INTERNATIONAL ISO/IEC
STANDARD 26550

Second edition
2015-12-01

Software and systems engihieering —
Reference model for product line
engineering and management

Ingénierie du logiciel et des systémes - Modéle de référence gour
I'ingénierie et la gestion de lignes de produits

Reference number

@ m ISO/IEC 26550:2015(E)
Y=
©ISO/IEC 2015

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office

Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11

Fax +41 22 749 09 47
copyright@iso.org

WwWw.iso.org

ii © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Contents Page
FOT@WOToocccc e85 55858555555855 8 5555 \%
I OUQUICION.......coc st vi
1 S0P ... 1
2 NOITNATIVE TEECI@INCESccccccovovoieeeve st 1
3 Terms and AefiMETIOMNIS ...t 2
4 From single-system engineering and management toward product line engineering
AN MANAZEIMIEIIL ... e o e 6
4.1 Challenges product companies face in the use of single-system engineering
AN MANAZEIMIETIE ... oo e 6
4.2 Variability Management ... Sy T prsssssssssnnns 7
4.3 Key differentiators between single-system engineering and managément and
product line engineering and Management. ... g 7
5 Reference model for product line engineering and management«..............c o, 9
5.1 General .
5.2 Product line reference model. ... SN 10
6 Two life cycles and two process groups for product line-engineering and management....12
6.1 Domain engineering life CyCle ... ™ N
6.1.1 Productline Scoping ...
6.1.2 Domain requirements engineering
6.1.3 DOMAIN AESIGIN oot N et
6.1.4 Domain realization ... h@& e
6.1.5 Domain verification and validation
6.2 Application engineering life CYCLe ;™ ...
6.2.1 Application requirements engineering ...
6.2.2 Application desigmi. ..o
6.2.3 Application realization
6.2.4 Applicationwerification and validation...........ccccccccernnen
6.3 Organizational management process Sroup..........
6.3.1 Organizational-level product line planning...............c.......
6.3.2 Orgahizational product line-enabling management
6.3.3 Organizational product line management.............ccccccoccee.
6.4 Technical hanagement Process SroUP ...
6.4.1. 5\ “Process Management
6.4:2~/ Variability management ...
643 ASSet MaANAZEMENT ..o
6.4.4 SUPPOTt MANAZEIMEIIT ..coooccciiiiericiiieisieeieiies oo s
7 Relationships within and between domain engineering and application engineeripg.......25
7.1 Interrelations between product line scoping and domain requirements engineerfng.......25
7.2 Interrelations between domain requirements engineering and domain design.....}............. 26
7.3 Interrelations between domain design and domMain re€alZatioN oo 26
7.4 Interrelations between domain requirements engineering and domain verification
AN VALIAATION ..o 27
7.5 Interrelations between domain design and domain verification and validation................... 27
7.6 Interrelations between domain realization and domain verification and validation........ 28
7.7 Interrelations between product line scoping and application requirements engineering 28
7.8 Interrelations between domain requirements engineering and application
reqUIrements ENGINEEITIIE 29
7.9 Interrelations between domain design and application design ..., 29
7.10 Interrelations between domain realization and application realization...............ccoo, 30
7.11 Interrelations between domain verification and validation and application
verification and Validation ... 30
7.12 Interrelations between application requirements engineering and application design....31
© ISO/IEC 2015 - All rights reserved iii

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

7.13 Interrelations between application design and application realization ... 31
7.14 Interrelations between application requirements engineering and application
Verification and ValIAaTiON 32
7.15 Interrelations between application design and application verification and validation.... 32
7.16 Interrelations between application realization and application verification
AN VATTIAAETOT e 33
Annex A (informative) Further information on products.............. e 34
BIDIHOGTAPIY ... 35

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:

Foreword

2015(E)

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are

members of ISO or IEC participate in the development of International Standards through
committees established by the respective organization to deal with particular fields of

technical
technical

activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,

[SP/TECTTC T

The procedures used to develop this document and those intended for its further maintenance are

ddscribed in the ISO/IEC Directives, Part 1. In particular the different approval criteria n
the different types of document should be noted. This document was drafted in aecordance
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Atttention is drawn to the possibility that some of the elements of this doCument may be tH
of| patent rights. ISO and IEC shall not be held responsible for identifying any or all su
rights. Details of any patent rights identified during the developmentof the document will
Infroduction and/or on the ISO list of patent declarations received (se® www.iso.org/patents)

Any trade name used in this document is information given for thle convenience of users and
cojnstitute an endorsement.

beded for
with the

e subject
Ch patent
be in the

does not

Fgr an explanation on the meaning of ISO specific terms and expressions related to c¢nformity

aspessment, as well as information about ISO’s adherence to the WTO principles in the
Bdrriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document isSO/IEC JTC 1, Information technology, Subc
Sd 7, Software and systems engineering.

This second edition cancels and replaces‘the first edition (ISO/IEC 26550:2013), of which it cc
a minor revision.

Technical

bmmittee

nstitutes

© ISO/IEC 2015 - All rights reserved

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Introduction

Software and Systems Product Line (SSPL) engineering and management creates, exploits, and manages
a common platform to develop a family of products (e.g. software products, systems architectures) at
lower cost, reduced time to market, and with better quality. As a result, it has gained increasing global
attention since 1990s.

This International Standard provides a reference model consisting of an abstract representation of the
key processes of software and systems product line englneerlng and management and the relatlonshlps
between : ;
lifecycle processes and the need for the exp11c1t variability def1n1t10n dlfferentlate product line
engineeripng from single-system engineering. The goal of domain engineering is to define and implemgnt
domain afsets commonly used by member products within a product line, while the goal of-applicatipn
engineering is to develop applications by exploiting the domain assets including common¢ahd varialle
assets. Dgmain engineering explicitly defines product line variability which reflects the specific needs|of
different narkets and market segments. Variability may be embedded in domain assets. During applicatipn
engineerit:g, the domain assets are deployed in accordance with the defined variabilityymodels.

The referpnce model for SSPL engineering and management can be used in subsgquent standardizatipn
efforts td create standards having a high level of abstraction (e.g. product management, scoping,
requirements engineering, design, realization, verification and validation, and organizational aphd
technical| management), a medium level of abstraction (e.g. configuration management, variabiljty
modeling} risk management, quality assurance, measurement, €valuation, asset repository), o1 a
detailed level of abstraction (e.g. texture, configuration mechanism, asset mining) for software aphd
systems product line engineering.

vi © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

INTERNATIONAL STANDARD

ISO/IEC 26550:2015(E)

Software and systems engineering — Reference model for

p

1

roduct line engineering and management

Scope

Th
an

T}

Th
SY|
in
St
p

A
of
an
cr

th

combined with software, comprise the products. These processes belong to other discip

m
N(

Th
ha

copsensus from‘Wational Member Bodies at the time of publication. In addition to this ba|

pr
IS

2

s ttermatiomat Stamdard s theentry pointof the whote suite of Tritermatiomat Stamdards fo
d systems product line engineering and management.

e scope of this International Standard is to

provide the terms and definitions specific to software and systems product line en
and management,

define a reference model for the overall structure and processes of s¢ftware and system|
line engineering and management and describe how the components of the product line
model fit together, and

define interrelationships between the components of the prodiict line reference model.

is International Standard does not describe any methods and tools associated with soft
stems product line engineering and management. Descriptions of such methods and tools w|
the consecutive International Standards (ISO/IEC 265511 to ISO/IEC 265562)). This Inte
hndard does not deal with terms and definitions ‘addressed by ISO/IEC/IEEE 24765:]
ovides a common vocabulary applicable to all systems and software engineering work.

henever this International Standard refers:t@“products”, it means “system-level products” d

d management of product lines that consist of only hardware systems but it has not been
pated to support such hardware product lines. This International Standard is not intendsg
e engineering, production, warehousing, logistics, and management of physical items that

bchanics, electronics).
TE Annex A provides fiirther information on products.

is International Standard, including the product line reference model and the terms and d¢
s been producéd)starting from References [6], [7], and [8] which finally resulted in

ocess, struetures from ISO/IEC 12207:2008, ISO/IEC/IEEE 15288:2015, ISO/IEC 15940:
D/IEC 14102:2008 have been used as a baseline.

Normative references

software

pineering

s product
reference

ware and
ill appear
rnational
010 that

onsisting

software systems or both hardware and*software systems. It may be useful for the engineering

explicitly
d to help
possibly
ines (e.g.

pfinitions,
a broad

ckground

P006 and

The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.

There are no normative references cited in this document.

1
2)

Second edition to be published.

Under development.

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC

26550:2015(E)

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

31
applicati

on architecture

architecture including the architectural structure and rules (e.g. common rules and constraints) that
constrains a specific member product within a product line

Note 1 to entry: The application architecture captures the high-level design of a specific member product of a

product li

na An annlication architocture of the momhor nraducts includod in tho nraduct line roucoc (hacci
rr ¥ | A

ly

with mod
applicatio

3.2

application asset

output of]
in other 1
a product

Note 1 to

contrast tg
line, most
users may
run time).
serves the

Note 2 to ¢
Physical
managed
cycles; ISC

3.3

application design
f application engineering wheré€ a'single application architecture conforming to the domdi

process g
architect

3.4

application engineering

life cycle
product 1
architect

Note 1 to
without th

3.5

fications) the common parts and binds variable parts of the domain architecture. In most casés;
h architecture of the member products needs to develop application-specific variability.

a specific application engineering process (e.g. application realization) thatanay be exploit
fecycle processes of application engineering and may be adapted as a domain asset based
management decision

an

In

entry: Application asset encompasses requirements, an architectural design,.components, and tests.
domain assets that need to support the mass-customization of multiple applications within the prod

ntry: Application assets are not physical products available off-the-shelf and ready for commissioni

hccording to the best practices of their respective disciplines. Application assets have their own
/IEC/IEEE 15288 may be used to manage a life'€ycle.

ire is derived

consisting of a set of processes in which the application assets and member products of t
ne are implemented and managed by reusing domain assets in conformance to the dom3
ire and by binding the variability of the platform

e strategic reuse of domain assets and without explicit variability modeling and binding.

applicatipnrealization

roducts (e.g. mechanical parts, electronic components, harnesses, optic lenses) are stored alrd

entry: Applieation engineering in the traditional sense means the development of single produg¢

ct

application assets do not contain variability. However, applications may possess variability (e.g. end-
be enabled to mass-customize the applications they are using by Binding application variability during
Application Assets may thus possess variability as well, but thelvariability of an application asset only
purposes of the particular application, for which the applicatiofi asset has been created. As a result, the
scope of application asset variability is typically much narrower than the scope of domain asset variability.

hg.
fe

process of application engineering that develops application assets, some of which may be derived from
domain assets, and member products based on the application architecture and the sets of application
assets and domain assets

3.6

asset base
reusable assets produced from both domain and application engineering

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

3.7
asset scoping
process of identifying the potential domain assets and estimating the returns of investments in the assets

Note 1 to entry: Information produced during asset scoping, together with the information produced by product
scoping and domain scoping, can be used to determine whether to introduce a product line into an organization.
Asset scoping takes place after domain scoping.

