the same
TCEI for the whole lifetime of the TC it represents.

a)

the latter constraint can be specified within the def-
of TConnection, the former constraint has a more
global scope, and is represented by process TCldentifica-
tion [as follows.

Track is kept of the TCEP identifiers in use, for each TSAP,
by means of the parameter Use, which is a finite set of
pairg of sort Tld = <TAddress, TCEI>. (The type definition
TCE]|dentifications above describes such sets.) -

Usel|is initially empty. A pair <ta, tcei> is to be in Use if,
and only if, tcei is assigned to some TC that accesses the
TSAP having address ta.

Procpss TCldent allows any T-CONNECT request or indi-
to be passed at any given TSAP of address.ta only
with such tcei that the pair <ta, tcei> is notin Use!-No other
TSP|is constrained but, upon execution of a~J-Disconnect
Primjtive, the associated <ta, tcei> is removed from Use.

NC identification at the Network Service. boundary is very
similar.

NOTE — The following technical detailis to be taken into account:
Insett(e,s) = {e} U s. Thetefore Insert(e,s) = s whenever
ecs

procepss TCIdentification[t] : noexit:=
TCIdent [t]1°({} of TIds)

endpfpoc/ (¥l TCIdentification *)

(NId(na, ncei) NotIn Use)];
(let ni : NId = Nld(na, ncei)
in
[not (IsNDIS(nsp))] ->
NCIdent [n] (Insert(ni, Use))
)]
[IsNDIS(nsp)] ->
KCIdent [n] (Remove(ni, Use)))
endproc (* NCldent *)

(*

Connection Acceptance: At any time the Protocol Entity is
allowed to accept establishment of new Connections jat an
only finite set of Connection Endpoints. At the TS bound-
ary, this.is described by process TPETCAcceptance, which
internally chooses a finite set tias of <ta, tcei> pairs be-
fore.engaging in any interaction. If the interaction stgrts a
new TC, the Endpoint where the interaction occurs must be
among those represented by tias. Clearly, the addrgsses
of elements of tias must be accessibie by the Entity.
specified by using the function Addresses, defined ih the
data type TPETCAcceptance, that when applied to g set
tids of global TCEls returns the set of addresses that are
addresses of elements of tids.

Upon each choice of tias, however, the set of Endgoints
where new Connections can be started is actually a syibset
of tias, because of the presence of a separate constraint
on TC identification. Precisely, a new Connection car| only
be started with a pair <ta, tcei> that is in tias but not in
Use. See process TCldentification above. Upon |each
choice of tias, therefore, the set of Endpoints wherel new
Connections can be started is represented by the difference
tias - Use.

The Protocol Entity is allowed internal non-determinism in
the dynamic choice of which and how many Endpointq may
be allocated to new Connections, provided the follgwing
minimal functionality requirement is met: if no TC is agtive,
the Entity must be able to accept at least one TC, i.g. the
subset of tias where new TCs can be actually accgpted

process TCIldent[t](Use
t ?ta : TAddress 7tcei :
[IsTCON1(tsp) implies
(TId(ta, tcei) NotIn Use)];
(let ti : TId = TId(ta, tcei)
in
[not (IsTDIS(tsp))] ->
TCIdent [t] (Insert(ti, Use))

: TIds) : noexit:=
TCEI ?tsp : TSP

0
[IsTDIS(tsp)] ->

146

must be non-empty in this case.

Similarly, the following constraints are described by process
TPENCAcceptance:

a) NS Primitives may only be exchanged at NS addresses
accessed by the Entity; and

b) at all times at least one NC Endpoint is provided; this
may allow an N-CONNECT request or indication to oc-
cur.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

The TPENCAcceptance definitions are very similar.

NOTE — In fact, the minimal functionality requirementis equivalent
to the simpler requirement that tias be non-empty in any case, if
the constraint imposed by TCidentification is taken into account.
This is so because:

a) if no TC is active, then Use is empty, thus the subset of tias
where new TCs can be accepted is tias itself; whereas

b) if some TC is active, then the choice of a non-empty tias still
allows that the subset where new TCs are accepted could be
emphy—i-e e as included-in-Use-

rRO-O

type TPETCAcceptance

is TAddresses, TCEIdentifications

opns
Addresses

eqns

: TIds -> TAddresses

‘oral.
ta | TAddress, tcei : TCEI, tids : TIds
ofsort TAddresses
Addresses({}) = {};
Addresses(Insert(TId(ta, tcei), tids)) =
Ifsert(ta, Addresses(tids))
endtype (* TPETCAcceptance *)

process TPETCAcceptancel[t]
(tas : TAddresses) : noexit:=
choice¢ tias : TIds []
{tias|ne {} and
(Addtesses(tias) IsSubsetOf tas)] ->
i .
t fta : TAddress Ttcei : TCEI 7tsp : TSP
[ta IsIn tas and (IsTCON1(tsp) implies
(TId(ta, tcei) IslIn tias))];
TPETCAcceptance [t] (tas)
endprpc (* TPETCAcceptance *)

type TPENCAcceptance
is NAfldresses, NCEIdentifications
@
Addtesses : NIds -> NAddresses
eqns
forall
na [NAddress, ncei
ofsort NAddresses
Addresses({}) = {};
Addresses(Insért(NId(na, ncei), nids)) =
Ihsert(na, Addresses(nids))
endtype~(* TPENCAcceptance *)

: NCEI, nids : Nlds

ISO/IEC TR 10167 : 1991 (E)

TPENCAcceptance [n] (nas)
endproc (* TPENCAcceptance *)

(k==

11.4.3.6 Protocol Constraints

General: TPEConnections describes the relationship be-
tween provision of TCs and usage of NCs. It consists of
the unsynchronised, i.e. independent, parallel composition:

z i imite z i a e S PEdon-
nection. The latter describes the relationship between,
and constrains the occurrence of, TSP and NSPint

UniqueLocalReferences ensures for all.Connectiond the

use of unique local references in blocks®.

-— ———— .*)
process TPEConnections[t, n] : noexit :=
TPEConnection [t ™n]
i
i; TPEConnections [t, nl
endproc (* TPEConnections *)

Provision of a Transport Connection: TPEConnection
is’"decomposed into three processes. See figure 11.17

a) Constraints at the t gate only: these are imported

¢) Constraints that relate the events at t to those at nland

the response to Protocol errors.

NOTE — Termination of both of the processes that represe
ends of the Connection is a clearly sufficient representation

process TPENCAcceptance([n]
(nas : NAddresses) : noexit:=
choice nias : NIds []
[nias ne {} and
(Addresses(nias) IsSubsetOf nas)] ->
13
n ?na : NAddress 7ncei : NCEI ?nsp : NSP
[na IsIn nas and (IsNCON1i(nsp) implies
(¥Id(na, ncei) IsIn nias)));

construct below.

*)

process TPEConnection[t, n] : exit:= ’
TCEP [t] (TSUCalling) [] TCEP [t] (TSUCalled) ~
1[]] E

2jn this process, | has been included to ease checking with tools.

147

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

(RelationTSPandNSP [t, n] [> exit)

{[n]l '

NCEP [n] (NSUCalling) [] NCEP [n] (NSUCalled)
endproc (* TPEConnection *)

(*

Service UserRoles are ‘calling’ and ‘called’, and are de-
fined using Doublet, which is a sort with two distinct values.

NOTE — Both processes may terminate at any time: the end of
the local (i.e. at a TCEP) lifetime of the TC is actually determined
by the local ordering of Service Primitives.

process TCEPAddress[t] : exit:=

t ?ta : TAddress ?tcei : TCEI 7tsp : TSP ;
ConstantTA [t] (ta) [> exit

endproc (* TCEPAddress *)

tﬂpe TSUserRole

ig Doublet renamedby
sqrtnames

TSUserRole for Doublet
ofnnames

TSUCalling for One
TSUCalled for Two
endtype (* TSUserRole *)

type NSUserRole
ig Doublet renamedby
sqrtnames
NSUserRole for Doublet
opnnames
SUCalling for One
SUCalled for Two
endtype (% NSUserRole *)

Sgrvice Constraints: The definitions that relate tothe TS
bgundary are presented, followed by similar NS définitions.

