

International Standard

7942

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION • МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО СТАНДАРТИЗАЦИИ • ORGANISATION INTERNATIONALE DE NORMALISATION

Information processing systems — Computer graphics — Graphical Kernel System (GKS) functional description

Systèmes de traitement de l'information — Langage de programmation graphique — GKS (Graphical Kernel System) description fonctionnelle

First edition — 1985-08-15

STANDARDSISO.COM : Click to view the full PDF ISO 7942:1985

UDC 681.3.06 : 003.6

Ref. No. ISO 7942-1985 (E)

Descriptors : data processing, information interchange, graphic data processing, programming (computers), programming languages, computer graphics.

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Every member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.

Draft International Standards adopted by the technical committees are circulated to the member bodies for approval before their acceptance as International Standards by the ISO Council. They are approved in accordance with ISO procedures requiring at least 75% approval by the member bodies voting.

International Standard ISO 7942 was prepared by Technical Committee ISO/TC 97, *Information processing systems*.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

Contents

	Page
0 Introduction	1
1 Scope and field of application.....	3
2 References	4
3 Definitions.....	5
4 The Graphical Kernel System.....	9
4.1 About this standard	9
4.1.1 Specification.....	9
4.1.2 Registration.....	9
4.2 Introduction to GKS.....	10
4.3 Concepts.....	12
4.4 Graphical output.....	14
4.4.1 Output primitives.....	14
4.4.2 Output primitive attributes	14
4.4.3 Polyline attributes.....	18
4.4.4 Polymarker attributes	19
4.4.5 Text attributes.....	19
4.4.6 Fill area attributes	28
4.4.7 Cell array attributes	29
4.4.8 Generalized Drawing Primitive attributes.....	29
4.4.9 Colour.....	29
4.5 Workstations	31
4.5.1 Workstation characteristics.....	31
4.5.2 Selecting a workstation.....	32
4.5.3 Deferring picture changes	33
4.5.4 Clearing the display surface	35
4.5.5 Elimination of primitives outside segments.....	36
4.5.6 Sending messages to a workstation.....	36
4.6 Coordinate systems and transformations	37
4.6.1 Normalization transformations.....	37
4.6.2 Clipping	37
4.6.3 Workstation transformations.....	38
4.6.4 Transformation of locator input.....	40
4.6.5 Transformation of stroke input	42
4.7 Segments.....	43
4.7.1 Introduction to segments	43
4.7.2 Segment attributes	44

4.7.3	Segment transformations	44
4.7.4	Clipping and WDSS	45
4.7.5	Workstation Independent Segment Storage	45
4.7.6	WISS functions and clipping	45
4.8	Graphical input	47
4.8.1	Introduction to logical input devices	47
4.8.2	Logical input device model	48
4.8.3	Operating modes of logical input devices	49
4.8.4	Measures of each input class	51
4.8.5	Input queue and current event report	52
4.8.6	Initialisation of input devices	52
4.9	GKS Metafile interface	54
4.10	GKS levels	56
4.10.1	Introduction to levels	56
4.10.2	The level structure	56
4.10.3	Level functionality	57
4.11	States of GKS and inquiry functions	61
4.11.1	Description of states	61
4.11.2	Inquiry functions	62
4.12	Error handling	63
4.13	Special interfaces between GKS and the application program	65
5	GKS functions	66
5.1	Notational conventions	66
5.2	Control functions	67
5.3	Output functions	74
5.4	Output attributes	80
5.4.1	Workstation independent primitive attributes	80
5.4.2	Workstation attributes (representations)	90
5.5	Transformation functions	96
5.5.1	Normalization transformation	96
5.5.2	Workstation transformation	97
5.6	Segment functions	99
5.6.1	Segment manipulation functions	99
5.6.2	Segment attributes	103
5.7	Input functions	106
5.7.1	Initialisation of input devices	106
5.7.2	Setting the mode of input devices	113
5.7.3	Request input functions	116
5.7.4	Sample input functions	119
5.7.5	Event input functions	122
5.8	Metafile functions	126
5.9	Inquiry functions	128
5.9.1	Introduction to inquiry functions	128
5.9.2	Inquiry function for operating state value	128
5.9.3	Inquiry functions for GKS description table	128
5.9.4	Inquiry functions for GKS state list	130
5.9.5	Inquiry functions for workstation state list	135
5.9.6	Inquiry functions for workstation description table	152
5.9.7	Inquiry functions for segment state list	169
5.9.8	Pixel inquiries	170
5.9.9	Inquiry function for GKS error state list	172
5.10	Utility functions	173
5.11	Error handling	174
6	GKS data structures	176
6.1	Notation and data types	176
6.2	Operating state	178
6.3	GKS description table	179

6.4	GKS state list.....	180
6.5	Workstation state list.....	182
6.6	Workstation description table.....	185
6.7	Segment state list.....	189
6.8	GKS error state list.....	190
Annexes		
A	Function lists.....	191
A.1	Alphabetic.....	191
A.2	Order of appearance.....	194
A.3	Ordered by level	199
A.3.1	Level 0a	199
A.3.2	Level 0b	200
A.3.3	Level 0c	201
A.3.4	Level 1a	201
A.3.5	Level 1b	202
A.3.6	Level 1c	202
A.3.7	Level 2a	202
A.4	Ordered by state	202
A.4.1	Functions allowed in state GKCL.....	202
A.4.2	Functions allowed in state GKOP	203
A.4.3	Functions not allowed in state WSOP	203
A.4.4	Functions not allowed in state WSAC	204
A.4.5	Functions not allowed in state SGOP	204
A.5	Applicability to workstation groups.....	204
B	Error list.....	208
B.1	Implementation dependent	208
B.2	States	208
B.3	Workstations	208
B.4	Transformations	208
B.5	Output attributes	209
B.6	Output primitives	209
B.7	Segments.....	209
B.8	Input.....	210
B.9	Metafiles	210
B.10	Escape	210
B.11	Miscellaneous	210
B.12	System	210
B.13	Reserved errors.....	210
C	Interfaces.....	212
C.1	General.....	212
C.2	Language binding.....	212
C.3	Implementation	213
D	Allowable differences in GKS implementations	214
D.1	General.....	214
D.2	Global differences.....	214
D.3	Workstation dependent differences.....	215
E	Metafile structure	217
E.1	Metafiles.....	217
E.1.1	General	217
E.1.2	ISO 8632 Metafile	217
E.1.3	Metafile designed for GKS	217
E.2	File format and data format	218
E.3	Generation of metafiles	219
E.4	Interpretation of metafiles	222
E.4.1	General	222

E.4.2	Control items	222
E.4.3	Output primitives	222
E.4.4	Output primitive attributes	222
E.4.5	Workstation attributes	222
E.4.6	Transformations	222
E.4.7	Segment manipulation	222
E.4.8	Segment attributes	222
E.5	Control items	222
E.6	Items for output primitives	225
E.7	Items for output primitive attributes	226
E.8	Items for workstation attributes	228
E.9	Items for transformations	230
E.10	Items for segment manipulation	230
E.11	Items for segment attributes	230
E.12	User items	231
F	Sample programs	232
G	GKS functions summary	239
G.1	Control functions	239
G.2	Output functions	239
G.3	Output attributes	240
	G.3.1 Workstation independent primitive attributes	240
	G.3.2 Workstation attributes (representations)	241
G.4	Transformation functions	241
	G.4.1 Normalization transformation	241
	G.4.2 Workstation transformation	241
G.5	Segment functions	242
	G.5.1 Segment manipulation functions	242
	G.5.2 Segment attributes	242
G.6	Input functions	242
	G.6.1 Initialisation of input devices	242
	G.6.2 Setting mode of input devices	243
	G.6.3 Request input functions	243
	G.6.4 Sample input functions	243
	G.6.5 Event input functions	244
G.7	Metafile functions	244
G.8	Inquiry functions	244
G.9	Utility functions	245
G.10	Error handling	245

Information processing systems — Computer graphics — Graphical Kernel System (GKS) functional description

0 Introduction

The Graphical Kernel System (GKS) provides a set of functions for computer graphics programming. GKS is a basic graphics system that can be used by the majority of applications that produce computer generated pictures.

The main reasons for standardizing basic computer graphics are:

- a) to allow application programs involving graphics to be easily portable between different installations;
- b) to aid the understanding and use of graphics methods by application programmers;
- c) to serve manufacturers of graphics equipment as a guideline in providing useful combinations of graphics capabilities in a device.

In order to reach these main objectives, the GKS design was based on the following requirements:

- d) GKS should include all the capabilities that are essential for the whole spectrum of graphics, from simple passive output to highly interactive applications.
- e) The whole range of graphics devices, including vector and raster devices, microfilm recorders, storage tube displays, refresh displays and colour displays should be controllable by GKS in a uniform way.
- f) GKS should provide all the capabilities required by a majority of applications without becoming unduly large.

These requirements were used to formulate a number of principles that were used to judge specific design alternatives. Thus it was possible to contribute to the overall design goals while focussing on certain aspects. Five design aspects were identified, each having a group of principles

g) Design goals: The following principles should not be violated by any technical design:

- 1) consistency: the mandatory requirements of GKS should not be mutually contradictory;
- 2) compatibility: other standards or commonly accepted rules of practice should not be violated;
- 3) orthogonality: the functions or modules of GKS should be independent of each other, or the dependency should be structured and well defined.

h) Functional capabilities: The following principles were used to define the extent of GKS:

- 1) completeness: all functions that a majority of applications want to use on a given level of functionality should be included;
- 2) minimality: functions that are unnecessary for applications of a given level of functionality should not be provided;
- 3) compactness: an application should be able to achieve a desired result by a set of functions and parameters that is as small as possible;

4) richness: a rich set of functions offers an extensive range of facilities that stretches beyond the basic functions and includes higher order capabilities.

It is obvious that there is a trade off between the principles in this group. Therefore, the functions of GKS are organized in nine levels. An implementation of GKS provides precisely the functions of one of these levels. While the lowest level contains only a minimal set of functions, higher levels are allowed to extend beyond the basic needs towards greater richness.

i) User interface design: The following principles were used to define the user interface design:

- 1) user friendliness: GKS should allow the design of a desirable user interface;
- 2) clarity: the concepts and functional capabilities of GKS should be easily understandable, especially by the application programmer;
- 3) error handling: failure of system functions or modules, caused by errors of the system itself or by the application program, should be treated in such a way that the error reaction is clearly understandable and informative to the application programmer and that the impact on the system and the application program is as small as possible.

Clarity and sound error handling are essential parts of user friendliness. Error handling is an integral part of GKS. To aid clarity, the system and its state can be presented to the user in an easily comprehensible manner.

