
Information technology — Security
techniques — Key management —
Part 3:
Mechanisms using asymmetric
techniques
Technologies de l’information — Techniques de sécurité — Gestion de
clés —
Partie 3: Mécanismes utilisant des techniques asymétriques

INTERNATIONAL
STANDARD

ISO/IEC
11770-3

Reference number
ISO/IEC 11770-3:2015(E)

Third edition
2015-08-01

© ISO/IEC 2015

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ii� © ISO/IEC 2015 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2015, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.

ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org

ISO/IEC 11770-3:2015(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)
﻿

Foreword...v
Introduction...vi
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 2
4	 Symbols and abbreviations.. 7
5	 Requirements... 9
6	 Key derivation functions... 9
7	 Cofactor multiplication... 9
8	 Key commitment...10
9	 Key confirmation..11
10	 Framework for key management..12

10.1	 General... 12
10.2	 Key agreement between two parties... 12
10.3	 Key agreement between three parties... 12
10.4	 Secret key transport... 13
10.5	 Public key transport... 13

11	 Key agreement..14
11.1	 Key agreement mechanism 1... 14
11.2	 Key agreement mechanism 2... 15
11.3	 Key agreement mechanism 3... 16
11.4	 Key agreement mechanism 4... 18
11.5	 Key agreement mechanism 5... 18
11.6	 Key agreement mechanism 6... 19
11.7	 Key agreement mechanism 7... 21
11.8	 Key agreement mechanism 8... 22
11.9	 Key agreement mechanism 9... 23
11.10	 Key agreement mechanism 10.. 24
11.11	 Key agreement mechanism 11.. 25
11.12	 Key agreement mechanism 12.. 26

12	 Secret key transport..27
12.1	 Secret key transport mechanism 1.. 27
12.2	 Secret key transport mechanism 2.. 28
12.3	 Secret key transport mechanism 3.. 30
12.4	 Secret key transport mechanism 4.. 32
12.5	 Secret key transport mechanism 5.. 33
12.6	 Secret key transport mechanism 6.. 35

13	 Public key transport...36
13.1	 Public key transport mechanism 1.. 36
13.2	 Public key transport mechanism 2.. 37
13.3	 Public key transport mechanism 3.. 38

Annex A (normative) Object identifiers..40
Annex B (informative) Properties of key establishment mechanisms..47
Annex C (informative) Examples of key derivation functions..49
Annex D (informative) Examples of key establishment mechanisms..56
Annex E (informative) Examples of elliptic curve based key establishment mechanisms........................60

© ISO/IEC 2015 – All rights reserved� iii

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)
﻿

Annex F (informative) Example of bilinear pairing based key establishment mechanisms....................68
Annex G (informative) Secret key transport...71
Annex H (informative) Patent information..76
Bibliography..80

iv� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international
organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the
work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identified during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

The committee responsible for this document is ISO/IEC JTC 1, Information technology, SC 27, Security
techniques.

This third edition cancels and replaces the second edition (ISO/IEC 11770-3:2008 with
ISO/IEC 11770-3/Cor1:2009), which has been technically revised.

ISO/IEC 11770 consists of the following parts, under the general title Information technology — Security
techniques — Key management:

—	 Part 1: Framework

—	 Part 2: Mechanisms using symmetric techniques

—	 Part 3: Mechanisms using asymmetric techniques

—	 Part 4: Mechanisms based on weak secrets

—	 Part 5: Group key management

—	 Part 6: Key derivation

Further parts may follow.

﻿

© ISO/IEC 2015 – All rights reserved� v

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

http://www.iso.org/directives
http://www.iso.org/patents
http://www.iso.org/iso/home/standards_development/resources-for-technical-work/foreword.htm
https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Introduction

This part of ISO/IEC 11770 describes schemes that can be used for key agreement and schemes that can
be used for key transport.

Public key cryptosystems were first proposed in the seminal paper by Diffie and Hellman in 1976. The
security of many such cryptosystems is based on the presumed intractability of solving the discrete
logarithm problem over certain finite fields. Other public key cryptosystems such as RSA are based on
the difficulty of the integer factorization problem.

A third class of public key cryptosystems is based on elliptic curves. The security of such a public
key system depends on the difficulty of determining discrete logarithms in the group of points of an
elliptic curve. When based on a carefully chosen elliptic curve, this problem is, with current knowledge,
much harder than the factorization of integers or the computation of discrete logarithms in a finite
field of comparable size. All known general purpose algorithms for determining elliptic curve discrete
logarithms take exponential time. Thus, it is possible for elliptic curve based public key systems to
use much shorter parameters than the RSA system or the classical discrete logarithm based systems
that make use of the multiplicative group of some finite field. This yields significantly shorter digital
signatures, as well as system parameters, and allows for computations using smaller integers.

This part of ISO/IEC 11770 includes mechanisms based on the following:

—	 finite fields;

—	 elliptic curves;

—	 bilinear pairings.

The International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) draw attention to the fact that it is claimed that compliance with this International
Standard may involve the use of patents.

ISO and IEC take no position concerning the evidence, validity and scope of these patent rights.

The holders of these patent rights have assured ISO and IEC that they are willing to negotiate licences
under reasonable and non-discriminatory terms and conditions with applicants throughout the world.
In this respect, the statements of the holders of these patent rights are registered with ISO and IEC.
Information may be obtained from those in Annex H.

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights other than those identified above. ISO and IEC shall not be held responsible for identifying
any or all such patent rights.

ISO (www.iso.org/patents) and IEC (http://patents.iec.ch) maintain on-line databases of patents
relevant to their standards. Users are encouraged to consult the databases for the most up to date
information concerning patents.

﻿

vi� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

http://www.iso.org/patents
http://patents.iec.ch
https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

Information technology — Security techniques — Key
management —

Part 3:
Mechanisms using asymmetric techniques

1	 Scope

This part of ISO/IEC 11770 defines key management mechanisms based on asymmetric cryptographic
techniques. It specifically addresses the use of asymmetric techniques to achieve the following goals.

a)	 Establish a shared secret key for use in a symmetric cryptographic technique between two entities
A and B by key agreement. In a secret key agreement mechanism, the secret key is computed as
the result of a data exchange between the two entities A and B. Neither of them should be able to
predetermine the value of the shared secret key.

b)	 Establish a shared secret key for use in a symmetric cryptographic technique between two entities
A and B via key transport. In a secret key transport mechanism, the secret key is chosen by one
entity A and is transferred to another entity B, suitably protected by asymmetric techniques.

c)	 Make an entity’s public key available to other entities via key transport. In a public key transport
mechanism, the public key of entity A shall be transferred to other entities in an authenticated way,
but not requiring secrecy.

Some of the mechanisms of this part of ISO/IEC 11770 are based on the corresponding authentication
mechanisms in ISO/IEC 9798-3.[6]

This part of ISO/IEC 11770 does not cover certain aspects of key management, such as

—	 key lifecycle management,

—	 mechanisms to generate or validate asymmetric key pairs, and

—	 mechanisms to store, archive, delete, destroy, etc. keys.

While this part of ISO/IEC 11770 does not explicitly cover the distribution of an entity’s private key
(of an asymmetric key pair) from a trusted third party to a requesting entity, the key transport
mechanisms described can be used to achieve this. A private key can in all cases be distributed with
these mechanisms where an existing, non-compromised key already exists. However, in practice the
distribution of private keys is usually a manual process that relies on technological means such as
smart cards, etc.

This part of ISO/IEC 11770 does not specify the transformations used in the key management
mechanisms.

NOTE	 To provide origin authentication for key management messages, it is possible to make provisions
for authenticity within the key establishment protocol or to use a public key signature system to sign the key
exchange messages.

2	 Normative references

The following referenced documents, in whole or in part, are normatively referenced in this document
and are indispensable for its application. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

INTERNATIONAL STANDARD� ISO/IEC 11770-3:2015(E)

© ISO/IEC 2015 – All rights reserved� 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

ISO/IEC 10118 (all parts), Information technology — Security techniques — Hash-functions

ISO/IEC 11770-1, Information technology — Security techniques — Key management — Part 1: Framework

ISO/IEC 15946-1, Information technology — Security techniques — Cryptographic techniques based on
elliptic curves — Part 1: General

ISO/IEC 18031, Information technology — Security techniques — Random bit generation

3	 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1
asymmetric cryptographic technique
cryptographic technique that uses two related transformations, a public transformation (defined by the
public key) and a private transformation (defined by the private key), and has the property that given
the public transformation, then it is computationally infeasible to derive the private transformation

Note 1 to entry: A system based on asymmetric cryptographic techniques can either be an encryption system,
a signature system, a combined encryption and signature system, or a key agreement scheme. With asymmetric
cryptographic techniques there are four elementary transformations: signature and verification for signature
systems, encryption and decryption for encryption systems. The signature and the decryption transformations
are kept private by the owning entity, whereas the corresponding verification and encryption transformations
are published. There exist asymmetric cryptosystems (e.g. RSA) where the four elementary functions can be
achieved by only two transformations: one private transformation suffices for both signing and decrypting
messages, and one public transformation suffices for both verifying and encrypting messages. However, since this
does not conform to the principle of key separation, throughout this part of ISO/IEC 11770 the four elementary
transformations and the corresponding keys are kept separate.

3.2
asymmetric encryption system
system based on asymmetric cryptographic techniques whose public transformation is used for
encryption and whose private transformation is used for decryption

3.3
asymmetric key pair
pair of related keys where the private key defines the private transformation and the public key defines
the public transformation

3.4
certification authority
CA
centre trusted to create and assign public key certificates

3.5
collision-resistant hash-function
hash-function satisfying the following property: it is computationally infeasible to find any two distinct
inputs which map to the same output

[SOURCE: ISO/IEC 10118‑1:2000, 3.2]

3.6
decryption
reversal of a corresponding encryption

[SOURCE: ISO/IEC 11770‑1:2010, 2.6]

﻿

2� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

3.7
digital signature
data unit appended to, or a cryptographic transformation of, a data unit that allows a recipient of the
data unit to verify the origin and integrity of the data unit and protect the sender and the recipient of
the data unit against forgery by third parties, and the sender against forgery by the recipient

3.8
distinguishing identifier
information which unambiguously distinguishes an entity

[SOURCE: ISO/IEC 11770‑1:2010, 2.9]

3.9
encryption
(reversible) transformation of data by a cryptographic algorithm to produce ciphertext, i.e. to hide the
information content of the data

[SOURCE: ISO/IEC 11770‑1:2010, 2.10]

3.10
entity authentication
corroboration that an entity is the one claimed

[SOURCE: ISO/IEC 9798‑1:2010, 3.14]

3.11
entity authentication of entity A to entity B
assurance of the identity of entity A for entity B

3.12
explicit key authentication from entity A to entity B
assurance for entity B that entity A is the only other entity that is in possession of the correct key

Note 1 to entry: Implicit key authentication from entity A to entity B and key confirmation from entity A to entity
B together imply explicit key authentication from entity A to entity B.

3.13
forward secrecy with respect to entity A
property that knowledge of entity A’s long-term private key subsequent to a key agreement operation
does not enable an opponent to recompute previously derived keys

3.14
forward secrecy with respect to both entity A and entity B individually
property that knowledge of entity A’s long-term private key or knowledge of entity B’s long-term private
key subsequent to a key agreement operation does not enable an opponent to recompute previously
derived keys

Note 1 to entry: This differs from mutual forward secrecy in which knowledge of both entity A’s and entity B’s
long-term private keys do not enable recomputation of previously derived keys.

3.15
hash-function
function which maps strings of bits to fixed-length strings of bits, satisfying the following two
properties:

—	 it is computationally infeasible to find for a given output, an input which maps to this output;

—	 it is computationally infeasible to find for a given input, a second input which maps to the same
output

Note 1 to entry: Computational feasibility depends on the specific security requirements and environment.

﻿

© ISO/IEC 2015 – All rights reserved� 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Note 2 to entry: For the purposes of this standard all hash-functions are assumed to be collision-resistant
(see 3.5).

[SOURCE: ISO/IEC 10118‑1:2000, 3.5]

3.16
implicit key authentication from entity A to entity B
assurance for entity B that entity A is the only other entity that can possibly be in possession of the
correct key

3.17
key
sequence of symbols that controls the operation of a cryptographic transformation (e.g. encryption,
decryption, cryptographic check function computation, signature calculation, or signature verification)

[SOURCE: ISO/IEC 11770‑1:2010, 2.12]

3.18
key agreement
process of establishing a shared secret key between entities in such a way that neither of them can
predetermine the value of that key

Note 1 to entry: By predetermine it is meant that neither entity A nor entity B can, in a computationally efficient
way, choose a smaller key space and force the computed key in the protocol to fall into that key space.

3.19
key commitment
process of committing to use specific keys in the operation of a key agreement scheme before revealing
the specified keys

3.20
key confirmation from entity A to entity B
assurance for entity B that entity A is in possession of the correct key

3.21
key control
ability to choose the key or the parameters used in the key computation

3.22
key derivation function
function that outputs one or more shared secrets, for use as keys, given shared secrets and other
mutually known parameters as input

3.23
key establishment
process of making available a shared secret key to one or more entities, where the process includes key
agreement and key transport

3.24
key token
key management message sent from one entity to another entity during the execution of a key
management mechanism

3.25
key transport
process of transferring a key from one entity to another entity, suitably protected

3.26
message authentication code
MAC

﻿

4� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

string of bits which is the output of a MAC algorithm

Note 1 to entry: A MAC is sometimes called a cryptographic check value (see for example ISO 7498-2[1]).

[SOURCE: ISO/IEC 9797‑1:2011, 3.9]

3.27
Message Authentication Code algorithm
MAC algorithm
algorithm for computing a function which maps strings of bits and a secret key to fixed-length strings
of bits, satisfying the following two properties:

—	 for any key and any input string, the function can be computed efficiently;

—	 for any fixed key, and given no prior knowledge of the key, it is computationally infeasible to
compute the function value on any new input string, even given knowledge of a set of input strings
and corresponding function values, where the value of the ith input string might have been chosen
after observing the value of the first i – 1 function values (for integers i > 1)

Note 1 to entry: A MAC algorithm is sometimes called a cryptographic check function (see for example
ISO 7498-2[1]).

Note 2 to entry: Computational feasibility depends on the user’s specific security requirements and environment.

[SOURCE: ISO/IEC 9797‑1:2011, 3.10]

3.28
mutual entity authentication
entity authentication which provides both entities with assurance of each other’s identity

3.29
mutual forward secrecy
property that knowledge of both entity A’s and entity B’s long-term private keys subsequent to a key
agreement operation does not enable an opponent to recompute previously derived keys

3.30
one-way function
function with the property that it is easy to compute the output for a given input but it is computationally
infeasible to find an input which maps to a given output

3.31
prefix free representation
representation of a data element for which concatenation with any other data does not produce a valid
representation

3.32
private key
key of an entity’s asymmetric key pair that is kept private

Note 1 to entry: The security of an asymmetric system depends on the privacy of this key.

[SOURCE: ISO/IEC 11770‑1:2010, 2.35]

3.33
public key
key of an entity’s asymmetric key pair which can usually be made public without compromising security

Note 1 to entry: In the case of an asymmetric signature system, the public key defines the verification
transformation. In the case of an asymmetric encryption system, the public key defines the encryption
transformation, conditional on the inclusion of randomisation elements. A key that is “publicly known” is not
necessarily globally available. The key can only be available to all members of a pre-specified group.

[SOURCE: ISO/IEC 11770‑1:2010, 2.36]

﻿

© ISO/IEC 2015 – All rights reserved� 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

3.34
public key certificate
public key information of an entity signed by the certification authority and thereby rendered
unforgeable

3.35
public key information
information containing at least the entity’s distinguishing identifier and public key, but can include
other static information regarding the certification authority, the entity, restrictions on key usage, the
validity period, or the involved algorithms

3.36
secret key
key used with symmetric cryptographic techniques by a specified set of entities

3.37
sequence number
time variant parameter whose value is taken from a specified sequence which is non-repeating within
a certain time period

[SOURCE: ISO/IEC 11770‑1:2010, 2.44]

3.38
signature system
system based on asymmetric cryptographic techniques whose private transformation is used for
signing and whose public transformation is used for verification

3.39
third party forward secrecy
property that knowledge of a third party’s private key subsequent to a key agreement operation does
not enable an opponent to recompute previously derived keys

Note 1 to entry: Instead of third party forward secrecy, master key forward secrecy is also used in Reference
[19].

3.40
time stamp
data item which denotes a point in time with respect to a common time reference

3.41
time-stamping authority
trusted third party trusted to provide a time-stamping service

[SOURCE: ISO/IEC 13888‑1:2009, 3.58]

3.42
time variant parameter
data item used to verify that a message is not a replay, such as a random number, a time stamp or a
sequence number

Note 1 to entry: If a random number is used. then this is as a challenge in a challenge-response protocol. See also
ISO/IEC 9798-1:2010, Annex B.

[SOURCE: ISO/IEC 9798‑1:2010, 3.36]

3.43
trusted third party
security authority or its agent, trusted by other entities with respect to security related activities

[SOURCE: ISO/IEC 9798‑1:2010, 3.38]

﻿

6� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

4	 Symbols and abbreviations

The following symbols and abbreviations are used in this part of ISO/IEC 11770.