_____ *)
prlocess TCEP[t](role .: TSUserRole) : exit:=
TCEPAddress . [t]
1
TCEPIdentification [t]
]
TCEPSPOrdering [t].\(role)
endproc (* TCEP #)
prpcess NCEP[n](role : NSUserRole) : exit:=

CEPAddress [n]

CEPIdentification [n]
H

process ConstantTA[t](ta : TAddress) : ‘noexit:=
t !'ta ?tcei : TCEI ?tsp : TSP ;
ConstantTA [t] (ta)

endproc (* ConstantTA *)

process TCEPIdentification[t]\ : exit:=

t ?ta : TAddress ?tcei :»“TCEI ?tsp : TSP ;
ConstantTCEI [t] (tcei) [> exit

endproc (* TCEPIdentification *)

process ConstantTCEI[t](tcei : TCEI) : noexlit:=
t ?ta : TAddress !tcei 7tsp : TSP ;
ConstantTCEI [t] (tcei)

endproc ,(¥.ConstantTCEI *)

process’ NCEPAddress[n] : exit:=

n.?na : NAddress 7?ncei : NCEI ?nsp : NSP ;
ConstantNA [n] (na) [> exit

endproc (* NCEPAddress *)

process ConstantNA[n] (na : NAddress) : noexfit:=
n fna ?ncei : NCEI 7nsp : NSP ;
ConstantNA [n] (na)

endproc (* ConstantNA *)

process NCEPIdentification{n] : exit:=

n ?na : NAddress ?ncei : NCEI 7nsp : NSP ;
ConstantNCEI [n] (ncei) [> exit

endproc (* NCEPIdentification *)

process ConstantNCEI[n)(ncei : NCEI) : noexfit:=
n ?na : NAddress !ncei 7nsp : NSP ;
ConstantNCEI [n] (ncei)

endproc {* ConstantNCEL *)

(kmmmmmmmme

NCEPSPOrdering [n] (role)
endproc {* NCEP *)

(x --

Throughout the lifetime of a Transport Connection the same
Identification, a pair <TAddress, TCE!l>, is used. Its value
is determined on the first event, in cooperation with the TS
User, and thereafter is constant.

148

P]
TCEPConnect2. This is due to the possible release of the
TC even before (thus preventing) successful establishment
of the TC, but only after the beginning of the TC lifetime.

The T-CONNECT Primitive executed in TCEPConnect1 is
relevant information for TCEPConnect2, as constraints ap-
ply to the T-CONNECT response/confirm that depend on
the T-CONNECT indication/request.

Successful TC establishment enables entering the data

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

transfer phase, which at each TCEP is specified by TCEP-
DataTransfer. The behaviour in this phase is independent
of the rdle of the TCEP.

TC release at a TC Endpoint consists of a T-Disconnect
Primitive execution, as represented by TCEPRelease. This
can occur at any time after the first -~CONNECT.

NOTE — The last alternative in the definition of TCEPSPOrdering
caters for the possibility that the Network Connection is released
without execution of a TSP at this TCEP.

ISO/IEC TR 10167 : 1991 (E)

TCEPDataTransfer [t]
endproc (* TCEPDataTransfer *)

process TCEPRelease[t] : exit:=

t 7ta : TAddress 7tcei : TCEI 7tsp : TSP
[1sTDIS(tsp)];

exit

endproc (* TCEPRelease *)

(*

process TCEPSPOrdering[t](role : TSUserRole)
exit:=

TCEPQonnect1 [t] (role)

>> accept tsp : TSP in

(

(

‘ TCEPConnect2 [t] (tsp)
>>

TCEPDataTransfer [t]
)
>
TCEPRelease [t]
)
(] [role eq TSUCalled] -> exit
endpfoc (* TCEPSPOrdering *)

process TCEPConnect1({t]

(role : TSUserRole) : exit(TSP):=
[role eq TSUCallingl ->

t Tta : TAddress ?tcei : TCEI ?tsp : TSP
[IsTCONreq(tsp) and (ta IsCallingQOf tsp)];

exit (tsp)

)
[role eq TSUCalled] ->

t Tta : TAddress 7tcei : TCEI ?tsp(:,TSP
[IsTCONind(tsp) and (ta IsCalledDf tsp)];
exlt (tsp)

.endp:'oc (* TCEPConnectl *)

process TCEPConnect2[t] (tspl‘: TSP) : exit:=

t 7ta : TAddress 7tcei, '+ TCEI ?tsp2 : TSP
{t3p2 1sValidTCON2For) 'tspll); exit

endpyoc (* TCEPConnect2 *)

- s e o v e e o O o e

(kmfems

See the definition of the data type TransportServicePrim-
itive |for-the definition of the boolean function IsValidT-

The definition of NCEPSPOrdering is similar to-the |defi-
nition of TCEPSPOrdring. The most significanit-diffenence
between both definitions is found in the process NCEPData-
Transfer where N-RESET Primitives may.occur between
successive N-DATA Primitives.

- ———t=%)

process NCEPSPOrdering(n]
(role : NSUserRole) G/exit:=
NCEPConnect1l [n] (role)
>> accept nsp (.NSP in
(
(
NCEPComnect2 [n] (nsp)
>>
NCEPDataTransfer [n]
)
[>
NCEPRelease [n]
) ,
[] [role eq NSUCalled] ~-> exit
endproc (* NCEPSPOrdering *)

process NCEPConnecti[n]
(role : NSUserRole) : exit(NSP):=
[role eq NSUCalled] ->
n ?na : NAddress ?ncei : NCEI 7nsp : NSP
(IsNCONreq(nsp) and (na IsCallingOf nsp)]
exit (nsp)
(]
[role eq NSUCalled] ->
n 7na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNCONind(nsp) and (na IsCalledOf nsp)];
exit (msp)
endproc (* NCEPConnectl *)

process NCEPConnect2[n] (nspi : NSP) : exit:=

n 7na : NAddress 7ncei : NCEI ?nsp2 : NSP
[nsp2 IsValidNCON2For nspil;

exit

CON ;

The following describes the Data Transfer Phase and Re-
lease Phase at a TCEP.

process TCEPDataTransfer([t] : noexit:=
t 7ta : TAddress ?tcei : TCEI ?tsp : TSP
[IsTDT(tsp)];

endproc (* NCEPConnect2 *)

process NCEPDataTransfer[n] : noexit:=

n ?na : NAddress 7ncei : NCEI ?nsp : NSP
[1sNDT(nsp)1;

NCEPDataTransfer (n]

a

n 7na : NAddress ?ncei
[IsNRSTind(nsp)];

¢ NCEI 7nsp : NSP

149

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

n 7na : NAddress 7ncei
[IsNRSTresp(nsp)];

NCEPDataTransfer[n]

endproc (* NCEPDataTransfer *)

: NCEI ?nsp : NSP

: exit:=
: NCEI 7nsp : NSP

process NCEPRelease[n]

n 7na : NAddress 7ncei
[1sNDIS(nsp)];

exit

endproc (* NCEPRelease *)

however, since such information cannot be derived from the
informal description.

process RelationTCandNC[t, n] : noexit:=
(TCNCProvision[t, n] >> IgnoreUntilDIS [t, nl)
[> TCNCRelease [t, n]

endproc (% TCNCProvision *)

(e mmm e e e e e e

dgscribes the constraints between TSPs and NSPs, which

P{otocol Constraints: The process RelationTSPandNSP
may contain blocks. It consists of four parts:

a] process TNCNProvision describes constraints relating
to the assignment of the TC Connection to the NC
Connection. [t deals with T-CONNECT request, T-
CONNECT indication, N-CONNECT request and N-
CONNECT indication Service Primitives.

b] process BlockHandling relates TSPs through valid
blocks to NSPs. It specifies which NSPs that carry
blocks should occur after a given TSP and vice versa.
It deals with N-CONNECT response, N-CONNECT in-
dication, T-DATA and N-DATA Service Primitives.

c] process ErrorDetectionAndHandling specifies the de-
tection of blocks that are invalid or constitute Protocol
errors. Furthermore it specifies what actions are to be
taken in case of any error. It deals with N-RESET and
N-DATA Service Primitives.

d] process TCNCRelease specifies the de-assignment
of Transport and Network Connection. It 'deals with
T-DISCONNECT and N-DISCONNECT Service Primi-
tives.

*)
priocess RelationTSPandNSP[t, n] : noexit:=
BlockHandling [t, n]
[ErrorDetectionAndHandling [t, n]

| || RelationTCandNC [t, n]
endproc (* RelationTSPandNSP #)

(€ e

A Network Connection may be created on request of the TS
user or on request of the NS provider.

NOTE - The possibility that a Netwotk \Connection is accepted,
but does not result in a T-CONNECT indication is catergd for by
the ability of an Entity 1o initiate.a'NCrelease at any time.

-------------------- - m—mmem k) ’

process TCNCProvision [t, n] : exit :=
TCNCInitiator\[t, n] [] TCNCResponder [t,]
endproc (¥ TCNCProvision *)

process)TCNCInitiator[t, n] : exit:=

t ?ta : TAddress 7tcei : TCEI ?tsp : TSP
[IsTCONreq(tsp)];

n 7na : NAddress ?ncei : NCEI 7nsp : NSP
[IsNCONreq(nsp)];

exit

endproc (* TCNCInitiator *)

process TCNCResponder[t, n] : exit:=

n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNCONind(nsp)];

t 7ta : TAddress 7tcei : TCEI ?tsp : TSP
(IsTCONind(tsp)];

exit

endproc (* TCNCResponder *)

(x -

TCNCReloase describes the constraints relatingl to de-
assignment of the TC from the underlying NC. A Transport
Connaection release can be initiated in three, possible con-
current ways. The fact that two or more of these cases
may occur independently is reflected by the interleaving of
the processes. The Service constraints ensure that every
Connection is.closed only once:

RelationTCandNC describes the constraints relating to as-
signment of the TC to an NC. It may either create a new
Network Connection as a TC initiator or accept a Network
Connection as a TC responder. In both cases, the lifetime
of the TC will be directly related to the lifetime of the corre-
sponding NC.