Clarity applies not only to the system design but also to the system description. To this end, the GKS specification is divided into a general description, a description of the underlying logical data structures representing the state of the system, and a description of the functions and their effects on these data structures.

j) Graphics devices: The following principles are associated with the range of graphics devices that can be addressed by GKS:

- 1) device independence: GKS functions should be designed to allow an application program, using these functions, to address facilities of quite different graphics output and input devices without modification of the program structure;
- 2) device richness: the full capabilities of a wide range of different graphics output and input devices should be accessible from the functions of GKS.

These principles led to a fundamental concept underlying the GKS architecture: the concept of multiple independent graphical workstations connected to and driven by GKS. The application program can inquire the capabilities of every workstation. The GKS design includes escape functions that are easily identifiable within an application program and can be used to access special facilities of a particular device.

k) Implementation: The last group of principles is related to the implementation of GKS:

- 1) implementability: it should be possible to support the GKS functions in most host languages, on most operating systems and with most graphics devices;
- 2) language independence: it should be possible to access the standard facilities of GKS from all ISO standard programming languages;
- 3) efficiency: GKS should be capable of being implemented without time consuming algorithms;
- 4) robustness: the operator and application programmer should be protected in the best possible way from hardware or software failure of the system.

The five groups of principles are interconnected. For example, design goals and functional capabilities both contribute to user friendliness. Efficiency is also important when considering response time in an interactive environment. Some principles may be conflicting, such as richness versus minimality, comprehensive error handling versus efficiency, and compactness versus device richness. Compromises needed to be made to achieve the overall design objective: GKS should have an easily comprehensible structure and a set of functions that enables a vast majority of computer graphics users to design portable, device independent application programs addressing the whole range of computer graphics equipment.

1 Scope and field of application

This International Standard specifies a set of functions for computer graphics programming, the Graphical Kernel System (GKS). GKS is a basic graphics system for applications that produce computer generated two dimensional pictures on line graphics or raster graphics output devices. It supports operator input and interaction by supplying basic functions for graphical input and picture segmentation. It allows storage and dynamic modification of pictures. A fundamental concept in GKS is the workstation, consisting of a number of input devices and a single output device. Several workstations can be used simultaneously. The application program is allowed to adapt its behaviour at a workstation to make best use of workstation capabilities. This International Standard includes functions for storage on and retrieval from an external graphics file. Last but not least, the functions are organized in upward compatible levels with increasing capabilities.

NOTE - For certain parameters of the functions, GKS defines value ranges as being reserved for registration (see 4.1.2). The meanings of these values will be defined using the established procedures.

GKS defines a language independent nucleus of a graphics system. For integration into a programming language, GKS is embedded in a language dependent layer obeying the particular conventions of that language.

Annexes C to G are given for information; they do not form part of the specification.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942-1985

2 References

ISO 646, *Information processing - ISO 7-bit coded character set for information interchange.*

ISO 2022, *Information processing - ISO 7-bit and 8-bit coded character sets - Code extension techniques.*

ISO 2382/13, *Data processing - Vocabulary - Part 13: Computer graphics.*

ISO 6093, *Information processing - Representation of numerical values in character strings for information interchange.*¹⁾

ISO 8632, *Information processing systems - Computer Graphics - Metafile for transfer and storage of picture description information*

- *Part 1 : Functional description.*¹⁾
- *Part 2 : Character encoding.*¹⁾
- *Part 3 : Binary encoding.*¹⁾
- *Part 4 : Clear text encoding.*¹⁾

1) At present at the stage of draft.

3 Definitions

This clause gives the definition of the important terms of the Graphical Kernel System (GKS).

NOTE - As far as possible, commonly accepted graphics terminology is used.

3.1 acknowledgement: Output to the operator of a logical input device indicating that a trigger has fired.

3.2 aspect ratio: A ratio of x to y used to describe the shape of a rectangle in a particular coordinate system (for example, of a workstation window or a workstation viewport).

3.3 aspects of primitives: Ways in which the appearance of a primitive can vary. Some aspects are controlled directly by primitive attributes, some are controlled indirectly through a bundle table. Primitives inside segments have an aspect controlled through the segment containing them, for example highlighting; primitives outside segments do not.

3.4 attribute: A particular property that applies to a display element (output primitive) or a segment. Examples: highlighting, character height. In GKS, some properties of workstations are called workstation attributes.

3.5 baseline: A horizontal line within a character body (see figure 3) which, for many character definitions, has the appearance of being a lower limit of the character shape. A descender passes below this line. All baselines in a font are in the same position in the character bodies.

3.6 bundle index: An index into a bundle table for a particular output primitive. It defines the workstation dependent aspects of the primitive.

3.7 bundle table: A workstation dependent table associated with a particular output primitive. Entries in the table specify all the workstation dependent aspects of a primitive. In GKS, bundle tables exist for the following output primitives: polyline, polymarker, text and fill area.

3.8 capline: A horizontal line within a character body (see figure 3) which, for many character definitions, has the appearance of being the upper limit of the character shape. An ascender may pass above this line and in some languages an additional mark (for example an accent) over the character may be defined above this line. All caplines in a font are in the same position in the character bodies.

3.9 cell array: A GKS output primitive consisting of a rectangular grid of equal size rectangular cells, each having a single colour.

NOTE - These cells do not necessarily map one-to-one with pixels.

3.10 centreline: A vertical line bisecting the character body (see figure 3).

3.11 character body: A rectangle used by a font designer to define a character shape (see figure 3). All character bodies in a font have the same height.

3.12 choice device: A GKS logical input device providing a non-negative integer defining one of a set of alternatives.

3.13 clipping: Removing parts of display elements that lie outside a given boundary, usually a window or viewport.

3.14 colour table: A workstation dependent table, in which the entries specify the values of the red, green and blue intensities defining a particular colour.

3.15 coordinate graphics; line graphics: Computer graphics in which display images are generated from display commands and coordinate data.

3.16 device coordinate (DC): A coordinate expressed in a coordinate system that is device dependent. In GKS, DC units are metres on a device capable of producing a precisely scaled image and appropriate workstation dependent units otherwise.

3.17 device driver: The device dependent part of a GKS implementation intended to support a graphics device. The device driver generates device dependent output and handles device dependent interaction.

3.18 device space: The space defined by the addressable points of a display device.

3.19 display device; graphics device: A device (for example refresh display, storage tube display, plotter) on which display images can be represented.

3.20 display image; picture: A collection of output primitives or segments that are represented together at any one time on a display surface.

3.21 display space: (1) That portion of the device space corresponding to the area available for displaying images. (2) The working space of an input device such as a digitiser.

3.22 display surface; view surface: In a display device, that medium on which display images may appear.

3.23 echo: The immediate notification of the current value provided by an input device to the operator at the display console.

3.24 escape: A function in GKS used to access implementation or device dependent features, other than for the generation of graphical output, that are not otherwise addressed by GKS.

3.25 feedback: Output indicating to the operator the application program's interpretation of a logical input value.

3.26 fill area: A GKS output primitive consisting of a polygon (closed boundary) which may be hollow or may be filled with a uniform colour, a pattern, or a hatch style.

3.27 fill area bundle table: A table associating specific values for all workstation dependent aspects of a fill area primitive with a fill area bundle index. In GKS, this table contains entries consisting of interior style, style index, and colour index.

3.28 Generalized Drawing Primitive (GDP): An output primitive used to address special geometrical workstation capabilities such as curve drawing.

3.29 GKS level: Two values in the range 0 to 2 and a to c which together define a set of functional capabilities of GKS. An implementation of GKS provides precisely the functions of one level.

3.30 GKS Metafile (GKSM): A sequential file that can be written or read by GKS and is used for long-term storage (and for transmittal and transferral) of graphical information.

3.31 halffine: A horizontal line between the capline and the baseline within the character body (see figure 3), about which a horizontal string of characters in a font would appear centrally placed in the vertical direction. All halfflines in a font are in the same position in the character bodies.

3.32 hatch: One possible method of filling the interior of a polygon specified by a fill area primitive. The interior is filled with an arrangement of one or more sets of parallel lines.

3.33 highlighting: A device independent way of emphasizing a segment by modifying its visual attributes. For example, blinking.

3.34 implementation mandatory: Implementation mandatory describes a property that is required to be realized identically on all workstations of all implementations of GKS.

3.35 input class: A set of input devices that are logically equivalent with respect to their function. In GKS, the input classes are: LOCATOR, STROKE, VALUATOR, CHOICE, PICK and STRING.

3.36 inquiry function: A GKS function whose purpose is to return values depending on the current state of GKS or on some fixed property of the GKS implementation. There is no effect on the state of GKS or on the display image.

3.37 locator device: A GKS logical input device providing a position in world coordinates and a normalization transformation number.

3.38 logical input device: A logical input device is an abstraction of one or more physical devices that delivers logical input values to the program. Logical input devices in GKS can be of type LOCATOR, STROKE, VALUATOR, CHOICE, PICK and STRING.

3.39 logical input value: A value delivered by a logical input device.

3.40 marker: A glyph with a specified appearance which is used to identify a particular location.

3.41 measure: A value (associated with a logical input device), which is determined by one or more physical input devices and a mapping from the values delivered by the physical devices. The logical input value delivered by a logical input device is the current value of the measure.

3.42 MI: An abbreviation for GKS metafile input, a category of workstation.

3.43 MO: An abbreviation for GKS metafile output, a category of workstation.

3.44 normalization transformation; viewing transformation; window-to-viewport transformation: A transformation that maps the boundary and interior of a window to the boundary and interior of a viewport. In GKS,

Definitions

this transformation maps positions in world coordinates to normalized device coordinates.

3.45 normalized device coordinates (NDC): A coordinate specified in a device independent intermediate coordinate system, normalized to some range, typically 0 to 1. In GKS, during an intermediate state the coordinates may lie outside the defined range, but associated clipping information ensures that the output does not exceed the coordinate range $[0,1] \times [0,1]$.

3.46 operator: Person manipulating physical input devices so as to change the measures of logical input devices and cause their triggers to fire.

3.47 output primitive; graphic primitive; display element: A basic graphic element that can be used to construct a display image. Output primitives in GKS are polyline, polymarker, text, fill area, cell array, and generalized drawing primitive.

3.48 pick device: A GKS logical input device providing the pick identifier attached to an output primitive and the associated segment name.

3.49 pick identifier: A name, attached to individual output primitives within a segment, and returned by the pick device. The same pick identifier can be assigned to different output primitives.

3.50 pixel; picture element: The smallest element of a display surface that can be independently assigned a colour or intensity.

3.51 polyline: A GKS output primitive consisting of a set of connected lines.

3.52 polyline bundle table: A table associating specific values for all workstation dependent aspects of a polyline primitive with a polyline bundle index. In GKS, this table contains entries consisting of linetype, linewidth scale factor, and colour index.