A, B, C distinguishing identifiers of entities

BE encrypted data block

BS signed data block

CA certification authority

CertA entity A’s public key certificate

DA entity A’s private decryption transformation function

dA entity A’s private decryption key

E elliptic curve, either given by an equation of the form Y2 = X3 + aX + b over
the field GF(pm) for p>3 and a positive integer m, by an equation of the form
Y2 + XY = X3 + aX2 + b over the field GF(2m), or by an equation of the form Y2 =
X3 + aX2 + b over the field GF(3m), together with an extra point OE referred to
as the point at infinity, which is denoted by E/GF(pm), E/GF(2m), or E/GF(3m),
respectively

EA entity A’s public encryption transformation function

eA entity A’s public encryption key

F key agreement function

F(h,g) key agreement function using as input a factor h and a common element g

FP key agreement function based on pairing

G point on E with order n

g common element shared publicly by all the entities that use the key agree-
ment function F

gcd(a,b) greatest common divisor of two integers a and b

GF(pm), GF(2m), GF(3m) finite field with pm , 2m, 3m elements for a prime p>3 and a positive integer m

hA entity A’s private key agreement key

hash hash-function

j cofactor used in performing cofactor multiplication

K secret key for a symmetric cryptosystem

KAB secret key shared between entities A and B

NOTE 1	 In practical implementations the shared secret key should be subject to further processing before it
can be used for a symmetric cryptosystem.

kdf key derivation function

KT key token

KTA entity A’s key token

﻿

© ISO/IEC 2015 – All rights reserved� 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

KTAi key token sent by entity A after processing phase i

l supplementary value used in performing cofactor multiplication

M data message

MAC Message Authentication Code

MACK(Z) output of a MAC algorithm when using as input the secret key K and an arbi-
trary data string Z

MQV Menezes-Qu-Vanstone

n prime divisor of the order (or cardinality) of an elliptic curve E over a finite
field

OE elliptic curve point at infinity

P point on an elliptic curve E

pA entity A’s public key-agreement key

pairing pairing defined over an elliptic curve and used in FP

parameters parameters used in the key derivation function

PKIA entity A’s public key information

PX public key-agreement key in an elliptic curve of entity X

q prime power pm for some prime p ≠ 3 and some integer m ≥ 1

r random number generated in the course of a mechanism

rA random number issued by entity A in a key agreement mechanism

S1, S2, S3 sets of elements

SA entity A’s private signature transformation function

sA entity A’s private signature key

T trusted third party

Texti i th optional text, data or other information that may be included in a data
block, if desired

TVP time-variant parameter such as a random number, a time stamp, or a
sequence number

VA entity A’s public verification transformation function

vA entity A’s public verification key

w one-way function

X(P) x-coordinate of a point P

√q square root of a positive number q

#E order (or cardinality) of an elliptic curve E

﻿

8� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

|| concatenation of two data elements

x  smallest integer greater than or equal to the real number x

∑ digital signature

π(P) (X(P) mod 2 2ρ/ ) + 2 2ρ/  where ρ =  log2n and X(P) is the x-coordinate of
the point P

NOTE 2	 No assumption is made on the nature of the signature transformation. In the case of a signature
system with message recovery, SA(M) denotes the signature ∑ itself. In the case of a signature system with
appendix, SA(M) denotes the message M together with the signature ∑.

NOTE 3	 The keys of an asymmetric cryptosystem are denoted by lower case letters (indicating its function)
indexed with the identifier of its owner, e.g., the public verification key of entity A is denoted by vA. The
corresponding transformations are denoted by upper case letters indexed with the identifier of their owner, e.g.,
the public verification transformation of entity A is denoted by VA.

5	 Requirements

It is assumed that the entities involved in a mechanism are aware of each other’s claimed identities.
This may be achieved by the inclusion of identifiers in information exchanged between the two entities,
or it may be apparent from the context of use of the mechanism. Verifying the identity means checking
that a received identifier field agrees with some known (trusted) or expected value.

If a public key is registered with an entity, then that entity shall make sure that the entity who registers
the key is in possession of the corresponding private key (see ISO/IEC 11770-1 for further guidance on
key registration).

6	 Key derivation functions

The use of a shared secret as derived in Clause 10 as a key for a symmetric cryptosystem without further
processing is not recommended. It will often be the case that the form of a shared secret established
as a result of using a mechanism specified in this part of ISO/IEC 11770 will not conform to the form
needed for a specific cryptographic algorithm, so some processing will be needed. Moreover, the shared
secret (often) has arithmetic properties and relationships that might result in a shared symmetric key
not being chosen from the full key space. It is therefore advisable to pass the shared secret through
a key derivation function, e.g. involving the use of a hash function. The use of an inadequate key
derivation function could compromise the security of the key agreement scheme with which it is used.
It is recommended to use a one-way function as a key derivation function.

A key derivation function produces keys that are computationally indistinguishable from randomly
generated keys. The key derivation function takes as input a shared secret and a set of key derivation
parameters and produces an output of the desired length.

In order for the two parties in a key establishment mechanism to agree on a common secret key, the key
derivation function shall be agreed upon (see ISO/IEC 11770-6 for further guidance on key derivation
functions).

Annex C provides examples of key derivation functions.

7	 Cofactor multiplication

This clause applies only to mechanisms using elliptic curve cryptography. The key agreement
mechanisms in Clause 11 and the key transport mechanisms in Clauses 12 and 13 require that the user’s
private key or key token be combined with another entity’s public key or key token. If the other entity’s

﻿

© ISO/IEC 2015 – All rights reserved� 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

public key or key token is not valid (i.e., it is not a point on the elliptic curve, or is not in the subgroup of
order n), then performing this operation may result in some bits of the private key being leaked to an
attacker. One example of such an attack is known as the ‘small subgroup attack’.

NOTE 1	 The small subgroup attack is described in [37].

In order to prevent the ‘small subgroup attack’ and similar attacks, one option is to validate public keys
and key tokens received from the other party using public key validation, as specified in ISO/IEC 11770-
1.

As an alternative to public key validation, a technique called cofactor multiplication as specified in
Clause 11 can be used. The values j and l, defined below, are used in cofactor multiplication.

If cofactor multiplication is used, there are two options:

—	 If compatibility with entities not using cofactor multiplication is not required, then let j = #E / n
and l = 1. If this option is chosen, both parties involved shall agree to use this option; otherwise the
mechanism will not work.

—	 If compatibility with entities not using cofactor multiplication is required, then let j = #E / n and l =
j -1 mod n.

NOTE 2	 The value j -1 mod n will always exist since n is required to be greater than 4√q and
therefore gcd(n, j) = 1.

If cofactor multiplication is not required, then let j = l = 1.

Regardless of whether or not cofactor multiplication is used, if the shared key (or a component of the
shared key) evaluates to the point at infinity (OE), then the user shall assume that the key agreement
procedure has failed.

It is particularly appropriate to perform public key validation or cofactor multiplication in the following
cases:

—	 if the entity’s public key is not authenticated;

—	 if the key token is not authenticated;

—	 if the user’s public key is intended for a long-term use.

If the other entity’s public key is authenticated and the cofactor is small, then the amount of information
that can be leaked is limited. Thus, it may not always be necessary to perform these tests.

8	 Key commitment

Clause 11 describes key agreement mechanisms in which the established key is the result of applying a
one-way function to the private key-agreement keys. However, one entity may know the other entity’s
public key or key token prior to choosing their private key. As a result, such an entity can control the
value of s bits in the established key, at the cost of generating 2s candidate values for their private key-
agreement key in the time interval between discovering the other entity’s public key or key token and
choosing their own private key.[31]

One way to address this concern (if it is a concern) at the cost of one additional message/pass in the
protocol is through the use of key commitment. Key commitment can be performed by having the first
entity hash the public key or key token and send the hash-code to the second entity; the second entity
then replies with its public key or key token, and the first entity replies with its public key or key token.
The second entity can now hash it and verify that the result is equal to the hash-code sent earlier.

﻿

10� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

9	 Key confirmation

Explicit key confirmation is the process of adding additional messages to a key establishment protocol
providing implicit key authentication, so that explicit key authentication and entity authentication are
provided. Explicit key confirmation can be added to any method that does not possess it inherently.
Key confirmation is typically provided by exchanging a value that can (with very high probablity) only
be calculated correctly if the key establishment calculations were successful. Key confirmation from
entity A to entity B is provided by entity A calculating a value and sending it to entity B for confirmation
of entity A’s correct calculation. If mutual key confirmation is desired, then each entity sends a different
value to the other.

Key confirmation is often provided by subsequent use of an established key, and if something is wrong
then it is immediately detected. This is called implicit key confirmation. Explicit key confirmation in this
case may be unnecessary. If one entity is not online (for example, in one-pass protocols used in store and
forward (email) scenarios), then it is simply not possible for the other entity to obtain key confirmation.
However, sometimes a key is established yet used only later (if at all), or the entity performing the key
establishment process may simply not know if the resulting key will be used immediately or not. In
these cases, it is often desirable to use a method of explicit key confirmation, as it may otherwise be too
late to correct an error once detected. Explicit key confirmation can also be seen as a way of “firming
up” security properties during the key establishment process and may be warranted if a conservative
protocol design is deemed appropriate.

An example method of providing key confirmation using a MAC is as follows:

Entities A and B first perform one of the key establishment procedures specified in Clauses 11 and 12
of this part of ISO/IEC 11770. As a result, they expect to share a secret MAC key KAB. They then perform
the following procedure.

—	 Entity B forms the message M, an octet string consisting of the message identifier octet 0x02, entity
B’s identifier, entity A’s identifier, the octet string KTB corresponding to entity B’s key token (omitted
if not present), the octet string KTA corresponding to entity A’s key token (omitted if not present),
the octet string pB corresponding to entity B’s public key-establishment key (omitted if not present),
the octet string pA corresponding to entity A’s public key-establishment key (omitted if not present)
and, if present, optional additional Text1, i.e.:

M = 02||B||A||KTB||KTA||pB||pA||Text1, where 0x02 is the message number.

—	 Entity B calculates KB = kdf(KAB), and then calculates MACKB(M) for the message M under the
(supposedly) shared secret key KB for an appropriate MAC scheme.

—	 Entity B sends the message M and MACKB(M) to entity A.

—	 Entity A calculates KA = kdf(KAB), computes MACKA(M) using the received message M, and verifies
MACKB(M)= MACKA(M).

—	 Assuming the MAC verifies, entity A has received key confirmation from entity B (that is, entity A
knows that KA equals KB). If mutual key confirmation is desired, entity A continues the protocol and
forms the message M’ as the octet string consisting of the message identifier octet 0x03, entity A’s
identifier, entity B’s identifier, the octet string KTA corresponding to entity A’s key token (omitted if
not present), the octet string KTB corresponding to entity B’s key token (omitted if not present), the
octet string pA corresponding to entity A’s public key-establishment key (omitted if not present), the
octet string pB corresponding to entity B’s public key-establishment key (omitted if not present) and
optional additional octet string Text2, i.e.:

M’ = 03||A||B||KTA||KTB||pA||pB||Text2, where 0x03 is the message number.

—	 Entity A calculates MACKA(M’) under the (supposedly) shared secret KA using an appropriate MAC
scheme.

—	 Entity A sends M’ and MACKA(M’) to entity B.

﻿

© ISO/IEC 2015 – All rights reserved� 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

—	 Entity B uses KB to verify MACKA(M’) on the message M’. Assuming the MAC verifies, entity B has
received key confirmation from entity A (that is, entity B knows that KA equals KB).

Other methods of key confirmation are possible. If the shared secret is to be used for data confidentiality
(encryption), one entity can send the encryption of some specific plaintext known to the other entity,
for example a block of all binary zeros or all binary ones. Care should be taken that any subsequent use
of the key is very unlikely to encrypt the same plaintext as was used for key confirmation.

10	 Framework for key management

10.1	 General

This clause contains a high-level description of a framework for the key establishment mechanisms
specified in this part of ISO/IEC 11770. Four categories of mechanism are defined (key agreement
between two parties, key agreement between three parties, secret key transport and public key
transport), together with requirements for their use.

10.2	 Key agreement between two parties

This clause applies to the Key Agreement mechanisms 11.1 through 11.11 that describe key agreement
between two parties. Key Agreement between two parties is the process of establishing a shared secret
key between two entities A and B in such a way that neither of them can predetermine the value of
the shared secret key. Key agreement mechanisms may provide for implicit key authentication; in
the context of key establishment, implicit key authentication means that after the execution of the
mechanism only an identified entity can be in possession of the correct shared secret key.

Key agreement between two entities A and B takes place in a context shared by the two entities. The
context consists of sets S1 and S2, and a key agreement function F. The function F shall satisfy the
following requirements:

a)	 F : S1 × S2 → S2 maps elements (h, g) S1 × S2 to S2, and we write y = F(h, g).

b)	 F satisfies the commutativity condition F(hA, F(hB, g)) = F(hB, F(hA, g)).

c)	 It is computationally intractable to find F(h1, F(h2, g)) from F(h1, g), F(h2, g) and g. This implies that
F(·,g) is a one-way function.

d)	 The entities A and B share a common element g in S2 which may be publicly known.

e)	 The entities acting in this setting can efficiently compute function values F(h, g) and can efficiently
generate random elements in S1. Depending on the particular key agreement mechanism, further
conditions may be imposed.

NOTE 1	 Examples for the function F are given in Annex D and Annex E. See also ISO/IEC 15946-1.

NOTE 2	 As discussed in Clause 6, in practical implementations of the key agreement mechanisms the shared
secret key should be subject to further processing.

NOTE 3	 It will in general be necessary to check the received function values F(h, g) for weak values. If such
values are encountered, the protocol shall be aborted.

10.3	 Key agreement between three parties

This clause applies to the Key Agreement mechanism 11.12 that describes key agreement between
three parties. Key agreement between three parties is the process of establishing a shared secret key
among three entities A, B, and C in such a way that none of them can predetermine the value of the
shared secret key. Key agreement among three entities A, B, and C takes place in a context shared by the

﻿

12� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

three entities. The context consists of sets S1, S2, and S3, a function F, and a function FP. The functions F
and FP shall satisfy the following requirements:

—	 F : S1 × S2 → S2 maps elements (h, g) S1 × S2 to S2, and we write y = F(h, g).

—	 F satisfies the commutativity condition F(hA, F(hB, g)) = F(hB, F(hA, g)).

—	 It is computationally intractable to find F(h1, F(h2, g)) from F(h1, g), F(h2, g) and g. This implies that
F(·,g) is a one-way function.

—	 FP : S1 × S2 × S2 → S3 maps an element (hC, F(hA, g), F(hB, g)) S1 × S2 × S2 to an element of S3, and we
write z = FP(hC, F(hA, g), F(hB, g)). ISO/IEC 15946-1 shall be referred for the relation between F and
FP.

—	 FP satisfies the commutativity condition

—	 FP(hC, F(hA, g), F(hB, g)) = FP(hC, F(hB, g), F(hA, g)) = FP(hB, F(hA, g), F(hC, g))

	 = FP(hA, F(hB, g), F(hC, g)) = FP(hA, F(hC, g), F(hB, g)) = FP(hB, F(hC, g), F(hA, g)).

—	 It is computationally intractable to find FP(hC, F(hA, g), F(hB, g)) from F(hA, g), F(hB, g), F(hC, g), and
g. This implies that F(·, pA, pB) is a one-way function.

—	 The entities A, B, and C share a common element g in S2 which may be publicly known.

—	 The entities acting on this setting can efficiently compute function values F(h, g) and FP(hC, F(hB,
g), F(hA, g)), and can efficiently generate random elements in S1. Depending on the particular key
agreement mechanism, further conditions may be imposed.

NOTE 4	 An example of a possible function FP is given in Annex F.

NOTE 5	 As discussed in Clause 6, in practical implementations of the key agreement mechanisms, the shared
secret key should be subject to further processing. A derived shared secret key should be computed by:(1)
by extracting bits from the shared secret key KABC directly, or (2) by passing the shared secret key KABC and
optionally other nonsecret data through a one-way function and extracting bits from the output.

10.4	 Secret key transport

Secret key transport (often abbreviated to “key transport”) is the process of transferring a secret
key, chosen by one entity (or a trusted centre), to another entity, suitably protected by asymmetric
cryptographic encryption.

10.5	 Public key transport

Public key transport makes an entity’s public key available to other entities in an authenticated fashion.
Authenticated distribution of public keys is an essential security requirement. This distribution can be
achieved in two main ways:

a)	 Public key distribution without a trusted third party.

b)	 Public key distribution involving a trusted third party, such as a certification authority.

The public key of an entity A is part of the public key information of entity A. The public key information
includes at least entity A’s distinguishing identifier and entity A’s public key.

﻿

© ISO/IEC 2015 – All rights reserved� 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

11	 Key agreement

11.1	 Key agreement mechanism 1

This key agreement mechanism non-interactively establishes a shared secret key between entities A
and B with mutual implicit key authentication. The following requirements shall be satisfied:

—	 Each entity X has a private key agreement key hX in S1 and a public key agreement key pX = F(hX, g).

—	 Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 1 is summarised in Figure 1.

Key
Construction

(A1)

Entity A

KAB

Key
Construction

(B1)

Entity B

KAB

Figure 1 — Key Agreement Mechanism 1

Key
Construction

(A2)

Entity A

KAB

Key
Construction

(B1)

Entity B

KAB

Key Token
Construction

(A1) KTA1

Figure 2 — Key Agreement Mechanisms 2, 8

Key Construction (A1) Entity A computes, using its own private key agreement key hA and entity B’s
public key agreement key pB, the shared secret key as KAB = F(hA, pB).

Key Construction (B1) Entity B computes, using its own private key agreement key hB and entity A’s
public key agreement key pA, the shared secret key as KAB = F(hB, pA).

As a consequence of requirements on F specified in Clause 10, the two computed values for the key KAB
are identical.

NOTE 1	 The number of passes is 0.

﻿

14� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 2	 This mechanism provides mutual implicit key authentication. However, a zero-pass protocol such as
this will always generate the same key. One way to eliminate this problem is to ensure that the key is only used
once. Furthermore, the use of a unique initialization vector with each utilization of the key can also solve this
problem.

NOTE 3	 This mechanism does not provide key confirmation.

NOTE 4	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
the private key agreement keys hA and hB of entities A and B, respectively. However, one entity might learn the
other entity’s public key prior to choosing their private key. As described in Clause 8, such an entity can select
approximately s bits of the established key, at the cost of generating 2s candidate values for their private key
agreement key in the interval between discovering the other entity’s public key and choosing their own private
key.

NOTE 5	 Examples of this mechanism (known as Diffie-Hellman key agreement) are given in Annexes D.2, D.3,
and E.3

11.2	 Key agreement mechanism 2

This key agreement mechanism establishes a shared secret key in one pass between entities A and B
with implicit key authentication from entity B to entity A, but no entity authentication from entity A to
entity B (i.e., entity B does not know with whom it has established the shared secret key). The following
requirements shall be satisfied:

—	 Entity B has a private key agreement key hB in S1 and a public key agreement key pB = F(hB, g).

—	 Entity A has access to an authenticated copy of entity B’s public key agreement key pB. This may be
achieved using the mechanisms described in Clause 13.

Key agreement mechanism 2 is summarised in Figure 2.

Key Token Construction (A1) Entity A randomly and secretly generates r in S1, computes F(r, g) and
sends the key token KTA1 = F(r, g)||Text to entity B

Key Construction (A2) Entity A computes the shared key as KAB = F(r, pB).

Key Construction (B1) Entity B extracts F(r,g) from the received key token KTA1 and computes the
shared secret key KAB = F(hB, F(r, g)).

As a consequence of the requirements on F specified in Clause 10, the two computed values for the key
KAB are identical.

NOTE 1	 The number of passes is 1.

NOTE 2	 This mechanism provides implicit key authentication from entity B to entity A (entity B is the only
entity other than entity A who can compute the shared secret key).

