

INTERNATIONAL STANDARD ISO/IEC 1539-1:2010
TECHNICAL CORRIGENDUM 2

Published 2013-06-01

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION  МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ  ORGANISATION INTERNATIONALE DE NORMALISATION

INTERNATIONAL ELECTROTECHNICAL COMMISSION  МЕЖДУНАРОДНАЯ ЭЛЕКТРОТЕХНИЧЕСКАЯ КОМИССИЯ  COMMISSION ÉLECTROTECHNIQUE INTERNATIONALE

Information technology — Programming languages — Fortran

Part 1:
Base language

TECHNICAL CORRIGENDUM 2

Technologies de l'information — Langages de programmation — Fortran

Partie 1: Langage de base

RECTIFICATIF TECHNIQUE 2

Technical Corrigendum 2 to ISO/IEC 1539-1:2010 was prepared by Joint Technical Committee ISO/IEC
JTC 1, Information technology, Subcommittee SC 22, Programming languages, their environments and
system software interfaces.

ICS 35.060 Ref. No. ISO/IEC 1539-1:2010/Cor.2:2013(E)

© ISO/IEC 2013 – All rights reserved

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

ISO/IEC/JTC1/SC22/WG5-N1958

ISO/IEC 1539-1:2010 - TECHNICAL CORRIGENDUM 2

Introduction
Following the second sentence in the fifth item in the bulleted list (Data usage and computation),
insert: “Multiple allocations are permitted in a single ALLOCATE statement with SOURCE=.”.

Subclause 1.6.2
Replace the two paragraphs added to the subclause in Technical Corrigendum 1 by the following six
paragraphs:

Fortran 2003 permitted a sequence type to have type parameters; that is not permitted by this
part of ISO/IEC 1539.

Fortran 2003 specified that array constructors and structure constructors of finalizable type
are finalized. This part of ISO/IEC 1539 specifies that these constructors are not finalized.

The form produced by the G edit descriptor for some values and some I/O rounding modes
differs from that specified by Fortran 2003.

Fortran 2003 required an explicit interface only for a procedure that was actually referenced
in the scope, not merely passed as an actual argument. This part of ISO/IEC 1539 requires an
explicit interface for a procedure under the conditions listed in 12.4.2.2, regardless of whether
the procedure is referenced in the scope.

Fortran 2003 permitted the result variable of a pure function to be a polymorphic allocatable
variable, or to be finalizable by an impure final subroutine. These are not permitted by this
part of ISO/IEC 1539.

Fortran 2003 permitted an INTENT(OUT) argument of a pure subroutine to be polymorphic;
that is not permitted by this part of ISO/IEC 1539.

Subclause 1.6.3
Add the following item at the end of the bulleted list:

• The form produced by the G edit descriptor with d equal to zero differs from that specified
by Fortran 95 for some values.

Subclause 1.6.4
In the fourth paragraph of the subclause, replace the full stop at the end of the third bulleted item by a
semicolon and add a fourth item:

• the G edit descriptor with d equal to zero for some values.

Subclause 4.4.2.3
In the third paragraph of the subclause, in Note 4.8 change “can distinguish” to “distinguishes”.

Subclause 4.5.2.3
Replace constraint C436 by:

C436 (R425) If SEQUENCE appears, each data component shall be declared to be of an
intrinsic type or of a sequence type, the derived type shall not have type parameters,
and a type-bound-procedure-part shall not appear.

ISO/IEC 1539-1:2010/Cor.2:2013(E)

2 © ISO/IEC 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

Subclause 4.5.2.4
In the second sentence of the second paragraph of the subclause, delete “type parameters and”.

Subclause 4.5.6.1
In the second sentence of constraint C480, insert “noncoarray,” before “nonpointer”.

Subclause 4.5.6.3
To the second paragraph of the subclause (which was paragraph 1 prior to the edits of Technical
Corrigendum 1), append the new sentence:

If an error condition occurs during deallocation, it is processor dependent whether finalization
occurs.

Replace the seventh paragraph of the subclause (which was paragraph 8 prior to the edits of Technical
Corrigendum 1) by the following new paragraph. This supersedes the substitute paragraph given in
Technical Corrigendum 1.