3.53 polymarker: A GKS output primitive consisting of a set of locations, each to be indicated by a marker.

3.54 polymarker bundle table: A table associating specific values for all workstation dependent aspects of a polymarker primitive with a polymarker bundle index. In GKS, this table contains entries consisting of marker type, marker size scale factor, and colour index.

3.55 primitive attribute: Primitive attribute values (for output primitives) are selected by the application in a workstation independent manner, but can have workstation dependent effects.

3.56 prompt: Output to the operator indicating that a specific logical input device is available.

3.57 raster graphics: Computer graphics in which a display image is composed of an array of pixels arranged in rows and columns.

3.58 rotation: Turning all or part of a display image about an axis. In GKS, this capability is restricted to segments.

3.59 scaling; zooming: Enlarging or reducing all or part of a display image by multiplying the coordinates of display elements by a constant value. In GKS, this capability is restricted to segments.

NOTE - For different scaling in two orthogonal directions two constant values are required.

3.60 segment: A collection of display elements that can be manipulated as a unit.

3.61 segment attributes: Attributes that apply only to segments. In GKS, segment attributes are visibility, highlighting, detectability, segment priority, and segment transformation.

3.62 segment priority: A segment attribute used to determine which of several overlapping segments takes precedence for graphic output and input.

3.63 segment transformation: A transformation that causes the display elements defined by a segment to appear with varying position (translation), size (scale), and/or orientation (rotation) on the display surface.

3.64 string device: A GKS logical input device providing a character string as its result.

3.65 stroke device: A GKS logical input device providing a sequence of points in world coordinates, and a normalization transformation number.

3.66 text: A GKS output primitive consisting of a character string.

3.67 text bundle table: A table associating specific values for all workstation dependent aspects of a text primitive with a text bundle index. In GKS, this table contains entries consisting of text font and precision, character expansion factor, character spacing and colour index.

3.68 text font and precision: An aspect of text in GKS, having two components, font and precision, which together determine the shape of the characters being output, on a particular workstation. In addition, the precision describes the fidelity with which the other text aspects match those requested by an application program. In order of increasing fidelity, the precisions are: STRING, CHAR and STROKE.

3.69 translation; shift: The application of a constant displacement to the position of all or part of a display image. In GKS, this capability is restricted to segments.

3.70 trigger: A physical input device or set of devices that an operator can use to indicate significant moments in time.

3.71 valuator device: A GKS logical input device providing a real number.

3.72 viewport: An application program specified part of normalized device coordinate space. In GKS, this definition is restricted to a rectangular region of normalized device coordinate space used in the definition of the normalization transformation.

3.73 window: A predefined part of a virtual space. In GKS, this definition is restricted to a rectangular region of the world coordinate space used for the definition of the normalization transformation.

3.74 workstation: GKS is based on the concept of abstract graphical workstations, which provide the logical interface through which the application program controls physical devices.

3.75 Workstation Dependent Segment Storage (WDSS): Segment storage on a workstation that is used for graphical output. Segments cannot be transferred from WDSS to another workstation.

3.76 Workstation Independent Segment Storage (WISS): A special workstation type, where segments can be stored and later transferred to other workstations.

3.77 workstation mandatory: Workstation mandatory describes a property that is required to be realized identically on all workstations of a GKS implementation.

3.78 workstation transformation: A transformation that maps the boundary and interior of a workstation window into the boundary and interior of a workstation viewport (part of display space), preserving aspect ratio. In GKS, this transformation maps positions in normalized device coordinates to device coordinates. The effect of preserving aspect ratio is that the interior of the workstation window may not map to the whole of the workstation viewport.

3.79 workstation viewport: A portion of display space currently selected for output of graphics.

3.80 workstation window: A rectangular region within the normalized device coordinate system which is represented on a display space.

3.81 world coordinate (WC): A device independent Cartesian coordinate system used by the application program for specifying graphical input and output.

4 The Graphical Kernel System

4.1 About this standard

4.1.1 Specification

The set of functions known as the Graphical Kernel System shall be as described in clauses 4, 5 and 6 and annexes A and B. These functions are organized in nine upward compatible levels with increasing capabilities as described in 4.10. An implementation of GKS shall implement precisely the functions of one level. A GKS implementation shall be invalid if it lies between two defined levels or outside the defined levels. In an implementation, all graphical capabilities that can be addressed by GKS functions shall be used only via GKS.

4.1.2 Registration¹⁾

For certain parameters of the functions, GKS defines value ranges as being reserved for registration. The meanings of these values will be defined using the established procedures. These procedures do not apply to values and value ranges defined as being workstation or implementation dependent; these values and ranges are not standardized.

1) Information concerning the Registration Authority and its procedures may be obtained on request to the Secretary General, ISO Central Secretariat, case postale 56, CH-1211 Genève, Switzerland, quoting the number of this International Standard.

4.2 Introduction to GKS

The Graphical Kernel System (GKS) provides a functional interface between an application program and a configuration of graphical input and output devices. The functional interface contains all basic functions for interactive and non-interactive graphics on a wide variety of graphics equipment.

The interface is at such a level of abstraction that hardware peculiarities are shielded from the application program. As a result a simplified interface presenting uniform output primitives (POLYLINE, POLY-MARKER, TEXT, FILL AREA, CELL ARRAY, GENERALIZED DRAWING PRIMITIVE), and uniform input classes (LOCATOR, STROKE, VALUATOR, CHOICE, PICK, STRING) is obtained.

In 4.3 the concepts of basic output, input and the organization of input and output sequences are outlined. A central concept both for structuring GKS and for realizing device independence is introduced, called the workstation.

The facilities for picture manipulation and change are introduced via the segment facilities, the dynamic attributes and the transformations. The integral control over all these methods for change is further explained in 4.5.3 on workstations.

The concept of multiple workstations allows simultaneous output to and input from various display systems. Facilities for internal and external storage are provided by special workstations together with the possibility of transferring graphical entities directly from the special workstation for internal storage to other workstations.

Not every GKS implementation needs to support the full set of functions. Nine levels are defined to meet the different requirements of graphics systems. Each GKS implementation precisely provides the functions of one level. The levels are upward compatible.

GKS defines only a language independent nucleus of a graphics system. For integration into a language, GKS is embedded in a language dependent layer containing the language conventions, for example, parameter and name assignment.

The layer model represented in figure 1 illustrates the role of GKS in a graphics system. Each layer may call the functions of the adjoining lower layers. In general the application program uses the application oriented layer, the language dependent layer, other application dependent layers, and operating system resources. All workstation capabilities that can be addressed by GKS functions are used only via GKS.

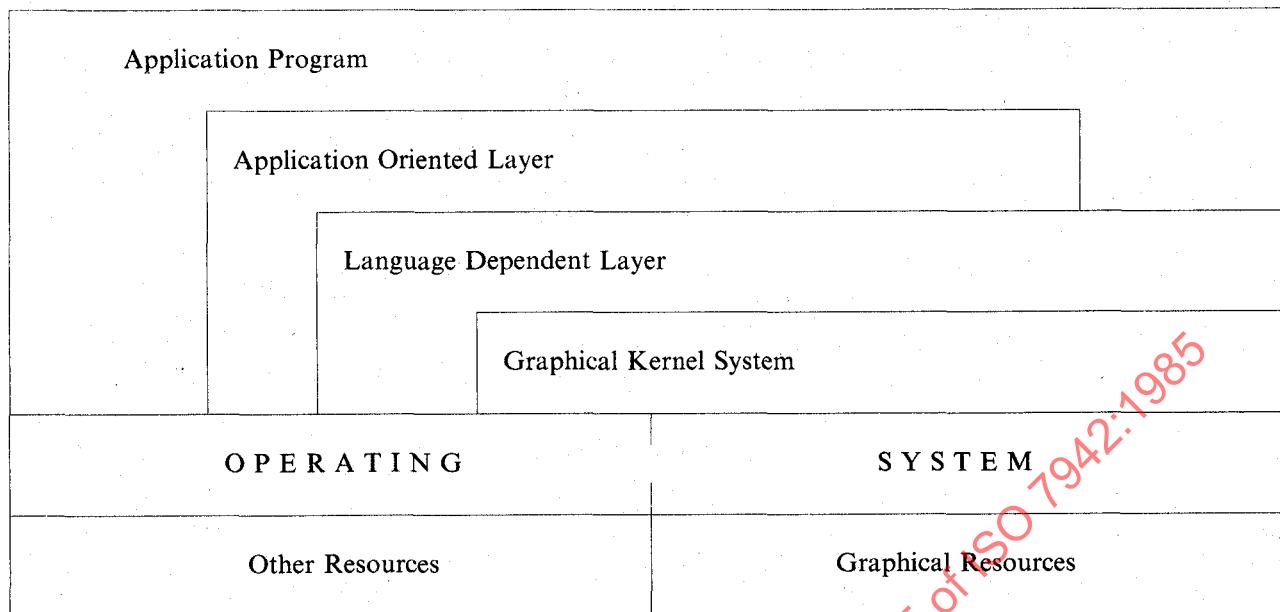


Figure 1 - Layer model of GKS

4.3 Concepts

The graphical output that is generated by GKS is built up from two groups of basic elements called output primitives and primitive attributes. The output primitives are abstractions of basic actions a device can perform, such as drawing lines, and printing character strings. The attributes control the aspects of the output primitives on a device, such as linestyle, colour, character height and pick identifier. Non-geometric aspects, such as colour but not character height, can be controlled for each workstation individually, to make best use of its capabilities.

The graphical information that is input from a device, as a result of operator actions, is mapped by GKS onto six classes of input each represented by a data type referred to as a logical input value. An instance of such a device representation is called a logical input device. The effect of input actions on the display surface, such as prompts and echoes, is controlled by GKS for each logical input device individually.

The two abstract concepts (abstract output and abstract input) are the building blocks of a so-called abstract workstation. A workstation of GKS represents a unit consisting of zero or one display surfaces and zero or more input devices, such as keyboard, tablet and lightpen. The workstation presents these devices to the application program as a configuration of abstract devices thereby shielding the hardware peculiarities.

The geometrical information (coordinates) contained in output primitives, attributes and logical input values (locators and strokes) can be subjected to transformations. These transformations perform mappings between three coordinate systems, namely:

- a) World Coordinates (WC), used by the application programmer;
- b) Normalized Device Coordinates (NDC), used to define a uniform coordinate system for all workstations;
- c) Device Coordinates (DC), one coordinate system per workstation, representing its display space coordinates.

Output primitives and attributes are mapped from WC to NDC by normalization transformations, from NDC to NDC by segment transformations (see next paragraph), and from NDC to DC by workstation transformations. Locator input is mapped by an inverse workstation transformation from DC to NDC and by one of the inverse normalization transformations from NDC to WC.