NOTE 3	 This mechanism does not provide key confirmation.

NOTE 4	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
a random value r supplied by entity A and entity B’s private key agreement key. As discussed in Clause 8, since
entity A could learn entity B’s public key prior to choosing the value r, entity A may select approximately s bits of
the established key, at the cost of generating 2s candidate values for r in the interval between discovering entity
B’s public key and sending KTA1.

NOTE 5	 Examples of this mechanism (known as ElGamal key agreement) are described in Annexes D.4 and
E.4.

NOTE 6	 As entity B receives the information necessary to compute the key KAB from entity A, which has not
been authenticated, use of KAB by entity B should be restricted to functions not requiring trust in entity A’s
authenticity, such as decryption and generation of message authentication codes.

﻿

© ISO/IEC 2015 – All rights reserved� 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

11.3	 Key agreement mechanism 3

This key agreement mechanism establishes a shared secret key in one pass between entities A and B
with mutual implicit key authentication, and entity authentication of entity A to entity B. The following
requirements shall be satisfied:

—	 Entity A has an asymmetric signature system (SA, VA).

—	 Entity B has access to an authenticated copy of the public verification transformation VA. This may
be achieved using the mechanisms described in Clause 13.

—	 Entity B has a key agreement scheme with keys (hB , pB).

—	 Entity A has access to an authenticated copy of the public key agreement key pB of entity B. This may
be achieved using the mechanisms described in Clause 13.

—	 (Optional) If used, the TVP shall either be a time stamp or a sequence number. If time stamps are
used, secure and synchronized time clocks are required; if sequence numbers are used, the ability
to maintain and verify bilateral counters is required.

—	 The entities A and B have agreed on a MAC function and a way to use KAB as the key for this MAC
function. ISO/IEC 9797[5] is referred for a MAC function.

Key agreement mechanism 3 is summarised in Figure 3.

Key
Construction

(A1.1)

Key Token
Signature

(A1.2)

Entity A

KAB

Entity B

KTA1

Key
Construction

(B1.1)

Key Token
Signature

(B1.2)

KAB

Figure 3 — Key Agreement Mechanism 3

﻿

16� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key
Construction

(A2)

Entity A

KAB

Key
Construction

(B2)

Entity B

KAB

Key Token
Construction

(A1)

Key Token
Construction

(B1)KTA1

KTB1

Figure 4 — Key Agreement Mechanisms 4, 5, 9

Key Construction (A1.1) Entity A randomly and secretly generates r in S1 and computes F(r, g). Entity
A computes the shared secret key as KAB = F(r, pB).

Using the shared secret key KAB, entity A computes a MAC on the concatenation of the sender’s
distinguishing identifier for entity A and an optional TVP, a time stamp or a sequence number.

Key Token Signature (A1.2) Entity A signs the MAC, using its private signature transformation SA.
Then entity A forms the key token, consisting of the sender’s distinguishing identifier for entity A, the
key input F(r, g), the (optional) TVP, the signed MAC, and some optional data, i.e.

KTA1 = A||F(r, g)||TVP|| SA(MACKAB(A||TVP))||Text1

and sends it to entity B.

Key Construction (B1.1) Entity B extracts F(r, g) from the received key token and computes the shared
secret key, using its private key agreement key hB, KAB = F(hB, F(r, g)).

Using the shared secret key KAB, entity B computes the MAC on the sender’s distinguishing identifier for
entity A and the (optional) TVP.

Signature Verification (B1.2) Entity B uses the sender’s public verification transformation VA to
verify entity A’s signature and thus the integrity and origin of the received key token KTA1. Then entity
B validates the timeliness of the token (by inspection of the (optional) TVP).

NOTE 1	 The number of passes is 1.

NOTE 2	 This mechanism provides explicit key authentication from entity A to entity B and implicit key
authentication from entity B to entity A.

NOTE 3	 This mechanism provides key confirmation from entity A to entity B.

NOTE 4	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
a random value r supplied by entity A and entity B’s private key agreement key. As discussed in Clause 8, since
entity A could learn entity B’s public key prior to choosing the value r, entity A can select approximately s bits of
the established key, at the cost of generating 2s candidate values for r in the interval between discovering entity
B’s public key and sending KTA1.

NOTE 5	 The (optional) TVP prevents replay of the key token from entity A to entity B.

NOTE 6	 Examples of this mechanism (known as Nyberg-Rueppel key agreement) are described in Annex D.5
and E.5

﻿

© ISO/IEC 2015 – All rights reserved� 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 7	 If Text1 is used to transfer entity A’s public key certificate, then requirement 2 at the beginning of
11.3 can be relaxed to the requirement that entity B is in possession of an authenticated copy of the CA’s public
verification key.

11.4	 Key agreement mechanism 4

This key agreement mechanism establishes a shared secret key in two passes between entities A and B
with joint key control without prior exchange of keying information. This mechanism provides neither
entity authentication nor key authentication.

Key agreement mechanism 4 is summarised in Figure 4.

Key Token Construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g),
constructs the key token KTA1 = F(rA, g)||Text1, and sends it to entity B.

Key Token Construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, g),
constructs the key token KTB1 = F(rB, g)||Text2, and sends it to entity A.

Key Construction (A2) Entity A extracts F(rB, g) from the received key token KTB1 and computes the
shared secret key KAB = F(rA, F(rB, g)).

Key Construction (B2) Entity B extracts F(rA, g) from the received key token KTA1 and computes the
shared secret key KAB = F(rB, F(rA, g)).

NOTE 1	 The number of passes is 2.

NOTE 2	 This mechanism does not provide implicit or explicit key authentication. However, this mechanism
can be useful in environments where authenticity of the key tokens is verified using other means. For instance, a
hash-code of the key tokens could be exchanged between the entities using a second communication channel. See
also Public Key Transport Mechanism 2. Another example of entity authentication is using mechanisms specified
in.[6]

NOTE 3	 A separate channel or means shall exist whereby the key tokens can be verified.

NOTE 4	 This mechanism provides no key confirmation.

NOTE 5	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
random values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B could
learn F(rA, g) prior to choosing the value rB, entity B can select approximately s bits of the established key, at the
cost of generating 2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

NOTE 6	 Examples of this mechanism (known as Diffie-Hellman key agreement) are described in Annexes D.6
and E.7.

11.5	 Key agreement mechanism 5

This key agreement mechanism establishes a shared secret key in two passes between entities A and
B with mutual implicit key authentication and joint key control. The following requirements shall be
satisfied:

—	 Each entity X has a private key agreement key hX in S1 and a public key agreement key pX = F(hX, g).

—	 Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This may be achieved using the mechanisms described in Clause 13.

—	 Both entities have agreed on a common one-way function w.

Key agreement mechanism 5 is summarised in Figure 4.

Key Token Construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g) and
sends the key token KTA1 = F(rA, g)||Text1 to entity B.

﻿

18� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key Token Construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, g) and
sends the key token KTB1 = F(rB, g)||Text2 to entity A.

Key Construction (B2) Entity B extracts F(rA, g) from the received key token KTA1 and computes the
shared secret key as KAB = w(F(hB, F(rA, g))||F(rB, pA)) where w is a one-way function.

Key Construction (A2) Entity A extracts F(rB, g) from the received key token KTB1 and computes the
shared secret key as KAB = w(F(rA, pB)||F(hA, F(rB, g))).

NOTE 1	 The number of passes is 2.

NOTE 2	 This mechanism provides mutual implicit key authentication. If the data field Text2 contains a MAC
(on known data) computed using the key KAB, then this mechanism provides explicit key authentication from
entity B to entity A.

NOTE 3	 If the data field Text2 contains a MAC (on known data) computed using the key KAB, then this
mechanism provides key confirmation from entity B to entity A.

NOTE 4	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
random values rA and rB supplied by entities A and B respectively.

NOTE 5	 Examples of this key agreement mechanism (known as the Matsumoto-Takashima-Imai A(0) key
agreement scheme) are described in Annexes D.7 and E.6. Another example is known as the Goss protocol.

NOTE 6	 If Text1 and Text2 contain the public key certificates of entity A’s and B’s key agreement keys,
respectively, then the requirement 2 at the beginning of 11.5 can be replaced by the requirement that each entity
is in possession of an authenticated copy of the CA’s public verification key.

NOTE 7	 Under certain circumstances this mechanism may be subject to a source substitution attack.[30] If this
is a concern, this type of attack can be avoided by ensuring that as part of the process of submitting a public key
to a CA for certification, the submitter proves possession of the corresponding private key. This type of attack is
slightly more serious in the case of protocols based on elliptic curves.[26]

11.6	 Key agreement mechanism 6

This key agreement mechanism establishes a shared secret key in two passes between entities A
and B with mutual implicit key authentication and joint key control. It is based on the use of both an
asymmetric encryption scheme and a signature system. The following requirements shall be satisfied:

a)	 Entity A has an asymmetric encryption system with transformations (EA, DA).

b)	 Entity B has an asymmetric signature system with transformations (SB, VB).

c)	 Entity A has access to an authenticated copy of entity B’s public verification transformation VB.
This may be achieved using the mechanisms described in Clause 13.

d)	 Entity B has access to an authenticated copy of entity A’s public encryption transformation EA. This
may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 6 is summarised in Figure 5.

﻿

© ISO/IEC 2015 – All rights reserved� 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Figure 5 — Key Agreement Mechanism 6

Figure 6 — Key Agreement Mechanism 7

Key Token Construction (A1) Entity A generates a random number rA, constructs the key token KTA1 =
rA||Text1, and sends it to entity B.

Key Token Processing (B1) Entity B generates a random number rB and signs a data block consisting
of the distinguishing identifier for entity A, the random number rA, the random number rB and some
optional data Text2 using its private signature transformation SB, to obtain BS = SB(A||rA||rB||Text2).

Entity B then encrypts a data block consisting of its distinguishing identifier (optional), the signed block
BS, and some optional data Text3 using entity A’s public encryption transformation EA. Entity B then
sends the key token KTB1 = EA(BS||Text3)||Text4 back to entity A, or entity B may include the identifier
for B as KTB1= EA(B||BS||Text3) ||Text4.

Key Construction (B2) The shared secret key consists of all or part of entity B’s signature ∑ contained
in the signed block BS (see Note 2 in Clause 4), after passing through a key derivation function.

Key Token Processing and Key Construction (A2) Entity A decrypts the key token KTB1 using its
private decryption transformation DA, optionally checks the sender identifier, and uses entity B’s
public verification transformation VB to verify the digital signature of the signed block BS. Then entity
A checks the recipient identifier and that the random number rA in the signed block BS equals the

﻿

20� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

random number rA sent in token KTA1. If all checks are successful, entity A accepts all or part of entity
B’s signature of the signed block BS used with a key derivation function as the shared secret key.

NOTE 1	 The number of passes is 2.

NOTE 2	 The part of the signature Σ that is to be used as the basis of the secret key established between entities
A and B shall be agreed in advance.

NOTE 3	 This mechanism provides implicit key authentication from entity A to entity B and explicit key
authentication from entity B to entity A.

NOTE 4	 If the data field Text3 contains a MAC (on known data) computed using the key KAB, then this
mechanism provides key confirmation from entity B to entity A.

NOTE 5	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
random values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B could
learn F(rA, g) prior to choosing the value rB, entity B can select approximately s bits of the established key, at the
cost of generating 2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

NOTE 6	 This mechanism is derived from Beller and Yacobi’s two pass protocol described in Annex D.8.

NOTE 7	 If Text1 and Text4 contain a public key certificate for entity A’s encryption key and a public key
certificate for entity B’s verification key, respectively, then the requirements 3 and 4 at the beginning of 11.6
can be relaxed to the requirement that each entity is in possession of an authenticated copy of the CA’s public
verification key.

NOTE 8	 A significant feature of this scheme is that the identity of entity B can remain anonymous to
eavesdroppers, a property of potential significance in a wireless communication environment.

11.7	 Key agreement mechanism 7

This key agreement mechanism is based on the three-pass authentication mechanism of ISO/IEC 9798-
3[6] and establishes a shared secret key between entities A and B with mutual authentication. The
following requirements shall be satisfied:

—	 Each entity X has an asymmetric signature system (SX, VX).

—	 Both entities have access to an authenticated copy of the public verification transformation of the
other entity. This may be achieved using the mechanisms described in Clause 13.

—	 The two entities have agreed on a common MAC function.

Key agreement mechanism 7 is summarised in Figure 6.

Key Token Construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, g),
constructs the key token KTA1 = F(rA, g)||Text1, and sends it to entity B.

Key Token Processing and Key Construction (B1) Entity B randomly and secretly generates rB in S1,
computes F(rB, g), computes the shared secret key as KAB = F(rB, F(rA, g)), and constructs the signed key
token

KTB1 = SB(DB1)||MACKAB(DB1)||Text3,

where DB1 = F(rB, g)||F(rA, g)||A||Text2, and sends it back to entity A.

Key confirmation is provided by including MACKAB(DB1) in KTB1. Alternatively, if both parties have a
common symmetric encryption system, key confirmation can be obtained by replacing KTB1 with KTB1
= F(rB, g)||EKAB(SB(DB1)), where E is a suitable symmetric encryption function.

Key Token Processing and Key Construction (A2) Entity A verifies entity B’s signature on the key
token KTB1 using entity B’s public verification key, and then verifies entity A’s distinguishing identifier
and the value F(rA, g) sent in step (A1). If the checks are successful, entity A proceeds to compute the
shared secret key as KAB = F(rA, F(rB, g)).

﻿

© ISO/IEC 2015 – All rights reserved� 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Using KAB, entity A verifies MACKAB(DB1). Then entity A constructs the signed key token

KTA2 = SA(DB2)||MACKAB(DB2)||Text5,

where DB2 = F(rA, g)||F(rB, g)||B||Text4, and sends it to entity B.

Key confirmation is provided by including MACKAB(DB2) in KTA2. Alternatively, key confirmation can be
obtained by replacing KTA2 with KTA2 = EKAB(SA(DB2)).

Key Token Processing (B2) Entity B verifies entity A’s signature on the key token KTA2, using entity
A’s public verification key, then verifies entity B’s distinguishing identifier and that the values F(rA, g)
and F(rB, g) agree with the values exchanged in the previous steps. If the checks are successful, entity B
verifies MACKAB(DB2) using KAB = F(rB, F(rA, g)).

NOTE 1	 The number of passes is 3.

NOTE 2	 This mechanism provides mutual explicit key authentication and mutual entity authentication.

NOTE 3	 This mechanism provides mutual key confirmation.

NOTE 4	 This mechanism is a key agreement mechanism, since the established key is a one-way function of
random values rA and rB supplied by entities A and B respectively. As discussed in Clause 8, since entity B could
learn F(rA, g) prior to choosing the value rB, entity B can select approximately s bits of the established key, at the
cost of generating 2s candidate values for rB in the interval between receiving KTA1 and sending KTB1.

NOTE 5	 Examples of this mechanism (known as the Diffie-Hellman scheme) can be constructed by combining
the examples in Annex E.9 with use of a digital signature scheme, such as one of those specified in ISO/IEC 9796
and ISO/IEC 14888.

NOTE 6	 This mechanism conforms to ISO/IEC 9798-3.[6] KTA1, KTB1, and KTA2 are identical to the tokens sent
in the three pass authentication mechanism. The TVPs are also identical, with the following changes of use: the
TVP RA is set to the value F(rA, g); and the TVP RB is set to the value F(rB, g).

NOTE 7	 If the data fields Text1 and Text3 (or Text5 and Text3) contain the public key certificates of entities A
and B, respectively, then the second requirement at the beginning of 11.7 can be relaxed to the requirement that
all entities are in possession of an authenticated copy of the CA’s public verification key.

NOTE 8	 If a signature mechanism with text hashing is used, then F(rA, g) and/or F(rB, g) need not be sent in key
token KTB1. Similarly, neither F(rA, g) nor F(rB, g) need be sent in key token KTA2. However, care shall be taken that
the random numbers are included in the computation of the respective signatures.

NOTE 9	 Key confirmation can alternatively be achieved by encrypting part of the signature. In this case, the
third requirement at the beginning of 11.7 does not apply.

11.8	 Key agreement mechanism 8

This key agreement mechanism uses elliptic curve cryptography, and establishes a shared secret key in
one pass between entities A and B with mutual implicit key authentication. The following requirements
shall be satisfied:

—	 Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

—	 Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 8 is summarised in Figure 2.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required
to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod 2 2ρ/ ) +
2

2ρ/  , where ρ =  log2n and X(P) is the x-coordinate of the point P.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

﻿

22� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key construction (A2) Entity A computes the shared key as

KAB = ((rA + π(KTA1)hA)·l)(j·(PB + π(PB)PB)).

Key construction (B1) Entity B computes the shared key as

KAB = ((hB + π(PB)hB)·l)(j·(KTA1 + π(KTA1)PA)).

NOTE 1	 The number of passes is 1.

NOTE 2	 This mechanism provides mutual implicit key authentication.

NOTE 3	 An example of this mechanism (known as MQV key agreement) is described in Annex E.11.

11.9	 Key agreement mechanism 9

This key agreement mechanism uses elliptic curve cryptography and establishes a shared secret
key in two passes between entities A and B with mutual implicit key authentication. The following
requirements shall be satisfied:

a)	 Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

b)	 Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 9 is summarised in Figure 4.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required
to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod 2 2ρ/ ) +
2

2ρ/  , where ρ =  log2n and X(P) is the x-coordinate of the point P.

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, G),
constructs the key token KTB1 = F(rB, G), and sends it to entity A.

Key construction (A2) Entity A computes the shared secret key as

KAB = ((rA + π(KTA1)hA)·l)(j·(KTB1 + π(KTB1)PB)).

Key construction (B2) Entity B computes the shared secret key as

KAB = ((rB + π(KTB1)hB)·l)(j·(KTA1 + π(KTA1)PA)).

NOTE 1	 The number of passes is 2.

NOTE 2	 This mechanism provides mutual implicit key authentication.

NOTE 3	 An example of this mechanism (known as MQV key agreement with two passes) is described in Annex
E.12.

NOTE 4	 Under certain circumstances this mechanism may be subject to a source substitution attack.[26] If
this is a concern, such an attack can be avoided by adding delay detection. Other countermeasures are described
in [26].

﻿

© ISO/IEC 2015 – All rights reserved� 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

11.10	 Key agreement mechanism 10

This key agreement mechanism uses elliptic curve cryptography and establishes a shared secret
key in three passes between entities A and B with mutual implicit key authentication. The following
requirements shall be satisfied:

—	 Each entity X has a private key agreement key hX in S1 and a public key agreement key PX = F(hX, G).