3.8
binding
tasktom 2 decision onrele 0 ian ahich will be annli ion ' om-domain ‘etsusing

main variability model and from application assets using the application variability mofel

Ndte 1 to entry: Performing the binding is a task to apply the binding definition to generate new)applichtion from

seft of functional and non-functional characteristics that is shared by allsapplications belpnging to

gference architecture

p1joduct line architecture
core architecture that captures the high-level design of a software and systems product line[including
the architectural structure and texture (e.g. common rules and constraints) that constrains all member
prioducts within a software and systems product line

Ndte 1 to entry: Application architectures of the member products included in the product line reus¢ (possibly
with modifications) the common parts and bind variable parts of the domain architecture. Application
arfhitectures of the member products may (butdo not need to) provide variability.

3.11

dgmain asset
core asset
oytput of domain engineeringtlife cycle processes and can be reused in producing produdts during
plication engineering

Ndte 1 to entry: Domain assets may include domain features, domain models, domain requirements speg¢ifications,
ain architectures, doimain components, domain test cases, domain process descriptions, and othe assets.

Ndte 2 to entry: InSystems engineering, domain assets may be subsystems or components to be reused in further
syptem designs<Demain assets are considered through their original requirements and technical chargcteristics.
Ddmain assetsdnclude but are not limited to use cases, logical principles, environmental behavioral data, and
rigks or oppertunities learnt from previous projects. Domain assets are not physical products availalple off-the-
shelf and,ready for commissioning. Physical products (e.g. mechanical parts, electronic components, harnesses,
iclenses) are stored and managed according to the best practices of their respective disciplings. Domain
aspets’have their own life cycles. ISO/IEC/IEEE 15288 may be used to manage a life cycle.

3.12

domain engineering

life cycle consisting of a set of processes for specifying and managing the commonality and variability
of a product line

Note 1 to entry: Domain assets are developed and managed in domain engineering processes and are reused in
application engineering processes.

Note 2 to entry: Depending on the type of the domain asset, that is, a system domain asset or a software domain
asset, the engineering processes to be used may be determined by the relevant discipline.

© ISO/IEC 2015 - All rights reserved 3

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Note 3 to entry: IEEE 1517-2010, Clause 3 defines domain engineering as a reuse-based approach to defining the
scope (i.e., domain definition), specifying the structure (i.e., domain architecture), and building the assets (e.g.
requirements, designs, software code, documentation) for a class of systems, subsystems, or member products.

3.13

domain scoping

subprocess for identifying and bounding the functional domains that are important to an envisioned
product line and provide sufficient reuse potential to justify the product line creation

3.14

feature
abstract functional characteristic of a system of interest that end-users and other stakeholders-¢pn
understapd

Note 1 to ¢ntry: In systems engineering, features are syntheses of the needs of stakeholders. These features will

be used, amongst others, to build the technical requirement baselines.

—

3.15
member product

application

product Helonging to the product line

3.16
product line

product family
set of products and/or services sharing explicitly defined and managed common and variable features
and relying on the same domain architecture to meet the commaon‘and variable needs of specific markegts

3.17
product line architecture
synonym|of domain architecture

3.18
product line platform
product ljne architecture, a configuration-thanagement plan, and domain assets enabling applicatipn
engineering to effectively reuse and produee a set of derivative products

Note 1 to ¢ntry: Platforms have their owilife cycles. ISO/IEC/IEEE 15288 may be used to manage a life cycle.

3.19
product line reference model
abstract [representation of;the domain and application engineering life cycle processes, the roles
and relatjonships of thé processes, and the assets produced, managed, and used during product line
engineering and manageément

3.20
product line;scoping

process fpridefining the member products that will be produced within a product line and the major
common mmmmmmmem-mWULt

of view, and controls and schedules the development, production, and marketing of the product line
and its products

Note 1 to entry: Product management is primarily responsible for product line scoping.

3.21

product scoping

subprocess of product line scoping that determines the product roadmap, that is (1) the targeted
markets; (2) the product categories that the product line organization should be developing, producing,
marketing, and selling; (3) the common and variable features that the products should provide in
order to reach the long and short term business objectives of the product line organization, and (4) the
schedule for introducing products to markets

4 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

3.23
variability
characteristics that may differ among members of the product line

Note 1 to entry: The differences between members may be captured from multiple viewpoints such as
functionality, quality attributes, environments in which the members are used, users, constraints, and internal
mechanisms that realize functionality and quality attributes.

Note 2 to entry: It is important to distinguish between the concepts of system and software variability and
product line variability. Any system partially or fully composed of software can be considered to possess
software variability because software systems are inherently malleable, extendable, or configurable for specific
usg contexts. Product line variability is concerned with the variability that is explicitly defined-ly product
mgnagement. This International Standard is primarily concerned with product line variability.

straint relationships between a variant and a variation point, between two(yariants, and between
two variation points

3.25

variability dependency
relationship between a variation point and a set of variants, which’indicates that the variation point
infplies a decision about the variants

Ndte 1 to entry: Two kinds of variability dependencies are possiblé; (1) the optional variability dependgncy states
that the variant optionally dependent on a variation point can béa part of a member product of a prodyct line; (2)
the mandatory variability dependency defines that a variant deépendent on a variation point must be sglected for
a thember product if the variation point is selected for the miember product.

3.p6
vdariability management
managerial tasks relate to variability and has two dimensions: variability dimension and asset dimension

Ndte 1 to entry: Variability management in the variability dimension consists of tasks for overseeing pvariability
in[the level of the entire product ling, €reating and maintaining variability models, ensuring consistencies
befween variability models, managing all variability and constraint dependencies across the produdt line, and
mgnaging the traceability links between a variability model and associated domain and applicatiion assets
(efe. requirements models, designsmodels). Variability management in the asset dimension consis{s of tasks
for managing the impacts of vapiability within each domain and application asset, that is, in which |ocation of
an| asset a particular variahility occurs and which alternative shapes the asset can take in that lodation. The
dimensions are complemeérntary in nature, that is, both are needed for successful variability managem¢nt.

3.p7
variability model
expplicit definition for product line variability

Ndte 1 toentry: It introduces variation points, types of variation for the variation points, variants offdred by the
vafiation’points, variability dependencies, and variability constraints. Variability models may be orthogonal to
orfintegrated in other models such as requirements or design models. There are two types of Variabilir:y models:

apr]ir‘afinn waviahﬂify models and domain Uari:ﬂ‘\i]ify maodels

3.28
variant
one alternative that may be used to realize particular variation points

Note 1 to entry: One or more variants must correspond to each variation point. Each variant has to be associated

with one or more variation points. Selection and binding of variants for a specific product determine the
characteristics of the particular variability for the product.

© ISO/IEC 2015 - All rights reserved 5

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

3.29

variation point

representation corresponding to particular variable characteristics of products, domain assets, and
application assets in the context of a product line

Note 1 to entry: Variation points show what of the product line varies. Each variation point should have at
least one variant.

4 From single- system engmeermg and management toward product line
englneﬂ‘mg and lllalla5ClllCllt

Single-sy$tem engineering and management is the dominant way of conceptualizing and developipg
software|and systems products. This Clause first outlines some of the main challenges software ahd
systems product companies face in using single-system engineering and management approaches] It
identifies| variability management as the most challenging area. Variability management’is discussed
in 4.1. The clause concludes by explaining major differences between single-systeni engineering apd
managenjent and product line engineering and management. Understanding these.differences is a key
for succepsful organizational transitioning from single-system engineering and‘management towajrd
product ljne engineering and management.

4.1 Challenges product companies face in the use of single-system engineering and
management

The excqssive use of single-system engineering and management in environments where the
assumptipns no longer hold contributes to a variety of issues encountered by customers, end-usefs,
and provjiders. For example, customers may feel their néeds are unique and acquire and sustdin
expensive tailored systems while commoditized, inexpensive products might be completely adequate.
End-user$ may experience that the functionality they really need is difficult to find and/or use because
the softwjare systems are too complex and provide teo much functionality. Finally, a provider may sgll
several irfterrelated products, which look and feelcompletely different and do not interoperate, even|to
the same|customers.

Providerg of single products typically ehcounter at least some of the following issues when usipg
single-sy$tem engineering: work efforts and costs are underestimated, productivity is overestimategd,
must-havg features are missing, product schedules and/or quality goals are not met, and/or custonjer
satisfactipn remains lower than-expected. Work efforts may be underestimated and productivity
overestinpated because the organization has never before created a similar product or if it has, the
organizational unit who created the similar product may not want to share its experiences and otHer
possibly feusable assets due to rivalry between organizational units. Inaccurate estimates together
with typically fixed budgets result in schedule fluctuations, missing features, and/or quality issugs.
Quality igsues may also result from the lack of a reuse culture because the software developed frgm
scratch typically has'much higher defect density than the software reusing well-tested components.

The accgmmodation of adequate variability is typically the most significant problem faced
the prov ders of smgle products In thls context the Varlablhty needs typlcally emerge over ti

but 1neffect1ve tactics to deal W1th emergmg Varlablllty For example a provider may 1ncorporate
variability into a single product by introducing more and more (partly end-user-visible) parameters in
the product and more and more if-then-else-statements in the source code text of the product to deal
with the parameters during run time. As a result, the number of source code lines grows, the source
code becomes increasingly complex to understand and maintain, and the testability (and often also
the performance) of the software deteriorates. Alternatively, a provider with an existing product may
deal with the variable requirements of a new customer by branching a new product from the existing
product, modifying the source code of the new product, merging the modified source code back to the
main line when there is time and other resources available, and finally deleting the branch. Branching
and merging is very expensive and error prone and the source code of the main line will typically become
very complex after a few branches and merges, requiring expensive periodical refactoring to utilize
the tactic on a long term basis. In the worst case, the provider may end up with many partially cloned

6 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

products and no main line of source code to maintain. Such ineffective tactics for managing variability
also make the jobs of software developers tedious and are likely to increase employee turnover.