Output primitives and primitive attributes may be grouped together in a segment. Segments are the units for manipulation and change. Manipulation includes creation, deletion, and renaming. Change includes transforming a segment, making a segment visible or invisible, and highlighting a segment. Segments also form the basis for workstation independent storage of pictures at run time. Via this storage, which is set up as a special workstation called workstation independent segment storage, segments can be inserted and transferred to other workstations.

The attributes which control the appearance of parts of the picture (output primitives, segments, prompt and echo types of input devices) on the display surface are organized in a uniform manner. Two groups of attributes apply to the appearance of each output primitive: primitive attributes (that are workstation independent) and workstation attributes. Primitive attributes are specified modally and are bound to a primitive when it is created. The primitive attributes include all geometric aspects of primitives, such as character height for text and pattern size for fill area. In addition, the non-geometric aspects of primitives are controlled by the primitive attributes in one of two ways. Either a single attribute is used to specify all the non-geometric aspects of the primitive by an index which points to a workstation dependent representation (set of values) or one attribute is used to specify each of the non-geometric aspects of the primitive in a workstation independent way. The former is referred to as bundled specification and the latter is referred to as individual specification.

Workstation attributes include the actual representations on a workstation pointed to by indices used in bundled specification of non-geometric aspects. For example, the representations (or bundles) for polyline each contain values of linestyle, linewidth scale factor and colour index. Workstation attributes also specify the colour and pattern tables and the control over deferral of picture change. Workstation attributes can be reset dynamically.

The Graphical Kernel System**Concepts**

The appearance of segments is controlled by segment attributes, which are segment transformation, visibility, highlighting, segment priority, and detectability. These may be reset dynamically. Segment attributes can be a basis for feedback during manipulations (for example, highlighting).

The attributes which control the operation of logical input devices can be specified either upon initialisation or as part of input device setting, depending upon the attributes. Through initialisation, an initial value, a prompt and echo technique, and an area on the screen for echoing can be specified. A data record may further provide device specific attributes. Through input device setting, the operating mode may be selected and the echo may be switched on or off. The operating modes of logical input devices specify who (operator or application program) has the initiative: SAMPLE input is acquired directly by the application program; REQUEST input is produced by the operator in direct response to the application program; EVENT input is generated asynchronously by the operator and is collected in a queue for the application program.

At run time GKS can be in one of five different operating states. Associated with each state are the set of GKS functions allowed in this state, and a set of state variables. The operating state concept and the state variables allow for proper specification of initialisations (for example, at OPEN WORKSTATION) and the effect of various functions, especially with respect to the maintenance of device independence. One special set of functions called inquiry functions is allowed in all states. They give read-only access to the state lists. In this way useful information can be provided when errors occur. Other inquiry functions allow read-only access to the workstation descriptions, to allow the application program to adapt to particular workstation capabilities. Inquiry functions never cause errors. Instead they return information specifying whether a valid inquiry was made.

GKS provides an interface to a system for filing graphical information for the purpose of external long term storage and exchange. The interface consists of a GKS Metafile output workstation, which writes to a so-called graphics metafile (which is sequential), and a GKS Metafile input workstation, which reads from the metafile. In addition to the normal functions for output to workstations, a GKS Metafile output workstation may accept items containing non-graphical information. Input from a metafile is controlled by read and interpret functions which have the same effect as invoking the corresponding functions directly from the application program.

STANDARDSISO.COM : Click to view the full PDF

4.4 Graphical output

4.4.1 Output primitives

The graphical information that is generated by GKS and routed to all active workstations is built up of basic pieces called output primitives. GKS provides six output primitives:

- a) **POLYLINE:** GKS generates a set of connected lines defined by a point sequence.
- b) **POLYMARKER:** GKS generates symbols of one type centred at given positions.
- c) **TEXT:** GKS generates a character string at a given position.
- d) **FILL AREA:** GKS generates a polygonal area which may be hollow or filled with a uniform colour, a pattern, or a hatch style.
- e) **CELL ARRAY:** GKS generates an array of pixels with individual colours.
- f) **GENERALIZED DRAWING PRIMITIVE(GDP):** GKS addresses special geometrical output capabilities of a workstation such as the drawing of spline curves, circular arcs, and elliptic arcs. The objects are characterized by an identifier, a set of points and additional data. GKS applies all transformations to the points but leaves the interpretation to the workstation.

4.4.2 Output primitive attributes

Each output primitive potentially has three types of attribute (geometric, non-geometric and identification). The first two attribute types determine the exact appearance of the output primitive while the third attribute type is used in connection with input. The values of these attributes are set modally and are recorded in the GKS state list. A separate GKS function is provided for each primitive attribute (except the ASFs: see later in this sub-clause), to allow the application program to specify the value of an attribute without unnecessarily specifying the values of other attributes. During creation of an output primitive (that is, when one of the GKS output primitive functions is invoked) these values are bound to the primitive and cannot be changed afterwards.

Attributes of the first type control the geometric aspects of primitives; these are aspects which affect the shape or size of the whole primitive (for example, CHARACTER HEIGHT for TEXT). Hence, they are sometimes referred to as geometric attributes. Attributes of this type are workstation independent and, if they represent coordinate data (points or displacements), are expressed in world coordinates (for example, CHARACTER HEIGHT is expressed in world coordinates but TEXT PATH takes one of a set of enumerated values). They are defined separately for each primitive and a primitive may have zero, one or many geometric attributes.

Current values of (workstation independent) geometric attributes, which are expressed in world coordinates, are stored in world coordinates. When they are bound to their respective primitives, the values are subject to the same transformations as the geometric data contained in the definition of the primitive. Hence, current values are unaffected by changes in the normalization transformation and the workstation transformation.

Attributes of the second type control the non-geometric aspects of primitives; these are aspects which merely affect a primitive's appearance (for example, linetype for POLYLINE, or colour index for all primitives except CELL ARRAY) or the shape or size of the component parts of the primitive (for example, marker size scale factor for POLYMARKER). Non-geometric aspects do not represent coordinate data. The non-geometric aspects of a primitive may be specified in one of two ways, namely via a bundle or individually.

For specification of aspects via a bundle, there is one attribute per primitive, called the <primitive> INDEX. This attribute is an index into a bundle table, each entry of which contains all the

The Graphical Kernel System**Graphical output**

non-geometric aspects of the primitive. There is a separate bundle table for each primitive with the exception of GENERALIZED DRAWING PRIMITIVE and CELL ARRAY (see later in this sub-clause). The non-geometric aspects are workstation dependent in this method of specification and each workstation has its own set of bundle tables (stored in the workstation state list). The values in a particular bundle (or entry in the bundle table) may be different for different workstations.

For individual specification of aspects, there is a separate attribute for each non-geometric aspect. As with the attributes controlling the geometric aspects, these attributes are workstation independent and are stored in the GKS state list. Since each non-geometric aspect only occurs in one primitive bundle type, each of these attributes applies to only one primitive type.

For a given non-geometric aspect, the values that can be assigned to the appropriate bundle component are the same as the values that can be assigned to the corresponding attribute for individual specification. Since the bundles are set separately for each workstation, the values of their components are restricted to the valid values for that workstation. In the case of individual attribute specification, such restrictions are not imposed. Default actions for the display of a primitive are defined to occur if it is created with a value of an individually specified attribute that is invalid on a particular workstation.

As indicated above, GENERALIZED DRAWING PRIMITIVE (GDP) and CELL ARRAY do not have associated bundle tables nor corresponding individually specified attributes. The GDP may use the most appropriate bundle tables or sets of individually specified attributes for each GDP function. For example, if one GDP function is essentially a FILL AREA, then the fill area bundle table or the set of individually specified fill area attributes would be used. CELL ARRAY contains colour index information as part of its definition but has no other non-geometric aspects and so does not use a bundle table nor does it have a set of individually specified attributes.

The method of specification of the non-geometric aspects of a primitive may be chosen separately for each aspect. A further group of primitive attributes, called ASPECT SOURCE FLAGS (ASFs), take the values INDIVIDUAL and BUNDLED to specify the choice. As with the other primitive attributes, these attributes are workstation independent and are stored in the GKS state list. There is one ASF for each non-geometric aspect of each primitive. The initial values of all the ASFs are the same; this may be either BUNDLED or INDIVIDUAL, the choice being implementation dependent. If the initial values are not altered, the system will operate

- a) as if individual specification of non-geometric aspects were not a system feature, if the initial values of all the ASFs are BUNDLED;
- b) as if specification of non-geometric aspects via a bundle were not a system feature, if the initial values of all the ASFs are INDIVIDUAL.

The flags may be set at any time when GKS is open by the function SET ASPECT SOURCE FLAGS. This enables some non-geometric aspects of a primitive to be specified individually and others via a bundle.

When a primitive is displayed, the values of the non-geometric aspects with which it is displayed are determined as follows.

- c) If the ASF for an aspect is INDIVIDUAL, the value used on all workstations is the value of the corresponding individually specified attribute of that primitive.
- d) If the ASF for an aspect is BUNDLED, the value used on a workstation is obtained via the bundle table for that primitive on the workstation; the corresponding component of the bundle, pointed to by the bundle index, is used.

If colour is a non-geometric aspect of a primitive, then it is specified as an index into a separate colour table. There is only one colour table per workstation into which all the colour indices point. Similarly, other entries in a bundle, or corresponding individually specified attributes, may be indices either into another workstation table (for example, style index when interior style PATTERN is used) or into a fixed list (for example, line-types for polyline).

There is precisely one attribute of the third type per primitive, namely PICK IDENTIFIER. This is used for identifying a primitive, or a group of primitives, in a segment when that segment is picked.

Graphical output

The Graphical Kernel System

The attributes which apply to each output primitive (attributes controlling non-geometric aspects, geometric attributes and PICK IDENTIFIER) are:

e) POLYLINE:	POLYLINE INDEX LINETYPE LINEWIDTH SCALE FACTOR POLYLINE COLOUR INDEX LINETYPE ASF LINEWIDTH SCALE FACTOR ASF POLYLINE COLOUR INDEX ASF PICK IDENTIFIER
f) POLYMARKER:	POLYMARKER INDEX MARKER TYPE MARKER SIZE SCALE FACTOR POLYMARKER COLOUR INDEX MARKER TYPE ASF MARKER SIZE FACTOR ASF POLYMARKER COLOUR INDEX ASF PICK IDENTIFIER
g) TEXT:	TEXT INDEX TEXT FONT AND PRECISION CHARACTER EXPANSION FACTOR CHARACTER SPACING TEXT COLOUR INDEX TEXT FONT AND PRECISION ASF CHARACTER EXPANSION FACTOR ASF CHARACTER SPACING ASF TEXT COLOUR INDEX ASF CHARACTER HEIGHT CHARACTER UP VECTOR TEXT PATH TEXT ALIGNMENT PICK IDENTIFIER
h) FILL AREA:	FILL AREA INDEX FILL AREA INTERIOR STYLE FILL AREA STYLE INDEX FILL AREA COLOUR INDEX FILL AREA INTERIOR STYLE ASF FILL AREA STYLE INDEX ASF FILL AREA COLOUR INDEX ASF PATTERN SIZE PATTERN REFERENCE POINT PICK IDENTIFIER
i) CELL ARRAY:	PICK IDENTIFIER
j) GENERALIZED DRAWING PRIMITIVE:	Zero or more of the sets e) to i) except that PICK IDENTIFIER is always an attribute

Figure 2 shows the binding of the attributes.