—	 Each entity has access to an authenticated copy of the public key agreement key of the other entity.
This may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 10 is summarised in Figure 7.

The values l and j are used for cofactor multiplication as explained in Clause 7. A function is also required
to convert an elliptic point P to an integer. An example of such a function is π(P) = (X(P) mod 2 2ρ/ ) +
2

2ρ/  , where ρ =  log2n and X(P) is the x-coordinate of the point P.

Key
Construction

(A2)

Entity A

KAB

Veri
ication
(B2)

Entity B

KAB

Key Token
Construction

(A1) KTA1

Key
Construction

(B1)
KTB1

MAC K(2||KTA1||KTB1)

MAC K(3||KTA1||KTB1)

Figure 7 — Key Agreement Mechanism 10

Figure 8 — Key Agreement Mechanism 11

Key token construction (A1) Entity A randomly and secretly generates rA in S1, computes F(rA, G),
constructs the key token KTA1 = F(rA, G), and sends it to entity B.

﻿

24� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key construction (B1) Entity B randomly and secretly generates rB in S1, computes F(rB, G), and
constructs the key token KTB1 = F(rB, G).

Entity B computes the shared secret key as

KAB = ((rB + π(KTB1)hB)·l)(j·(KTA1 + π(KTA1)PA)).

Entity B then computes the key K = kdf(KAB). Entity B further constructs MACK(2||KTA1||KTB1), and
sends KTB1 and MACK(2 || KTA1 || KTB1) to entity A.

Key construction (A2) Entity A computes the shared secret key as

KAB = ((rA + π(KTA1)hA)·l)(j·(KTB1 + π(KTB1)PB)).

Entity A computes the key K = kdf(KAB). Entity A computes MACK(2||KTA1||KTB1) and verifies what was
sent by entity B. Entity A then computes MACK(3||KTA1||KTB1), and sends it to entity B.

Verification (B2) Entity B computes MACK(3||KTA1||KTB1).

NOTE 1	 The number of passes is 3.

NOTE 2	 This mechanism provides mutual explicit key authentication.

NOTE 3	 An example of this mechanism (known as MQV key agreement with three passes) is described in
Annex E.13.

11.11	 Key agreement mechanism 11

This key agreement mechanism establishes a shared key in four passes between entities A and B. The
following requirements shall be satisfied:

—	 Entity B has an asymmetric encryption system with transformation (EB, DB).

—	 Entity A has access to an authenticated copy of the public verification transformation necessary to
verify CertB.

—	 Both entities have agreed on a common key derivation function kdf.

Key agreement mechanism 11 is summarised in Figure 8.

Entity Confirmation (A1): Entity A chooses a random integer rA, and sends a message M1 = (rA||Text1)
to entity B.

Entity Confirmation (B1): Entity B chooses a random integer rB, and sends M2 = (rB||CertB||Text2) to
entity A.

Key Token and Key Construction (A2): Entity A verifies CertB to obtain a trusted copy of entity B’s
public key. Entity A then generates a random integer r’A and computes the shared key KAB = kdf(rA, rB,
r’A).

Entity A then sends the key token KTA2 = EB(r’A) and MACKAB(M1||KTA2) to entity B.

Key Construction (B2): Entity B decrypts KTA2 and computes the shared key KAB = kdf(rA, rB, r’A).

Entity B computes MACKAB(M1 || KTA2) and compares it with the received MAC value. Entity B sends
MACKAB(M2) to entity A.

Key Verification (A3): Entity A computes MACKAB(M2) and compares it with the received MAC value.

NOTE 1	 The number of passes is 4.

NOTE 2	 This mechanism provides B’s implicit key authentication to A.

﻿

© ISO/IEC 2015 – All rights reserved� 25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 3	 This mechanism is derived from the Transport Layer Security (TLS) protocol,[15] which can be
regarded as an example of this mechanism. In TLS, the key agreement process is known as the TLS handshake
phase. In TLS, each entity has a ‘cipher suite’, i.e. a list of algorithms that the entity supports. Text1 and Text2 are
used to exchange these cipher suites as part of a process known as ‘cipher suite negotiation’.

11.12	 Key agreement mechanism 12

This key agreement mechanism non-interactively establishes a shared secret key among entities A, B,
and C with mutual implicit key authentication. The following requirements shall be satisfied:

—	 Each entity X has a private key-agreement key hX in S1 and a public key-agreement key pX = F(hX, g).

—	 Each entity has access to an authenticated copy of the public key-agreement key of the other entities.
This may be achieved using the mechanisms described in Clause 13.

Key agreement mechanism 12 is summarised in Figure 9.

Key
Construction

(A1)

Entity A

KABC

Key
Construction

(B1)

Entity B

KABC

Key
Construction

(C1)

Entity C

KABCKABC KABC KABC

Figure 9 — Key Agreement Mechanism 12

Key Construction (A1) Entity A computes, using its own private key-agreement key hA, entity B’s
public key-agreement key pB, and entity C ’s public key-agreement key pC, the shared secret key as KABC
= FP(hA, pB, pC).

Key Construction (B1) Entity B computes, using its own private key-agreement key hB, entity A’s
public key-agreement key pA, and entity C ’s public key-agreement key pC, the shared secret key as KABC
= FP(hB, pC, pA).

Key Construction (C1) Entity C computes, using its own private key-agreement key hC, entity A’s public
key-agreement key pA, and entity B’s public key-agreement key pB, the shared secret key as KABC =
FP(hC, pA, pB).

As a consequence of the requirements on functions F and FP specified in Clause 10, the three computed
values for the key KABC are identical.

NOTE 1	 The number of passes is 0.

NOTE 2	 This mechanism provides mutual implicit key authentication. However, a zero-pass protocol such as
this will always generate the same key. One way to eliminate this problem is to ensure that the key is only used
once. Furthermore, the use of a unique initialization vector with each utilization of the key can also solve this
problem.

NOTE 3	 This mechanism does not provide key confirmation.

NOTE 4	 This is a key agreement mechanism, since the established key is a one-way function of the private key
agreement keys hA, hB, and hC of entities A, B, and C respectively.

NOTE 5	 An example of this mechanism (known as Joux key agreement) is given in Annex F.2.

﻿

26� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

12	 Secret key transport

12.1	 Secret key transport mechanism 1

This secret key transport mechanism transfers a secret key in one pass from entity A to entity B with
implicit key authentication from entity B to entity A. The following requirements shall be satisfied:

—	 Entity B has an asymmetric encryption system (EB,DB).

—	 Entity A has access to an authenticated copy of entity B’s public encryption transformation EB. This
may be achieved using the mechanisms described in Clause 13.

—	 The optional TVP shall either be a time stamp or sequence number. If time stamps are used, then the
entities A and B need to maintain synchronous clocks. If sequence numbers are used, then entities A
and B shall maintain bilateral counters.

Secret key transport mechanism 1 is summarised in Figure 10.

Entity A

Key Token
Deconstruction

(B1)

Entity B

K

Key Token
Construction

(A1) KTA1

K

Figure 10 — Secret Key Transport Mechanism 1

﻿

© ISO/IEC 2015 – All rights reserved� 27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Figure 11 — Secret Key Transport Mechanism 2

Key Token Construction (A1) Suppose K is a secret key that entity A wishes to securely transfer to
entity B. Entity A constructs a key data block consisting of its distinguishing identifier (optional), the
key K, an optional TVP and an optional data field Text1. Entity A then encrypts the key data block using
the receiver’s public encryption transformation EB and sends the key token

KTA1 = EB(A||K||TVP||Text1)||Text2

to entity B.

Key Token Deconstruction (B1) Entity B decrypts the encrypted part of the received key token
KTA1 using its private decryption transformation DB, recovers the key K, checks the optional TVP, and
associates the recovered key K with the claimed originator entity A.

NOTE 1	 The number of passes is 1.

NOTE 2	 This mechanism provides implicit key authentication from entity B to entity A, since only entity B can
possibly recover the key K.

NOTE 3	 This mechanism does not provide key confirmation.

NOTE 4	 Entity A can choose the key.

NOTE 5	 As entity B receives the key K from a non-authenticated entity A, secure use of K by entity B should be
restricted to functions not requiring trust in entity A’s authenticity. For example, decryption and generation of
message authentication codes can be performed, whereas encryption and verification of message authentication
codes should not.

NOTE 6	 An example of this mechanism (known as ElGamal key transfer) is described in Annex G.1. A second
example of this mechanism using RSA is described in Annex G.3, and a third example based on Sakai-Kasahara
Key Establishment is described in Annex G.6.

12.2	 Secret key transport mechanism 2

This secret key transport mechanism is an extension of the one-pass entity authentication mechanism
in ISO/IEC 9798-3.[6] It transfers a secret key, encrypted and signed, from entity A to entity B with
explicit key authentication from entity A to entity B and implicit key authentication from entity B to
entity A. The following requirements shall be satisfied:

—	 Entity A has an asymmetric signature system (SA, VA).

﻿

28� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

—	 Entity B has an asymmetric encryption system (EB, DB).

—	 Entity A has access to an authenticated copy of entity B’s public encryption transformation EB. This
may be achieved using the mechanisms described in Clause 13.

—	 Entity B has access to an authenticated copy of entity A’s public verification transformation VA. This
may be achieved using the mechanisms described in Clause 13.

—	 The optional TVP shall be either a time stamp or sequence number. If time stamps are used, then
the entities A and B need to maintain synchronous clocks or use a Trusted Third Party Time Stamp
Authority. If sequence numbers are used then entities A and B shall maintain bilateral counters.

Secret key transport mechanism 2 is summarised in Figure 11.

Key Encryption (A1.1) Suppose K is a secret key that entity A wishes to securely transfer to entity B.
Entity A forms the key data block, consisting of the sender’s distinguishing identifier, the key K and an
optional data field Text1. Entity A then encrypts the key data block with entity B’s public encryption
transformation EB and forms the encrypted block BE = EB(A||K||Text1).

Key Token Construction (A1.2) Entity A forms the token data block, consisting of the recipient’s
distinguishing identifier, an optional TVP (time stamp or sequence number), the encrypted block BE
and the optional data field Text2. Then entity A signs the token data block using its private signature
transformation SA, appends optional Text3, and sends the resulting key token

KTA1 = SA(B||TVP||BE||Text2)||Text3

to entity B.

Key Token Verification (B1.1) Entity B uses the sender’s public verification transformation VA to
verify the digital signature in the received key token KTA1. Entity B then checks its identifier in KTA1
and, optionally, the TVP.

Key Decryption (B1.2) Entity B decrypts the block BE with its private decryption transformation DB.
Entity B then compares the identifier for entity A contained in block BE with the identity of the signing
entity. If all checks are successful, entity B accepts the key K.

NOTE 1	 The number of passes is 1.

NOTE 2	 This mechanism provides entity authentication of entity A to entity B, and implicit key authentication
from entity B to entity A.

NOTE 3	 This mechanism provides key confirmation from entity A to entity B. Entity B can be sure that it
shares the correct key with entity A, but entity A can only be sure that entity B has indeed received the key after
it has obtained a positive reply from entity B encrypted using key K.

NOTE 4	 The optional TVP provides entity authentication of entity A to entity B and prevents replay of the key
token. In order to prevent replay of the key data block BE, an additional TVP can also be included in Text1.

NOTE 5	 Entity A can choose the key KA, since it is the originating entity. Similarly, entity B can choose the key
KB. Joint key control can be achieved by requiring entities A and B to combine two keys KA and KB, transported
using two instances of the mechanism, to form a shared secret key KAB. An extra pass is required for joint key
control. The combination function shall be one-way, otherwise entity A can choose the shared secret key. This
mechanism can then be classified as a key agreement mechanism.

NOTE 6	 Entity A’s distinguishing identifier is included in the encrypted block BE to prevent entity A from
misappropriating an encrypted key block intended for use by another entity. Prevention of the attack is achieved
by requiring entity B to compare entity A’s identifier with entity A’s signature on the token.

NOTE 7	 In conformance with ISO/IEC 9798-3,[6] entity authentication using a public key algorithm KTA1 is
compatible with the token sent in the one-pass authentication mechanism. The token accommodates the transfer
of the key K through use of the optional text field: Text1 in the ISO/IEC 9798-3[6] mechanism has been replaced
by BE || Text2.

﻿

© ISO/IEC 2015 – All rights reserved� 29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 8	 The data field Text3 can be used to deliver the public key certificate of entity A. If this is the case, then
the fourth requirement at the beginning of 12.2 can be relaxed to the requirement that entity B is in possession of
an authenticated copy of the CA’s public verification key.

NOTE 9	 Examples of this mechanism are described in Annexes G.2 and G.5.

12.3	 Secret key transport mechanism 3

This secret key transport mechanism transfers a secret key, signed, and encrypted in one pass from
entity A to entity B with unilateral key confirmation. The following requirements shall be satisfied:

a)	 Entity A has an asymmetric signature system (SA, VA).

b)	 Entity B has an asymmetric encryption system (EB, DB).

c)	 Entity A has access to an authenticated copy of entity B’s public encryption transformation EB. This
may be achieved using the mechanisms described in Clause 13.

d)	 Entity B has access to an authenticated copy of entity A’s public verification transformation VA. This
may be achieved using the mechanisms described in Clause 13.

e)	 The optional TVP shall be either a time stamp or a sequence number: If time stamps are used then
the entities A and B need to maintain synchronous clocks. If sequence numbers are used then
entities A and B shall maintain bilateral counters.

Secret key transport mechanism 3 is summarised in Figure 12.

Figure 12 — Secret Key Transport Mechanism 3

﻿

30� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Figure 13 — Secret Key Transport Mechanism 4

Key Block Signature (A1.1) Suppose K is a secret key that entity A wishes to securely transfer to entity
B. Entity A forms a key data block consisting of the recipient’s distinguishing identifier, the key K, an
optional TVP (sequence number or time stamp), and optional data. Entity A then signs the key block
using its private signature transformation SA to generate the signed block BS = SA(B||K||TVP||Text1).

Key Token Construction (A1.2) Entity A forms the token data block, consisting of the signed block BS
and optional Text2. Then entity A encrypts the token data block using the receiver’s public encryption
transformation EB, appends optional Text3, and sends the resulting key token

KTA1 = EB(BS||Text2)||Text3

to entity B.

Key Token Decryption (B1.1) Entity B decrypts the encrypted part of the received key token KTA1
using its private decryption transformation DB.

Key Block Verification (B1.2) Entity B uses the sender’s public verification transformation VA to
verify the integrity and origin of BS. Entity B validates that it is the intended recipient of the token (by
inspection of the identifier in BS) and, optionally, that the TVP is within acceptable bounds (to verify
the token’s timeliness). If all verifications are successful, entity B accepts the key K.

NOTE 1	 The number of protocol passes is 1.

NOTE 2	 This mechanism provides entity authentication of entity A to entity B, and implicit key authentication
from entity B to entity A.

NOTE 3	 This mechanism provides key confirmation from entity A to entity B. Entity B can be sure that it
shares the correct key K with entity A, but entity A can only be sure that entity B has indeed received the key
after it has obtained a positive reply from entity B encrypted using key K.

NOTE 4	 Entity A can choose the key.

NOTE 5	 Entity B’s distinguishing identifier is included in the signed key block BS to explicitly indicate the
recipient of the key, thereby preventing misuse of the signed block BS by entity B.

NOTE 6	 The data field Text3 can be used to deliver the public key certificate of entity A. If this is the case, then
the fourth requirement at the beginning of 12.3 can be relaxed to the requirement that entity B is in possession of
an authenticated copy of the CA’s public verification key.

﻿

© ISO/IEC 2015 – All rights reserved� 31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 7	 If two executions of this secret key transport mechanism are combined (from entity A to entity B and
from entity B to entity A) then mutual entity authentication and joint key control can be provided (depending on
use of the optional TVP).

12.4	 Secret key transport mechanism 4

This secret key transport mechanism is based on the two-pass authentication mechanism of
ISO/IEC 9798-3,[6] and transfers a key from entity B to entity A. The following requirements shall be
satisfied:

—	 Entity A has an asymmetric encryption system (EA, DA).

—	 Entity B has an asymmetric signature system (SB, VB).

—	 Entity A has access to an authenticated copy of entity B’s public verification transformation VB. This
may be achieved using the mechanisms described in Clause 13.

—	 Entity B has access to an authenticated copy of entity A’s public encryption transformation EA. This
may be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 4 is summarised in Figure 13.

Key Token Construction (A1) Entity A generates a random number rA, constructs the key token KTA1
consisting of rA and an optional data field Text1, KTA1 = rA||Text1 and sends it to entity B.

Key Block Encryption (B1.1) Suppose K is a secret key that entity B wishes to securely transfer to
entity A. Entity B forms a key data block, consisting of the sender’s distinguishing identifier, the key
K and an optional data field Text2. Entity B then encrypts the key data block with entity A’s public
encryption transformation EA, and forms the encrypted block BE = EA(B||K||Text2).

Key Token Construction (B1.2) Entity B optionally generates a random number rB and forms the
token data block, consisting of the recipient’s distinguishing identifier, the random number rA received
in step (A1), the new random number rB (optional), the encrypted block BE, and the optional data field
Text3. Then entity B signs the token data block with its private signature transformation SB, appends
optional Text4, and sends the resulting key token KTB1 = SB(A||rA||rB||BE||Text3)||Text4 to entity A.

Key Token Verification (A2.1) Entity A uses the sender’s public verification transformation VB to verify
the digital signature in the received key token KTB1. Then entity A checks its distinguishing identifier in
KTB1 and checks that the received value rA agrees with the random number sent in step (A1).

Key Block Decryption (A2.2) Entity A decrypts the block BE with its private decryption transformation
DA. Entity A then validates the sender’s distinguishing identifier in BE. If all checks are successful, entity
A accepts the key K.

NOTE 1	 The number of protocol passes is 2.

NOTE 2	 This mechanism provides implicit key authentication from entity A to entity B.

NOTE 3	 This mechanism provides key confirmation from entity B to entity A. Entity A can be sure that it
shares the correct key K with entity B, but entity B can only be sure that entity A has indeed received the key
after it has obtained a secured message from entity A which has been processed using K.

NOTE 4	 Entity B can choose the key.

NOTE 5	 The tokens KTA1 and KTB1 conform to the tokens sent in the two-pass authentication mechanism
described in 5.1.2 of ISO/IEC 9798-3[6] (note that the roles of entities A and B are exchanged). The token KTB1
accommodates the transfer of the key K through use of the optional data field: Text2 in the ISO/IEC 9798-3
mechanism has been replaced by BE || Text3.