Implementations will also relate the parameters of corre-
sponding T-=CONNECT and N-CONNECT Primitives, e.g.
addresses or QoS values. This is not formally described,

150

a) UserRelease describes the release initiated by the
Transport Service User; and

b) LocalRelease describes the release initiated by the lo-
cal Transport Entity; and

¢) RemoteRelease describes the release initiated by the
remote Transport Entity or by the NS provider. No dis-
tinction can be made between a NS provider initiated
disconnect and a remote Entity initiated disconnect.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

0 e 4 0 e e e e G e A S e i *)

process TCNCRelease[t, n] : noexit:=

UserRelease [t, n]
111

LocalRelease [t, n]
L

RemoteRelease [t, n]
endproc (* TCNCRelease *)

[et et D L Dt

ISO/IEC TR 10167 : 1991 (E)

‘direct’. Non-directblocks are TDT which is handled by Dat-
aBlockTransfer. and TBR which is handled by TBRTrans-
fer. The usage of the unsynchronised parallel operator is
justified by the fact that the sets of events in which the par-
allel components may engage are disjoint. Requirements
on sent blocks, for example the maximum length of a block,
are represented by SendBlockConstraints

The| Transport Service User may initiate a release by the
T-DISCONNECT Request Service Primitive.

pro¢ess UserRelease[t, n] : noexit:=

t ?¢a : TAddress ?tcei : TCEI ?tsp : TSP
[IsTDISreq(tsp)];

n 7pa : NAddress ?ncei :
endproc (* UserRelease *)

NCEI !NDISreq ; stop

(G TR

The| release initiated by the remote Entity or by the NS
proyider is indicated to the Entity using an N-DISCONNECT
indication Service Primitive. The TS user is informed using
a T-DISCONNECT indication.

progess RemoteRelease[t, n] : noexit:=

n 7pa : NAddress ?ncei : NCEI ?nsp : NSP
[1s¥DISind(nsp)];

t 74a : TAddress ?tcei : TCEI !TDISind ; stop
endproc (* RemoteRelease *)

(*

An éntity may at any time decide to\initiate release of the
Trarn)sport Connection. This includes the following cases
in which no Transport or Network Service Primitives, other
thar] DISCONNECT, are allowed:

a) after expiry of the-timer set on sending a TCR block;
nd

b) after an N-RESET response.

proc¢ess’ LocalRelease[t, nl

process BlockHandlinglt, n] : noexit:=

(
DirectBlockTransfer [t, n]
i
DataBlockTransfer [t, n]
11
TBRTransfer [n]
)
| [n]}
SendBlockConstraints' [n]
endproc (* BlockHandling *)

(x -

The Calling and Called addresses of T-CONNECT [Primi-
tives should be related to the corresponding optional pxten-
sion addresses of the corresponding TCR and TCA Qlocks.
Thevinformation presented in the informal description is
however not sufficient to describe formal constraints relating
to this relationship. The two components of DirectBlock-
Transfer have disjoint interaction sets. This justifies their
unsynchronised parallel composition.

NOTE — Process DirectUp contains an incompatibility between
T.70 and ISO Transport Class 0. In Transport Class 0, after feceipt
of a TCC block, the connection must be released, while |n T.70
another TCR block may be sent.

*)

process DirectBlockTransfer[t, n] : noexit:=
DirectUp [t, n] ||| DirectDown [t, n]
endproc (* DirectBlockTransfer *)

process DirectDown[t, n] : noexit:=

t ?ta : TAddress ?tcei : TCEI ?tsp : TSP
[IsTCONreq(tsp)];

n ?na : NAddress 7ncei : NCEI ?nsp : NSP
[IsN¥DTreq(nsp) and ISTCR(Userdata(nsp))];

t ?ta : TAddress ?tcei :
1H

n ?na : NAddress 7ncei :

endproc (* ReleaseTC *)

NCEI !NDISreq ; stop

BlockHandling: This process relates TSPs and NSPs
through blocks. The TCR, TCC and TCA blocks are termed

""" *) DirectDown [t, n]
a
: noexit:= + ?2ta + TAddress 7tcei TCEI ‘?ch + TSP
TCEI !TDISreq ; stop [1sTCONresp(tsp)];

n ?na : NAddress 7ncei : NCEI 7nsp : NSP
[IsNDTreq(nsp) and ISTCA(Userdata(msp))];

DirectDown [t, n])

endproc (* DirectDown *)

process DirectUp[t, n] : noexit:=

n 7na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and IsTCR(Userdata(nsp))];

161

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

t ?ta : TAddress ?tcei :
[IsTCONind(tsp)];
DirectUp [t, nl
(1
n ?na : NAddress ?ncei : NCEI 7nsp : NSP
[IsNDTind(nsp) and IsTCA(Userdata(nsp))];
t 7ta : TAddress ?tcei : TCEI !TCONconf ;
DirectUp [t, nl
8]

n ?na : NAddress 7ncei : NCEI 7nsp : NSP

TCEI ?tsp : TSP

type TSDUS
is BasicTSDUS
opns
ReplaceTop : OctetString, TSDUS -> TSDUS
AddSegment : OctetString, TSDUS -> TSDUS
eqns
forall
s, 81, t :
ofsort TSDUS
ReplaceTop(t, Empty) = Empty;

OctetString, q : TSDUS

[IsNDTind(nsp) and IsTCC(Userdata(nsp))];
(
t|?ta : TAddress 7tcei : TCEI !TDISind ;
jrectUp [t, nl

(=4

f]
n|?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and IsTCR(Userdata(nsp))];

rectUp [t, n)

(=

endproc (* DirectUp *)

(€ e e e E L L LTt

A data structure is needed for the description of the con-
stra|nts that relate to transfer of data blocks:

Thig data structure is used for the sequence of TSDUs con-
veyed by T-DATA request and for that of TSDUs to be

emgnt of a queus, using standard OctetString-6perations.
Thege functions enable the description of 'segmenting and
reagsembling in a straightforward way (see process Dat-
aBlockTransfer):

a) ReplaceTop relates to the segmenting of the earliest
SDU of TSDUdown into.outgoing TDT blocks; and
b) AddSegment relates.to the reassembling of the latest

SDU of TSDUup from incoming TDT blocks.

The definition of TSDUS is based on a generic description of
Quaue (see 11:4.3.9) to which the operations ReplaceTop
and |AddSegment are added.

ReplaceTop(t, Add(s, Empty)) =
Add(t, Empty);
ReplaceTop(t, Add(s, Add(s1, q))) =
Add(s, ReplaceTop(t, Add(si, @)));
AddSegment (s, Empty) = Empty;
AddSegment(s, Add(s1, q)) = Add(s ++ s1, q
endtype (* TSDUS *)

(*

DataBlockTransfer is split into TransferDown whi
scribes the segmenting 'of a T-DATA request into outgoing
TDT blocks and their transfer through the Network Service,
and TransferUp which describes the reassembling|of in-
coming TDT blocks into TSDUs and their transfer to the TS
user by.means of T-DATA indication. The initial vglue of
the parameter of TransferUp enables this process t¢ start
reassembling of incoming TDT blocks. The value of et in
TOT blocks denotes presence of an End-Of-TSDU dell;niter.

No internal non-determinism is described in the following
processes. The internal non-determinism on the size ¢f out-
going data blocks, and the constraint that follows frgm the
related negotiation, are described in process SendBlock-
Constraints.

- e e o .._*)

process DataBlockTransfer[t, n] : noexit:=
TransferUp [t, n] (Add(<>, Empty))

i1l TransferDown [t, n] (Empty)

endproc (* DataBlockTransfer *)

process TransferDown[t, n]
(down : TSDUS) : noexit:=
t ?ta : TAddress ?tcei : TCEI ?tsp : TSP
[1sTDTreq(tsp)];
TransferDown [t, n] (Add(Userdata(tsp), down)
0
(

choice et : EOTsdu, ud, rd, s :
Lloed aa

~

OctetString []

type BasicTSDUS
is Queue actualizedby OctetString, Boolean using
sortnames:
OctetString for Element
TSDUS for Queue
Bool for FBool
endtype (* BasicTSDUS *)

152

[{rd—++udTeTopOfdown)—and
(s Encodes TDT(et, ud))] ->
n ?na : NAddress 7ncei : NCEI !NDTreq(s) ;
(.