The Graphical Kernel System

Graphical output

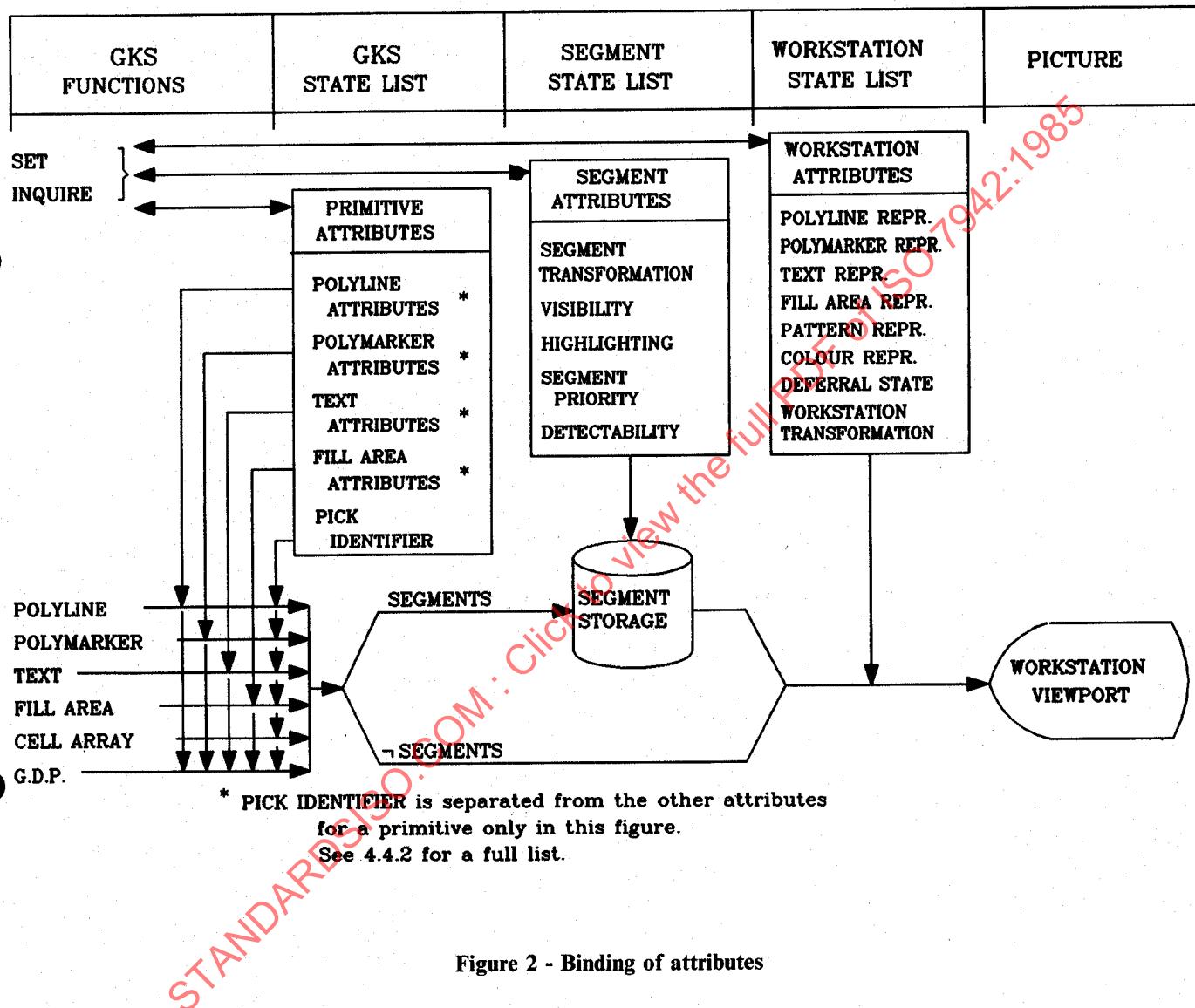


Figure 2 - Binding of attributes

The attributes for each primitive, other than PICK IDENTIFIER, are described in 4.4.3 to 4.4.8. PICK IDENTIFIER is described in more detail in 4.7.1. In the descriptions, attributes appear in upper case (for example, the attributes CHARACTER HEIGHT and PICK IDENTIFIER); aspects appear in both upper and lower case, according to their context. Geometric aspects are always controlled by geometric attributes and so appear in upper case (for example, the aspect CHARACTER HEIGHT). Non-geometric aspects may be controlled via a <primitive> INDEX or by individually specified attributes. Non-geometric aspects appear in lower case unless the corresponding individually specified attributes are being used which appear in upper case (for example, the aspect linetype but the individually specified attribute LINETYPE).

The entries in the bundle, pattern, and colour tables may be set separately for each workstation. Some standard definitions for table entries are contained in the workstation description table and are used as initial values. The application program may select a standard definition or may define the values of a specific entry explicitly. Only the most commonly used (or anticipated) combinations of values need be predefined for each output type workstation. At least those predefined entries with indices up to the minimum number of predefined entries at a given level (see 4.10.3) are distinguishable from each other. Other combinations of values can be specified by the SET <primitive | PATTERN | COLOUR> REPRESENTATION function, possibly after inquiring the workstation capabilities. The tables, which are on every workstation of category OUTPUT, OUTIN or MO (i.e. they are workstation attributes), are:

polyline bundle table
polymarker bundle table
text bundle table
fill area bundle table
pattern table
colour table

The values in these tables may be (dynamically) changed. In fact, the only way of changing the aspects of a primitive which are stored in a bundle table is by changing that table. However, note that a change in a bundle table entry can only be reflected in a displayed primitive if the values of the corresponding ASFs (of that primitive) for the aspects in the bundle table are BUNDLED. The entry 'dynamic modification accepted' in the workstation description table indicates which changes

k) lead to an implicit regeneration (may be deferred) (IRG);

l) can be performed immediately (IMM).

The deferral state is explained in more detail in 4.5.3. If changes can be performed immediately, those changes may affect primitives outside segments in addition to those inside segments.

4.4.3 Polyline attributes

Polyline has no geometric attributes. The representation of polyline on the workstation is controlled by the POLYLINE INDEX, or the set of individually specified polyline attributes (LINETYPE, LINEWIDTH SCALE FACTOR, and POLYLINE COLOUR INDEX) or some combination of the two, depending upon the values of the ASFs for linetype, linewidth scale factor and polyline colour index. The POLYLINE INDEX is a pointer into the polyline bundle table, each entry of which contains values for linetype, linewidth scale factor and polyline colour index.

Linetypes 1 to 4 are solid, dashed, dotted and dashed-dotted. Every workstation of category OUTPUT or OUTIN realizes linetypes 1 to 4 with recognizable styles. Linetypes greater than 4 are reserved for registration (see 4.1.2). Linetypes less than 0 may be available but their styles are implementation dependent. The linetype specifies a sequence of line segments and gaps which are repeated to draw a polyline. It is workstation dependent whether this sequence is restarted or continued at the start of the polyline, at the start of a clipped piece of a polyline, and at each vertex of a polyline.

The linewidth is calculated as a nominal linewidth multiplied by the linewidth scale factor. This value is mapped by the workstation to the nearest available linewidth.

4.4.4 Polymarker attributes

Polymarker has no geometric attributes. The representation of polymarker at the workstation is controlled by the POLYMARKER INDEX, or the set of individually specified polymarker attributes (MARKER TYPE, MARKER SIZE SCALE FACTOR, and POLYMARKER COLOUR INDEX) or some combination of the two, depending upon the values of the ASFs for marker type, marker size scale factor, and polymarker colour index. The POLYMARKER INDEX is a pointer into the polymarker bundle table, each entry of which contains values for marker type, marker size scale factor and polymarker colour index.

Marker types 1 to 5 are dot, plus sign, asterisk, circle, and diagonal cross each centred on the positions they are identifying. Every workstation of category OUTPUT or OUTIN realizes marker types 1 to 5 with recognizable shapes at the given positions. Marker types greater than 5 are reserved for registration (see 4.1.2). Marker types less than 0 may be available but their forms are implementation dependent.

The marker size is calculated as a nominal size multiplied by the marker size scale factor. This size is mapped by the workstation to the nearest available size. Marker type 1 is always displayed as the smallest displayable dot.

The marker is visible if, and only if, the marker position is within the clipping rectangle. The clipping of partially visible markers is workstation dependent.

4.4.5 Text attributes

Text has the geometric attributes CHARACTER HEIGHT, CHARACTER UP VECTOR, TEXT PATH, and TEXT ALIGNMENT which are specified and used as described in this sub-clause.

Text also has two implicitly specified geometric attributes CHARACTER WIDTH and CHARACTER BASE VECTOR. These are implicitly specified by the functions SET CHARACTER HEIGHT and SET CHARACTER UP VECTOR respectively. They otherwise behave like ordinary geometric attributes (their values are bound to TEXT primitives when the primitives are created and cannot be changed afterwards and these values are subject to the same transformations as the geometric data contained in the definition of the primitive).

The representation of text at the workstation is controlled by the TEXT INDEX, or the set of individually specified text attributes (TEXT FONT AND PRECISION, CHARACTER EXPANSION FACTOR, CHARACTER SPACING, and TEXT COLOUR INDEX) or some combination of the two, depending upon the values of the ASFs for text font and precision, character expansion factor, character spacing and text colour index. The TEXT INDEX is a pointer into the text bundle table, each entry of which contains values for text font and precision, character expansion factor, character spacing and text colour index.