When a procedure is invoked, a nonpointer, nonallocatable INTENT(OUT) dummy argument
of that procedure is finalized before it becomes undefined. The finalization caused by
INTENT(OUT) is considered to occur within the invoked procedure; so for elemental
procedures, an INTENT(OUT) argument will be finalized only if a scalar or elemental final
subroutine is available, regardless of the rank of the actual argument.

Subclause 4.8
In constraint C4105 in the first paragraph of the subclause, change “all ac-value expressions in the
array-constructor shall be of that derived type and” to “the declared type of each ac-value expression
in the array-constructor shall be that derived type and”.

After constraint C4106, insert the following new constraint:

C4106a (R472) The declared type of an ac-value shall not be abstract.

In the second paragraph of the subclause, change “each ac-value expression in the array constructor
shall have the same length type parameters;” to “corresponding length type parameters of the declared
type of each ac-value expression shall have the same value;”.

In the third paragraph of the subclause, after “Each value is converted to the” insert “type and”.

Subclause 5.3.7
In the first paragraph of the subclause, change “can only be argument associated with a contiguous
effective argument” to “is contiguous”.

Subclause 5.3.10
In constraint C541 change “An entity” to “A dummy argument of a nonintrinsic procedure”.

Subclause 5.4.7
In the fourth paragraph of the subclause, replace constraint C566 by:

C566 (R536) A data-stmt-object that is a variable shall be a designator. Each subscript,
section subscript, substring starting point, and substring ending point in the variable
shall be a constant expression.

Subclause 5.5
In the final sentence of the third paragraph of the subclause, change “an internal or module
procedure” to “a BLOCK construct, internal subprogram, or module subprogram”.

ISO/IEC 1539-1:2010/Cor.2:2013(E)

3© ISO/IEC 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

Subclause 5.6
In the fifth paragraph of the subclause, change what was originally “type, type parameters, and shape”
but which was changed by Technical Corrigendum 1 to “type, kind type parameters, and rank” to
“declared type, kind type parameters of the declared type, and rank”.

Subclause 6.7.1.1
Replace constraint C633 by:

C633 (R626) If an allocate-object is an array, either allocate-shape-spec-list shall appear in
its allocation, or source-expr shall appear in the ALLOCATE statement and have the
same rank as the allocate-object.

C633a (R631) If allocate-object is scalar, allocate-shape-spec-list shall not appear.

Replace constraint C639 by:

C639 (R626) If source-expr appears, the kind type parameters of each allocate-object shall
have the same values as the corresponding type parameters of source-expr.

Replace the fourth paragraph of the subclause by:

If an allocate-object is a coarray, the ALLOCATE statement shall not have a source-expr with
a dynamic type of C_PTR, C_FUNPTR, or LOCK_TYPE, or which has a subcomponent
whose dynamic type is LOCK_TYPE.

Subclause 6.7.1.2
In the seventh paragraph of the subclause, before “On successful”, insert the new sentence:

If an allocate-object is not polymorphic and the source-expr is polymorphic with a dynamic
type that differs from its declared type, the value provided for that allocate-object is the
ancestor component of the source-expr that has the type of the allocate-object; otherwise, the
value provided is the value of the source-expr.

In the sentence beginning “On successful”, replace “that of source-expr” with “the value provided”,
twice.

At the end of the seventh paragraph append the new sentence:

The source-expr is evaluated exactly once for each execution of an ALLOCATE statement.

Subclause 6.7.3.2
Append the following new sentence to the eighth paragraph of the subclause:

If an error condition occurs during deallocation, it is processor dependent whether an
allocated allocatable subobject is deallocated.

Subclause 7.1.12
In the first paragraph of the subclause, in item (6) of the numbered list, after “THIS_IMAGE” insert
“, or TRANSFER”.

After item (7) of the numbered list, insert new item:

(7a) A reference to the intrinsic function TRANSFER where each argument is a constant
expression and each ultimate pointer component of the SOURCE argument is
disassociated.

ISO/IEC 1539-1:2010/Cor.2:2013(E)

4 © ISO/IEC 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

Subclause 7.2.2.2
In constraint C729 replace “an external ... bullet (•)” with “a specific intrinsic function listed in 13.6
and not marked with a bullet (•), or an external procedure that is accessed by use or host association,
referenced in the scoping unit as a procedure, or that has the EXTERNAL attribute”.