NOTE 6	 If this secret key transport mechanism is executed twice in parallel between two entities, then
the resulting mutual secret key transport mechanism is in conformance with the mechanism described in
ISO/IEC 9798-3.[6]

﻿

32� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

NOTE 7	 Data field rB is included for consistency with ISO/IEC 9798-3.[6] Because of the presence of BE in KTB1,
rB is no longer required and is therefore optional in this mechanism.

12.5	 Secret key transport mechanism 5

This secret key transport mechanism is based on the three-pass authentication mechanism of
ISO/IEC 9798-3[6] and transfers two shared secret keys with mutual entity authentication and key
confirmation. One key is transferred from entity A to entity B and one key from entity B to entity A. The
following requirements shall be satisfied:

—	 Each entity X has an asymmetric signature system (SX, VX).

—	 Each entity X has an asymmetric encryption system (EX, DX).

—	 Each entity has access to an authenticated copy of the public verification transformation of the other
entity. This may be achieved using the mechanisms described in Clause 13.

—	 Each entity has access to an authenticated copy of the public encryption transformation of the other
entity. This may be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 5 is summarised in Figure 14.

Figure 14 — Secret Key Transport Mechanism 5

﻿

© ISO/IEC 2015 – All rights reserved� 33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Entity A Entity B

KB

Key Token
Construction

(B1)

KTA1

Key and Entity
Con�irmation

(A2.1)

Key Token
Response

(A2.2)

Key Token
Construction

(A1)

KTB1

KB

KA

KTA2

Key and Entity
Con�irmation

(B2)

KA

Figure 15 — Secret Key Transport Mechanism 6

Key Token Construction (A1) Entity A randomly generates rA, constructs the key token KTA1 =
rA||Text1 and sends it to entity B.

Key Block Encryption (B1.1) Suppose K is a secret key that entity B wishes to securely transfer
to entity A. Entity B constructs a block containing its own distinguishing identifier, the key KB, and
optional Text2, and encrypts the block using the recipient’s public encryption transformation EA:

BE1 = EA(B||KB||Text2).

Key Token Construction (B1.2) Entity B randomly generates rB and constructs a data block containing
rB, rA, the recipient’s identity, the encrypted key block BE1, and optional Text3. Entity B signs the block
using its private signature transformation SB, appends optional Text4, and sends the key token KTB1 =
SB(rB||rA||A||BE1||Text3)||Text4 to entity A.

Key Token Verification (A2.1) Entity A verifies entity B’s signature on the key token KTB1 using entity
B’s public verification transformation VB, checks its distinguishing identifier in KTB1 and checks that
the received value rA agrees with the random number sent in step (A1).

Key Block Decryption (A2.2) Entity A decrypts the encrypted block BE1 using its private decryption
transformation DA and checks the distinguishing identifier for entity B. If all checks are successful,
entity A accepts the key KB.

Key Block Encryption (A2.3) Entity A constructs a data block containing its own distinguishing
identifier, its own key KA, and optional Text5, and encrypts the block using the recipient’s public
encryption transformation EB to obtain BE2 = EB(A||KA||Text5).

Key Token Construction (A2.4) Entity A constructs a data block containing the random number rA, the
random number rB, the recipient’s distinguishing identifier, the encrypted key block BE2, and optional
Text6. Entity A signs the data block using its private signature transformation SA, appends optional
Text7, and sends the key token KTA2 = SA(rA||rB||B||BE2||Text6)||Text7 to entity B.

Key Token Verification (B2.1) Entity B verifies entity A’s signature on the key token KTA2 using entity
A’s public verification transformation VA, checks its distinguishing identifier in KTA2 and checks that

﻿

34� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

the received value rB agrees with the random number sent in step (B1.2). In addition, B checks that the
received value rA agrees with the value contained in KTA1.

Key Block Decryption (B2.2) Entity B decrypts the encrypted block BE2 using its private decryption
transformation DB and verifies the distinguishing identifier for entity A. If all checks are successful,
entity B accepts the key KA. If only unilateral key transport is required then, as appropriate, either BE1
or BE2 can be omitted.

NOTE 1	 The number of passes is 3.

NOTE 2	 This mechanism provides mutual entity authentication, implicit key authentication of KA from entity
B to entity A and implicit key authentication of KB from entity A to entity B.

NOTE 3	 This mechanism provides key confirmation from sender to recipient for both keys KA and KB.
Moreover, if entity A includes a MAC on KB in the data field Text6 of KTA2, then this mechanism provides mutual
key confirmation with respect to KB.

NOTE 4	 Entity A can choose the key KA, since it is the originating entity. Similarly, entity B can choose the key
KB. Joint key control can be achieved by each entity by combining the two keys KA and KB to form a shared secret
key KAB. The combination function shall be one-way, otherwise entity A can choose the shared secret key. This
mechanism can then be classified as a key agreement mechanism.

NOTE 5	 KTA1, KTB1, and KTA2 are compatible with the tokens sent in the three pass authentication mechanism
described in Clause 5.2.2 of ISO/IEC 9798-3.[6] The second token accommodates the transfer of the key KB: Text2
of the ISO/IEC 9798-3 mechanism has been replaced by BE1||Text3. The third token accommodates the transfer
of the key KA: Text4 of the ISO/IEC 9798-3 mechanism has been replaced by BE2||Text6. The third token can also
accommodate the transfer of a MAC within Text6.

NOTE 6	 If the data fields Text1 and Text4 (or Text7 and Text4) contain the public key certificates of entities
A and B, respectively, then the third and fourth requirements at the beginning of 12.5 can be relaxed to the
requirement that both entities are in possession of an authenticated copy of the CA’s public verification key.

12.6	 Secret key transport mechanism 6

This secret key transport mechanism securely transfers two secret keys in three passes, one from
entity A to entity B and one from entity B to entity A. In addition, the mechanism provides mutual entity
authentication. This mechanism is based on the following requirements:

—	 Each entity X has an asymmetric encryption system (EX, DX).

—	 Each entity has access to an authenticated copy of the public encryption transformation of the other
entity. This may be achieved using the mechanisms described in Clause 13.

Secret key transport mechanism 6 is summarised in Figure 15.

Key Token Construction (A1) Entity A has obtained a key KA and wants to transfer it securely to entity
B. Entity A selects a random number rA and constructs a key data block consisting of its distinguishing
identifier, the key KA, the number rA and an optional data field Text1. Then entity A encrypts the key
block using entity B’s public encryption transformation EB, thereby producing the encrypted data block
BE1 = EB(A||KA||rA||Text1).

Entity A constructs the token KTA1 = BE1||Text2, consisting of the encrypted data block and some
optional data field Text2.

Entity A sends the token to entity B.

Key Token Construction (B1) Entity B extracts the encrypted key block BE1 from the received key
token KTA1 and decrypts it using its private decryption transformation DB. Then entity B checks that
the decrypted version of BE1 contains the identifier for entity A.

Entity B has obtained a key KB and wants to transfer it securely to entity A. Entity B selects a random
number rB and constructs a key data block consisting of the distinguishing identifier for entity B, the
key KB, the random number rB, the random number rA (as extracted from the decrypted block) and

﻿

© ISO/IEC 2015 – All rights reserved� 35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

an optional data field Text3. Then entity B encrypts the key block using entity A’s public encryption
transformation EA, thereby producing the encrypted data block BE2 = EA(B||KB||rA||rB||Text3).

Then entity B constructs the key token KTB1 = BE2||Text4, consisting of the encrypted data block BE2
and an optional data field Text4.

Entity B sends the token to entity A.

Key and Entity Confirmation (A2.1) Entity A extracts the encrypted key block BE2 from the received
key token KTB1 and decrypts it using its private decryption transformation DA. Then entity A checks
the validity of the key token through comparison of the random number rA with the random number rA
contained in the encrypted block BE2. If the verification is successful, entity A has implicitly confirmed
that KA has safely reached entity B.

Key Token Response (A2.2) Entity A extracts the random number rB from the decrypted key block
and constructs the key token KTA2 = rB||Text5, consisting of the random number rB and an optional data
field Text5.

Entity A sends the token to entity B.

Key and Entity Confirmation (B2) Entity B verifies that the response rB extracted from KTA2 is
consistent with the random number rB sent in encrypted form in KTB1. If the verification is successful,
entity B has authenticated entity A and at the same time has obtained confirmation that KB has safely
reached entity A.

NOTE 1	 The number of passes is 3.

NOTE 2	 This mechanism provides implicit key authentication of KA from entity B to entity A and implicit key
authentication of KB from entity A to entity B.

NOTE 3	 Entity A can choose the key KA, since it is the originating entity. Similarly, entity B can choose the key
KB. Joint key control can be achieved by each entity by combining the two keys KA and KB on both sides to form
a shared secret key KAB. However, the combination function shall be one-way, otherwise entity B can choose the
shared secret key. This mechanism could then be classified as a key agreement mechanism.

NOTE 4	 This mechanism uses asymmetric techniques to mutually transfer two secret keys, KA from entity A
to entity B and KB from entity B to entity A. The following cryptographic function separation can be derived from
the mechanism: entity A uses its key KA to encrypt messages for entity B and to verify authentication codes from
entity B. Entity B in turn uses the received key KA to decrypt messages from entity A and generate authentication
codes for entity A. The cryptographic functions of KB can be separated in an analogous manner. In such a way, the
asymmetric basis of the key transport mechanism can be extended to the usage of the secret keys.

NOTE 5	 This mechanism is derived from the three pass protocol known as COMSET.[18]

NOTE 6	 This mechanism is based on zero-knowledge techniques. From the execution of the mechanism,
neither of the entities learns anything that it could not have computed itself.

13	 Public key transport

13.1	 Public key transport mechanism 1

If entity A has access to a protected channel (i.e., a channel which provides data origin authentication
and data integrity), such as a courier, registered mail, etc., to entity B then entity A may transport its
public key information directly via that protected channel to entity B. This is the most elementary form
of transferring a public key. The following requirements shall be satisfied:

—	 Entity A’s public key information PKIA contains at least entity A’s distinguishing identifier and entity
A’s public key. In addition it may contain a serial number, a validity period, a time stamp and other
data elements.

﻿

36� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

—	 Since the public key information does not contain any secret data, the communication channel need
not provide confidentiality.

Public key transport mechanism 1 is summarised in Figure 16.

Entity A

Key Token
Reception

(B1)

Entity B

Key Token
Construction

(A1) KTA1

Figure 16 — Public Key Transport Mechanism 1

Entity A

Key Token
Reception

(B1)

Entity B

Key Token
Construction

(A1) KTA1

Veri�ication
Token

Construction
(A2) KTA2

Key Token
Veri�ication

(B2)

Figure 17 — Public Key Transport Mechanism 2

Key Token Construction (A1) Entity A constructs the key token KTA1 containing the public key
information of entity A and some optional data field Text, and sends KTA1 = PKIA||Text via a protected
channel to entity B.

Key Token Reception (B1) Entity B receives the key token via the protected channel from entity A,
retrieves entity A’s public key information PKIA and stores entity A’s public key into the list of active
public keys (this list shall be protected from tampering).

NOTE 1	 This mechanism can be used to transfer public verification keys (for an asymmetric signature system)
or public encryption keys (for an asymmetric encryption system) or public key agreement keys.

NOTE 2	 Authentication in this context includes both data integrity and data origin authentication (as defined
in ISO 7498-2[1]).

13.2	 Public key transport mechanism 2

This mechanism transports the public key information of entity A via an unprotected channel to entity
B. To verify the integrity and the origin of the received public key information a second authenticated
channel is used. Such a mechanism is useful when the public key information PKI is transferred
electronically on a high bandwidth channel, whereas the authentication of the public key information
takes place over an authenticated low bandwidth channel such as a telephone, courier, or registered

﻿

© ISO/IEC 2015 – All rights reserved� 37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

mail. As an additional requirement, the entities shall share a common hash, as defined in ISO/IEC 10118-
1. The following requirements shall be satisfied:

—	 Entity A’s public key information PKIA contains at least entity A’s distinguishing identifier and entity
A’s public key. In addition it may contain a serial number, a validity period, a time stamp and other
data elements.

—	 Since the public key information does not contain any secret data, the communication channel need
not provide confidentiality.

Public key transport mechanism 2 is summarised in Figure 17.

Key Token Construction (A1) Entity A constructs the key token KTA1 containing the public key
information of entity A and sends KTA1 = PKIA||Text1 to entity B.

Key Token Reception (B1) Entity B receives the key token, retrieves entity A’s public key information
PKIA, and stores it protected from tampering for later verification and use.

Verification Token Construction (A2) Entity A computes a check value hash(PKIA) on its public key
information and sends this check value together with the optional distinguishing identifiers of entities
A and B to entity B using a second independent and authenticated channel (e.g., a courier or registered
mail), where

KTA2 = A||B||hash(PKIA)||Text2.

Key Token Verification (B2) Upon reception of the verification token KTA2, B optionally checks the
distinguishing identifier of entities A and B, computes the check value on the public key information of
entity A received in the key token KTA1 and compares it with the check value received in the verification
token KTA2. If the check succeeds, entity B puts entity A’s public key onto the list of active public keys
(this list shall be protected from tampering).

NOTE 1	 This mechanism can be used to transfer public verification keys (for an asymmetric signature system)
or public encryption keys (for an asymmetric encryption system) or public key agreement keys.

NOTE 2	 Authentication in this context includes both data integrity and data origin authentication.

NOTE 3	 If the public key that is transported is a key for an asymmetric signature system not giving message
recovery, then entity A can sign the token KTA1 using the corresponding private signature key. In that case,
the verification of entity A’s signature in step (B1) using the received public verification key confirms that
entity A knew the corresponding private signature key, and so presumably, was the only entity that knew the
corresponding private signature key at the time the token was created. If a time stamp is used in PKIA, then
verification confirms that entity A currently knows the corresponding private signature key.

NOTE 4	 A manually signed letter from Entity A can be used for the verification token.

13.3	 Public key transport mechanism 3

This mechanism transfers a public key from entity A to entity B in an authenticated way by using a
trusted third party. The authentication of the entities’ public keys can be ensured by exchanging the
public keys in the form of public key certificates. Entity A’s public key certificate contains the public
key information, together with a digital signature provided by a trusted third party, the Certification
Authority (CA). The introduction of a CA reduces the problem of authenticated user public key
distribution to the problem of authenticated distribution of the CA’s public key, at the expense of a
trusted centre (the CA). 11770-1 shall be referred. See also ISO/IEC 9594-8[2] (Annex E).

This mechanism is based on the assumption that a valid public key certificate CertA of entity A’s public
key information PKIA has been issued by some certification authority, and that entity B has access to
an authenticated copy of the public verification transformation VCA of that certification authority CA
which has issued the public key certificate.

Public key transport mechanism 3 is summarised in Figure 18.

﻿

38� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Entity A

Certi�icate
Veri�ication

(B1)

Entity B

Key Token
Construction

(A1) KTA1

Figure 18 — Public Key Transport Mechanism 3

Key Token Construction (A1) Entity A constructs the key token KTA1 containing the public key
certificate of entity A and sends it to entity B, KTA1 = CertA||Text.

Certificate Verification (B1) Upon reception of the public key certificate, entity B uses the public
verification transformation VCA of the certification authority to verify the authenticity of the public key
information and to check the validity of entity A’s public key.

If entity B wants to make sure that entity A’s public key certificate has not been revoked recently, then
entity B should consult a trusted third party (such as the CA) via some authenticated channel.

NOTE 1	 The number of passes is 1, but there could have been a request from entity B to entity A for the transfer
of the public key certificate. This additional pass is optional and not shown here. Entity A’s public key certificate
could also be distributed by a directory, in which case this public key transport mechanism would be executed
between the directory and entity B.

NOTE 2	 Entity authentication is not provided by this mechanism.

NOTE 3	 Receiving a public key certificate provides confirmation that the public key has been certified by the
CA.

NOTE 4	 The public verification key vCA of the CA shall be made available to entity B in an authenticated way.
This can be done using the mechanisms described in Clause 13.

﻿

© ISO/IEC 2015 – All rights reserved� 39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Annex A
(normative)

Object identifiers

This annex lists the object identifiers assigned to the key management mechanisms specified in this
part of ISO/IEC 11770.