Precise control of the appearance of TEXT on a workstation is provided by the following aspects: CHARACTER HEIGHT, CHARACTER WIDTH, character expansion factor, TEXT PATH, CHARACTER UP VECTOR, CHARACTER BASE VECTOR, character spacing and TEXT ALIGNMENT. However, the use of these values in displaying text is determined by the setting of the text font and precision aspect (font and precision are two components of the same aspect). The CHARACTER HEIGHT specifies the nominal height of a capital letter character. The CHARACTER WIDTH specifies the nominal width of a character; the actual width depends upon the width to height ratio of the character indicated by the font designer and may vary from character to character. The character expansion factor specifies the deviation of the width to height ratio of the character from the ratio indicated by the font designer. The CHARACTER UP VECTOR gives the up direction of a character. The CHARACTER BASE VECTOR gives the direction of the baseline of a character. Only the directions, not the lengths, of these vectors are relevant. TEXT PATH has the possible values RIGHT, LEFT, UP and DOWN. It specifies the writing direction of the text string. For RIGHT, the text string is written along a baseline in the direction of the CHARACTER BASE VECTOR. For LEFT, the baseline direction is the opposite direction of the CHARACTER BASE VECTOR. For UP, the character path coincides with the direction of the CHARACTER UP VECTOR. For DOWN, it is the opposite direction of the CHARACTER UP VECTOR. For the UP and DOWN text path directions the characters are arranged so that the centres of the character bodies are on a straight line in the direction of the CHARACTER UP VECTOR.

Graphical output**The Graphical Kernel System**

The character spacing value specifies how much additional space is to be inserted between two adjacent character bodies. If the value of character spacing is zero, the character bodies are arranged one after the other along the TEXT PATH, without any additional space between. A positive value of character spacing will insert additional space between character bodies. A negative value of character spacing will cause adjacent character bodies to overlap. Character spacing is specified as a fraction of the font nominal character height.

The effect of the aspects **CHARACTER HEIGHT**, **CHARACTER WIDTH**, character expansion factor, **TEXT PATH**, character spacing and text font is to define an (imaginary) rectangle with its sides parallel to the x and y axes, enclosing the text. The bounds of this enclosing rectangle are as follows. For **TEXT PATH** = **LEFT** or **RIGHT**, the height of the rectangle is the height of the character body of the specified font; the left side of the rectangle is the left side of the character body of the leftmost character and the right side of the rectangle is the right side of the character body of the rightmost character. For **TEXT PATH** = **UP** or **DOWN**, the top of the rectangle is the top of the character body of the topmost character and similarly, the bottom of the rectangle is the bottom of the bottommost character; the width of the rectangle is the width of the widest character in the specified font.

The effect of the **CHARACTER UP VECTOR** and **CHARACTER BASE VECTOR** attributes is to transform the enclosing rectangle, thus defining an enclosing parallelogram, the text extent parallelogram (the rectangle has been rotated and sheared).

The **TEXT ALIGNMENT** attribute controls the positioning of this text extent parallelogram in relation to the text position. For simplicity the **TEXT ALIGNMENT** is described in terms of the default **CHARACTER UP VECTOR** and **CHARACTER BASE VECTOR**, when the text extent parallelogram is actually a rectangle. The horizontal component of **TEXT ALIGNMENT** has four values: **LEFT**, **CENTRE**, **RIGHT** and **NORMAL**. If the horizontal component is **LEFT**, the left side of the text extent parallelogram passes through the text position. Similarly, if the value is **RIGHT**, the right side of the text extent parallelogram passes through the text position. If the horizontal component is **CENTRE**, the text position lies midway between the left and right sides of the text extent parallelogram. Thus, if **TEXT PATH** = **UP** or **DOWN**, the straight line passing through the centrelines of the characters also passes through the text position. The vertical component of **TEXT ALIGNMENT** has six values: **TOP**, **CAP**, **HALF**, **BASE**, **BOTTOM** and **NORMAL**. These each correspond to one of the font specific horizontal lines in the definition of a character (see figure 3). A value of **TOP** causes the top of the text extent parallelogram to pass through the text position. A value of **CAP** causes the text position to lie on the capline of the whole string (**TEXT PATH** = **LEFT** or **RIGHT**) or on the capline of the topmost character in the string (**TEXT PATH** = **UP** or **DOWN**). A value of **HALF** causes the text position to lie on the halfline of the whole string (**TEXT PATH** = **LEFT** or **RIGHT**) or on a line halfway between the halflines of the top and bottom characters (**TEXT PATH** = **UP** or **DOWN**). A value of **BASE** causes the text position to lie on the baseline of the whole string (**TEXT PATH** = **LEFT** or **RIGHT**) or on the baseline of the bottom character in the string (**TEXT PATH** = **UP** or **DOWN**). A value of **BOTTOM** causes the bottom of the text extent parallelogram to pass through the text position.

In the general case, the orientation referred to as horizontal is that of the **CHARACTER BASE VECTOR** with **RIGHT** representing direction of that vector and **LEFT** being opposite to it. Similarly the orientation referred to as vertical is that of the **CHARACTER UP VECTOR** with **UP** representing the direction of that vector and **DOWN** being opposite to it.

Either component of **TEXT ALIGNMENT** can take the value **NORMAL**. For each value of **TEXT PATH**, the effect of a particular component being **NORMAL** is equivalent to one of the other values of that component. In each case, the equivalent alignment value is chosen to achieve a natural alignment for that **TEXT PATH** value. The complete list of equivalent values is:

TEXT PATH	NORMAL Horizontal and Vertical Alignments
RIGHT	(LEFT , BASE)
LEFT	(RIGHT , BASE)
UP	(CENTRE , BASE)
DOWN	(CENTRE , TOP)

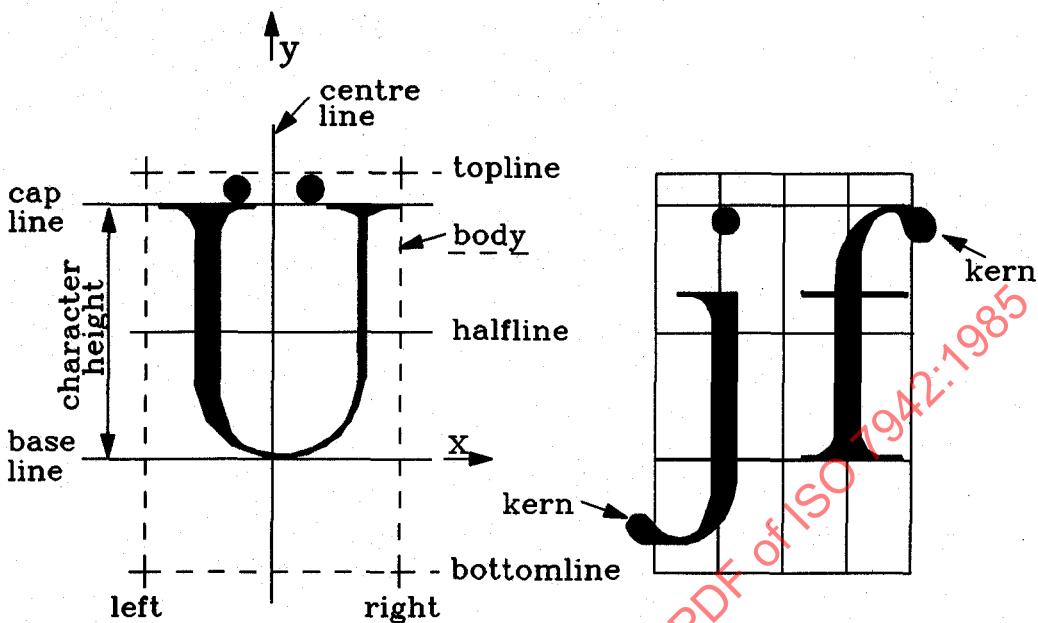


Figure 3 - Font description coordinate system

The initial values of the geometric text attributes are:

CHARACTER HEIGHT	WC	0.01 (i.e. 1% of the height of the default window)
CHARACTER UP VECTOR	WC	(0,1)
TEXT PATH		RIGHT
TEXT ALIGNMENT		(NORMAL, NORMAL)

and the initial values of the implicitly specified geometric text attributes are:

CHARACTER WIDTH	WC	0.01 (i.e. the same value as the initial value of CHARACTER HEIGHT)
CHARACTER BASE VECTOR	WC	(1,0)

Text font and precision together constitute one aspect. The text font value is used to select a particular font on the workstation. Every workstation supports at least one font that is able to generate a graphical representation of the characters defined in ISO 646. This is font number 1. Font numbers greater than 1 are reserved for registration (see 4.1.2). Font numbers less than 0 may be supported but are implementation dependent.

The text precision value is used to select the 'closeness' of the text representation at the workstation in relation to that defined by the workstation independent text attributes and the transformation and clipping currently applicable. The text precision value has the following possible values:

a) STRING: The TEXT character string is generated in the requested text font and is positioned by aligning the TEXT output primitive at the given text position. CHARACTER HEIGHT, CHARACTER WIDTH and character expansion factor are evaluated as closely as reasonable, given the capabilities of the workstation. CHARACTER UP VECTOR, CHARACTER BASE VECTOR, TEXT PATH, TEXT ALIGNMENT and character spacing, need not be used. Clipping is done in an implementation and workstation dependent way.

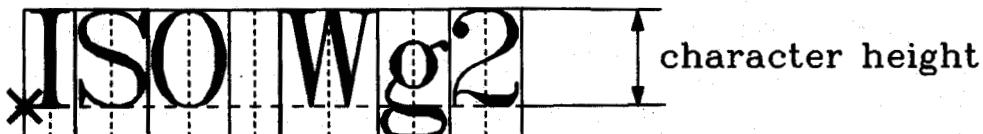
Graphical output

The Graphical Kernel System

b) CHAR: The TEXT character string is generated in the requested text font. For the representation of each individual character, the aspects CHARACTER HEIGHT, CHARACTER WIDTH, the up direction of the CHARACTER UP VECTOR, the baseline direction of the CHARACTER BASE VECTOR, and character expansion factor are evaluated as closely as possible, in a workstation dependent way. The spacing used between character bodies is evaluated exactly; the character body, for this purpose, is an ideal character body, calculated precisely from the text aspects and the font dimensions. The position of the resulting text extent parallelogram is determined by the TEXT ALIGNMENT and the text position. Clipping is performed at least on a character by character basis.

c) STROKE: The text character string in the requested text font is displayed at the text position by applying all text aspects. The character string is clipped exactly at the clipping rectangle.

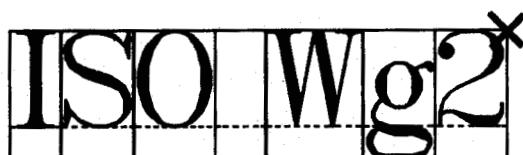
STROKE precision does not necessarily mean vector strokes; as long as the representation adheres to the rules governing STROKE precision, the font may be realized in any form, for example by raster fonts.