[et eq yes] ->
TransferDown [t, n] (RemoveTop(down))
4]
[et eq nol ->
TransferDown [t, nl
(ReplaceTop(xrd, down))

h de- ‘

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

)
)

endproc (* TransferDown *)

process TransferUp[t, n](up : TSDUS) : noexit:=

(
choice et : EOTsdu, ud : OctetString []
n 7na : NAddress 7ncei : NCEI ?nsp : NSP
[TDT(et, ud) Decodes Userdata(nsp)];
(

ISO/IEC TR 10167 : 1991 (E)

process MaxLengthSend[n](ms : DTSize) : noexit:=
IgnorelUntilNDTreq ([nl]
>
n ?na : NAddress ?ncei :
[IsNDTreq(nsp) and
(Length(Userdata(nsp)) le DTSize(ms))];
MaxLengthSend [n] (ms)

endproc (* MaxLengthSend *)

NCEI ?nsp : NSP

(*

let eq yes] ->
TransferUp [t, n]
(Add(<>, AddSegment(ud, up)))
0
[et eq nol ->
TransferUp [t, n] (AddSegment(ud, up))

l

choice ud : OctetString [

(ud IsTopOf up and

not (RemoveTop(up) eq Empty)] ->
t ?ta : TAddress 7tcei : TCEI !TDTind(ud) ;
TransferUp [t, n] (RemoveTop(up)

endproc (* TransferUp *)

The| process TBRTransfer allows transmission or receipt
of a| TBR block at any time.

pro¢ess TBRTransfer[n] : noexit:=

n ?ha : NAddress ?ncei : NCEI ?nsp :-NSP
[IsTBR(Userdata(nsp))]; TBRTransfer [n]
endproc (* TBRTransfer *)

(*- . -— -

SendBlockConstraints specifies that the size of an outgo-
ing [FDT Block shall not exceed the maximum TPDU size
negptiated in the Connection establishment.

ErrorDetectionAndHandling: This process specifies er-
ror detection, determination whether or not a.block is valid
block, and error handling. Three sources’of .errors gan be
identified:

a) errors detected by the Network Sarvice Provider fesult-
ing in an N-RESET Primitive; and

b) errors detected by the peer Entity resulting in the receipt
of a TBR biock; and '

¢) errors detected by, this Entity.

For each of these Sources a process specifies the |corre-
sponding constraints on error detection and error handling.
The process NoDIS specifies that a normal release isinever
an error.

*)

process ErrorDetectionAndHandling(t, n]
noexit:=
NetworkDetectedErrors [t, n]
]
PeerEntityDetectedErrors [t, nl
il
EntityDetectedErrors [t, n]
endproc (* ErrorDetectionAndHandling *)

(kv

is represented by the use of the >> operator. An Nétwork
detected error is always indicated to the NS user usjng an
N-RESET indication Primitive which is answered by an
N-RESET response and the Connection is released

The distinction between error detection and error hé{dling

B Bl L T T *) *)
pro¢ess SendBlockConstraints{n] : noexit:= process NetworkDetectedErrors[t, n] : noexiti=
Ign retinti1TCA [n] NetworkErrorDetect [nl
[> i
(choice b : Block, ds : DTSize (IgnoreTSPbutDIS [t] [> exit)
1 >> NetworkErrorHandling [t, nl
[ds IsDTSizeOf b and IsTCA(b)] -> endproc (* NetworkDetectedErrors *)
n 7na : NAddress 7ncei : NCEI ?nsp : NSP
[Userdata(nsp) Encodes bl; process NetworkErrorDetect[n] : exit:=

MaxLengthSend [n] (ds))
endproc (* SendBlockConstraints *)

n ?na : NAddress 7ncei :
(IsNRSTind(nsp)]; exit
endproc (* NetworkErrorDetect *)

NCEI 7nsp : NSP

163

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process NetworkErrorHandling[t, n] : noexit:=
n ?na : NAddress ?ncei : NCEI !NRSTresp ; stop
endproc (* NetworkErrorHandling *)

---*)

process EntityDetectedErrors[t, n] : noexit:=
EntityErrorDetect ([n]

I

(* ——————— e (
NoNRST [n] || NoTBRReceived [n]
Whenever a TBR block is received, the Connection is re- e it (E T 0 String)
leased according to the procedure in 11.2.5.2. , exit (any ErrorType, any OctetString
1N
___________ *) (
IgnoreTSPbutDIS [t]
pro¢ess PeerEntityDetectedErrors[t, n] : noexit:= >
| TuerEntityErrorDetect (n] exit (any ErrorType, any OctetString)
!)
(JgnoreTSPbutDIS [t] [> exit) >> accept err : ErrorType, s » OctetString in
>> EntityErrorHandling [t{™n] (err, s)
PgerEntityErrorHandling [t, n] endproc (* EntityDetectedErrors *)
endproc (* PeerEntityDetectedErrors *)
(* ____________________ e e e
progess PeerEntityErrorDetect{n] : exit:=
n ?pa : NAddress ?ncei : NCEI ?nsp : NSP . - . .
(1sTBR (Userdata(nep))]; exit The Entity detected errors can be divided into three gfoups:
endproc (* PeerEntityErrorDetect) a) receiptof ablock which constitutes a Protocol errafr; and
progess PeerEntityErrorHandling [t R n] : noexit:= b) l’eceipt Of a block W'th a incorrect SiZG; and

stoj
endgroc (* PeerEntityErrorHandling *)

(k=i

All ather errors are detected by the TP Entity. To be able'to
distipguish them, a data structure ErrorType is introduced.

typg ErrorType
is TenTuplet renamedby

¢) «teceipt of a syntactically incorrect block.

- ------*)

process EntityErrorDetect[n]
exit(ErrorType, OctetString):=
OrderingConstraints [n]
|| SizeConstraints [n]
Il InvalidBlockConstraints [n]}
endproc (* EntityErrorDetect *)

[et L T SO R

y the

-*)

sorfnames
ExrorType for TenTuplet All constraints on received blocks are always present| This
opnrjames justifies the full synchronisation between the differenllerror
EfcodingError for One detection processes. Each process may be aborted
ExrorAfterTCR for Two occurrence of an error in one of the other processes| This
EfrorAfterNCONresp) for Three is represented by ‘[> OtherError()'.
ExrorAfterTDT for Four NOTE — When the number of values of sort ErrorType Is greater
ExrorAfterTCC for Five than the number of error detection processes, all these prodesses
EzrorAfter?CA for Six may exit at any time.
IflegalDTSize for Seven
IllegalUserdataSize for Eight The process OrderingConstraints detects the f[ailure
EnptyTDT for Nine cases mentioned in 11.1.7.2%.
IllegalParameter for Ten
endtype
L -- process OrderingConstraints{n]

EntityDetectedErrors deals with all errors, except for N-

RESET and received TBR blocks. EntityErrorDetect ex- .

ports two values of sorts ErrorType and OctetString re-
spectively. Both values are used when sending TBR blocks.

154

exit(ErrorType, OctetString):=
(AfterTCRSend [n] [> OtherError (ErrorAfterTCR))

3For completeness it would be necessary to add processes to
detect if the source reference and destination reference of succes-
sive Blocks are correct.

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

(léterTCASend [n] [> OtherError (ErforAfterTCA))
(L;terTDTSend [n] [> OtherError (ErrorAfterTDT))
(L;terTCCSend [n] [> OtherError (ErrorAfterTCC))
(ElltilptyTDT [n] [> OtherError (EmptyTDT))

(H

ISO/IEC TR 10167 : 1991 (E)

AfterTCASend [n]
8]

n 7na : NAddress ?ncei : NCEI ?nsp : NSP
(IsNDTind(nsp) and not(IsTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))]l;

exit (ErrorAfterTCA, Userdata(msp))))

endproc (* AfterTCASend *)

(*

AfterNCONresp [n]
>
OtlherError (ErrorAfterNCONresp)
)

endgroc (* OrderingConstraints *)

G

Aftef sending a TCR the recsipt of a block which is not a
TCQ, TCA or TBR constitutes an error.

OB *)

prodess AfterTCRSend([n]
exit (ErrorType, OctetString):=
IgndreUntilSendTCR [n]
>
n ?ria : NAddress ?ncei : NCEI ?nsp : NSP
[YsNDTreq(nsp) and IsTCR(Userdata(nsp))l;
(IgnoreUntilNDTind[n] [>
(1] ?na : NAddress ?ncei : NCEI ?nsp : NSP
[I1sNDTind(nsp) and (IsTCA(Userdata(nsp))
or IsTCC(Userdata(nsp)) or
1sTBR(Userdata(nsp)))];
AfterTCRSend {n]
{1
n ?na : NAddress ?ncei : NCEI ?nsp‘: NSP
[IsNDTind(nsp) and not(IsTCA(Userdata(nsp))
or IsTCC(Userdata(nsp))wor
IsTBR(Userdata(nsp)d)];
exit (ErrorAfterTCR, Userdata(nsp))))
endgroc (* AfterTCRSend %)

e =

Aftef sending a TCA, the receipt of a block which is not a
TDT|or TBR constitutes an error.