Key-management-AsymmetricTechniques {

iso(1) standard(0) key-management(11770)

asymmetricTechniques(3) asn1-module(0) object-identifiers(0) }

DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- EXPORTS All; --

-- IMPORTS None; --

OID ::= OBJECT IDENTIFIER – Alias

-- Synonyms –

id-km-at OID ::= {

iso(1) standard(0) key-management(11770) asymmetricTechniques(3) }

-- Assignments –

id-km-at-kAM-1 OID ::= { id-km-at keyAgreementMechanism1(1) }

id-km-at-kAM-2 OID ::= { id-km-at keyAgreementMechanism2(2) }

id-km-at-kAM-3 OID ::= { id-km-at keyAgreementMechanism3(3) }

id-km-at-kAM-4 OID ::= { id-km-at keyAgreementMechanism4(4) }

id-km-at-kAM-5 OID ::= { id-km-at keyAgreementMechanism5(5) }

id-km-at-kAM-6 OID ::= { id-km-at keyAgreementMechanism6(6) }

id-km-at-kAM-7 OID ::= { id-km-at keyAgreementMechanism7(7) }

id-km-at-kAM-8 OID ::= { id-km-at keyAgreementMechanism8(8) }

id-km-at-kAM-9 OID ::= { id-km-at keyAgreementMechanism9(9) }

id-km-at-kAM-10 OID ::= { id-km-at keyAgreementMechanism10(10) }

id-km-at-kAM-11 OID ::= { id-km-at keyAgreementMechanism11(11) }

id-km-at-kAM-12 OID ::= { id-km-at keyAgreementMechanism12(21) }

id-km-at-kTM-1 OID ::= { id-km-at keyTransportMechanism1(12) }

id-km-at-kTM-2 OID ::= { id-km-at keyTransportMechanism2(13) }

id-km-at-kTM-3 OID ::= { id-km-at keyTransportMechanism3(14) }

id-km-at-kTM-4 OID ::= { id-km-at keyTransportMechanism4(15) }

id-km-at-kTM-5 OID ::= { id-km-at keyTransportMechanism5(16) }

id-km-at-kTM-6 OID ::= { id-km-at keyTransportMechanism6(17) }

﻿

40� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

id-km-at-pKT-1 OID ::= { id-km-at publicKeyTransportMechanism1(18) }

id-km-at-pKT-2 OID ::= { id-km-at publicKeyTransportMechanism2(19) }

id-km-at-pKT-3 OID ::= { id-km-at publicKeyTransportMechanism3(20) }

-- Key Agreement Mechanism 1 –

keyConstruction-1a OID ::= {

 id-km-at-kAM-1 keyConstructionFunction-1a(1) }

keyConstruction-1b OID ::= {

 id-km-at-kAM-1 keyConstructionFunction-1b(2) }

-- Key Agreement Mechanism 2 –

keyTokenConstruction-2 OID ::= {

 id-km-at-kAM-2 keyTokenConstructionFunction(1) }

keyConstruction-2a OID ::= {

 id-km-at-kAM-2 keyConstructionFunction-2a(2) }

keyConstruction-2b OID ::= {

 id-km-at-kAM-2 keyConstructionFunction-2b(3) }

-- Key Agreement Mechanism 3 –

keyConstruction-3a OID ::= {

 id-km-at-kAM-3 keyConstructionFunction-3a(1) }

keyTokenSignature-3 OID ::= {

 id-km-at-kAM-3 keyTokenSignatureFunction(2) }

keyConstruction-3b OID ::= {

 id-km-at-kAM-3 keyConstructionFunction-3b(3) }

signatureVerification-3 OID ::= {

 id-km-at-kAM-3 signatureVerificationFunction(4) }

-- Key Agreement Mechanism 4 –

keyTokenConstruction-4a OID ::= {

 id-km-at-kAM-4 keyTokenConstructionFunction-4a(1) }

keyTokenConstruction-4b OID ::= {

 id-km-at-kAM-4 keyTokenConstructionFunction-4b(2) }

keyConstruction-4a OID ::= {

 id-km-at-kAM-4 keyConstructionFunction-4a(3) }

keyConstruction-4b OID ::= {

 id-km-at-kAM-4 keyConstructionFunction-4b(4) }

-- Key Agreement Mechanism 5 –

keyTokenConstruction-5a OID ::= {

﻿

© ISO/IEC 2015 – All rights reserved� 41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

 id-km-at-kAM-5 keyTokenConstructionFunction-5a(1) }

keyTokenConstruction-5b OID ::= {

 id-km-at-kAM-5 keyTokenConstructionFunction-5b(2) }

keyConstruction-5a OID ::= {

 id-km-at-kAM-5 keyConstructionFunction-5a(3) }

keyConstruction-5b OID ::= {

 id-km-at-kAM-5 keyConstructionFunction-5b(4) }

-- Key Agreement Mechanism 6 –

keyTokenConstruction-6 OID ::= {

 id-km-at-kAM-6 keyTokenConstructionFunction(1) }

keyTokenProcessing-6b OID ::= {

 id-km-at-kAM-6 keyTokenProcessingFunction-6b(2) }

keyConstruction-6 OID ::= {

 id-km-at-kAM-6 keyConstructionFunction(3) }

keyTokenProcessing-6a OID ::= {

 id-km-at-kAM-6 keyTokenProcessingFunction-6a(4) }

-- Key Agreement Mechanism 7 –

keyTokenConstruction-7 OID ::= {

 id-km-at-kAM-7 keyTokenConstructionFunction(1) }

keyTokenProcessingAndKeyConstruction-7 OID ::= {

 id-km-at-kAM-7 keyTokenProcessingAndKeyConstructionFunction(2) }

keyTokenProcessing-7a OID ::= {

 id-km-at-kAM-7 keyTokenProcessingFunction-7a(4) }

keyTokenProcessing-7b OID ::= {

 id-km-at-kAM-7 keyTokenProcessingFunction-7b(5) }

-- Key Agreement Mechanism 8 –

keyTokenConstruction-8 OID ::= {

 id-km-at-kAM-8 keyTokenConstructionFunction(1) }

keyConstruction-8a OID ::= {

 id-km-at-kAM-8 keyConstructionFunction-8a(2) }

keyConstruction-8b OID ::= {

 id-km-at-kAM-8 keyConstructionFunction-8b(3) }

-- Key Agreement Mechanism 9 –

keyTokenConstruction-9a OID ::= {

 id-km-at-kAM-9 keyTokenConstructionFunction-9a(1) }

keyTokenConstruction-9b OID ::= {

﻿

42� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

 id-km-at-kAM-9 keyTokenConstructionFunction-9b(2) }

keyConstruction-9a OID ::= {

 id-km-at-kAM-9 keyConstructionFunction-9a(3) }

keyConstruction-9b OID ::= {

 id-km-at-kAM-9 keyConstructionFunction-9b(4) }

-- Key Agreement Mechanism 10 –

keyTokenConstruction-10a OID ::= {

 id-km-at-kAM-10 keyTokenConstructionFunction(1) }

keyConstruction-10b OID ::= {

 id-km-at-kAM-10 keyConstructionFunction-10b(2) }

keyConstruction-10a OID ::= {

 id-km-at-kAM-10 keyConstructionFunction-10a(3) }

verification-10b OID ::= {

 id-km-at-kAM-10 verificationFunction(4) }

-- Key Agreement Mechanism 11 –

entityConfirmation-11a OID ::= {

 id-km-at-kAM-11 entityConfirmationFunction-11a(1) }

entityConfirmation-11b OID ::= {

 id-km-at-kAM-11 entityConfirmationFunction-11b(2) }

keyTokenAndKeyConstruction-11 OID ::= {

 id-km-at-kAM-11 keyTokenProcessingAndKeyConstructionFunction(3) }

keyConstruction-11 OID ::= {

 id-km-at-kAM-11 keyConstructionFunction(4) }

keyVerification-11 OID ::= {

 id-km-at-kAM-11 keyVerificationFunction(5) }

-- Key Transport Mechanism 1 –

keyTokenConstruction-1 OID ::= {

 id-km-at-kTM-1 keyTokenConstructionFunction(1) }

keyTokenDeconstruction-1 OID ::= {

 id-km-at-kTM-1 keyTokenDeconstructionFunction(2) }

-- Key Transport Mechanism 2 –

keyEncryption-2 OID ::= {

 id-km-at-kTM-2 keyEncryptionFunction(1) }

keyTokenConstruction-2a OID ::= {

 id-km-at-kTM-2 keyTokenConstructionFunction(2) }

﻿

© ISO/IEC 2015 – All rights reserved� 43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

keyTokenVerification-2 OID ::= {

 id-km-at-kTM-2 keyTokenVerificationFunction(3) }

keyDecryption-2 OID ::= {

 id-km-at-kTM-2 keyDecryptionFunction(4) }

-- Key Transport Mechanism 3 –

keyBlockSignature-3 OID ::= {

 id-km-at-kTM-3 keyBlockSignatureFunction(1) }

keyTokenConstruction-3 OID ::= {

 id-km-at-kTM-3 keyTokenConstructionFunction(2) }

keyTokenDecryption-3 OID ::= {

 id-km-at-kTM-3 keyTokenDecryptionFunction(3) }

keyBlockVerification-3 OID ::= {

 id-km-at-kTM-3 keyBlockVerificationFunction(4) }

-- Key Transport Mechanism 4 –

keyTokenConstruction-4c OID ::= {

 id-km-at-kTM-4 keyTokenConstructionFunction-4c(1) }

keyBlockEncryption-4 OID ::= {

 id-km-at-kTM-4 keyBlockEncryptionFunction(2) }

keyTokenConstruction-4d OID ::= {

 id-km-at-kTM-4 keyTokenConstructionFunction-4d(3) }

keyTokenVerification-4 OID ::= {

 id-km-at-kTM-4 keyTokenVerificationFunction(4) }

keyBlockDecryption-4 OID ::= {

 id-km-at-kTM-4 keyBlockDecryptionFunction(5) }

-- Key Transport Mechanism 5 –

keyTokenConstruction-5c OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5c(1) }

keyBlockEncryption-5b OID ::= {

 id-km-at-kTM-5 keyBlockEncryptionFunction-5b(2) }

keyTokenConstruction-5d OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5d(3) }

keyTokenVerification-5a OID ::= {

 id-km-at-kTM-5 keyTokenVerificationFunction-5a(4) }

keyBlockDecryption-5a OID ::= {

 id-km-at-kTM-5 keyBlockDecryptionFunction-5a(5) }

keyBlockEncryption-5a OID ::= {

﻿

44� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

 id-km-at-kTM-5 keyBlockEncryptionFunction-5a(6) }

keyTokenConstruction-5e OID ::= {

 id-km-at-kTM-5 keyTokenConstructionFunction-5e(7) }

keyTokenVerification-5b OID ::= {

 id-km-at-kTM-5 keyTokenVerificationFunction-5b(8) }

keyBlockDecryption-5b OID ::= {

 id-km-at-kTM-5 keyBlockDecryptionFunction-5b(9) }

-- Key Transport Mechanism 6 –

keyTokenConstruction-6a OID ::= {

 id-km-at-kTM-6 keyTokenConstructionFunction-6a(1) }

keyTokenConstruction-6b OID ::= {

 id-km-at-kTM-6 keyTokenConstructionFunction-6b(2) }

keyEntityConfirmation-6a OID ::= {

 id-km-at-kTM-6 keyEntityConfirmationFunction-6a(3) }

keyTokenResponse-6 OID ::= {

 id-km-at-kTM-6 keyResponseFunction(4) }

keyEntityConfirmation-6b OID ::= {

 id-km-at-kTM-6 keyEntityConfirmationFunction-6b(5) }

-- Public Key Transport Mechanism 1 –

keyTokenConstruction-1a OID ::= {

 id-km-at-pKT-1 keyTokenConstructionFunction(1) }

keyTokenReception-1 OID ::= {

 id-km-at-pKT-1 keyTokenReceptionFunction(2) }

-- Public Key Transport Mechanism 2 –

keyTokenConstruction-2b OID ::= {

 id-km-at-pKT-2 keyTokenConstructionFunction(1) }

keyTokenReception-2 OID ::= {

 id-km-at-pKT-2 keyTokenReceptionFunction(2) }

keyTokenVerification-2a OID ::= {

 id-km-at-pKT-2 keyTokenVerificationFunction(3) }

-- Public Key Transport Mechanism 3 –

keyTokenConstruction-3a OID ::= {

 id-km-at-pKT-3 keyTokenConstructionFunction(1) }

certificationVerification-3 OID ::= {

 id-km-at-pKT-3 certificationVerificationFunction(2) }

﻿

© ISO/IEC 2015 – All rights reserved� 45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

END -- Key-management-AsymmetricTechniques --

﻿

46� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Annex B
(informative)

Properties of key establishment mechanisms

The following tables summarize the major properties of the key establishment/transport mechanisms
specified in this part of ISO/IEC 11770.

The following notation is used in Table B.1 — Properties of key agreement mechanisms, Table B.2 —
Properties of secret key transport mechanisms, and Table B.3 — Properties of public key transport
mechanisms:

A mechanism provides the property with respect to entity A.

B mechanism provides the property with respect to entity B.

A, B the mechanism provides the property with respect to both entities, A and B.

No the mechanism does not provide the property.

Opt the mechanism can provide the property as an option, using additional means.

(A) the mechanism can optionally provide the property with respect to entity A, using addi-
tional means.

(B) the mechanism can optionally provide the property with respect to entity B, using addi-
tional means.

MFS the mechanism provides mutual forward secrecy.

#passes the number of passes.

Public key operations in Tables B.1, B.2, and B.3: the number of computations of asymmetric
transformation. F and FP, the number of computations of asymmetric transformation executed by
entity X , EX , DX , SX , and VX . “(2F,1F)” means that entity A needs two computations of the function F
and entity B needs one computation of the function F in Key Agreement Mechanism 2 in Table B. 1; and
the number of computations of asymmetric transformation, “(1FP,1FP,1FP)” means that entity A needs
one computation of the function FP, entity B needs one computation of the function FP, and entity C
needs one computation of the function FP in Key Agreement Mechanism 12 in Table B. 1. “(1EB ,1DB
)” means that entity A needs one computation of the function EB and entity B needs one computation
of the function DB in Table B.2. “(0 ,1VCA)” means that entity B needs one computation of the public
verification transformation VCA of the certification authority CA in Table B.3.

Another important property that can be derived from key freshness is replay attack prevention. Replay
attacks are generally not possible where key freshness is guaranteed for both entities.

The property of implicit key authentication has direction by its definition. When the table for implicit
key authentication has an “A”, this means that entity B is assured that entity A is the only other entity
that can possibly be in possession of the correct key. When the table for implicit key authentication
has an “A, B”, this means that entities A and B are assured that only the other entity can possibly be in
possession of the correct key.

NOTE 1	 Only mechanism 12 in Table B.1 executes among three entities and others execute among two entities.

NOTE 2	 All mechanisms except mechanism 1 in Table B.1 use secure random bit generation.

﻿

© ISO/IEC 2015 – All rights reserved� 47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Table B.1 — Properties of key agreement mechanisms

Mecha-
nism

#passes Implicit key
authentica-
tion

Key
confirma-
tion

Entity
authentica-
tion

Public key operations Forward
secrecy

Key fresh-
ness

1 0 A, B No No (1F, 1F) No No
2 1 B No No (2F, 1F) A A
3 1 A, B B A (2F/1SA, 1F/1VA) A A
4 2 No No No (2F, 2F) MFS A, B
5 2 A, B Opt No (3F, 3F) A,B A, B
6 2 A, B Opt B (1VB/1DA, 1SB/1EA) B A, B
7 3 A, B A, B A, B (2F/1VB/1SA, 2F/1S-

B/1VA)
MFS A, B

8 1 A, B No No (2F, 1F) A A
9 2 A, B No No (2F, 2F) MFS A, B
10 3 A, B A, B A, B (2F, 2F) MFS A, B
11 4 B A, B B (1VCA/1EB, 1DB) MFS A, B
12 0 A, B, C No No (1FP, 1FP, 1FP) No No
F.3 2 A, B No No (3F+2FP, 3F+2FP) A, B A, B
F.4 2 A, B No No (3F+2FP, 3F+2FP) A, B A, B

Table B.2 — Properties of secret key transport mechanisms

Mecha-
nism

#passes Implicit key
authentica-
tion

Key
confirma-
tion

Key con-
trol

Entity
authentica-
tion

Public key
operations

Forward
secrecy

Key
freshness

1 1 B No A No (1EB, 1DB) A A
2 1 B B A A (1EB/1SA,

1VA/1DB)
A A

3 1 B B A A (1SA/1EB,
1DB/1VA)

A A

4 2 A A B B (1VB/1DA,
1EA/1SB)

B A

5 3 A, B (A), B A, B A, B (1VB/1DA
/1EB/1SA,
1EA/1SB
/1VA/1DB)

No A, B

6 3 A, B No A, B No (1EB/1DA,
1DB/1EA)

No A, B

Table B.3 — Properties of public key transport mechanisms

Mecha-
nism

#passes Implicit key
authentica-
tion

Key
confirma-
tion

Key control Entity
authentica-
tion

Public key
operations

Forward
secrecy

Key
freshness

1 1 - - A A (0, 0) - No
2 2 - - A A (0, 0) - No
3 1 - - A A (0, 1VCA) - No

﻿

48� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Annex C
(informative)

Examples of key derivation functions

C.1	 ASN.1 syntax for key derivation functions

This clause describes ASN.1 syntax for a key derivation function.

The input to the key derivation function is the shared secret ZZ and other information OtherInfo.The
other information includes the initiator’s information entityAInfo, and the responder’s information
entityBInfo, suppPubInfo, and suppPrivInfo.

OtherInfo ::= SEQUENCE {

 keyInfo KeySpecificInfo,

 entityAInfo [0] OCTET STRING OPTIONAL,

 entityBInfo[1] OCTET STRING OPTIONAL,

 suppPubInfo[2] OCTET STRING OPTIONAL,

 suppPrivInfo[3] OCTET STRING OPTIONAL

}

KeySpecificInfo ::= SEQUENCE {

 algorithm OBJECT IDENTIFIER,

 counter Counter

}

Counter ::= INTEGER (1...32767)

The suppPubInfo and suppPrivInfo fields are optional fields used in key derivation. These fields may be
used to hold additional, supplementary public and private information that is mutually known to the
communicating parties, but that is not specific to either party.

The contents of suppPubInfo and suppPrivInfo are defined by the key management protocol. The
definition, syntax, and encoding rules of the suppPubInfo and suppPrivInfo fields are the responsibility
of the key management protocol and are beyond the scope of this part of ISO/IEC 11770.

All inputs to the key derivation hash function shall be an integral number of octets in length.
suppPrivInfo may include ZZ.

NOTE 1	 Some mechanisms in Clauses 11 and 12 derive shared secrets either as points on the elliptic curve or
as the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret
integer z for input into the key derivation function, the function π should be applied to the point.

NOTE 2	 OtherInfo is used in Annexes C.3, C.5, and C.6.

C.2	 The IEEE P1363 key derivation function

This clause describes the key derivation function that is given in the IEEE P1363 standard.[14]

﻿

© ISO/IEC 2015 – All rights reserved� 49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Preconditions As a precondition of the use of this key derivation function, users shall agree on a
common hash function. Users who use different hash functions will obtain different results. For the
purposes of this part of ISO/IEC 11770, the hash function is referred in ISO/IEC 10118. The shared key
that is produced will have length equal to the length of the output of the hash function.

Input The inputs to this key derivation function are

—	 The shared secret z which is an integer, expressed as an octet string.

—	 The key derivation parameters, parameters, also expressed as an octet string.

NOTE 1	 Users shall also agree on a common method of converting integers and parameters to octet strings for
input into the key derivation function.

Actions If the combined length of the shared secret z and the parameters exceeds any limitation that
may exist for the agreed hash function, hash, then output “error“ and stop.

Otherwise compute the value K = hash(z || parameters).

Output Output K as the key.

C.3	 The ANSI X9.42 key derivation function

This element describes a key derivation function based on the key derivation function that is given in
the ANSI X9.42 standard.[12]

Prerequisites A hash function specified in ISO/IEC 10118 is chosen. Let hashlen denote the length of
the output of the hash function chosen, and let maxhashlen denote the maximum length of the input to
the hash function.

Input The input to the key derivation function is:

—	 ZZ: A bit string denoting the shared secret.

NOTE 1	 Some mechanisms in Clauses 11 and 12 derive shared keys KAB either as points on the elliptic curve
or as the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret
value ZZ for input into the key derivation function, the function π should be applied to the point and the resulting
integer converted to a bit string. In the second situation, the function π should be applied to both points to obtain
two integers z1 and z2. The two integers should then be converted to bit strings and concatenated (or combined
using any prefix-free encoding method), as were the points, to obtain the appropriate bit string.

—	 keydatalen: An integer representing the length in bits of the keying data to be generated. This integer
is less than (hashlen × (232–1)).