In sum, product companies utilizing single-system engineering and management approaches may end
up with highly complex and low-quality products, low productivity, high employee turnover, and less
than expected customer satisfaction.

Product line engineering and management is a possible way of dealing with such problems. However, it
is no panacea. If it is understood and implemented poorly, significant investments may result without
the materialization of expected benefits. Therefore, the following clauses of this International Standard
0 t}illc VV}lClt Pl udu\,t }illc CllSillCCl ills alld lllallasclllcllt iD alld }lU \A% Pl UVidCl oS Ldll }CVCI CISC lt t establlsh
arld manage variability; reduce costs and product complexity; increase productivity,afig product
qyality through strategic, prescribed creation and use of domain assets; shorten time to mdrket; and
infrease customer satisfaction through mass-customization of products and more aecurate estimation
of[schedules and costs.

4. Variability management

In|single-system engineering and management, reuse of knowledge is important. However, prpduct line
erlgineering and management fundamentally differs from single-system/engineering and marjagement.
Prioduct line engineering and management has to take explicitly~into account multiple |products
arld the variations within and between them. Some variability needs can still emerge (e.g.[based on
urfexpected offerings of competitors) because perfect upfront\planning of variability is impofsible but
most variability needs should be based on the careful analysis.of target markets, available teclinologies,
offerings of competitors, and other factors. Distinction between common and variable parts ofjmembers
of|the product line affects product line engineering ané:management in many ways. Some examples are
prpvided next.

—{ Developing the domain architecture: Commeon and variable parts of products in the pr¢duct line
must be clearly distinguished in the domgin architecture of the product line.

— Ensuring traceability: Variability within and between members of the product line is located in
various domain and application assets, including variability models. Domain and applicat]on assets
mustbe traced, respectively, throughout the domain and application engineeringlife cycleg. Because
application assets may reuse domain assets as they are or after modifications, application assets
must also be bidirectionally traceable to domain assets. As a result, traceability is also lecessary
across the domain and.application engineering life cycles.

Vdriability is thus a key(differentiator between single-system engineering and management and product
lile engineering andZmanagement. Variability must be defined, modeled, implemented, yersioned,
verified and valjdated. It must also be traced within and across domain and application engineering
life cycles. The“discipline for managing variability is called variability management. The mopt central
Cjncepts of product line engineering and management, discussed in 4.3, are strongly related to
variability.management.

4.8c-Key differentiators between single-system engineering and management and
plodrct i . . ; I

The identification and analysis of key differentiators between single-system engineering and
management and product line engineering and management will help organizations to understand the
product line reference model (5.2) and to formulate a strategy for successful implementation of product
line engineering and management. Product line organizations should thus design their structures and
processes to address these differentiators.

— Application engineering: A process life cycle in which application assets and member products of a
productline are implemented and managed by reusing domain assets in conformance to the domain
architecture and by binding the variability of the product line. Thus, the existence of two life cycle
processes, that is, domain engineering and application engineering, distinguishes product line
engineering from single-system engineering.

© ISO/IEC 2015 - All rights reserved 7

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Binding: A decision making task that distinguishes product line engineering from single-system
engineering. It resolves a variety of optional or alternative behaviors provided by domain assets
and application assets and represented by variability models to create application assets or member
products. Binding should be considered during domain engineering at a time when the variants
are introduced, as well as during and after application engineering at the time when the variants
are bound. Static binding of variability during application engineering takes place before run time.
Dynamic binding of variability can be used during run time. It enables a system (1) to self-adapt its
behavior based on pre-specified rules and (2) to be adapted by its users (e.g. when they decide to
bind additional variants to use enhanced features).

Collaporation: Because there are two parallel life cycles In product line engimeering, people
respdnsible for domain engineering processes need to collaborate within domain engineering-apd
also ith people in related application engineering processes.

Configuration management: Configurations of a product line are multidimensionalvin’'time ahd
spacg. Application and domain assets, platform releases, and member products have-versions. Each
of th¢se versions has a configuration. Versions of member products depend on asset versions apd
platform release versions. Platform release versions depend on domain asset yersions. For examplle,
changes in domain assets may impact numerous member products. Each meniber product can ex|st
in multiple configurations at any given time. The possible configurations of a member prodyct
can dhange over time. The dimensions need to be managed. While configuration management] is
necegsary for all systems incorporating software, it is thus of paramount importance to prodyct
line gngineering and management.

Domain architecture: It captures the high-level design of a product line, including the variability
defined by domain engineering. It is used as a blueprint fordesigning the architecture and texture
of al] product line members. The need for domain architectures (or reference architecturgs)
distipguishes product line engineering from single-sy§tém engineering.

Domain asset: The existence of domain assets.im,;software and systems product lines is anotHer
diffefentiator between product line engineeringiand single-system engineering.

Domain engineering: It defines, realizes, vetrifies and validates the domain assets. Domain variabiljty
modé¢l of the product line is structured.throughout this process life cycle. It distinguishes prodyct
line gngineering from single-system engineering. For each relevant process within the life cycle, the
required subprocesses, roles, and ‘procedures should be described.

Enabling technology support;—~Technologies needed to enable product line engineering ahd
mangdgement should be available for the successful product line implementation. Knowledige
mangdgement infrastrucfure is especially crucial because software product line engineering apd
mangdgement is moreCkitowledge intensive than single-system engineering. For example, produyct
lines|typically consist of more assets, more different types of assets, and more dependencies
betwgen assetshan individual systems. Managing knowledge about valid asset configurations|is
thus more challenging in product line engineering than in single-system engineering.

—e

Measurementand tracking: The measurementinvolved in productline engineering and managemgnt
tidimensional. Data collection, measures, and tracking need to supportthe domain engineeri

responsible for application engineering and domain engineering is likely to lead to disputes and
misallocations of funding and other resources between the organizational units. Such disputes may
deteriorate the funding of domain engineering because most, if not all, organizational revenue is
typically obtained from the sales of member products and related services, not from the sales of
domain assets. The lack of a fair funding model and supporting measurement and tracking systems
may hamper or even destroy the organizational implementation and institutionalization of product
line engineering and management.

Platform: Product line engineering is platform-based. Mass-customization of products is practically
impossible without effective platforms. Platforms thus distinguish product line engineering from

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:

single-system engineering and are of strategic importance for product line organizat

2015(E)

ions. The

introduction and elimination of entire platforms influence product line organizations significantly.

— Product management: It is responsible for the economic and business concerns of product line
engineering and management and the resulting product line(s). It deals particularly with the market
strategy and the competitive strategy. Product lines must evolve continuously in accordance with

new innovative products and application assets that products within the product line can

leverage,

market changes, and new offerings from competitors. Good practices for product line engineering
and management include evolving a product line in iterative cycles, establishing clear objectives
for each cycle, and reviewing performance after completing each cycle. Product management is

system engineering and management but it plays a more vital and powerful role i pr
engineering and management.

— Reusability: The reusability of domain assets is one of the critical success factors of proc
Reusability requires strategic long-term focus on key domains, so investments in developir
assets are feasible, and sound technological and managerial capabilities throughout th
line engineering and management processes.

responsible for these practices and for making appropriate adjustments to the producy portfolio
and the platform investments based on the review results. Product management is needed|in single-

duct line

Juct lines.
g domain
e product

—|{ Texture: Architectural texture contains common rules and constfaints (e.g. common architectural

styles or design patterns for specific solutions, common glues facilitating the comp

application assets in the product line. While texture isdimportant in single-system engir
has a key role in product line engineering because the'texture of the domain architectur

member products within a product line).

— Traceability: Productline engineering and management is typically more knowledge-inter
single-system engineering and management. Product line organizations need to manage k
related to not only more assets but also"to far more associations between assets. For
variability models may be bidirectionally associated with domain and application a
domain assets may be bidirectionally associated with application assets. Product line orgd
thus need to develop and maintain a knowledge management infrastructure that also g
management of such traceability links.

—|{ Verification and validation: They confirm through the provision of objective evidence
requirements for all domain assets and member products are fulfilled. For example, the ve

specified servicesWwith an agreed upon level of quality and helps the system (e.g. a membe
requiring the. sérvices of the asset to achieve its goals. Verification and validation in pr
context arefundamentally different from the single-system engineering context.

— Variability: The product line variability defined by product management and enable
product line platform allows flexible and effective mass-customization of member produg
a‘product line, distinguishing product line engineering and management from sing

hsition of

architectural components) for the design and realizationf all member products and domain and

eering, it
P governs

the architectures of numerous member products, (e.g. to ensure the common look and feel of the

sive than
howledge
example,
bsets and
nizations
overs the

that the
rification

product)
duct line

and validation of @ domain asset provide confidence, respectively, that the asset periorms the

d by the
ts within
e-system

eéngineering and management.

5 Reference model for product line engineering and management

This Clause defines a reference model that forms the basis for designing and executing product line
engineering processes and enabling capabilities of methods and tools. The product line reference model
defines, at a high level, the fundamental elements of product line engineering and management and

their relationships.

5.1 General

The product line reference model addresses both engineering and management processes and covers

the key characteristics of product line engineering and management.

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

The product line reference model provides an overview of the consecutive International Standards (i.e.,
ISO/IEC 26551 to ISO/IEC 26556), as well as the structure of the model.

— Processes and capabilities of methods and tools for product line scoping, domain requirements
engineering, and application requirements engineering are described by ISO/IEC 26551.

— Processes and capabilities of methods and tools for domain design and application design are
described by ISO/IEC 26552.

— Processes and capabilities of methods and tools for domain realization and application realization
are described hy IQOI/IF'(‘ 26553

— Procgsses and capabilities of methods and tools for domain verification and validation.ahd
applifation verification and validation are described by ISO/IEC 26554.