After sending a TDT, receipt of a block which is not la TDT
or TBR is an error.

__h__*)

process AfterTDTSend[n]
exit (ErrorType, OctetString):=
IgnoreUntilSendTDT [n]
>
n ?na : NAddress 7ncei‘:/NCEI ?nsp : NSP
[IsNDTreq(nsp) and\ISTDT(Userdata(nsp))];
(IgnoreUntilNDTind[n] [>
(n ?na : NAddress ?ncei : NCEI 7nsp : NSP
[1sNDTind(nsp) and (IsTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))]; AfterTDTSend [n]
1
n ?ha ! NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and not(ISTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))];
exit (ErrorAfterTDT, Userdata(nsp))))
endproc (* AfterTDTSend *)

(*------___--_------_-_-_-_---__; ____________ ————

After sending a TCC, receipt of a block which is not 3 TCR
or TBR is an error.

__-__*)

process AfterTCCSend[n]
: exit(ErrorType, OctetString):=
IgnoreUntilSendTCC [n]
>
n ?na : NAddress 7?ncei : NCEI ?nsp : NSP
[IsNDTreq(nsp) and IsTCC(Userdata(nsp))];
(IgnoreUntilNDTind[n] [>
(n 7na : NAddress 7ncei : NCEI ?nsp : NSP
(IsNDTind(nsp) and (IsTCR(Userdata(nsp))
or IsTBR(Userdata(nsp)))]; AfterTCCSend [n]
1
n ?na : NAddress 7ncei : NCEI ?nsp : NSP

process AfterTCASendln]
exit (ErrorType, OctetString):=
IgnoreUntilSendTCA [n]
>
n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTreq(nsp) and IsTCA(Userdata(nsp))];
(IgnoreUntilNDTind[n] [>
(n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[I1sNDTind(nsp) and (IsTDT(Userdata(nsp))
or IsTBR(Userdata(nsp)))];

[TsNDTind(nsp) and not(IsTCR{Userdata(mnsp))
or IsTBR(Userdata(nsp)))];
exit (ErrorAfterTCC, Userdata(nsp))))
endproc (* AfterTCCSend *)

(% R
After receiving a TDT with TSDU end mark equal to 1, re-

ceipt of an empty TDT with End-of-TSDU set to 1 is an
error.

155

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process EmptyTDT([n]

exit(ErrorType, OctetString):=
IgnoreUntilReceivedTDT [n]

>
(

choice b : block, et : EOTsdu [J

[et IsEndTSDUOf b and IsSTDT(b)] ~>
n ?na : NAddress ?ncei : NCEI ?nsp : NSP

AfterNCONresp [nl]
0
n 7na : NAddress 7ncei :
{IsNDTind(nsp) and
not (IsTCR(Userdata(nsp)))];
exit (ErrorAfterNCONresp, Userdata(nmsp))))
endproc (* AfterNCONresp *)

NCEI ?nsp : NSP

(*

[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)];
EnptyTDT2 [n] (et)
)
adproc (* EmptyTDT *)

process EmptyTDT2[n](last : EOTsdu) :
exit(ErrorType, OctetString):=
IgnoreUntilReceivedTDT [n]
[>
(
choice b : Block, et
os : OctetString (]
[IsTDT(b) and (et IsEndTSDUOf b) and
(os IsUserdataOf b)] ->
(
[Length(os) eq 0 implies
(last eq yes)] ->
n 7na : NAddress ?ncei
nsp : NSP
(I1sNDTind(nsp) and
(Userdata(nsp) Encodes b)];
exit (EmptyTDT, Userdata(nmsp))

: EQTsdu,

: NCEI ?

[]
[not(Length(os) eq 0 implies
(last eq yes))] ->
n ?na : NAddress 7ncei :
nsp : NSP
[IsNDTind(nsp) and
(Userdata(nsp) Encodes b)];
EmptyTDT2 [n] (et)

NCEI ?

)
endproc (* EmptyTDT2\ *)

(f==mmmm e e

Arer an N-CONNECT response, the receipt of not a TCR
islan error;

The following two constraints are derived from the|descrip-
tion in 11.1.6.8. .

*)

process SizeConstraints[n]
exit(ErrorType, OctetString):=
(
DTSizeConstraint [n]
>
OtherError (I}legalDTSize)
)
I
(
TDTLéngth [n]
(b
OtherError (IllegalUserdataSize)
)

endproc (* SizeConstraints *)

o 2 20 o o v oo o e o

The DTSize parameter in a received TCC or TCA must not
be greaterthan the DTSize parameter in the last sehd TCR,
see 11.1.4.2.

__-*)

process DTSizeConstraint[n]
exit(ErrorType, OctetString):=
IgnoreUntilSendTCR [n]
>
(
choice b : Block, ds : DTSize []
[IsTCR(b) and (ds IsDTSizeOf b)] ->
n ?na : NAddress ?ncei : NCEI ?nsp : |NSP
[IsNDTreq(nsp) and
(Userdata(nsp) Encodes b)];
DTSizeConstraint2 [n] (ds)
)

process AfterNCONresp[n]
exit (ErrorType, OctetString):s=
IgnoreUntilNCONresp [n]
> ‘
n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNCONresp(nsp)];
(IgnoreUntilNDTind([n] [>
(n ?na : NAddress ?ncei : NCEI ?nsp : NSP
[IsNDTind(nsp) and IsTCR(Userdata(nsp))];

156

Eﬁﬂpiat (’ DTSIZeConstraint *,

process DTSizeConstraint2{n]
(mds : DTSize) : exit(ErrorType, DctetString):=
IgnoreUntilReceivedTCC [n]
H j
IgnoreUntilReceivedTCA [n]
I
IgnoreUntilReceivedTCR[n]
0>

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

(TDTLength2 [n) (mds)
choice b : Block, ds : DTSize [] 0
[IsTCC(b) or ISTCA(b) and [not(Length(os) le DTSize(mds))] ->
(ds IsDTSizeOf b)] -> n 7?na : NAddress ?ncei : NCEI 7nsp : NSP
([IsNDTind(nsp) and
(ds le mds] -> (Userdata(nsp) eq os)];
n ?na : NAddress ?ncei : NCEI 7 exit (IllegalUserdataSize, Userdata(nsp))
nsp : NSP)
[IsNDTind(nsp) and)
(Userdata(nsp) Encodes b)]; endproc (* TDTLength2 *)
DTSizeConstraint2 {n] (mds)
[(*
{ds gt mds] ->
n 7na : NAddress 7ncei : NCEI 7nsp : NSP InvalidBlockConstraints detects which-blocks ar valid
(1s¥DTind(nsp) and with respect to encoding.
(Userdata(nsp) Encodes b)];
exit (IllegalDTSize, Userdata(nsp))
) *)
[. .
[IsTCR(b) and (ds IsDTSizeOf b)] -> pro?ess InvalldBlockConstfalnts[n]
n ?na : NAddress ?ncei : NCEI ?nsp : NSP exlt(Err?rType: OctetSt?lng):=
[IsNDTind(nsp) and I%:oreUnt11Rec91vedInva11dBlock [n]
DTSi:gZ:;::::i(::g) [i;mz::; 1 n 7na : NAddress ?ncei : NCEI 7nsp : NSP
) [IsNDTind(nsp) and

endproc (* DTSizeConstraint2 *)

[S— - -

Theftotal length of a TDT Block shali not be greater than the
negotiated DTSize.

protess TDTLength[n]

exfit (ErrorType, OctetString):=
IgnpreUntilReceivedTCA [n]

[>

ol

2]

hoice b : Block, ds : DTSize\'[]
[IsTCA(b) and (ds IsDTSiZeOf b)] ->
n ?na : NAddress ?ncei): NCEI ?nsp : NSP
[IsNDTind(nsp) and
(Userdata(nsp)) Encodes b)];
TDTLength2 [nl~(ds)
)
endproc (* TDTLength *)

protess TDTLength2(n]

not (EncodesABlock (Userdata(nsp)))];
exit (EncodingError, Userdata(nsp))
endproc “(* InvalidBlockConstraints *)

Gk —eemeee-

After an error detected by a TP Entity, a TBR block ghould
be sent. Afterwards, incoming Blocks are ignored, see
11.2.5.2. The informal specification states that the bit pat-
tern of the rejected block up to and including the octet that
cause the rejection are to be transmitted. For thg sake
of simplicity, transmission of any part of this bit pattern is
allowed.

Readers are invited to extend the description of erfor de-
tection so that this simplification is removed.