—	 OtherInfo: A bit string, specified in ASN.1 DER encoding, consisting of the following key specification
information as specified in Annex C.2

—	 AlgorithmID: a unique object identifier (OID) of the symmetric algorithm(s) with which the keying
data will be used.

—	 Counter: a 32-bit octet string, with initial value 00000001 (in hexadecimal).

—	 (Optional) EntityAInfo: A bit string containing public information contributed by the initiator.

—	 (Optional) EntityBInfo: A bit string containing public information contributed by the responder.

—	 (Optional) SuppPrivInfo: A bit string containing some additional, mutually known private
information, e.g., a shared secret symmetric key communicated through a separate channel.

—	 (Optional) SuppPubInfo: A bit string containing some additional, mutually known public information.

NOTE 2	 Users shall also agree on a common method of converting integers and parameters to bit strings for
input into the key derivation function.

﻿

50� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Actions The key derivation function is computed as follows:

a)	 Let d = keydatalen hashlen/  .

b)	 Initialize Counter = 00000001 (in hexadecimal).

c)	 For i = 1 to d,

—	 Compute hi = hash(ZZ || OtherInfo) where hi denotes the hash value computed using the
appropriate hash function, and OtherInfo = AlgorithmID || Counter [|| EntityAInfo || EntityBInfo
|| SuppPrivInfo || SuppPubInfo].

—	 Increment Counter.

—	 Increment i.

d)	 Compute K = leftmost keydatalen bits of h1 || h2 || … || hd.

e)	 Output K.

Output The keying data K as a bit string of length keydatalen bits.

Note that this key derivation function based on ASN.1 DER encoding produces keying data which is
less than hashlen×(232–1) bits in length. It is assumed that all key derivation function calls are indeed
for bit strings which are less than hashlen×(232–1) bits in length. Any scheme attempting to call the
key derivation function using a bit string that is greater than or equal to hashlen×(232–1) bits shall
output “invalid” and stop. Similarly, it is assumed that all key derivation function calls do not involve
hashing a bit string that is more than maxhashlen bits in length. Any scheme attempting to call the key
derivation function on a call involving hashing a bit string that is greater than maxhashlen bits shall
output “invalid” and stop.

C.4	 The ANSI X9.63 key derivation function

This clause describes a key derivation function based on the key derivation function that is given in the
ANSI X9.63 standard.[13]

Prerequisites The prerequisite for the operation of the key derivation function is that a hash function,
hash, specified in ISO/IEC 10118 is chosen. Let hashlen denote the length of the output of the hash
function chosen, and let maxhashlen denote the maximum length of the input to the hash function.

Input The input to the key derivation function is:

—	 A bit string Z which is the shared secret.

NOTE 1	 Some mechanisms in Clauses 11 and 12 derive shared keys KAB either as points on the elliptic curve or
as the concatenation of two points on an elliptic curve. In the first situation, in order to obtain a shared secret Z
for input into the key derivation function, the function π should be applied to the point and the resulting integer
converted to a bit string. In the second situation, the function π should be applied to both points to obtain two
integers z1 and z2. The two integers should then be converted to bit strings and concatenated (or combined using
any prefix-free encoding method), as were the points, to obtain the appropriate bit string.

—	 An integer keydatalen which is the length in bits of the keying data to be generated. keydatalen shall
be less than hashlen×(232–1).

—	 (Optional) A bit string SharedInfo which consists of some data shared by the two entities intended
to share the secret Z.

NOTE 2	 Users shall also agree on a common method of converting integers and parameters to bit strings for
input into the key derivation function.

﻿

© ISO/IEC 2015 – All rights reserved� 51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Actions The key derivation function is computed as follows:

—	 Initiate a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

—	 For i = 1 to j = keydatalen hashlen/  , do the following:

—	 Compute Hashi = H(Z || counter [|| SharedInfo]).

—	 Increment counter.

—	 Increment i.

—	 Let HHashj denote Hashj if keydatalen/hashlen is an integer, and let it denote the (keydatalen -
(hashlen×(j-1))) leftmost bits of Hashj otherwise.

—	 Set KeyData = Hash1 || Hash2 || … || Hashj-1 || HHashj.

Output The bit string KeyData of length keydatalen bits.

Note that the key derivation function produces keying data of length less than hashlen×(232–1) bits. We
assume that all key derivation function calls are indeed for bit strings of length less than hashlen×(232–1)
bits. Any scheme attempting to call the key derivation function for a bit string of length greater than
or equal to hashlen×(232–1) bits shall output ‘invalid’ and stop. Similarly, it is assumed that all key
derivation function calls do not involve hashing a bit string that is more than maxhashlen bits in length.
Any scheme attempting to call the key derivation function on a call involving hashing a bit string that is
greater than maxhashlen bits shall output “invalid” and stop.

C.5	 The NIST SP 800-56A concatenation key derivation function

This clause describes a key derivation function based on the key derivation function that is given in the
NIST Special Publication 800-56A.[32]

Function call: kdf (Z, OtherInput),

where OtherInput is keydatalen and OtherInfo.

Fixed Values (implementation dependent):

a)	 hashlen: an integer that indicates the length (in bits) of the output of the hash function used to
derive blocks of secret keying material.

b)	 max_hash_inputlen: an integer that indicates the maximum length (in bits) of the bit string(s) input
to the hash function.

Auxiliary Function:

a)	 H: an approved hash function chosen from those specified in ISO/IEC 10118.

Input:

a)	 Z: a byte string that is the shared secret.

b)	 keydatalen: An integer that indicates the length (in bits) of the secret keying material to be
generated; keydatalen shall be less than or equal to hashlen × (232 –1).

c)	 OtherInfo: A bit string equal to the following concatenation:

AlgorithmID || EntityAInfo || EntityBInfo [|| SuppPubInfo] [|| SuppPrivInfo]

where the subfields are defined as follows:

a)	 AlgorithmID: A bit string that indicates how the derived keying material will be parsed and for
which algorithm(s) the derived secret keying material will be used. For example, AlgorithmID

﻿

52� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

might indicate that bits 1-80 are to be used as an 80-bit HMAC key and that bits 81-208 are to be
used as a 128-bit AES key.

b)	 EntityAInfo: A bit string containing public information that is required by the application using this
kdf to be contributed by entity A to the key derivation process. At a minimum, EntityAInfo shall
include IDA, the identifier of entity A. See the notes below.

c)	 EntityBInfo: A bit string containing public information that is required by the application using this
kdf to be contributed by entity B to the key derivation process. At a minimum, EntityBInfo shall
include IDB, the identifier of entity B. See the notes below.

d)	 (Optional) SuppPubInfo: A bit string containing additional, mutually-known public information.

e)	 (Optional) SuppPrivInfo: A bit string containing additional, mutually-known private information
(for example, a shared secret symmetric key that has been communicated through a separate
channel).

Each of the three subfields AlgorithmID, EntityAInfo, and EntityBInfo shall be the concatenation of an
application-specific, fixed-length sequence of substrings of information. Each substring representing a
separate unit of information shall have one of these two formats: Either it is a fixed-length bit string, or
it has the form Datalen || Data, where Data is a variable-length string of zero or more bytes, and Datalen
is a fixed-length, big-endian counter that indicates the length (in bytes) of Data. (In this variable-length
format, a null string of data shall be represented by using Datalen to indicate that Data has length
zero.) An application using this kdf shall specify the ordering and number of the separate information
substrings used in each of the subfields AlgorithmID, EntityAInfo, and EntityBInfo, and shall also specify
which of the two formats (fixed-length or variable-length) is used for each substring. The application
shall specify the lengths for all fixed-length quantities, including the Datalen counters.

The subfields SuppPrivInfo and SuppPubInfo (when allowed by the application) shall be formed by the
concatenation of an application-specific, fixed-length sequence of substrings of additional information
that may be used in key derivation upon mutual agreement of entities A and B. Each substring
representing a separate unit of information shall be of the form Datalen || Data, where Data is a variable-
length string of zero or more (eight-bit) bytes and Datalen is a fixed-length, big-endian counter that
indicates the length (in bytes) of Data. The information substrings that entities A and B choose not to
contribute are set equal to Null, and are represented in this variable-length format by setting Datalen
equal to zero. If an application allows the use of the OtherInfo subfield SuppPrivInfo and/or the subfield
SuppPubInfo, then the application shall specify the ordering and the number of additional information
substrings that may be used in the allowed subfield(s) and shall specify the fixed-length of the Datalen
counters.

Process:

a)	 reps = keydatalen hashlen/  .

b)	 If reps > (232 −1), then ABORT: output an error indicator and stop.

c)	 Initialize a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

d)	 If counter || Z || OtherInfo is more than max_hash_inputlen bits long, then ABORT: output an error
indicator and stop.

e)	 For i = 1 to reps by 1, do the following:

1)	 Compute Hashi = H(counter || Z || OtherInfo).

2)	 Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

f)	 Let Hhash be set to Hashreps if (keydatalen / hashlen) is an integer; otherwise, let Hhash be set to
the (keydatalen mod hashlen) leftmost bits of Hashreps.

g)	 Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

﻿

© ISO/IEC 2015 – All rights reserved� 53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Output: The bit string DerivedKeyingMaterial of length keydatalen bits (or an error indicator). Any
scheme attempting to call this key derivation function with keydatalen greater than or equal to hashlen
× (232 −1) shall output an error indicator and stop without outputting DerivedKeyingMaterial. Any
call to the key derivation function involving an attempt to hash a bit string that is greater than max_
hash_inputlen bits long shall cause the kdf to output an error indicator and stop without outputting
DerivedKeyingMaterial.

NOTE 1	 IDA and IDB shall be represented in OtherInfo as separate units of information, using either the fixed-
length format or the variable-length format described above – according to the requirements of the application
using this kdf.

NOTE 2	 Entity A shall be the initiator, and entity B shall be the responder, as assigned by the protocol
employing the key agreement scheme used to determine the shared secret Z.

C.6	 The NIST SP 800-56A ASN.1 key derivation function

This clause describes a key derivation function based on the key derivation function that is given in the
NIST Special Publication 800-56A.[32]

Function call: kdf (Z, OtherInput)

where OtherInput is keydatalen and OtherInfo.

Fixed Values (implementation dependent):

a)	 hashlen: an integer that indicates the length (in bits) of the output of the hash function used to
derive blocks of secret keying material.

b)	 max_hash_inputlen: an integer that indicates the maximum length (in bits) of the bit string(s) input
to the hash function.

Auxiliary Function:

a)	 H: an approved hash function chosen from those specified in ISO/IEC 10118.

Input:

a)	 Z: a byte string that is the shared secret.

b)	 keydatalen: An integer that indicates the length (in bits) of the secret keying material to be
generated; keydatalen shall be less than or equal to hashlen × (232 –1).

c)	 OtherInfo: A bit string specified in ASN.1 DER encoding, which consists of the following information:

1)	 AlgorithmID: A bit string that indicates how the derived keying material will be parsed and for
which algorithm(s) the derived secret keying material will be used. For example, AlgorithmID
might indicate that bits 1-80 are to be used as an 80-bit HMAC key and that bits 81-208 are to
be used as a 128-bit AES key.

2)	 EntityAInfo: A bit string containing public information that is required by the application using
this kdf to be contributed by entity A to the key derivation process. At a minimum, EntityAInfo
shall include IDA, the identifier of entity A. See the notes below.

3)	 EntityBInfo: A bit string containing public information that is required by the application using
this kdf to be contributed by entity B to the key derivation process. At a minimum, EntityBInfo
shall include IDB, the identifier of entity B. See the notes below.

4)	 (Optional) SuppPubInfo: A bit string containing additional, mutually-known public information.

5)	 (Optional) SuppPrivInfo: A bit string containing additional, mutually-known private
information (for example, a shared secret symmetric key that has been communicated through
a separate channel).

﻿

54� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Process:

a)	 reps = keydatalen hashlen/  .

b)	 If reps > (232 −1), then ABORT: output an error indicator and stop.

c)	 Initialize a 32-bit, big-endian bit string counter as 00000001 (in hexadecimal).

d)	 If counter || Z || OtherInfo is more than max_hash_inputlen bits long, then ABORT: output an error
indicator and stop.

e)	 For i = 1 to reps by 1, do the following:

1)	 Compute Hashi = H(counter || Z || OtherInfo).

2)	 Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

f)	 Let Hhash be set to Hashreps if (keydatalen / hashlen) is an integer; otherwise, let Hhash be set to
the (keydatalen mod hashlen) leftmost bits of Hashreps.

g)	 Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

Output: The DerivedKeyingMaterial as a bit string of length keydatalen bits (or an error indicator).
The ASN.1 kdf produces secret keying material that is at most hashlen × (232–1) bits in length. Any
call to this key derivation function using a keydatalen value that is greater than hashlen × (232–1) shall
cause the kdf to output an error indicator and stop without outputting DerivedKeyingMaterial. Any
call to the key derivation function involving an attempt to hash a bit string that is greater than max_
hash_inputlen bits long shall cause the kdf to output an error indicator and stop without outputting
DerivedKeyingMaterial.

NOTE 1	 IDA and IDB shall be represented in OtherInfo as separate units of information.

NOTE 2	 Entity A shall be the initiator, and entity B shall be the responder, as assigned by the protocol
employing the key agreement scheme used to determine the shared secret Z.

﻿

© ISO/IEC 2015 – All rights reserved� 55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Annex D
(informative)

Examples of key establishment mechanisms

D.1	 Examples of a function F, and sets S1 and S2

This annex first specifies a widely used example of a function F, and accompanying sets S1 and S2, which
is conjectured to satisfy the five properties listed in Clause 10, given that certain parameters are chosen
appropriately.

Let p be a prime number, and g be a primitive element of Fp. Let S2 = {0, 1, … p-1}, and S1 = {2, ... , p - 2}.
Then set F(h, g) = gh mod p.

F is commutative with respect to h, where (ghB)hA = (ghA)hB = (ghAhB) mod p.

The prime p shall be large enough so that F(·,g) can be conjectured to be a one-way function. Let each
entity X have a private key hx in S1 which is only known by entity X, and a public key pX = ghx mod p
known by all other entities.

NOTE 1	 For discrete logarithm modulo a prime, the size of the prime should be chosen such that
computing discrete logarithms in the corresponding cyclic group is computationally infeasible. Some
other conditions on the prime number can be imposed in order to make discrete logarithms infeasible.
It is also recommended to choose p to be a strong prime such that p - 1 has a large prime factor q and
choose g to be a generator of a group of its large prime order q.

NOTE 2	 For discrete logarithm modulo a composite, the modulus should be chosen as the
product of two distinct odd primes that should be kept secret. The size of the modulus should be chosen
such that factoring the modulus is computationally infeasible. Some additional conditions on the choice
of the primes can be imposed in order to make factoring the modulus computationally infeasible.

D.2	 Non-interactive Diffie-Hellman key agreement

This [20] is an example of key agreement mechanism 1.

Key Construction (A1) Entity A computes, using its own private key agreement key hA and entity B’s
public key agreement key pB, the shared key as KAB = pBhA mod p.

Key Construction (B1) Entity B computes, using its own private key agreement key hB and entity A’s
public key agreement key pA, the shared key as KAB = pAhB mod p.

D.3	 Identity-based mechanism

This [23] is an example of key agreement mechanism 1, which is identity-based in the following sense:

—	 the public key of an entity can be retrieved from some combination of its identity and its certificate;

—	 the authenticity of the certificate is not directly verified, but the correct public key can only be
recovered from an authentic certificate.

Let (n,y) be the public verification key of a certification authority, in the digital signature scheme giving
message recovery which is specified in ISO/IEC 9796-2, Annex B (informative). Therefore n is the
product of two large prime numbers p and q, kept secret by the certification authority, and y is co-prime
with lcm(p-1, q-1).

﻿

56� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Let O be an integer of large order modulo n and g = Oy mod n.

Let IX be the result of adding redundancy to a public information on entity X which contains at least the
distinguishing identifier of entity X and possibly a serial number, a validity period, a time stamp and
other data elements. Then entity X ‘s key management pair is (hX, pX) where hX is an integer less than n
and pX = ghX mod n. ISO/IEC 9796-3[4] is referred for a description of how to add redundancy.

Its certificate is computed by the certification authority as CertX = sXOhX mod n, where sX is the integer
such that

sXYIX = 1 mod n.

Key Construction (A1) Entity A computes the public key of entity B as pB = CertBY·IB mod n and
computes the shared secret key as KAB = pBhA = ghAhB mod n.

Key Construction (B1) Entity B computes the public key of entity A as pA = CertAY·IA mod n and
computes the shared secret key as KAB = pAhB = ghAhB mod n.

NOTE	 A one-pass and a two-pass identity-based mechanisms using the same set-up are described in the
references [23], [34] and [36] in the Bibliography.

D.4	 ElGamal key agreement

This [21] is an example of key agreement mechanism 2.

One shall check that p to be a strong prime such that p - 1 has a large prime factor and that the
exponentials are not of the form 0, +1, -1 mod p.

Key Token Construction (A1) Entity A randomly and secretly generates r in {2, ... , p-2 }, computes gr
mod p and constructs the key token KTA1 = gr mod p and sends it to entity B.

Key Construction (A2) Entity A computes the shared key KAB = (pB)rmodp = ghBr mod p.

Key Construction (B1) Entity B computes the shared key KAB = (gr)hBmodp = ghBr mod p.

D.5	 Nyberg-Rueppel key agreement

This [33] is an example of key agreement mechanism 3. The signature system and the key agreement
scheme are chosen in such a way that the signature system is determined by the keys (hX , pX).

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}. Then entity X ’s
asymmetric key pair used for signatures and key agreements is (hX, pX), where hX is an element of H and

pX = ghX mod p.

To prevent replay of old key tokens this example makes use of a time-stamp or a serial number, TVP,
and of a cryptographic hash function hash, which maps strings of bits of arbitrary length to random
integers in a large subset of {2, ... , p-2}, for example, in H.

NOTE	 A hash-function as defined here is collision resistant.

Key Construction (A1.1) Entity A randomly and secretly generates r in H and computes e = gr mod p.

Further entity A computes the shared secret key as KAB = pBr mod p.

Using the shared secret key KAB, entity A computes a MAC on the sender’s distinguishing identifier for
entity A and a sequence number or time-stamp TVP, e’ = e⋅hash(KAB||A||TVP) mod p.

Key Token Signature (A1.2) Entity A computes the signature y = r-hAe’ mod q.

Entity A forms the key token KTA1 = A||e||TVP||y and sends it to entity B.

﻿

© ISO/IEC 2015 – All rights reserved� 57

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key Construction (B1.1) Entity B computes the shared secret key, using its private key agreement key
hB,

KAB = ehB mod p.