Subclause 8.5.1
In the bulleted list in the second paragraph of the subclause, add the following new item before the
STOP statement item:

• a CALL statement that invokes the intrinsic subroutine MOVE_ALLOC with coarray
arguments;

Subclause 9.12
Replace the fifth paragraph of the subclause by:

The value of a specifier in an input/output statement shall not depend on the definition or
evaluation of any other specifier in the io-control-spec-list or inquire-spec-list in that
statement. The value of an internal-file-variable or of a FMT=, ID=, IOMSG=, IOSTAT= or
SIZE= specifier shall not depend on the values of any input-item or io-implied-do do-variable
in the same statement.

Subclause 10.7.5.2.2
Following the third paragraph of the subclause, add a new paragraph:

If d is zero, kPEw.0 or kPEw.0Ee editing is used for Gw.0 editing or Gw.0Ee editing
respectively.

In the original fourth paragraph of the subclause replace the second and subsequent sentences,
including the two tables, by:

If the internal value is a zero value, let s be one. If the internal value is a number other than
zero, let N be the decimal value that is the result of converting the internal value to d
significant digits according to the I/O rounding mode and let s be the integer such that
10s-1 ≤ N < 10s. If s<0 or s>d, kPEw.d or kPEw.dEe editing is used for Gw.d editing or
Gw.dEe editing respectively, where k is the scale factor (10.8.5). If 0 ≤ s ≤ d, the scale factor
has no effect and F(w-n).(d-s),n('b') editing is used where b is a blank and n is 4 for Gw.d
editing and e+2 for Gw.dEe editing.

Subclause 12.4.2.2
At the beginning of the subclause, replace “A procedure ... and” with “Within the scope of a
procedure identifier, the procedure shall have an explicit interface if it is not a statement function and”.

Subclause 12.4.3.2
Replace constraint C1209 by:

C1209 (R1201) An interface-specification in a generic interface block shall not specify a
procedure that is specified previously in any accessible interface with the same
generic identifier.

Subclause 12.4.3.4.5
In the third paragraph of the subclause, in constraint C1214 as amended in Technical Corrigendum 1
replace “the same” by “that”.

ISO/IEC 1539-1:2010/Cor.2:2013(E)

5© ISO/IEC 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

Subclause 12.5.2.3
Replace the second paragraph of the subclause by:

If a nonpointer dummy argument without the VALUE attribute corresponds to a pointer actual
argument that is pointer associated with a target,
• if the dummy argument is polymorphic, it becomes argument associated with that target;
• if the dummy argument is nonpolymorphic, it becomes argument associated with the

declared type part of that target.

Replace the third paragraph of the subclause by:

If a present nonpointer dummy argument without the VALUE attribute corresponds to a
nonpointer actual argument,
• if the dummy argument is polymorphic it becomes argument associated with that actual

argument;
• if the dummy argument is nonpolymorphic, it becomes argument associated with the

declared type part of that actual argument.

Subclause 12.5.2.4
Append to the second paragraph of the subclause the sentence:

If the actual argument is a polymorphic assumed-size array, the dummy argument shall be
polymorphic.

In the third paragraph of the subclause, add the following sentence at the start of the paragraph:

The kind type parameter values of the actual argument shall agree with the corresponding
ones of the dummy argument.

In the original first sentence of the third paragraph change “The type parameter values of the actual
argument” to “The length type parameter values of a present actual argument”.

In the fourth paragraph of the subclause, before “scalar dummy argument” insert “present”.

In the second sentence of the seventeenth paragraph of the subclause, after “has INTENT (OUT),”
change “the actual argument” to “the effective argument” and delete the last sentence of the
paragraph (“If … undefined.”).

Subclause 12.5.2.5
Replace the first paragraph of the subclause by:

The requirements in this subclause apply to an actual argument with the ALLOCATABLE or
POINTER attribute that corresponds to a dummy argument with the same attribute.

Delete the fourth paragraph of the subclause, that is “The values of assumed type parameters …
effective argument.”.

Subclause 12.5.2.6
Following the third paragraph of the subclause, add the new paragraph:

The values of assumed type parameters of a dummy argument are assumed from the
corresponding type parameters of its effective argument.

ISO/IEC 1539-1:2010/Cor.2:2013(E)

6 © ISO/IEC 2013 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 15
39

-1:
20

10
/C

OR2:2
01

3

https://standardsiso.com/api/?name=3745575491f54f4af7e3c12d0dc28263

	Blank Page