A GKS output level 0 implementation supports text precisions STRING and CHAR. Above output level 0, all text precisions are supported as follows. A workstation may use a higher precision than the one requested for this purpose i.e. if STROKE precision is supported in a particular font, the implication is that both STRING and CHAR precision are available in that font. However it is not necessary for a workstation to support all precisions for a given font (i.e. for a given font, STROKE can be missing or both STROKE and CHAR can be missing). Text font and precision are workstation mandatory. That is, for any GKS level supporting a STROKE precision font, every workstation of a particular installation supports at least one STROKE precision text font. This is font number 1, containing the character set defined by ISO 646. This implies that, for STROKE precision text, some sort of software character generator is required for those implementations that have inadequate hardware. Not all workstations need to support all fonts, but for those that do, the same font number is used to select that font on all workstations of a particular installation.

Fonts are defined only within the GKS implementation. The font designer specifies the shape of the symbol representing each character in a local 2D cartesian font coordinate system. Fonts are either monospaced or proportionally spaced. Each character in a font coordinate system has an associated character body, a font baseline, a font halffine, a capline and a centreline (see figure 3). For monospaced fonts, the character bodies of all characters have the same size. For proportionally spaced fonts, the width of the bodies may differ from character to character. The character body edges are parallel to the axes of the font coordinate system. The font baseline, the font halffine and the capline are parallel to the x-axis of the font coordinate system, and within the vertical extent of the body. The position of the font halffine is defined by the font designer for use in aligning text strings. The centreline is parallel to the y-axis and bisects the body. Their exact positions are specified by the font designer.

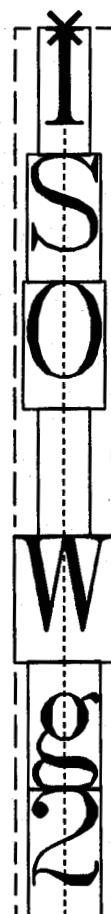
The height of a character in the font coordinate system is given by the height from the font baseline to the capline. The width of a character is given by the width of the character body. The width of a character may include space on either side of the character and this space is generally evenly split between the left and right sides of the character. It is assumed that the characters lie within their body, except that kerned characters may exceed the side limits of the character body.

In general, the top limits of the bodies for a font are identical with, or very close to, the typographical capline or ascender line, and the bottom limit to the descender line. The space, if any, between the topline and the capline may be used for an additional mark over the character, for example an accent. However, these and other details are purely for the use of the font designer. The intention is only that characters placed with their bodies touching in the horizontal direction should give an appearance of good normal spacing, and characters touching in the vertical direction will avoid clashes between ascenders and descenders (typographically 'set solid').


Since the values of CHARACTER HEIGHT, CHARACTER WIDTH, CHARACTER UP VECTOR and CHARACTER BASE VECTOR are given in world coordinate units, but the characters are generated on the workstation in device coordinates, using the workstation dependent font and precision, the geometric attributes need to be transformed in such a way that the workstation can generate the characters in the way intended.

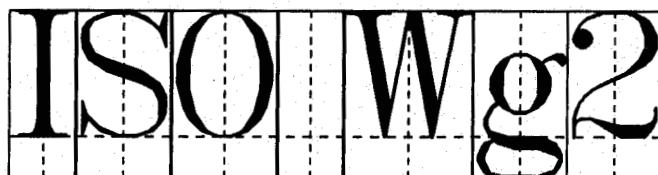
CHARACTER HEIGHT = 1, CHARACTER UP VECTOR = (0,1),
TEXT PATH = RIGHT, TEXT ALIGNMENT = (NORMAL,NORMAL)

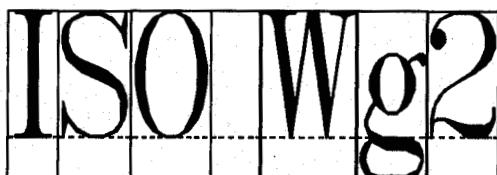
CHARACTER HEIGHT = 0.5, CHARACTER UP VECTOR = (0,1)
TEXT PATH = RIGHT, TEXT ALIGNMENT = (NORMAL,NORMAL)


CHARACTER HEIGHT = 1, CHARACTER UP VECTOR = (0,1),
TEXT PATH = RIGHT, TEXT ALIGNMENT = (RIGHT, TOP)

CHARACTER HEIGHT = 1
CHARACTER UP VECTOR = (-1,0)
TEXT PATH = DOWN
TEXT ALIGNMENT = (NORMAL,NORMAL)

CHARACTER HEIGHT = 1
CHARACTER UP VECTOR = (-1,0)
TEXT PATH = RIGHT
TEXT ALIGNMENT = (NORMAL,NORMAL)


× text position
 ----- baseline or centreline
 ——— text extent rectangle
 (indicated for PATH = DOWN)

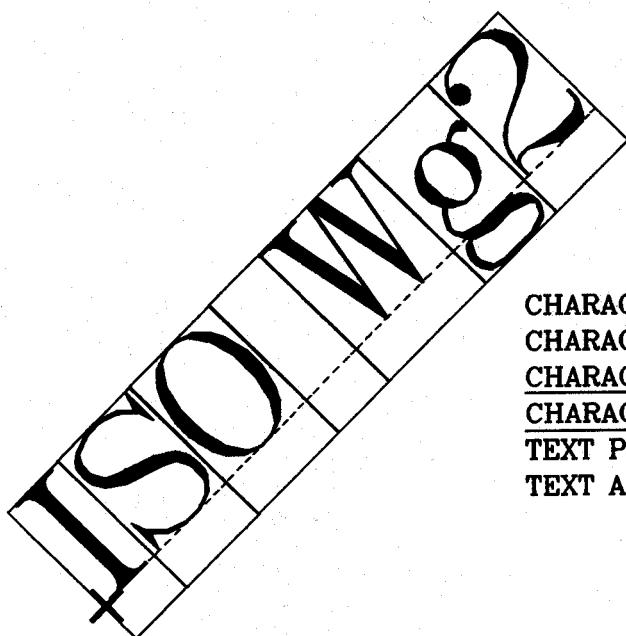

NOTES

- 1 Examples are illustrated with STROKE precision, a character expansion factor of 1 and a zero character spacing.
- 2 Capline = topline in these examples.
- 3 Changed attributes are underlined.

Figure 4 - Effects of changes in geometric text attributes

CHARACTER EXPANSION FACTOR = 1, CHARACTER SPACING = 0

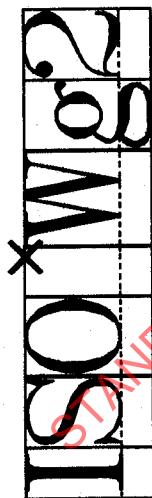
CHARACTER EXPANSION FACTOR = 0.75, CHARACTER SPACING = 0



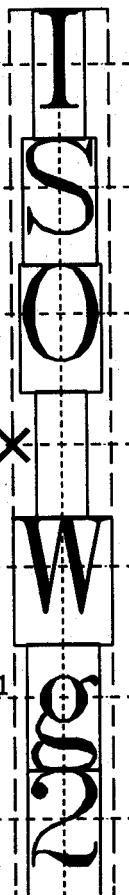
CHARACTER EXPANSION FACTOR = 1, CHARACTER SPACING = 0.3

NOTES

- 1 Examples are illustrated with default values of the geometric text attributes and with STROKE precision.
- 2 Changed aspects are underlined.


Figure 5 - Effects of changes in non-geometric text aspects

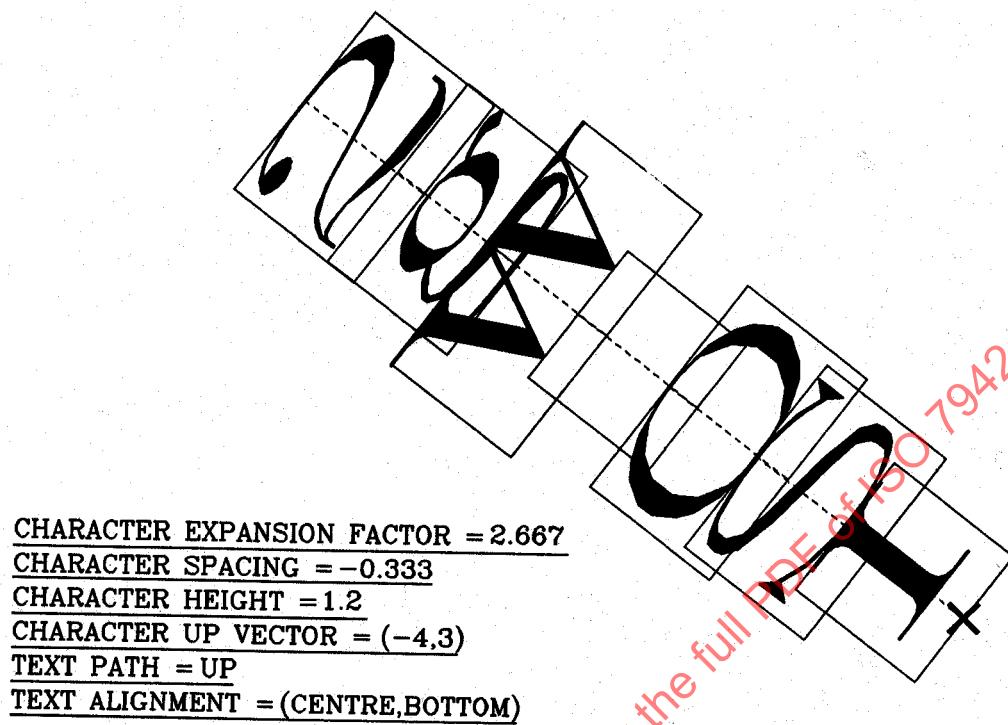
CHARACTER EXPANSION FACTOR = 1
 CHARACTER SPACING = 0
CHARACTER HEIGHT = 1.414
CHARACTER UP VECTOR = (-1,1)
TEXT PATH = RIGHT
TEXT ALIGNMENT = (NORMAL,NORMAL)



CHARACTER EXPANSION FACTOR = 1
CHARACTER SPACING = -0.3
CHARACTER HEIGHT = 1
CHARACTER UP VECTOR = (0,1)
TEXT PATH = LEFT
TEXT ALIGNMENT = (NORMAL,NORMAL)

CHARACTER EXPANSION FACTOR = 1
 CHARACTER SPACING = 0
 CHARACTER HEIGHT = 1
CHARACTER UP VECTOR = (-1,0)
TEXT PATH = RIGHT
TEXT ALIGNMENT = (CENTRE, TOP)

CHARACTER EXPANSION FACTOR = 1
 CHARACTER SPACING = 0
 CHARACTER HEIGHT = 1
CHARACTER UP VECTOR = (0,1)
TEXT PATH = DOWN
TEXT ALIGNMENT = (LEFT, HALF)



NOTES

1 Changes from the top example of figures 4 and 5 are underlined.

2 In the last example, half-lines of all characters are shown.

Figure 6 - Effects of combined changes in text aspects

Graphical output**The Graphical Kernel System**

NOTE - Changes from the top example of figures 4 and 5 are underlined.