— Procégsses and capabilities of methods and tools for technical management ares.described py
ISO/IEC 26555.

— Procé¢sses and capabilities of methods and tools for organizational management are described py
ISO/IEC 26555.

5.2 Productline reference model

Software| and systems product line (SSPL) engineering and mandagement shall consist of domdin
engineering and application engineering life cycles and organizational management and technigal
managenjent process groups (Figure 1). They should be looselyrcoupled. The domain and applicatipn
engineering life cycles need to be synchronized and applicable.to different life cycle models as the ljfe
cycles arg performed in a variety of organizational and technical environments to meet different quality
criteria Zfd to achieve different organizational objectivés: Organizational and technical managemgnt

process groups are necessary to help organizations to;establish and improve capabilities for nurturipg
their prodluct lines from conception to retirement and for establishing and managing relationships with
customerfs, providers, and other key stakeholders:

10 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Product Line Domain Verification and Validation
Scoping

Domain
Requirements
Engineering

Domain
Realization

jusawabBeuepy [esuysa]

Application Anblicati X/
X pplication @ cation
Requ_lremt_ents Design alization
Engineering e,

Application Veliﬁcaﬁled Validation

<

O
Figure 1 — Reference model f@?SPL engineering and management
N
The two distinct engineering life cycles.and the two process groups of Figure 1 are compatible with
the process groups of ISO/IEC 12207 ISO/IEC/IEEE 15288. The existence of two engingering life
cycles is one of the major differences of product line engineering and management in comparison
with single-system engineering and’management. Therefore, the processes of the two life cyfles make
this difference explicit. Asset gse stores both domain assets and application assets. It sepdrates the

two engineering life cycle coordinates and synchronizes the processes within and across the
life cycles. The technical@ﬁ agement process group is in line with the project processes group, the
software support proc@es group, and parts of the software reuse processes group of ISO/IEC 12207.
The organizational agement process group is in line with organizational project-enabling processes
oup and the a ent processes group of ISO/IEC 12207 and ISO/IEC/IEEE 15288.

NQTE 1 Th§r’oduct line reference model is not suitable for handling physical artifacts such as|electronic
bojards, me ical parts, or human operators. It is concerned with system and software level artifagts such as
refjuire documents, architectural data, validation plans, and behavioral models. It can be applied twice
when ?’e are software artifacts that belong to a larger system. It is used to deal with the system-lev¢l artifacts
of b oduct line first and the software artifacts of the product line second. Moreover, the product ling reference

NOTE 2 The productline reference model and the International Standard as a whole do not prescribe the use of
any particular software and systems engineering methodologies. Organizations can decide which methodologies
to use for domain engineering and application engineering. Some organizations may use the same methodology
for both domain and application engineering whereas others may choose to mix and match diverse (e.g. Domain
Specific Modeling, Agile, and Lean) methodologies. The chosen methodologies should facilitate the strategic
creation, reuse, and configuration of not only domain realization assets but also all other domain assets such as
requirements, design, and test assets.

© ISO/IEC 2015 - All rights reserved 11

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

6 Two life cycles and two process groups for product line engineering and
management

In accordance with the reference model for SSPL engineering and management (Figure 1), this
International Standard focuses on the domain engineering and application engineering life cycles and the
organizational management and technical management process groups. They are explained in this clause.

6.1 Domain engineering life cycle

platform mplementmg the commonallty and variability, and manages the platform throughout the-ljfe
cycle of the product line. The underlying development methodology must thus enable the long-tefm
developnent and maintenance of even large and complex platforms. Methods and tools for|domdin
engineering facilitate the processes described in 6.1.1 to 6.1.5.

6.1.1 Prroductline scoping

Product ljne scoping defines the member products of a product line and the major’ (externally visibje)
common and variable features of the member products, analyzes the products from an economic pojnt
of view, ahd controls and schedules the development, production, and marketing of the product line aphd
its produfts. Product management is primarily responsible for this process, consisting of three rolgs.
This prodess has the following roles:

— Prodict scoping determines the product roadmap, that is (1) the targeted markets; (2) the prodyct
categories that the product line organization should develop, produce, market, and sell; (3) the
comron and variable features that the products should\provide in order to reach the long and
shortterm business objectives of the product line organization, and (4) the schedule for introducipg
produicts to markets.

— Domgin scoping identifies the functional domaings-that are important to the envisioned product line
and provide sufficient reuse potential to justify the creation of the product line. Domain scopipg
builds on the definitions of the product categories produced by product scoping.

— Asset] scoping identifies potentially reusable assets; estimates the costs and benefits from each
domgin asset; and delivers these results as asset proposals for product line managers who decide
which domain assets will be implemented. The existing assets that will be adapted into domdin
assetfs are documented in a liStof assets.

NOTE Product line scoping.is’an organizational product line planning and management process. It could
be placed fn the organizational hanagement process group (6.3). In this International Standard, it is presenaI
as a domz:['n engineering process because it strategically directs the execution of both domain and application
engineering life cycles.

6.1.2 Domainrequirements engineering

Domain rpquirements engineering uses the outcomes of product line scoping (e.g. the product roadmgp,
the SpeCI Feation of thn e diat i adc high laval faqtenge o dtbha dociiaantation Af Avicting accntc) as

TCOTTOTT O errC—pT uuu\,\. TITIC S TIT ST IOV CT ICatuT CF; ot crrC OO T U T IIca tIOTT UT CATS TITS, oSSt TI)

the starting points for determining the common and variable requirements of the member products of
the product line. It produces a requirements specification and the associated domain variability model
and provides feedback, if necessary, to the product management about the changes required in the
outcomes of product line scoping.

Common and variable requirements are elicited, analyzed, specified, verified and validated for the
later domain engineering lifecycle processes, that is, domain design, realization, and verification and
validation. This process has the following roles:

— Domainrequirements elicitation determines and involves appropriate domain stakeholders, performs
the requirements elicitation activities of single-system engineering, and captures the scope and

12 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

Dq
te
ex

D
da

.1.3 Domain design

ISO/IEC 26550:2015(E)

variations anticipated over the foreseeable lifetime of the product line explicitly through the use of
appropriate techniques.

Domain requirements analysis draws upon the defined product line scope and other relevant
artifacts to perform the requirements analysis activities of single-system engineering and to find
commonalities and identify variations. It may also clarify to application engineers and their clients,
how a particular member product might achieve economic viability if it were able to use more
common and fewer unique requirements. A domain variability model is also structured.

Domain requirements verification and validation ensure that all relevant product line-reqyirements
are analysed and specified completely, correctly, consistently, and unambiguously throughout the
lifetime of the product line.

Domain requirements managementplans, defines,and manages the domain requirements engineering
process and coordinates requirements engineering activities product Jlihe-wide together with
product managers and other stakeholders responsible for applicatiofivtequirements maragement.
It enacts a formal change management mechanism for proposing ehanges in the baselingd domain
requirements and for supporting the impact analysis of the proposed changes. Traceabijlity links
must be maintained between domain requirements and other assets (including requirements
sources, application requirements, the domain architecture;-and domain test assets) to|facilitate
impact analysis and appropriate changes in the assets inipacted by changes in the requir¢ments.

main design develops a product line architecturé“that consists of the architectural stru¢ture and

xture and enables realization of all member products. The domain architecture reflects nof only the
ternal variability but also the internal variability introduced by the chosen technical solutijn(s).

main design is broadly divided into four(parts: commonality and variability analysis in domajin design,

main architecture design, domain arc¢hitecture evaluation, and domain architecture managgment.

Commonality andvariability analysisin domain design analysesand takesintoaccountthe commonality
and variability in requirements to help design the domain architecture. The commonality and
variability in requirements'are elaborated by considering the domain architecture in teryms of the
structure and texture of-software and systems.

Domain architecture’design captures the high-level design of a product line. It should sptisfy the
common requirenients and support the key variable requirements to facilitate mass-cust¢mization
of member products. Architectural texture, which consists of common rules for design, rgalization,
coding, and integration testing, has to be defined and provided to all member products ifi order to
establish'a common approach for dealing with the domain architecture. The architectural texture
includes the component framework that provides the allowed configurations of compongents with
additional restrictions.

Domairrarehitectureverificationantdvalidationreview-the domatnarehiteetureand-assures whether
the domain architecture supports the functional and non-functional domain requirements. It
involves checking the architectural texture, including the component framework, and assures that
commonality and variability in domain requirements are covered by the domain architecture and
that the new (mostly internal, market-invisible) variability introduced during domain design is
feasible. It includes architectural evaluation for assessing design decisions from the viewpoint of
quality attributes.

Domain architecture management maintains and manages the domain architecture and the
associated domain assets throughout the life cycle of a product line. The major tasks for managing
the domain architecture can be divided into three groups: configuration management, change
management, and traceability management. Configuration management is critical because the
domain architecture is bound into numerous configurations during application engineering

© ISO/IEC 2015 - All rights reserved 13

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

6.1.4 Domain realization

engagements. These configurations must be verified and validated, as incorrect configurations can
cause problems or even product failures later on. When configuration management is set up, it has
to consider the variability model from the very beginning. Otherwise configuration management
becomes too complex later on. In sum, all configuration management needs must be handled by
a single configuration management process. This process is a support process in the technical
management process group (6.4.4). Change management has to be carefully orchestrated because
the domain architecture must have a long life span and be responsive to long-term evolutions
of markets and technologies while remaining as immune as possible to changes in the market
conditions of individual members of the product line and to progressions of component-level
technologies. Traceability links between domain requirements assets and the domain architecture,
between domain realization assets and the domain architecture, between domain verificati[Fn

and validation assets and the domain architecture, and between the domain architecture and-the
applifation architectures derived from it should be maintained at a comprehensible levelto-€na
change management and configuration management.

le

Domain rgalization deals with the detailed design and implementation of commofrand variable domdin
assets. Itfinvolves the building and buying of components and supporting infrastructure. The planngd
variability must be realized with adequate implementation mechanisms and-the core components ahd
interface$ have to be verified and validated based on the domain architecture and texture. Domdin
realizatign deals with five major issues: interface realization; identification, evaluation, selection, ahd
integratign of commercial off-the-shelf (COTS) components; component realization; the verificatipn

and validption of domain realization assets; and domain realizatién management.