- - ---*)

process EntityErrorHandling[t, n]
(err : ErrorType, os : OctetString) : noexilk:=

choice b : Block, sl, s2 : OctetString
8]

[IsTBR(b) and ((s1 ++ s2) eq os) and
(st IsRejBlockof b)] ->

I(::ieénzzi;;:in; ?:;t(ErrorType, 0ctetStr1ng):= n 7?na : NAddress ?ncei : NCEI 7nsp : NSP
%> [IsNDTreq(nsp) and (Userdata(nsp) Encodes p)];
((OnIyRDTind [n] [> 1 ; stop)
* i i *
choice b : block, bss : BlockSubsort, endproc (EntityErrorHandling)

os : OctetString []
[Subsort(b) eq bss and (os Encodes b)] ->
(
[Length(os) le DTSize(mds)] ->
n ?na : NAddress ?ncei : NCEI 7?nsp : NSP
[IsNDTind(nsp) and
(Userdata(nsp) eq os)];

The process OtherError exits on all errors other than the
given one.

157

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

process OtherError(e : ErrorType) :
exit(ErrorType, OctetString):=
choice x : ErrorType []
{x ne e] ->
exit (x, any OctetString)
endproc (* OtherError *)

(x --

IgnoreUntilNDT (n]
>
(
choice b : Block []
n 7na : NAddress 7?ncei :
[IsNDTreq(nsp) and
(Userdata(nsp) Encodes b) and
(1r IsSrcRefOf b)];
BoundRef [n] (na, ncei, 1r)

NCEI ?nsp : NSP

)

GloliaIConstraints: The only global constraint is the
uniglieness of TC references passed at the n gate.

procpss GlobalConstraints [t, n] : noexit :=

UnigpeLocalReferences [n]

i
IgnopeTSP [t]
endproc (* GlobalConstraints *)

(+ --

Unique References: Usage of local references is to be
such|that for each TC a unique reference is made use of.
Note| however that only TCR, TCA and TCC blocks have
the source reference parameter. First a non-empty set Irs
of ngn-zero references is internally chosen.

procpss UniqueLocalReferences[n] : noexit:=
choite lrs : RefSet []

[1fs ne {} and (Unassigned NotIn 1rs)] ->
i ; LocalReferences [n] (lrs)

endproc (* UniqueLocalReferences *)

(%

LocalReferences: This ensuresthatthe source reference
used|in an outgoing TCR or TCA or TCC block is not in use
for another Connection*. A feterence can either be Free or
Bound.

procgss LocalReéferences[n]

(1rg : RefSet) : noexit:=
choige~ Ir : Ref []
{1t IsIn 1rs] ->

7

endproc (* FreeRef *)

process BoundRef [n]
(na : NAddress, ncei
noexit:=

n !'na !ncei ?nsp : NSP [not(IsNDIS(nsp))];

BoundRef [n] (na, ncei, 1lr)

{1

n 'na !'ncei ?nsp :

FreeRef [n] (1r)

endproc (* BoundRef \¥)

: NCEI, 1lr : Ref) :

NSP [IsNDIS(nsp)];

(mmmmmmmmm oS S m e e -

11.4.3.7_<Block Data Type Definitions

The definitions relating to blocks are presented belgw in
a hierarchical fashion, according to the following outline,
where items correspond to the types that follow:

a) basic construction of an ‘abstract’ (i.e. independant of
encoding) block data type; and

b) definition of ‘block subsort’ values, that correspond to
the ‘block types’ defined in the Protocol: the diffefence
in terminology is to avoid confusion with the (more|gen-
eral) concept of ‘type’ in LOTOS; and

¢) enrichment of the abstract block with functions, termed
‘Classifiers’, that tell whether or not a given block i$ of a
given subsort; and

d) enrichment of the abstract block with functions, tefmed
‘parameter selectors’, that tell whether a given value is
the value of a certain parameter of a given block|(this
indirect representation is convenient, for the sake of
completeness of the equational definition, since géner-
ally a block parameter is defined only for some, byt not
all, blocks); and

e) enrichment of the abstract block with boolean functions
representing equality and inequality; and

f) definitions relating to individual parameters of (abslract)
blocks: inition- i fon and

(
FreeRef [n] (1r)
i
i; LocalReferences [n] (Remove(lr, 1lrs))

)

endproc (* LocalReferences %)

process FreeRef[n](lr : Ref) : noexit:=

4In this process, | has been included to ease checking with tools.

158

equality enrichments

Auxiliary definitions that are referred to in the following, as
well as the encoding of Blocks into OctetStrings, are pre-
sented later.

Basic Block Construction: Values of sort Block, which
represent blocks abstracting from encoding details, are con-
structed by five functions, each corresponding to a distinct
block ‘type’ (in the sense of the Protocol). The sorts of block

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

TDT |: EOTsdu, OctetString -> Block
TBR|: Ref, RejCause, OctetString -> Block
endtypge (* BasicBlock *)

G -

Block|Subsorts: Sort BlockSubsort consists of five con-
stants, which represent the block types defined in the Pro-
tocol. Bee 11.4.3.9 for the type FiveTuplet.

type BlockSubsort
is FiyeTuplet renamedby
sortngmes
BlogkSubsort for FiveTuplet
‘opnnanes
TCR [for One
TCC [for Two
TCA |for Three
TDT |for Four

TBR [for Five
endtyge (* BlockSubsort *)

parameters are either standard sorts, such as OctetString *)
and Bool, or are defined later. Note that absence of op-
tional parameters, e.g. maximum data block size in TCR or type BlockClassifiers
TCA blocks, is only represented in the concrete encoding of is BasicBlock, BlockSubsort
blocks, where it is mapped to the parameter values (of the opns
abstract block) that are defined by the Protocol as default Subsort : Block -> BlockSubsort
values®. IsTCR, IsTCA, ISTCC, IsTDT, IsTBR :
Block -> Bool
o e e e *) eqns
forall
type BasicBlock b BlocF, sr, dr : Ref: cga, cda : ExtAddress,
: : . ds : DTSize, cc : ClearingCause,
is BagicReference, ExtendedAddressing, .
. X . ac : OctetString, et : EOTsdu,
DatgBlockSize, ClearingCause, OctetString, N A
. ud : OctetString, rc : RejCause,
Boolean, RejectCause, EOTsdu -
rb : OctetString
sorts
Blodk ofsort BlockSubsort
opns Subsort (TCR(sr, cga, cda, ds)) = TCR;
TCR |: Ref, ExtAddress, ExtAddress, DTSize Subsort(TCA(dr, sr, cga, cda; ds)) = TCA;
-4 Block Subsort(TCC(dr, sr, cc, ac)) = TCC;
. s Subsort(TDT(et, ud)) = TDT;
TCA|: Ref, Ref, ExtAdd , ExtAdd DTS ? ’
i el ety Extidcress, Exifddrass, Dlolze Subsort(TBR(dr, rc, b)) = TBR
ofsort Bool
TCC|: Ref, Ref, Cl ingC , Octet i
_\ B};:Ck of, ClearingCause, OctetString IsTCR(b) = Subsort(b) eq TCR;

IsTCA(b) = Subsort(b) eq TCA;
IsTCC(b) = Subsort(b) eq TCC;
IsTDT(b)~= Subsort(b) eq TDT;
IsTBR(b)V= Subsort(b) eq TBR
endtype (¥ BlockClassifiers *)

(* -

Block Selectors: The following definition presents boolgan
functions that allow to determine whether a given valug is
the value of a certain parameter of a given block, for epch
block parameter defined by the Protocol. The data types
relating to parameters of sort other than OctetString or
Bool are defined later.

type BlockParameterSelectors
is BlockClassifiers
opns
IsSrcRef0f, _IsDstRefOf_
-> Bool
IsCallingAddrOf, _IsCalledAddrOf_ :
ExtAddress, Block -> Bool

: Ref, Block

IsDTSizeOf : DTSize, Block -> Bool
(¥mm=dmmm e mm e e e e mmmmm e e m e e e e _IsClearingCause0f_ : ClearingCause, Block
-> Bool
IsAddClearInfOf : OctetString, Block -> Bogl
Block ifi g —IBSEmiTSDUOLt—— nuxsﬂu,—BTMi_
combination of the two basic constructions given above with _IsUserdataOf_, _IsRejBlockOf_ :

the following functions on blocks:

a) Subsort, that yields the block subsort; and

b) the boolean functions ISTCR, ISTCA, etc. termed
BlockClassifiers.

5The specification does not deal with a Class option in a TCR
or TCC.