Using the shared secret key KAB, entity B computes the MAC on the sender’s distinguishing identifier for
entity A and the TVP, and computes e’ = e·hash(KAB||A||TVP) mod p.

Signature Verification (B1.2) Entity B checks the validity of TVP and verifies, using the sender’s public
key pA, the equality e = gypAe’ mod p.

D.6	 Diffie-Hellman key agreement

This [20] is an example of key agreement mechanism 4.

One shall check that p to be a strong prime such that p - 1 has a large prime factor and that the
exponentials are not of the form 0, +1, -1 mod p.

Key Token Construction (A1) Entity A randomly and secretly generates rA in {2, ... , p-2 }, computes grA
mod p, constructs the key token as KTA1 = grA mod p, and sends it to entity B.

Key Token Construction (B1) Entity B randomly and secretly generates rB in {2, ... , p-2 }, computes grB
mod p, constructs the key token, KTB1 = grB mod p, and sends it to entity A.

Key Construction (A2) Entity A computes the shared key as KTAB = (grB)rA = grArB mod p.

Key Construction (B2) Entity B computes the shared key as KAB = (grA)rB = grArB mod p.

D.7	 Matsumoto-Takashima-Imai A(0) key agreement

This [28] is an example of key agreement mechanism 5.

One recommended method is to use a safe prime p and to check that the exponentials are not of the
form 0, +1, -1 mod p.

Key Token Construction (A1) Entity A randomly and secretly generates rA in {2, ... , p-2}, computes the
key token as KTA1 = grA mod p and sends it to entity B.

Key Token Construction (B1) Entity B randomly and secretly generates rB in {2, ... , p-2}, computes the
key token as KTB1 = grB mod p and sends it to entity A.

Key Construction (B2) Entity B computes the shared key as KAB = w(KTA1hB,pArB) = KTA1hB pArB mod p.

Key Construction (A2) Entity A computes the shared key as KAB = w(pBrA,KTB1hA) = KTA1hB pArB mod p.

NOTE	 To avoid attacks in,[25] each entity needs to reject a trivial value of KTA1 or KTB1 = 0 or 1 and the
same private keys hA = hB.

D.8	 Beller-Yacobi protocol

This clause gives a description of the original Beller-Yacobi protocol,[17] which has been used to derive
key agreement mechanism 6.

NOTE	 This mechanism is not completely compatible with the Mechanism 6 as it was optimized for specific
situations. Specifically it uses ElGamal signature scheme and makes use of an additional symmetric encryption
algorithm to transfer entity B’s signature verification key and its certificate to entity A in a confidential way, thus
assuring anonymity.

Let enc: K : M → C be a conventional encryption function, such as the algorithms found in ISO/IEC 18033-
3, where K = key space, M = message space, and C = cryptogram space.

﻿

58� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Let SX denote the ElGamal signature operation of entity X. The process described below emphasizes the
distinction between off-line and on-line operations required in ElGamal family of signature schemes.

We use PX and CX to denote entity X ‘s public key and certificate, respectively. The public encryption
operation of entity X (which uses PX) is denoted EX (modular squaring in the case of Rabin).

Off-line computation: entity B picks a random number rB and computes u = grB mod p.

Key Token Construction (A1) Entity A picks a random number rA and computes KTA1 = (rA||A||CA) and
sends it to entity B.

Key Token Processing (B1) Entity B produces the signature BS = (u,v) = SB(rA||A), where u and v is the
ElGamal signature. Then entity B picks a random xB and creates KTB1 = EA(BS)||enc(u,(B||PB||CB||xB))
and sends it to entity A.

Key Construction (B2) The shared secret key consists of part of entity B’s signature, u.

Key Token Processing and Key Construction (A2) Entity A decrypts the key token EA(BS) to find the
session key u, then decrypts the conventional encryption enc(u,(B||PB||CB||xB)) using session key u to
find the identifier, public key, and certificate of the alleged entity B. Entity A verifies certificate CB, and
if positive it then uses the verification function, VB to verify entity B’s signature BS. If positive it then
accepts u as a shared secret key.

﻿

© ISO/IEC 2015 – All rights reserved� 59

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Annex E
(informative)

Examples of elliptic curve based key establishment mechanisms

E.1	 Example of a function F

This annex first gives a widely used example of a function F to satisfy the five properties listed in Clause
10, given that certain parameters are chosen appropriately.

Let E be an elliptic curve defined over a finite field Fq. Given an integer d and a point G in E(GF(q)) where
G is the base point, then the function F is F(d,G) = dG.

F has the property that d1(d2G) = d2(d1G) = d1d2G.

E(Fq) shall be large enough so that F(·,G) can be conjectured to be a one-way function. Let each entity X
have a private key hX in E(F(q)), which is only known by entity X, and a public key pX = hX G known by all
other entities.

E.2	 Common information

For all key agreement mechanisms, prior to the process of agreeing upon a shared secret, the following
common information shall be established between the parties and optionally validated (ISO/IEC 15946-
1 is referred for a description of parameter validation):

—	 the elliptic curve parameters with which the key pairs shall be associated, which shall be the same
for both parties key pairs. This includes p, pm, 2m, or 3m, a description of GF(q), GF(pm) ,GF(2m), or
GF(3m) and an indication of the basis used, E, n and G.

Named curve identifiers such as those specified in X9.62, provide a simple means of identifying elliptic
curve domain parameters and can be used to specify groups of common information values.

In each of the mechanisms defined below, the resulting agreed key should not be used as a cryptographic
key directly. Instead, it should be used as the input to a key derivation function, allowing both parties
to derive the same cryptographic keys from it. Hence, it is also necessary for the two parties to agree on
the following information:

—	 a key derivation function, kdf;

—	 any parameters to the key derivation function, and

—	 the type of cofactor multiplication that is to be performed (if any).

E.3	 Non-interactive key agreement of Diffie-Hellman type

This [20] is an example of key agreement mechanism 1. This key agreement mechanism non-interactively
establishes a shared secret between two entities A and B.

Prior to the process of agreeing upon a shared secret, in addition to the common information, the
following shall be established:

—	 for each entity X, a private key-agreement key hX and a public key-agreement key PX, which is an
elliptic curve point satisfying PX = hXG. ISO/IEC 15946-1 is referred for a description of how to
generate this key pair.

﻿

60� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

—	 for each entity, access to an authentic copy of the public key-agreement key of the other party.

Each entity shall independently verify that the other entity‘s public key is indeed a point on the elliptic
curve. ISO/IEC 15946-1 is referred for a description of how to do this.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key construction (A1) Entity A computes, using its own private key-agreement key hA and entity B’s
public key-agreement key PB, the shared key as KAB = (hA·l)(j·PB).

Key construction (B1) Entity B computes, using its own private key-agreement key hB and entity A’s
public key-agreement key PA, the shared key as KAB = (hB·l)(j·PA).

NOTE	 As a consequence of the first property, the established secret between the same two users always has
the same value. For this reason it is suggested that the input to the key derivation function in this case include
time-varying information.

E.4	 Key agreement of ElGamal type

This [21] is an example of key agreement mechanism 2. This key agreement mechanism establishes a
shared secret between two entities A and B in one pass.

Prior to the process of agreeing upon a shared secret, in addition to the common information, the
following shall be established:

—	 for entity B, a private key-agreement key dB and a public key-agreement key PB, which is an elliptic
curve point satisfying PB = dBG. ISO/IEC 15946-1 is referred for a description of how to generate this
key pair.

—	 for entity A, access to an authentic copy of the public key-agreement key of entity B.

Entity A should verify that entity B’s public key is indeed a point on the elliptic curve. ISO/IEC 15946-1
is referred for a description of how to do this.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1.1) Entity A randomly and secretly generates r in the range {2,...,n-2},
computes rG, constructs the key token, KTA1 = rG, and sends it to entity B.

Key construction (A1.2) Entity A computes the shared key as KAB = (r·l)(j·PB).

Key construction (B1) Entity B should verify that KTA1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Using its own private key, entity B computes
the shared key from KTA1 as follows: KAB = (dB·l)(j·KTA1).

NOTE	 This key agreement mechanism provides forward secrecy with respect to entity A.

E.5	 Key agreement following Nyberg-Rueppel

This [33] is an example of key agreement mechanism 3. The protocol is not a 1-1-transcript of protocol
C.4; but follows the essential ideas of C.4.

The signature system and the key agreement scheme are chosen in such a way that the signature system
is determined by the keys (hX, PX).

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}. Then entity X ’s
asymmetric key pair used for signatures and key agreements is (hX, pX), where hX is an element of H and

pX = ghX mod p.

﻿

© ISO/IEC 2015 – All rights reserved� 61

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

To prevent the replay of old key tokens this example makes use of a timestamp or a serial number TVP,
and of a cryptographic hash function hash, which maps strings of bits of arbitrary length to random
integers into H, for example.

The values l and j are used for cofactor multiplication as explained in Clause 7.

NOTE	 A hash-function as defined here is collision resistant.

Key Construction (A1.1) Entity A randomly and secretly generates r in H and computes R = rG.

Further entity A computes the shared secret key as KAB = (r·l)(j·PB).

Using the shared secret key KAB, entity A computes a MAC on the point R, the sender’s distinguishing
identifier for entity A and a sequence number or timestamp TVP: e =hash(R||KAB||A||TVP).

Key Token Signature (A1.2) Entity A computes the signature y = (r-hAe) mod q, forms the key token

KTA1 = (R||A||TVP||y) and sends it to entity B.

Key Construction (B1.1) Entity B computes the shared secret key, using its private key agreement key
hB,

KAB = (hB·l)(j·R).

Using the shared secret key KAB entity B computes the MAC on the sender’s distinguishing identifier for
entity A and the TVP and computes e =hash(R||KAB||A||TVP).

Signature Verification (B1.2) Entity B checks the validity of TVP and verifies, using the sender’s public
key PA, the equality R = yG + ePA.

E.6	 Key agreement of Matsumoto-Takashima-Imai type A(0)

This [28] is an example of key agreement mechanism 5.

Let q be a large prime divisor of p-1, g an element of Fp of order q, and set H = {2, ... , q-2}.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key Token Construction (A1) Entity A randomly and secretly generates rA in H, computes the key
token

KTA1 = (rA·l)(j·G), and sends it to entity B.

Key Token Construction (B1) Entity B randomly and secretly generates rB in H, computes the key
token

KTB1 = (rB·l)(j·G), and sends it to entity A.

Key Construction (B2) Entity B computes the shared key as KAB = w(hBKTA1,rBPA), where w is a one-
way function.

Key Construction (A2) Entity A computes the shared key as KAB = w(hAKTB1,rAPB).

E.7	 Key agreement of Diffie-Hellman type

This[20] is an example of key agreement mechanism 4. This key agreement mechanism establishes a
shared secret between entities A and B in two passes.

This key agreement mechanism does not require any initial information other than the common
information to be set up. The values l and j are used for cofactor multiplication as explained in Clause 7.

﻿

62� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

Key Token Construction (A1) Entity A randomly and secretly generates rA in the range {2,...,n-2},
computes rAG, constructs the key token, KTA1 = rAG, and sends it to entity B.

Key Token Construction (B1) Entity B randomly and secretly generates rB in the range {2,...,n-2},
computes rBG, constructs the key token, KTB1 = rBG, and sends it to entity A.

Key Construction (A2) Entity A should verify that KTB1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Entity A computes the shared key KAB =
(rA·l)(j·KTB1).

Key Construction (B2) Entity B should verify that KTA1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Entity B computes the shared key KAB =
(rB·l)(j·KTA1).

NOTE	 This key agreement mechanism provides mutual forward secrecy.

E.8	 Key agreement of Diffie-Hellman type with 2 key pairs

This key agreement mechanism establishes a shared secret between entities A and B in two passes.

Prior to the process of agreeing upon a shared secret, in addition to the common information, the
following shall be established:

—	 for each entity X, a private key-agreement key dX and a public key-agreement key PX, which is an
elliptic curve point satisfying PX = dXG. ISO/IEC 15946-1 is referred for a description of how to
generate this key pair.

—	 for each entity, access to an authentic copy of the public key-agreement key of the other party.

Each entity should independently verify that the other entity’s public key is indeed a point on the elliptic
curve. ISO/IEC 15946-1 is referred for a description of how to do this.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1) Entity A randomly and secretly generates rA in the range {2,...,n-2},
computes rAG, constructs the key token, KTA1 = rAG, and sends it to entity B.

Key token construction (B1) Entity B randomly and secretly generates rB in the range {2,...,n-2},
computes rBG, constructs the key token, KTB1 = rBG, and sends it to entity A.

Key construction (A2): Entity A should verify that KTB1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Entity A computes the shared key KAB =
(dA·l)(j·KTB1)||(rA·l)(j·PB).

Key construction (B2) Entity B should verify that KTA1 is indeed a point on the elliptic curve. A
description of how to do this is referred in ISO/IEC 15946-1. Entity B computes the shared secret KAB =
(rB·l)(j·PA)||(dB·l)(j·KTA1).

NOTE 1	 Concatenation of a representation of the points is not the only alternative for the construction of the
key. Any prefix free representation (such as ASN.1) will also work. As there are choices, the method to combine
the two values becomes part of what is needed to be agreed upon by all parties. See also Annex C for further
discussion.

NOTE 2	 The number of passes is 2.

NOTE 3	 This mechanism provides forward secrecy with respect to both entity A and B individually.

NOTE 4	 This mechanism provides mutual implicit key authentication.

﻿

© ISO/IEC 2015 – All rights reserved� 63

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

﻿

ISO/IEC 11770-3:2015(E)

E.9	 Key agreement of Diffie-Hellman type with 2 signatures and key
confirmation

This is an example of key agreement mechanism 7.

This key agreement mechanism establishes a shared secret between entities A and B in three passes.

Prior to the process of agreeing upon a shared secret, in addition to the common information, the
following shall be established:

—	 for each entity, a private signature key and a public verification key corresponding to a mutually
agreed upon signature algorithm.

—	 for each entity, access to an authentic copy of the public verification key of the other party.

—	 any parameters to be used in the signature transformations.

—	 a MAC function.

Let X ‘s private and public signature transformations be denoted SX and VX respectively; (SX, VX) could
denote any signature system. Both ISO/IEC 9796-2,[3] ISO/IEC 9796-3,[4] and ISO/IEC 14888[9] are
referred for signature systems.

The values l and j are used for cofactor multiplication as explained in Clause 7.

Key token construction (A1) Entity A randomly and secretly generates rA in the range {2,...,n-2},
computes rAG, constructs the key token KTA1 = rAG, and sends it to entity B.

Key token processing and key construction (B1) Entity B should verify that KTA1 is indeed a point on
the elliptic curve. ISO/IEC 15946-1 is referred for a description of how to do this. Entity B randomly and
secretly generates rB in the range {2,...,n-2}, computes rBG, computes the shared secret as KAB = (rB·l)
(j·KTA1), constructs the signed key token, KTB1 = SB(DB1)||MACKAB(DB1) for DB1 = rBG||KTA1||A||Text1,
and sends it to entity A.

NOTE 1	 As a way to reduce the amount of data transmitted, if a signature scheme with appendix is used, the
redundant value KTA1 need not be returned with the block KTB1, although it still shall be included within the
scope of the signature calculation.

Key token processing (A2) Entity A verifies B’s signature on the key token KTB1 using entity B’s public
verification key. If a signature scheme with message recovery is used, this includes recovering the data
block DB1 from the signature and verifying that entity A’s distinguishing identifier and the value rAG
are contained in it. If a signature scheme with appendix is used, this includes reconstructing the data
block DB1 using the value in KTA1, entity A’s distinguishing identifier and the received value rBG and
verifying the signature on that data block.

Entity A should verify that the value rBG obtained from KTB1 is indeed a point on the elliptic curve.
ISO/IEC 15946-1 is referred for a description of how to do this. If the checks are successful, entity A
computes the shared key KAB = (rA·l)(j·rBG).

Using KAB, entity A verifies MACKAB(DB1). Then entity A constructs the signed key token

KTA2 = SA(DB2)||MACKAB(DB2), where DB2 = rAG||rBG||B||Text2 and sends it to entity B.

NOTE 2	 As a way to reduce the amount of data transmitted, if a signature scheme with appendix is used, the
redundant values rAG and rBG need not be returned with the block KTA2, although they still shall be included
within the scope of the signature calculation.

Key token processing (B2) Entity B verifies entity A’s signature on the key token KTA2 using entity A’s
public verification key. If a signature scheme with message recovery is used, this includes recovering
the data block DB2 from the signature and verifying that entity B’s distinguishing identifier and the
values rAG and rBG are contained in it. If a signature scheme with appendix is used, this includes

﻿

64� © ISO/IEC 2015 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 11
77

0-3
:20

15

https://standardsiso.com/api/?name=f81f4c64fb121f789a06058eac2a2393

	Foreword
	Introduction
	1	Scope
	2	Normative references
	3	Terms and definitions
	4	Symbols and abbreviations
	5	Requirements
	6	Key derivation functions
	7	Cofactor multiplication
	8	Key commitment
	9	Key confirmation
	10	Framework for key management
	10.1	General
	10.2	Key agreement between two parties
	10.3	Key agreement between three parties
	10.4	Secret key transport
	10.5	Public key transport
	11	Key agreement
	11.1	Key agreement mechanism 1
	11.2	Key agreement mechanism 2
	11.3	Key agreement mechanism 3
	11.4	Key agreement mechanism 4
	11.5	Key agreement mechanism 5
	11.6	Key agreement mechanism 6
	11.7	Key agreement mechanism 7
	11.8	Key agreement mechanism 8
	11.9	Key agreement mechanism 9
	11.10	Key agreement mechanism 10
	11.11	Key agreement mechanism 11
	11.12	Key agreement mechanism 12
	12	Secret key transport
	12.1	Secret key transport mechanism 1
	12.2	Secret key transport mechanism 2
	12.3	Secret key transport mechanism 3
	12.4	Secret key transport mechanism 4
	12.5	Secret key transport mechanism 5
	12.6	Secret key transport mechanism 6
	13	Public key transport
	13.1	Public key transport mechanism 1
	13.2	Public key transport mechanism 2
	13.3	Public key transport mechanism 3
	Annex A (normative) Object identifiers
	Annex B (informative) Properties of key establishment mechanisms
	Annex C (informative) Examples of key derivation functions
	Annex D (informative) Examples of key establishment mechanisms
	Annex E (informative) Examples of elliptic curve based key establishment mechanisms
	Annex F (informative) Example of bilinear pairing based key establishment mechanisms
	Annex G (informative) Secret key transport
	Annex H (informative) Patent information
	Bibliography