14

Identjfication, evaluation, selection, and integration of commniercial off-the-shelf (COTS) components.
COTYcomponents (includingopen source components) cattdramatically speed up domainrealizatign,
lower the costs, and improve the quality of the platform as a whole. Appropriate componerjts
must| be identified and evaluated. In the productline engineering context, especially importgnt
evalyation criteria are how well a COTS compouént meets the known variability requirements apd
how gasy it is to add new variability when neCessary. If suitable COTS components cannot be foupd
and/¢r bought, new components must belrealized. Decision management (6.4.4) in the technigal
manggement process group supports COTFS component-related decision making.

Interface realization includes the internal design and coding of the interfaces of common and varialple
components to ensure the interfaces expose appropriate information related to commonality ahd
variapility. The level of interface details for the provided components and required components
should be reviewed.

Component realizationm,.Components are the units used to compose whole member products, [as
desciiibed by the demain architecture. Program coding is done based on the texture of the domdin
architecture and the design of the component and its interfaces. In addition, component realizatipn
inclufles assets\such as configuration mechanisms that help application developers to select apd
bind pariants:and build member products with the domain components and interfaces.

The vyerification and validation of domain realization assets detect failures in domain componerts
and interfaces—thataffectal-memberprody dependent-on-the-domain-assets—Eailures—shodld
be prevented by ensuring the quality of domain realization assets. This role reviews whether the
implemented components and interfaces conform to the domain architecture, whether they obey the
architectural texture and the configuration mechanisms of the component framework, and whether
the programming style is compliant with applicable industry practices or standards chosen for the
product line. It should be noted that the domain verification and validation processes (discussed in
6.1.5) are partly responsible for this role. The role is discussed here to emphasize its critical nature
for product line realization and the responsibility of the domain realization experts to verify and
validate the assets they have realized.

Domain realization management systematically controls the changes and maintains the integrity
and traceability of the components and interfaces throughout the software product line life cycle.

© ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Configuration management is especially complicated and important here, because multiple versions
and variants of components are used.

The difference between domain realization and the realization of a single system is that the reusable
components of domain realization are loosely coupled and configurable, and do not constitute an
executable, testable artifact. In addition, domain realization includes configuration mechanisms to
realize the variability.

6.1.5 Domain verification and validation

Ddmain verification and validation ensure the right domain assets have been modeled, kpecified,

d
p
\%

n

signed, built, verified, and tested in the right way as prescribed in previous domair] lifecycle

cesses. They also generate domain verification and validation assets that can be reused.in application
ification and validation. Domain verification and validation is partial because thére is|typically
single executable member product comprehensively covering the domain tos/be tested. Moreover,

many variants are typically missing because it may be feasible to create them,only when ong¢ or more
member products actually need them. Appropriate strategies are thus necessaty to test thgd common
ddmain assets and at least the most important variable domain assets duting domain verifidation and
validation and to prepare domain verification and validation assets forretse in application vdrification

an

Si
de
ar

d validation.

ce verification and validation activities inherent in domaimyrequirements engineering, domain
sign and domain realization have already been addressed ifv6.1.2 to 6.1.4, only the follow]ng issues
e included in the following:

Domain test planning documents the scope, strategy, resources, and schedule of domain vdrification
and validation activities. A domain test plan should include detailed domain verification and
validation requirements, the domain verification'and validation strategy chosen to deal with product
line variability, test activities, and test completion criteria. The verification and validation] schedule
draws upon the product roadmap deterinining the schedule when the product line applications
have to be ready for market launch.

Domain test design specifies domain test procedures, test cases, test data, and test envifonments
considering variability involved\in domain assets. It draws upon various domain assets|obtained
from other domain engineering processes to construct appropriate domain verification and
validation assets. The tasks'of selecting and constructing domain verification and validatjon assets
are conducted throughout the domain engineering life cycle. Depending on the kind of variability
involved with each demain asset, more or less testing can be done on the domain assef and less
or more on related_dpplication assets. Domain test design determines what is tested where and
constructs domain'verification and validation assets accordingly.

Domain test execution applies the constructed verification and validation assets to the test objects
such as coniponents, subsystems (e.g. groups of components), and the realized product ling platform
according to the domain verification and validation strategy. During and after the gxecution,
verification and validation results are created, documenting the applied test cases and §cenarios,
the objects under test, and the expected and actual verification and validation results in a rgpeatable

and verifiable way. If sample applications have been built during domain verification and vialidation,
only the common domain verification and validation assets and the variable domain verification
and validation assets relevant to the sample applications are executed. Concrete domain test cases
are typically available only for those items. Variability of the product line that is not present in any
of the sample applications cannot be verified and validated during domain engineering.

Domain test closure and report. After verification and validation have been completed, the results
are analysed to discover defects in domain assets and their root causes. Finally, a domain test
summary report is created to document which domain assets have been tested, which verification
and validation assets have been used, and which results have been achieved. The tests not covered
by domain test execution are the responsibility of application verification and validation. Test
cases performed in domain verification and validation typically have to be repeated in application
verification and validation.

© ISO/IEC 2015 - All rights reserved 15

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Domain test management keeps track of domain verification and validation assets, such as defects
and the change history of the assets.

6.2 Application engineering life cycle

Application engineering develops application assets and individual systems on top of a platform.
Application engineering is effective and efficient in comparison to single-system engineering because,
depending on the scope and maturity of the platform, much or even most of the product line engineering
effort and complexity have been allocated to domain engineering, reducing application complexity and
shortening application development times. Application engineering typically involves customers and
thus needs to deal with evolving market needs.

6.2.1 Application requirements engineering

Applicatipn requirements engineering develops application-specific requirements re@sing commpn
and varidble requirements defined during domain requirements engineering. It alsohas an importgnt
role in prpviding insights and feedback to domain requirements engineering in orderyto guide platfofm
developn]ent especially in the early phases of the product line creation.

— Applitation requirements elicitation identifies stakeholders relevant to_the-member product, elic|ts
initigl requirements from the application stakeholders, uses the variation points and variants|to
comrpunicate to the stakeholders, lets the stakeholders select the'variants that best meet their
need}, and binds the appropriate domain requirements of the product line based on the selectiors.

— Appliration requirements analysis first ensures that all initial requirements of the applicatipn
stakdholders are understood and scrutinized for incor¥eétness, omissions, and inconsistencies
throygh abstracting, modelling, prototyping, simulation, and other means. Stakeholder needs
that ¢annot be fulfilled by the reuse of domain requitéments, that is, the gap between domain ahd
applifation requirements, are then analysed and negotiated.

— Applitation requirements specification documents the analyzed application requirements by addipg
the application-specific requirements to, the specification of the selected, possibly adapted, ahd
bout?ﬁ domain requirements. Application@equirements should have well-structured documentatipn
for tHe later use in subsequent applicdtion engineering lifecycle processes and for the incorporatipn
into domain assets if necessary.

— Applitationrequirementsverification andvalidation confirmthattheapplication-specificrequirements
are cpmplete, correct, consistent, and unambiguous and that the bound variants are relevant to the
specific product requirements. It should be noted that this role is partly the responsibility of the
applifation verification‘and validation process. It is presented here to emphasize its critical natyre
for application requirements engineering and the responsibility of the application requiremerts
engineers to verifyyand validate the application requirements artifacts in collaboration with prodyct
manggement and application verification and validation experts.

— Applitation>requirements management plans, defines, manages, and coordinates the applicatipn
requirements engineering process and baselines the application requirements. It provides
app]i"nfinn stakeholderswith a formalmechanism for prnpncing new npp]irnfinn requirementsa d
changes in the baselined application requirements and for assessing the impacts of the proposed
changes. Traceability links must be maintained between application requirements and other assets
including application requirements sources, domain requirements, application architecture, and
application verification and validation assets because changes in the application requirements can
impact the related assets and changes in the other assets can impact the application requirements.

6.2.2 Application design

Application design derives an application architecture from the domain architecture in order to
meet application requirements. Product specific adaptations shall be done to satisfy product specific
requirements. The application architecture should adhere to the structure and texture of the domain
architecture. This process has the following roles:

16 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Binding variants of the domain architecture is the responsibility of the application architect to
establish a baseline for the application architecture. Variants for the variation points of the domain
architecture must be bound according to the application variability model and the binding results
from application requirements engineering. Otherwise, the application architecture may lack support
for the features and quality properties application requirements engineers intended the member
product to have.

— Application specific architecture design. The application architecture should be derived from
the domain architecture to maximum possible extent. Otherwise, full benefits from the domain
architecture cannot be reached. For example, the member product may be too different from the other
mfmber products and prove mappropriate for . application architects| typically
hgve to design new application design assets. Appropriate domain design assets will be linegrporated
in[the member product through the binding of the variation points with the selectedyvariapts of the
ddmain architecture. The application architecture is a combination of the applicationdesign gssets and
the bound domain architecture. It is important to note that the new application/design assdts can be
generalized later into domain design assets.

Application architecture verification and validation ensure the application archite¢ture has
bden composed correctly, complies with architectural rules, and meets\th€ application requfirements.
They also check that the variability introduced during application.design is feasible, appfopriately
ddcumented in the application variability model, and can be “beund correctly. The application

plement new application verification and validation-assets corresponding to the applicatipn design
aspets and execute them together with the domaimyerification and validation assets to agsure the
infegrity and validity of the application architecture. It should be noted that application verifidation and
validation are partly responsible for this role. The role is presented here to emphasize that application
arrhitects need to take responsibility for applieation architecture verification and validation jand work
in[collaboration with application testers te-ensure the application architecture meets expectdtions.

Application architecture manggement manages and maintains the application architefture and
the associated application assets(throughout the life cycle of the member product. Feedhack from
application architects related to the domain architecture is also managed here. The major|tasks for
managing the application architecture can be divided into three groups: configuration majagement,
nge management, and,traceability management. Configuration management is importanft because
the member products may”offer plenty of variability for mass-customization. Each membe} product

replization-assets and the application architecture, between application verification and yalidation
aspets andithe application architecture, and between the domain architecture and the application
argchitecture should be maintained at a comprehensible level to enable change management,
figuration management, and the provisioning of feedback to product line architects.