OctetString, Block -> Bool
IsRejCauseO0f : RejCause, Block -> Bool
eqns
forall
b : Block, sr, sril, dr, drl : Ref,
cga, cgal, cda, cdal : ExtAddress,
ds, ds1 : DTSize, cc, ccl : ClearingCause,
ac, acl : OctetString, et, etl : EOTsdu,

159

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

ISO/IEC TR 10167 : 1991 (E)

ud, udl : OctetString, rc, rcl : RejCause,
rb, rbl : OctetString

ofsort Bool
sr IsSrcRefOf TCR(srl, cga, cda, ds) =

formalization of this requirement.

sr eq sri; type BlockEquality
sr IsSrcRef0f TCA(dr, sri, cga, cda, ds) = is BlockParameterSelectors
sr eq sri; opns
sr IsSrcRefOf TCC(dr, sril, cc, ac) = sr eq sri; _eq., _ne_ : Block, Block -> Bool
not (IsTCR(b) or ISTCA(b) or IsTCC(b)) => eqns
__sr IsSrcRefOf b = false; forall

*)

dr IsDstRef0f TCA(dr1, sr, cga, cda, ds) =
dr eq dri;
dr IsDstRef0f TCC(dri, sr, cc, ac) = dr eq dri;
dr IsDstRefOf TBR(dri, rc, rb) = dr eq dri;
not (IsTCA(b) or ISTCC(b) or IsTBR(bL)) =>
dr IsDstRef0f b = false;
cga IsCallingAddrOf TCR(sr, cgal, cda, ds) =
cga eq cgal;
cga IsCallingAddrOf
TCA(dr, sr, cgal, cda, ds) = cga eq cgal;
not (IsTCR(b) or IsTCA(b)) =>
cga IsCallingAddr0f b = false;
cda IsCalledAddrOf TCR(sr, cga, cdal, ds) =
cda eq cdal;
cda IsCalledAddrOf
TCA{dr, sr, cga, cdal, ds) = cda eq cdai;
not (IsTCR(b) or IsTCA(b)) =>
cda IsCalledAddr0f b = false;
ds IsDTSizeOf TCR(sr, cga, cda, dsi) =
ds eg dsi;
ds IsDTSizeOf TCA(dr, sr, cga, cda, dsl) =
ds eg dsi;
not (ISTCR(b) or IsTCA(b)) =>
ds IsDTSize0f b = false;
cc IsClearingCause0f TCC(dr, sr, ccl, ac) =
cc eq ccl;
not (IsTCC(b)) =>
cc IsClearingCauseOf b = false;
ac IsAddClearInfOf TCC(dr, sr, cc, acl) =
ac eq aci;
not (IsTCC(b)) =>
ac IsAddClearInfOf b =_false;
et IsEndTSDUOf TDT(etl, ud) = et eq etl;
not (IsTDT(b)) =>
et IsEndTSDUDE D = false;
ud IsUserdataBf/TDT(et, udl) = ud eq udi;
not (ISTDT (b)) =>
ud IsUserdataOf b = false;
rc IsRejCauseOf TBR(dr, rct, rb) = rc eq rci;
not{ISTBR(b)) =>
rc IsRejCause0f b = false;

b, bl : Block, sr, srl, dr, drl : Ref,
cga, cgal, cda, cdal : ExtAddress,

ds, dsl : DTSize, cc, cci : ClearingCause,
ac, acl : OctetString, et, etl %\ EOTsdu,
ud, udl : OctetString, rc, rell? RejCause,

b, rbl : OctetString
ofsort Bool

Subsort(b) ne Subsort{bi) => b eq bl = false;

TCR(sr, cga, cda, ds) eq
TCR(sri, cgal, cdal, ds1) =
(sr eq sr1) and(cga eq cgal) and
(cda eq cdal)' and (ds eq dsi);
TCA(dr, sr,cga, cda, ds) eq
TCA(dri,sri, cgal, cdal, dsi) =
(dr/eq-drl) and (sr eq sril) and
(cga eq cgal) and (cda eq cdal) and
(ds eq ds1);
TCC(dr, sr, cc, ac) eq
TCC(drl, sril, cci, acl) =
(dr eq dr1) and (sr eq sri) and
(cc eq cc1) and (ac eq aci);
TDT(et, ud) eq TDT(eti, udl) =
et eq etl and (ud eq udil);
TBR(dr, rc, rb) eq TBR(dri, rci, rbi) =

(dr eq dr1) and (rc eq rcl) and (rb eqrbi);

b ne bl = not(b eq bl)
endtype (* BlockEquality *)

(Kemmmmmmmmmm e

The following data type definitions specify the pa

of blocks.

of exactly 65535 distinct values. The easiest way

fying this is just to let a reference uniquely correspgndto an

ordered 16-tuple of bits. See 11.4.3.9 for the typ:

The description of this part of the abstract block strlicture is
therefore very close to that of its encoding, for the| sake of
simplicity; this fact should be considered as an exgeption.

ramete fS‘

|
Protocol references are to be specified as forming 4 domain ‘

bf speci-

Hextet.

3 5 2 o4 o7 31
not (IsTBR(b)) =>
rb IsRejBlockOf b = false
endtype (* BlockParameterSelectors *)

(*x : -
Block Equality: Equality of two blocks holds if, and only if,

the blocks are of the same subsort and have pairwise equal
parameter values. The following definition is an effective

160

type BasicReference
is Hextet renamedby
sortnames
Ref for Hextet
opnnames
Ref for Hextet
endtype (* BasicReference *)

https://standardsiso.com/api/?name=8e0a3739180467eb682199e7e1b54f07

	List of Figures
	Foreword
	Introduction
	1 scope
	2 References
	3 Terminology
	3.1 Architectural Terms
	3.2 FDTTerms

	4 FDT General Characteristics
	4.1 Introduction
	4.2 The Nature and Purpose of FDTs
	The Purpose of FDTs
	4.2.2 Use in Development
	4.2.3 Assessment of FDTs

	4.3 Estelle
	4.4 LOTOS
	4.5 SDL
	4.6 Benefits of FDTs
	4.7 Tools for FDTs

	5 Guide to the Examples
	Explanation of the Examples
	Examples of Basic FDT Concepts
	Examples of Basic Architectural Concepts
	5.1.3 Daemon Game
	5.1.4 Sliding Window Protocol
	Abracadabra Service and Protocol
	5.1.6 A Transport Protocol

	5.2 How to read the Examples

	Examples of Basic FDT Concepts
	6.1.1 Estelle Representation
	6.1.2 LOTOS Representation
	6.1.3 SDL Representation
	6.2 Information
	6.2.1 Estelle Representation
	6.2.2 LOTOS Representation
	6.2.3 SDL Representation
	6.3.1 Estelle Representation
	6.3.2 LOTOS Representation
	6.3.3 SDL Representation
	6.4.1 Estelle Representation
	6.4.2 LOTOS Representation
	6.4.3 SDL Representation

	6.5 Interaction Point
	6.5.1 Estelle Representation
	6.5.2 LOTOS Representation
	6.5.3 SDL Representation

	Examples of Basic Architectural Concepts
	7.1 Service Access Point
	7.1.1 Estelle Representation
	7.1.2 LOTOS Representation
	7.1.3 SDL Representation

	7.2 Endpoint
	7.2.1 Estelle Representation
	7.2.2 LOTOS Representation
	7.2.3 SDL Representation

	7.3 Service Primitive Parameter
	7.3.1 Estelle Representation
	7.3.2 LOTOS Representation
	7.3.3 SDL Representation

	7.4 Service Data Unit
	7.4.1 Estelle Representation
	7.4.2 LOTOS Representation
	7.4.3 SDL Representation

	7.5 Service Primitive
	7.5.1 Estelle Representation
	7.5.2 LOTOS Representation
	7.5.3 SDL Representation

	7.6 Frotocol Entity
	7.6.1 Estelle Representation
	7.6.2 LOTOS Representation
	7.6.3 SDL Representation
	7.7 Protocol
	7.7.1 Estelle Representation
	7.7.2 LOTOS Representation
	7.7.3 SDL Representation

	7.8 Protocol Data Unit
	7.8.1 Estelle Representation
	7.8.2 LOTOS Representation
	7.8.3 SDL Representation

	7.9 Connection
	7.9.1 Estelle Representation
	7.9.2 LOTOS Representation
	7.9.3 SDL Representation

	7.1 O Multiplexing
	7.10.1 Estelle Representation
	7.10.2 LOTOS Representation
	7.10.3 SDL Representation

	7.1 1 Splitting
	7.1 1.1 Estelle Representation
	7.1 1.2 LOTOS Representation
	7.1 1.3 SDL Representation

	7.12 Concatenation
	7.12.1 Estelle Representation
	7.12.2 LOTOS Representation
	7.12.3 SDL Representation

	7.1 3 Segmentation
	7.13.1 Estelle Representation
	7.13.2 LOTOS Representation
	7.1 3.3 SDL Representation

	7.14Service
	7.14.1 Estelle Representation
	7.14.2 LOTOS Representation
	7.14.3 SDL Representation