6.2.3 Application realization

Application realization implements member products by drawing upon the application requirements
and architecture; reusing and configuring domain components and interfaces; identifying, selecting,
and integrating appropriate commercial off-the-shelf components; and building new components and
interfaces to enable product-specific functionality. It deals with the following roles:

— Binding component-level variability. Internal variation points of domain components are bound.
Interfaces realized in domain realization should be reused without changes. Otherwise, the texture of
the domain architecture is likely to be broken and the strategic reuse of domain assets is hampered.

© ISO/IEC 2015 - All rights reserved 17

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Identification, evaluation, selection, and integration of COTS (including open source) components.
When domain components are inadequate or unavailable for application realization, COTS components
are often a viable option. They can speed up application realization, lower the costs, and improve the
quality of the member products. Compared to application-specific components, COTS components may
also be easier to generalize later on as parts of the platform, if necessary. Appropriate COTS components
must be identified and evaluated. If suitable ones cannot be found and/or bought, new components
must be realized.

— Application specific interface realization includes the internal design and coding of the interfaces
of application-specific components. This should be conducted only when domain realization has not
provided[appropriate interfaces for reuse. The level of Interiace detalls for the provided components
and required components should be reviewed carefully.

— Application specific component realization takes place precisely as in single-system engineering
when thé¢re are no suitable domain assets and COTS components available to meet~applicatipn
requiremgents.

— The verification and validation of application realization assets review, both the domdin
realizatign assets associated with the bound variants and application componentsiand interfaces to see
(1) whether the bound variants and implemented components and interfaces ¢onform to the applicatipn
architectfire and obey the configuration mechanism(s) and architectural texture and (2) whether the
programining style is compliant with applicable industry practices or statidards chosen for the prodyct
line. It shpuld be noted that application verification and validation aré partly responsible for this rdle.
The role is presented here to emphasize that application realizationlexperts need to take responsibiljty
for the vprification and validation of application realization asséts and work in collaboration with
applicatign testers.

— Application realization management defines, sehédules, and coordinates the applicatipn
realizatign process and systematically controls changes\aiid maintains the integrity and traceability|of
applicatign components and interfaces throughout thezapplication life cycle. Configuration managemgnt
is importhant because each member product evolves-throughout its life cycle and retains variability that
different [stakeholders such as member product'users can bind. Each member product can thus ex|st
in multiple configurations during its life cycle::For maintenance, it is essential to know the versions|of
all domaijn components and interfaces used:in the member product. Domain realization may provide
member products with new domain asset versions that significantly refresh the member produgts
(especially those having relatively.long life cycles) from technological and/or other viewpoinfs.
Traceabiljty links must be maintained between application realization assets and other assgts
including|the application architectiire, the application variability model, domain realization assets, ahd
applicatign verification and yalidation assets.

6.2.4 Application verification and validation

Applicatipn verification and validation ensure the right member product and the right applicatipn
assets have been\imodeled, specified, designed, built, verified, and validated right. They validate the
final productdnd its architectural and realization assets with respect to the application requirements.

They draw-upon domain verification and validation assets and create application verification apd
mlidatioﬁs&e&&%—%e—a%*a#&eﬁ&heqﬁembeﬁ%ﬁs.—

Since verification and validation activities inherent in the other processes of the application
engineering lifecycle have already been addressed in 6.2.1 through 6.2.3, this subclause only includes
the following roles:

— Application test planning produces an application test plan, documenting the scope, test
strategy, test completion criteria, resources, and the schedule of application verification and validation
activities. For directly reused domain requirements, the respective portions of domain test plans can
be reused and adapted in the application test plan as necessary. For adapted domain requirements and
new application-specific requirements, test planning has to be done from the scratch and incorporated
in the application test plan.

18 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Application test design specifies and constructs application test procedures, test cases, test data,
and test environments by reusing and adapting domain verification and validation assets. Common parts
of domain verification and validation assets can be reused as they are. For the verification and validation
assets that contain variability, the variation points must be bound based on the application variability
model and the inputs from application requirements engineering, application design, application
realization, and domain verification and validation. For application-specific parts, new assets have to be
constructed. The effort required for generating application verification and validation assets depends
on the size and scope of the member product, as well as the extent to which domain assets have been
reused during application engineering. If a member product derives most features from the product line
platform and the respective domain verification and validation assets have been extensively established
for the platform, application verification and validation takes relatively little effort.

— Application test execution applies the application verification and validation assets to various
tekt objects such as components, subsystems, and the member product accordingcto.the application
verification and validation strategy. In addition to verifying and validating .theé correctness and
completeness of the member product, the conformance of the member product-to the architectural
texture has to be assessed. The binding of variability and the configuratien réalized in thg¢ member
prioduct have to be verified and validated. The expected and the actual verification and yalidation
repults are documented together with the executed application verification’and validation asdets.

— Application test closure and reporting. When the above-mentioned roles of application verification
arld validation have been completed, the results are analyzed todiscover defects in applicatfon assets
arld their root causes. Finally, a test summary report is creatéd. [t documents which assets llave been
verified and validated, which verification and validation assets have been used, and what tle results
hgve been. A domain test summary report is reused in reporting.

— Application test management keeps track of, defects, application verification and yalidation
aspets, and the change history of application verification and validation assets.

6.3 Organizational management process group

O1jganizational management processes “are necessary for the orchestration of the product line
organization. Introduction and institutionalization of the product line strategy in an organization
refjuires ongoing preparation, planining, execution, and improvement efforts.

6.8.1 Organizational-level product line planning

Orjganizational-level preduct line planning pertains to strategic organizational-level pldnning. It
inyolves various typ€s-of plans such as product line transition plans, sourcing plans, anfl domain
aspet investment plans. One of its most important responsibilities is to make the go/no-gq decision
reparding the adoption of the product line strategy by analyzing the benefits to be gaine¢l and the
efforts and invéstments required. It should analyze business values expected from a product]line such
as| cost reduction, productivity improvement, quality improvement, reduced business risk§, shorter
tie-to-market, and increased market share. Based on the previous information, orgamizational
bysinéss management should establish business value targets to achieve by introducing thg product
lieCapproach. Thereafter it should check whether the business value targets have been mgasurably
achieved. If they have not been achieved, tThe organization must take necessary corrective actions.

In some cases it is impossible to conduct this analysis solely in planning mode. Execution of plans and
improvements based on the results of execution are needed as well. In such cases it is typically useful
to conduct first a short domain engineering process cycle and develop the first product as quickly as
possible to grasp market share and to test whether it makes sense to devise a product line. Then in a
feedback loop the developed application assets (e.g. requirements, designs, and software components)
are generalized, adapted to provide adequate variability, and brought into the platform, leading to
another domain engineering process cycle. Such a strategy should be planned during organizational
business management. Process management should determine how the domain and application
engineering processes will be adapted to leverage the revised platform.

This process has the following roles:

© ISO/IEC 2015 - All rights reserved 19

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Business opportunity analysis helps stakeholders to decide (1) whether to initiate a product line
approach and (2) whether to include a particular product as a member of an existing product line. This
includes the cost/benefit estimation and business value analysis. For successful business opportunity
analysis, establishing a collaborative atmosphere among representatives from top management,
marketing, product management, engineering, and the customer relationship management and user
groups is essential. Markets have to be analyzed to make the initial adoption decision and to guide the
evolution of the product line and the introduction of new products into the product line on an ongoing
basis. Business opportunity analysis also needs to determine the magnitude of investments required
to establish and operate the domain asset base, the knowledge management infrastructure, and the
appropriate product line engineering and management processes over the life cycle of the envisioned
product ljne. Business opportunities exist when the revenues from markets and other sources can pe
expected|to provide adequate funding for the required investments.

— Cuystomer relationship management refers to the exchange of information and otherresourdes
between [designated representatives of the product line organization (e.g. marketing)a prodyct
manager,|domain experts, a user group coordinator) and one or more particular inferest groups|of
the customer (e.g. legal, financial or technical entities, operations, training) who take’delivery of the
product groduced by the product line organization, introduce the product in the cistemer organizati¢n,
and suppprt the product throughout its life cycle in the customer organization.Manhaging the customer
relationship also requires that a product line organization coordinates custemer requirements with
those of the product line and realizes the changes required by the customers:as necessary. Especially|in
business fo business settings product line organizations and their custoriers should aim at establishipg
and mainfaining mutually beneficial long-term relationships.

— Developing a sourcing strategy serves to establish an.actionable plan for achieving specific
product ljne goals and outcomes through contracting for products and services. Sourcing helps obtdin
new domfin assets and incorporate new products in the preduct line. The strategy must include a plapn
to manage the providers of COTS components and other third party deliverables. For example, suich
key provlders should be determined that meet the reéguirements posed by the expected variability,
lifetime, 4nd evolution of the product line. Contracts“ith those providers should be secured. If open
source CQTS components are deemed necessary,an organizational role with a clearly defined procgss
and set of responsibilities should be created to*manage the relationships with relevant open souice
communifies. Finally, the development of thie)sourcing strategy involves deciding whether the usdrs
and other third parties shall be able to provide, sell, and distribute third party applications that chn
be installed and used in some or all meémber products of the product line. If the decision is positiye,
the sour¢ing strategy must includeia plan for establishing appropriate organizational, procedurpl,
and technical support for the third-parties (e.g. application engineering tools and quality assurange,
marketing, and online distributionf mechanisms).

— Organizational transition planning establishes an organizational capability to populate and nurtyre
a product]line. It plans forthe initiation of the product line and specifies schedules and resources suchfas
the organlization, people;-and the budget needed to establish and manage the product line. It also definjes
target godls to be achieved by adopting a product line approach. All this information is documented in the
transition) plan that'is the main deliverable of the organizational transition planning process.

— 0 gamzatzonal operations planmng establlshes an operatlons plan that outlines how partlcu ar

and the productlon plans to establlsh products and how the productlon operatlons are measured and
monitored. The operations plan is an especially important artifact whenever the competitiveness of
the product line organization is significantly dependent on having lower production costs than the
competitors have. Operations management (6.3.3) details and executes the operations plan.

— Organizational product line evolution planning defines how the domain and application
engineering processes will be continuously evolved to leverage the effectiveness and efficiency of the
product line.

20 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Value management planning provides integrated measurement schemes to improve the
effectiveness of transition plans and operations plans. The target business values defined in the
business opportunities and their goals that should be achieved are planned.

NOTE This paragraph provides an example of smartphone product lines to explain the Developing a sourcing
strategy role. The ability of the manufacturers of smartphone product lines to provide their customers with
large numbers of typically inexpensive but high quality third-party applications such as games that run on the
member products of the smartphone product lines is critical for the success of the product lines. Markets tend
to favor smartphones that offer the widest range of high quality third-party applications. Smartphones are the
member products in this example. Third-party applications cannot typically be considered member products of
the product lines of the smartphone manufacturers. They extend the features available in smartphones but the
prpduct management units of the manufacturers often have limited control over the features. The/pgoviders of
third-party applications can establish their own product lines that leverage the smartphones as/platforms. For
expmple, the success of a smartphone product line is likely to attract more and more third-party'gam¢ providers
offering game product lines that support the smartphone product line, positively influencing, the sucfess of the
snjartphone product line. Third-party games are member products of the game product lin€s in this eample.

6.8.2 Organizational product line-enabling management

Onjganizational product line-enabling management plans for the initiatiogsand evolution of the product
lifle and designs the organizational processes, the structure of authority and responsibilitief, and the
infrastructure needed to establish and manage the product line¢ Trdining is a core role for] both the
in{tial product line adoption and the long-term evolution of the product line. Product lines will typically
necessitate (1) numerous technological and organizational ehanges during their life cycles fand (2) a
great deal of coordination within and across organizational)functional, and project boundariefs because
many organizational units and external partners are involved.

This process has the following roles:

— Structuring the product line organization involves identifying the organizationall charter
arld boundaries; designing work roles and fe€sponsibilities concerned with domain and application
erlgineering and their interactions, organizational management, and technical management; allocating
arld assigning resources; monitoring organizational effectiveness; improving organizational operations;
establishing inter-organizational relationships; and managing organizational transitions.

— Training and human resource management helps to ensure that the organizatiopal units
regponsible for creating, operating, and evolving domain assets and member products have properly
trained and qualified personnel for each work role. Training activities must be coordinated with other
activities involved in produét line adoption and evolution.

—] Organizational quality management assures that product line platform, member products, and
bdth domain and-application engineering processes meet organizational quality objectives.

6.8.3 Organizational product line management

O1jganjzational-level product line planning initiates the organizational transitioning towarg product
lile£ngineering. During the organizational transitioning, organizational product line mahagement
gradually takes ever larger role to institutionalize product line engineering in the organizdtion. It is
concerned with the systematic evolution of both the product line organization and the product line from
the as-is state toward the desired state. It secures necessary funding and other resources; maintains
the budget and the structure of authority and responsibilities for the product line; defines and
maintains the infrastructure and processes enabling product line engineering and management; and
ensures everyone in the product line organization know their responsibilities and the means available
for carrying out these responsibilities. It monitors and controls the product line; defines and maintains
the production plan and schedule for coordinating platform and asset creation in domain engineering
and product development in application engineering based on the product line strategy, work effort
estimates, the budget, and the ongoing analysis of customer needs and market environments; manages
product configurations; monitors sourcing engagements and revises the sourcing strategy as necessary;
and provides existing customers with support and other services necessary for deploying the products.

© ISO/IEC 2015 - All rights reserved 21

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

This process has the following roles:

— Product line evolution management periodically analyzes the status and changing trends of
customer needs, key competitors, technology, and other market environments. Product lines should
be evolved to cope with these changes through evolving product line platform and/or aligning
member products.

— Deployment and innovation management facilitate the successful implementation of the product
line approach through effective assessment, improvement, and activation of the product line plans.
Pilot prolects may be conducted to evaluate the capablhty and readmess ofa product 11ne organlzatlon

— Operations management typically designs, measures, and monitors how particular organizational
units produce and evolve domain assets, define and evolve the production plans, and use-the domdin
assets anfl the production plans to establish products. Operations management follows andéxecutes the
sourcing §trategy to also define which assets and services will be sourced from third parties. The resulting
operationfs designs are important domain assets. The key measures should help opefations managemgnt
and the pfoduct line organization as a whole to track the progress and deliverablesf product line efforts
and take ¢orrective actions as necessary to achieve organizational business valGéjtargets.

— Organizational risk management differs from technical risk maragement as it manages rigks
within apd across multiple organizational units, functions, and preduéts. Many risks may hampler
the orgaxizational implementation of product line engineering and*management. They need to pe
proactively managed, so they materialize as seldom as possiblednd can be dealt with effectively|in
case of mfaterialization. For example, product line engineering-and management requires a great d¢al
of commynication, coordination, and control across organizational, functional, and project boundarigs.
Failures ip this role are costly.

— Organization-level monitoring and control ineasures the actual progresses and results
accomplighed by introducing and evolving the productline approach. The key measures for the prodyct
line organization should be focused on the definedbusiness values and their measurable goals.

6.4 Tec¢hnical management process-group

Technical management is necessary for the creation and evolution of product line processes, domdin
assets, anjd products. It consists of process management, variability management, asset managemeft,
and suppprt management.

6.4.1 rocess management

People from differentorganizational units work together to engineer and manage product lines. Thdse
efforts refquire a greatdeal of cooperation. Therefore, product line processes should be designed to pe
cross-funfctional ahd inter-organizational. Designing such processes is challenging because applicatipn
engineering and-domain engineering produce very different types of deliverables, typically requiripg
different types of development methodologles For example member products need to meet marL
needs, the . .
assets typically have long hfe cycles are generlc to meet the needs of dlverse member products and
must meet stringent quality requirements.

The strategy described in 6.3.1 places great emphasis on application engineering and testing the first
product in the markets in the beginning and increases the emphasis of domain engineering gradually
when the first products have proven successful. It is often effective because (1) it reduces the need
for two parallel methodologies in the beginning of product line creation by utilizing primarily single-
system engineering and (2) transitions toward product line engineering as quickly as the developments
in the markets and within the product line organization allow.

The following roles of process management are necessary to establish and manage a product line
organization’s capabilities for implementing appropriate product line processes.

22 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Applying process enabling processes for product lines helps to establish and manage the readiness
of process infrastructure. It enables to secure process leadership and resources for definition,
assessment, and improvement of product line processes.

— Domain engineering process definition establishes and maintains a set of organizational standard
processes and tailoring guidelines for product line engineering and management. It defines the common
processes that all participants of a product line should follow. It also establishes the processes and
development methodologies that domain engineers should use throughout the domain engineering life
cycle. Since different organizational units must collaborate, the organizational standard processes of a
product line organization are defined at multiple levels and are cross-functional.

— Application engineering process definition establishes and maintains the process thay fits with
the development of member products. It serves to define the member product specific progesses for
dgveloping member products under the product line context. It also includes the definitions for the
appplication engineering processes, development methodologies, and tools thatrshould bg applied
for all member products. Application engineering should use and/or tailor the€ommon application
engineering processes defined here. It is important to note that the domain engineering process
ddfinition may impose certain constraints that application engineering processes always need|to follow.

— Definition and application of relationship management proce§ses and supporting information
syktems for collaborating with external providers and open sourte communities deals [with the
implementation of the sourcing strategy (6.3.1). It institutionalizesxelationship management grocesses,
organizational and technical support processes, and organizational entities responsibl¢ for the
prcesses to conduct engagements with the external stakeliolders such as COTS component providers
arld open source communities.

— Applying process monitoring and control for product lines helps to monitor the performance
of[the domain/application engineering processes-aiid to control the corrective actions for fixing the
dgviations between planned and actual performarices. For monitoring the performance of processes,
the measures and metrics should be selected;to allow control over the processes according to the
measurement results.

— Applying process improvement|for product lines helps to manage organizational process
aspessment and improvement based:on the measurement results. Organizational process ag§sessment
arld improvement should be systematic to migrate from an as-is state toward a desired state of
organizational processes.

6.4.2 Variability management

Prjoduct line variability defines how member products are differentiated from each other. ariability
management requires explicit documentation of variability through domain and application variability
m¢deling. Variability modeling, documentation, and evolution throughout the domain and application
erlgineering life'cycles are supported by the following variability management roles:

— Variability modelling supports the creation and maintenance of detailed variabilitly models
uding‘variability related information from domain and application engineering. It supports variability
mpdeéling using consistent notations. There are two types of variability models: domain vjariability
models and application variability models. Domain engineering typically provides most of the variability
information necessary for structuring the domain variability model. The model is refined and managed
throughout the domain engineering lifecycle. However, application engineering provides variability
information as well because each member product may offer plenty of variability. This information is
documented in an application variability model. This model is also refined throughout the application
engineering lifecycle. The levels of detail of variability information differ depending on the process (e.g.
application requirements engineering) where the information is produced.

— Variability mechanism is a mean for realizing the variability of product line. Because variability
is introduced at the whole domain engineering lifecycle phases and binding occurs at the whole
application engineering lifecycle phases, variability mechanisms that support the determined binding
times, rules and constraints, and domain artifacts should be provided. Variability mechanism used
differs from domain artifacts even at the same lifecycle phase. And it differs from realization (e.g.

© ISO/IEC 2015 - All rights reserved 23

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

different programming languages), installation, and deployment methods. This role supports that
domain engineers choose the right variability mechanisms in accordance with the determined binding
times, domain artifacts, selected deployment methods, and etc.

— Variability binding supports the consistent exploitation of variability during application
engineering, facilitating proactive and correct reuse of domain assets. It maintains information that
domain and application engineers, as well as automated tools, need to resolve variability appropriately;
resolves variability established during domain and application engineering; and documents variability
resolutions, so it is possible to see later on how variability has been resolved (e.g. which variants have
been selected for a particular member product). Variability binding helps maintain member products
as it documents precisely which variability has been bound an

— Variability tracing enables the establishment and maintenance 0f traceability links betwefen
elements|of the variability models and the associated domain and<application assets. An econonpic
analysis dfthe costs and benefits from traceability links should be condicted to decide on the approprigte
level of d¢tail for traceability management. Having too much or toodittle traceability is costly.

— Variability control and evolution manages the different versions of variability models ahd
associatefl traceability links stored in the asset base. It alsg-deals with the change requests related|to
variability models, so the product line variability can be managed as a strategic organizational resourge.