	8 Daemon Game Example
	8.1 Informal Description
	8.2 Deficiencies in the Informal Description
	8.2.1 Presence of Daemon

	I 8.2.2 Login to a Current Game
	Attempt to play before Login
	Identification of Players and Games
	8.2.5 Player Use of System Signals
	8.3 Estelle Description
	8.3.1 Architecture of the Formal Description
	8.3.2 Explanation of Approach
	8.3.3 Formal Description
	8.3.4 Alternative Formal Description
	8.3.5 Subjective Assessment

	8.4 LOTOS Description
	8.4.1 Architecture of the Formal Description
	8.4.2 Explanation of Approach
	8.4.3 Formal Description
	8.4.4 Alternative Formal Description
	8.4.5 Subjective Assessment

	8.5 SDL Description
	8.5.1 Architecture of the Formal Description
	8.5.2 Explanation of Approach
	8.5.3 Formal Description
	8.5.4 Subjective Assessment

	8.6 Assessment of the Application of the FDTs

	9 Sliding Window Protocol Example
	9.1 Informal Description
	9.1.1 Overview
	9.1.2 Sequence Numbering
	9.1.3 Transmitter Behaviour
	9.1.4 Receiver Behaviour

	9.2 Deficiencies in the Informal Description
	9.2.1 Underlying Medium
	9.2.2 Window Size
	9.2.3 Flow Control
	9.2.4 Delivery of Corrupted Messages
	9.2.5 Value of Time-out Period
	9.2.6 Consistent Use of NextRequired
	9.2.7 Receive Window Size
	9.2.8 Sequence of Operations
	9.2.9 Transmit Window Size
	9.2.1 O Receive Window Size
	9.2.1 1 Corruption of Messages
	9.2.12 Transfer of Data and Acknowledgements
	9.2.13 Retransmission on Timeout

	9.3 Estelle Description
	9.3.1 Architecture of the Formal Descriptions
	9.3.2 Explanation of Approach
	9.3.3 Formal Description of the Protocol
	9.3.4 Formal Description of the Medium
	9.3.5 Subjective Assessment
	9.4 LOTOS Description
	9.4.1 Architecture of the Formal Descriptions
	9.4.2 Explanation of Approach
	9.4.3 Formal Description of the Protocol
	9.4.4 Formal Description of the Medium
	9.4.5 Subjective Assessment

	9.5 SDL Description
	9.5.1 Architecture of the Formal Descriptions
	9.5.2 Explanation of Approach
	9.5.3 Formal Description of the Protocol
	9.5.4 Formal Description of the Medium
	9.5.5 Subjective Assessment

	9.6 Assessment of the Application of the FDTs

	10 Abracadabra Service and Protocol Example
	10.1 Informal Description
	10.1.1 Introduction
	10.1.2 Service Description

	1 O 1.3 Protocol Description
	10.1.4 Communications Medium Service Description
	10.1.5 Model

	10.2 Deficiencies in the Informal Description
	10.2.1 Flow Control
	10.2.2 Premature Transmission of DT
	10.2.3 Stopping Retransmission on Error
	10.2.4 Retransmission Limit and Period
	10.2.5 Repeated ConReq
	10.2.6 DR when Disconnected
	10.2.7 Connection Refusal
	10.2.8 Connection Refusal
	10.2.9 Ignoring Out-of-sequence Data

	10.3 Estelle Description
	10.3.1 Architecture of the Formal Descriptions
	10.3.2 Explanation of Approach
	10.3.3 Formal Description of the Service
	10.3.4 Formal Description of the Protocol
	10.3.5 Subjective Assessment

	10.4 LOTOS description
	10.4.1 Architecture of the Formal Descriptions
	10.4.2 Explanation of Approach
	10.4.3 Formal Description of the Service

	10.4.4 Formal Description of the Protocol
	10.4.5 Subjective Assessment

	10.5 SDL Description
	10.5.1 Architecture of the Formal Descriptions
	10.5.2 Explanation of Approach
	10.5.3 Formal Description of the Service
	10.5.4 Formal Description of the Protocol
	10.5.5 Subjective Assessment

	10.6 Assessment of the Application of the FDTs

	11 A Transport Protocol Example
	11.1 Informal Description
	11.1.1 Origins
	1 1.1.2 Transport Functions
	11.1.3 Connection Establishment and Termination Procedures
	11.1.4 Description of Data Transfer Procedures
	1 1.1.5 Treatment of Procedure Errors
	11.1.6 Formats
	11.1.7 Invalid TPDUs

	11.2 Deficiencies in the Informal Description
	11.2.1 Service Definitions
	11.2.2 Description of Procedures
	11.2.3 Protocol Classes
	11.2.4 Missing Definitions
	11.2.5 Unspecified Functions
	1 1.2.6 Non-use of Concatenation
	1 1.2.7 Responding Address
	11.2.8 Multiple SAP Connections
	1 1.2.9 Reaction to Incorrect TCA

	11.3 Estelle Description
	11.3.1 Architecture of the Formal Description
	1 1.3.2 Explanation of Approach
	11.3.3 Formal Description
	11.3.4 Subjective Assessment

	1 1.4 LOTOS Description
	1 1.4.1 Structure of the Formal Description
	11.4.2 Explanation of Approach
	1 1.4.3 Formal Description
	11.4.4 Subjective Assessment

	1 1.5 SDL Description
	11 5.1 Architecture of the Formal Description
	11.5.2 Explanation of Approach
	11 5.3 Formal Description
	1 1.5.4 Subjective Assessment
	11.6 Assessment of the Application of FDTs
	Annexes
	A Bibliography
	A.l International Standards
	A.2 Documents

	B FDT Characteristics
	B 1 Specifications and Implementations
	8.2 Formal Specifications
	8.3 Levels of Abstraction
	8.4 FDTTerms
	8.4.1 Formalisation
	8.4.2 Abstraction
	8.4.4 Model
	8.4.5 Interpretation
	8.4.6 Constructive
	8.4.7 Information
	8.4.8 Action
	8.4.9 Interaction
	8.4.1 O Composition
	8.4.1 1 Non-Determinism

	C FDT Objectives
	C.l Scope of Application
	C.2 General Requirements
	C.3 Appropriate Level of Abstraction
	C.4 Design Support
	C.5 Implementation Support

	D Evaluating Formal Descriptions
	D.l Layer-Independent Checklists
	D.l.l General
	D.1.2 Service Descriptions
	D.1.3 Protocol Descriptions

	D.2 Layer-Independent and FDT-Dependent Checklists
	D.2.1 General
	D.2.2 Description of a Single Object
	0.2.3 Description of Several InterconnectedObjects

	D.2.4 Different Descriptions of Same Object

	Verification Methods and Tools
	D.4 Validation Methods and Tools

	4.1 Development through Refinement
	5.1 Typical Layout of an Example
	8.1 Architecture of the Daemon Game in Estelle
	8.2 Alternative Architecture of the Daemon Game in Estelle
	8.3 SDL Specification of Daemon Game
	9.1 Transmitter Window Parameters
	9.2 Receiver Window Parameters
	Architecture of the Sliding Window Protocol in Estelle
	9.4 Architecture of the Sliding Window Protocol in LOTOS
	9.5 Outline Decomposition of the Sliding Window Protocol in LOTOS
	Processes of the Sliding Window Protocol in LOTOS
	Outline Decomposition of Sliding Window Medium in LOTOS
	9.8 Processes of Sliding Window Medium in LOTOS
	9.9 SDL Specification of Sliding Window Protocol

	9.1 O SDL Specification of Sliding Window Medium
	10.1 Relationship between AbracadabraService Primitives
	10.2 Abracadabra Protocol Data Units
	10.3 Communications Medium Service Primitives
	10.4 Abracadabra Service and Protocol Model
	10.5 Architecture of the Abracadabra Service in Estelle
	10.6 Architecture of the Abracadabra Protocol in Estelle
	10.7 Outline Decomposition of the Abracadabra Service in LOTOS
	10.8 Outline Decomposition of the Abracadabra Protocol in LOTOS
	10.9 SDL Specification of Abracadabra Service

	1 O 1 O SDL Specification of Abracadabra Protocol
	1 1.1 Receiving Terminal Reaction to TCR Addressing Options
	11.2 Calling Terminal Reaction to TCA Addressing Options
	11.3 Parameter Element Coding Structure
	11.4 General Block Structure
	11.6 Transport Connection Request Block

	1 1.5 Transport Layer Block Types
	1 1.7 Extended Addressing
	11.8 Transport Data Block Size Parameter

	1 1.9 Transport Connection Accept Block
	11 10Transport Connection Clear Block
	11.1 1 Additional Clearing Information Parameter
	11.12 Transport Block Reject Block

	1 1.13 Rejected Block Parameter
	1 1.1 4 Transport Data Block
	11.1 5 Architecture of A Transport Protocol in Estelle
	11.16 Constraint-Oriented Decomposition of a Transport Protocol Entity

	1 1.17 Decomposition of Process TPEConnection
	11.18 SDL Specification of A Transport Protocol
	8.1 Domain of Applicability of an FDT