6.4.3 Asset management

Asset management is responsible for storing;;mining, and managing domain assets and applicatipn

possible generalization of appli¢ation assets into domain assets), the annotations necessary to reuse
domain dssets (e.g. glues,-proecesses, and their descriptions that are attached to domain assets ahd
prescribg how to use the-assets), change requests and feedback, traceability links, and the versions|of

the platfdrm/o] oredlin
the asset base as some of them can be made generlc and then reused as domaln assets The asset base
supports the creation, storage, retrieval, update, versioning, and deletion of domain and application
assets and traceability links. It is established and managed by asset management.

This process has the following roles.

— Asset identification identifies and evaluates domain asset candidates (e.g. features, models,
specifications,and testcases) developedin, for example, application engineering orlegacy application
projects. It selects the best candidates to be made generic and reusable in order to populate the
asset base. It is important to note that domain engineering only creates domain assets and stores
all of them in the asset base.

24 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

— Asset base implementation constructs the asset base. Asset base should configure assets to make
them easy to mine, retrieve, and manage. It should include annotations that provide necessary
information which will be used for integrating and orchestrating assets for systematic reuse.

— Asset verification and validation ensure that the domain and application assets reflect the defined
asset structure and can easily be mined, retrieved, and managed.

— Asset evolution manages and controls change requests, traceability, and versioning of assets
after baselining.

6‘.JI,.4 Support management
P

Support management deals with the following roles that may support other processes and may provide
the capabilities that can promote the success and quality of other processes. The rolestof this process
influde technical quality management, configuration management, decision mafragement, [technical
rigk management, and tool management.

— Technical quality management ensures that work products and processes implemented in domain
engineering and application engineering comply with the predefimed provisions ahd plans.
Functionalities and quality attributes intended to be achieved thraugh the productline engineering
are assessed through technical quality management schemes (e.g-quality assurance).

— Configuration management controls versions and releases, of’each application and dompin asset.
Configuration management is more complex in productdine engineering and management than in
single-system engineering and management because it/should deal with the variability qf product
line platforms and member products.

— Decision management helps to choose the mostdbeneficial option(s) among business or[technical
decision alternatives. The strengths and weaknesses implied by each alternative ghould be
considered during decision making to choose the best option(s). This role serves al] product
line decision making including domain engineering, application engineering, orgamizational
management, and technical managemient.

— Technical risk management addrésses technical risk issues that could endanger the acljievement
of targeted business values and other product line objectives. Severe technical risks (e}g. lack of
domain knowledge, uncertain or volatile domain requirements, lack of historical data [for effort
estimation) are likely to-materialize without adequate technical risk management, so pr¢duct line
organizations must develop mitigation and/or contingency plans to cope with those risks

—{ Tool management_is’needed to automate or semi-automate domain engineering and application
engineering life.cycle processes and the creation, configuration, tracing, verification, vialidation,
maintenance, and evolution of domain and application assets.

7| Relationships within and between domain engineering and application
engineering

T} delClaicn sz losic thao sl oo cazitbion hat thao o £ d H i 1
1o UlIdUuoT bAylulllJ CITU TIILUT T CIAUIVUITO VVILIILILD dITU ULl vvoe Ul LIIv tll ULLOOLVO Ul UUIITIAarIliIr bllslneerlng

and application engineering defined in the reference model for product line engineering and
management (Figure 1).

7.1 Interrelations between product line scoping and domain requirements engineering

The major results of product line scoping are product roadmaps and asset proposals. A product roadmap
defines products that will be included within a product line and their major assets (e.g. high-level
common and variable features that directly affect domain and application requirements engineering)
with their quantified costs and estimated benefits. A product roadmap may define a schedule for
delivering specific member products to customers or for bringing them to market. The schedule is the
result of strategic reasoning and effort estimation performed jointly by the product line and/or product

© ISO/IEC 2015 - All rights reserved 25

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

managers. Each asset proposal includes a list of existing assets that could be used to derive domain
requirements and other domain assets.

Product portfolio definition
Asset proposals

. > Domain
Product Line .
. Requirements
Scoping < . .
< Engineering

Feedback for the portfolio
and proposals

Figure 2| — Interrelations between product line scoping and domain requirements engineering

Features pfthe products of the productline are defined in domain requirements engineering. They d¢al
mainly wjith external variability. They are communicated back to product line scoping asrsuggestions
for additjonal and/or altered products or features, as well as feature refinements,-based on the
analysis pf existing products, stakeholder needs, laws, constraints, and other requirement sources.
The analysis may involve significant interaction with customers and providers. Correspondipg
processes should be established.

During the life cycle of the product line, product line scoping has to redcb to changes in custonier
needs, avfailable technologies, competitors’ offerings, and in other market conditions. These changes
necessitafe adaptations of the product roadmaps and asset proposals,such as the introduction of ngw
features ¢r the elimination of outdated member products from the product portfolio.

7.2 Interrelations between domain requirements engineering and domain design

Domain requirements engineering has to follow the specification of the productline’s high-level featuies
provided|by product line scoping to detail common and variable requirements that are adequate |to
steer donjain design, realization, and verification and«alidation.

Domain requirements engineering provides to demain design all defined domain requirements and the
definitior} of the product line variability in thevariability model. Domain designers can then determine
the technlical solutions to be included in thesxdomain architecture. The internal variability arising frgm
domain glesign is added to the variability model produced by domain requirements engineering. The

resulting|variability model defines the\variability of the domain architecture.

Variability model
Domain requirements
specification

v

Domain
Requirements Domain Design
Engineering <
Requests for detailed and
revised requirements

Figure3-+— Interrelations between domain requirements engineering and domain design

Domain design provides feedback to domain requirements engineering in terms of the needs for new,
revised, or more detailed requirements.

7.3 Interrelations between domain design and domain realization

Domain design provides the domain architecture to domain realization. The domain architecture
forms the basis for structuring all member products and the texture for building reusable components
and interfaces.

Problem reports and other issues arising during domain realization are provided as feedback to domain
design for improvement purposes.

26 © ISO/IEC 2015 - All rights reserved

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

ISO/IEC 26550:2015(E)

Variability model
Domain architecture

v

Domain
< Realization

<€

Domain Design

Problems encountered in
realizing the domain design

Figure 4 — Interrelations between domain design and domain realization

7.4 Interrelations between domain requirements engineering and domain'verif
and validation

Dq

refjuirements assets, specifying common and variable domain requirements,.and the variabil

Dq

tefts and check whether the specified domain requirements are testable:

ication

main requirements engineering provides domain verification and validation with the domain

main verification and validation develop system tests and acceptance, eriteria for the a

ty model.

ceptance

Platforms contain sets of loosely coupled components but no complete member producty. Domain

verification and validation can thus usually perform system tests only on subsystems th
common requirements and are not affected by the variability of the product line. To find {
without including variability, a configuration of variants is\required. However, in cases wh
arg limited numbers of variation points with relatively small numbers of known variants, it i

to

planned. Huge numbers of test runs are needed to test all combinations of selected variants at
vdriation points, but this may be sensible and feasible in some cases.

test each variant in sequence. For example, for a variation point with three variants, three

ht realize

est cases

ere there
5 possible

tests are
different

Dgfects originating, for example, from incomplete or ambiguous domain requirements definitions and
foind during the domain system testing are-reported to domain requirements engineering sp that the
ddfects in the domain requirements assets-can be corrected.

Variability model

Domain requirements

. assets .
Domain > Domain
Requirements Verification and
Engineering < Validation
Requirements defects
Fjgure 5 — Interrelations between domain requirements engineering and domain verijfication

Dé

and validation

7.5 Anterrelations between domain design and domain verification and validatipn

main—daciagn weavidac dosaoi yopifioatioy ond olidotion vzith +ha dora i r\wn]/\;{-nn{'ure and
C

o e ot T PTrovIaCo—OOTIoTT vV C T I ICa eroT— ottt v ot et ot — vy it o C— OoTrotit o f Crirrec

the selection of reusable assets whose realizations are incorporated in the platform. Integration
verification and validation assets are created for common component interactions and for those
components that contain few variable interactions with realized components based on the domain
architecture. Integration verification and validation assets should also be created at least for the most
common interactions of variable components. Verification and validation assets must then provide the

va

riability that matches the variability of the components and component interactions.

© ISO/IEC 2015 - All rights reserved

27

https://standardsiso.com/api/?name=9fa2491e01df2e8d5371ed1ba7f2e6e0

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Terms and definitions
	4	From single-system engineering and management toward product line engineering and management
	4.1	Challenges product companies face in the use of single-system engineering and management
	4.2	Variability management
	4.3	Key differentiators between single-system engineering and management and product line engineering and management
	5	Reference model for product line engineering and management
	5.1	General
	5.2	Product line reference model
	6	Two life cycles and two process groups for product line engineering and management
	6.1	Domain engineering life cycle
	6.1.1	Product line scoping
	6.1.2	Domain requirements engineering
	6.1.3	Domain design
	6.1.4	Domain realization
	6.1.5	Domain verification and validation
	6.2	Application engineering life cycle
	6.2.1	Application requirements engineering
	6.2.2	Application design
	6.2.3	Application realization
	6.2.4	Application verification and validation
	6.3	Organizational management process group
	6.3.1	Organizational-level product line planning
	6.3.2	Organizational product line-enabling management
	6.3.3	Organizational product line management
	6.4	Technical management process group
	6.4.1	Process management
	6.4.2	Variability management
	6.4.3	Asset management
	6.4.4	Support management
	7	Relationships within and between domain engineering and application engineering
	7.1	Interrelations between product line scoping and domain requirements engineering
	7.2	Interrelations between domain requirements engineering and domain design
	7.3	Interrelations between domain design and domain realization
	7.4	Interrelations between domain requirements engineering and domain verification and validation
	7.5	Interrelations between domain design and domain verification and validation
	7.6	Interrelations between domain realization and domain verification and validation
	7.7	Interrelations between product line scoping and application requirements engineering
	7.8	Interrelations between domain requirements engineering and application requirements engineering
	7.9	Interrelations between domain design and application design
	7.10	Interrelations between domain realization and application realization
	7.11	Interrelations between domain verification and validation and application verification and validation
	7.12	Interrelations between application requirements engineering and application design
	7.13	Interrelations between application design and application realization
	7.14	Interrelations between application requirements engineering and application verification and validation
	7.15	Interrelations between application design and application verification and validation
	7.16	Interrelations between application realization and application verification and validation
	Annex A (informative) Further information on products
	Bibliography