Figure 7 - Effects of several changes in text aspects

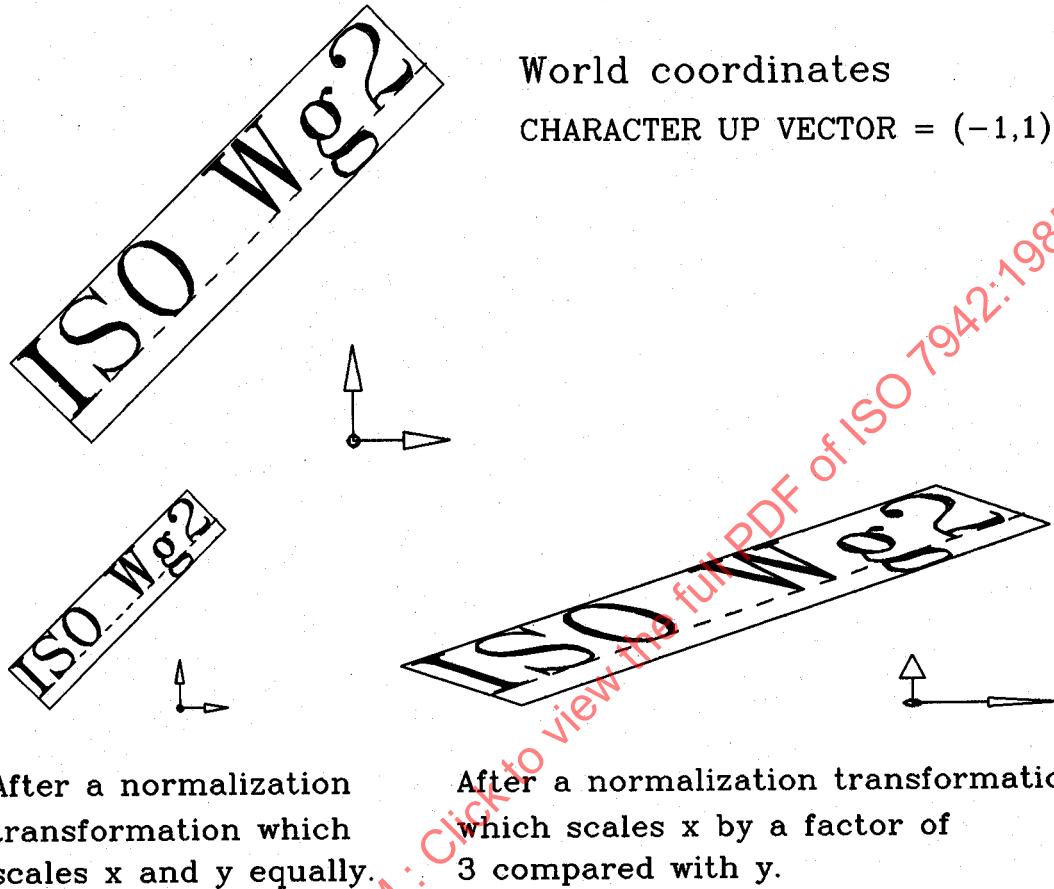


Figure 8 - Effects of different normalization transformations on text in STROKE precision

Graphical output**The Graphical Kernel System**

The effect to be achieved is now described. Together with the text coding, a height vector parallel to the CHARACTER UP VECTOR with length equal to CHARACTER HEIGHT, and a width vector parallel to the CHARACTER BASE VECTOR with length equal to CHARACTER WIDTH, are passed down the viewing pipeline. These vectors are transformed by the normalization transformation, by a segment transformation if within a segment, and by the workstation transformation. They are also stored in segments. Then the vectors can be used by the workstation character generator. Thus, the shape of individual characters can be transformed by a normalization transformation that is unequal in x and y and by a segment transformation.

On the workstation, the height of a character is given by the length of the transformed height vector; the character up direction is given by the direction of the transformed height vector; the width of a character is given by the length of the transformed width vector multiplied by the font width to height ratio for the character and by the character expansion factor; the character base direction is given by the direction of the transformed width vector. The characters are arranged together in a text extent parallelogram, depending on the values of TEXT PATH and character spacing. The text extent parallelogram is then positioned according to the value of TEXT ALIGNMENT and the text position, contained in the definition of the TEXT primitive.

Figures 4 to 7 give examples of the effects of different values of text aspects. Figure 8 gives examples of the effect of different normalization transformations on the displayed form of the text.

4.4.6 Fill area attributes

Fill area has the geometric attribute PATTERN REFERENCE POINT. It also has two implicitly specified geometric attributes PATTERN WIDTH VECTOR and PATTERN HEIGHT VECTOR. These are implicitly specified by the function SET PATTERN SIZE. Like ordinary geometric attributes, their values are bound to FILL AREA primitives when the primitives are created and cannot be changed afterwards and these values are subject to the same transformations as the geometric data contained in the definition of the primitive. The usage of the fill area geometric attributes is described later in this sub-clause.

The representation of fill area at the workstation is controlled by the FILL AREA INDEX, or the set of individually specified fill area attributes (FILL AREA INTERIOR STYLE, FILL AREA STYLE INDEX, and FILL AREA COLOUR INDEX) or some combination of the two, depending upon the values of the ASFs for fill area interior style, fill area style index, and fill area colour index. The FILL AREA INDEX is a pointer into the fill area bundle table, each entry of which contains values for the fill area interior style, fill area style index and fill area colour index.

The fill area interior style is used to determine in what style the area should be filled. It has the following values:

- a) **HOLLOW:** No filling, but draw the bounding polyline, using the fill area colour index currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF). The linetype and linewidth are implementation dependent.
- b) **SOLID:** Fill the interior of the polygon using the fill area colour index currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF).
- c) **PATTERN:** Fill the interior of the polygon using the fill area style index currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF) as an index into the pattern table. In this context, the fill area style index is sometimes referred to as the pattern index.
- d) **HATCH:** Fill the interior of the polygon using the fill area colour index and the fill area style index currently selected (either via the fill area bundle or individually, depending upon the corresponding ASFs). The fill area style index is used as a pointer into the list of hatch styles, in which case it is sometimes referred to as the hatch index.

For interior style PATTERN, the pattern is defined by the pattern representation, which specifies an array (DX × DY) of colour indices, that are pointers into the colour table. The size and position of the start of the pattern are determined by a pattern box. The pattern box, which is a parallelogram, is defined by the PATTERN WIDTH VECTOR and the PATTERN HEIGHT VECTOR located relative to the PATTERN

The Graphical Kernel System**Graphical output**

REFERENCE POINT. The pattern box is conceptually divided into a grid of $DX \times DY$ cells. The colour index array is associated with the cells as follows: the element (1,DY) is associated with the cell having the PATTERN REFERENCE POINT at one corner; elements with increasing first dimension are associated with successive cells in the direction of the PATTERN WIDTH VECTOR; elements with decreasing second dimension are associated with successive cells in the direction of the PATTERN HEIGHT VECTOR. The attributes defining the pattern box are subject to all the transformations producing a transformed pattern box. The pattern is mapped onto the polygon by conceptually replicating the transformed pattern box in directions parallel to its sides until the interior of the complete polygon is covered.

Mapping the transformed pattern cells to the pixels of a raster display is performed by the following rules:

- e) If the centre of a pixel lies inside the parallelogram defined by the transformed cell, its colour is set;
- f) The pixel is assigned the colour of the cell corresponding to the pixel's centre.

For a workstation which can implement patterns but not transformable patterns, a suitable action is to generate non-transformed patterns to fill a polygon.

For interior style HATCH, the hatch index selects among hatch styles: hatch styles greater than 0 are reserved for registration (see 4.1.2); hatch styles less than 0 are workstation dependent. Whether hatching is affected by transformations or not is workstation dependent.

Interior style HOLLOW is available on every workstation of category OUTPUT or OUTIN. It is workstation dependent which of the interior styles SOLID, PATTERN and HATCH are available.

4.4.7 Cell array attributes

Cell array has no attributes other than PICK IDENTIFIER. However, an array of colour indices, which are pointers into the colour table, is part of the definition of a cell array.

4.4.8 Generalized Drawing Primitive attributes

Generalized Drawing Primitive(GDP) has no explicit geometric attributes. Such information may be specified in the GDP data record. The representation of the GDP at the workstation is controlled by zero or more of the sets of polyline, polymarker, text and fill area attributes (see 4.4.2). Whether bundle indices or associated individually specified attributes are used depends upon the values of the appropriate ASFs. The sets of attributes most appropriate for the specified GDP function are selected for the GDP as part of the definition of the GDP and are recorded in the workstation description table. Similarly, if a GDP is essentially a cell array, then an array of colour indices would be specified in the GDP data record.

4.4.9 Colour

In GKS, colour is specified in a number of different situations. It may be an aspect of a primitive, in which case it is specified either in the bundle for that primitive or by the individual colour attribute for that primitive. It may be part of a pattern for FILL AREA, in which case an array of colours is specified, or it may be part of a primitive itself, namely CELL ARRAY, when an array of colours is also specified. In each case, the colour is specified as an index into a colour table on the workstation. On each workstation, there is one colour table into which all the colour indices point.

The size of the colour table is workstation dependent but entries 0 and 1 always exist. Entry 0 corresponds to the background colour. The background colour is the colour of the display surface after it has been cleared. Entry 1 is the default foreground colour and entries higher than 1 correspond to alternative foreground colours. Entries in the table may be set by the function SET COLOUR REPRESENTATION which specifies the colour as a combination of red, green, and blue intensities. The specified colour is mapped to the nearest available by the workstation. On some workstations it may not be possible to change the background colour, and in this case the mapping of a specific colour to the nearest available for the background colour may be different from the mapping of the same colour for the foreground colours.

Some workstations are not capable of displaying colours (for example, workstations only capable of displaying colours with equal red, green, and blue intensities or workstations only capable of displaying colours which are different intensities of the same colour); these are referred to as monochrome workstations.

Graphical output

The Graphical Kernel System

Whether a workstation is capable of colour is recorded in the 'colour available' entry in the workstation description table. On monochrome workstations, the intensity is computed from the colour values in a workstation dependent way.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

4.5 Workstations

4.5.1 Workstation characteristics

GKS is based on the concept of abstract graphical workstations. These provide the logical interface through which the application program controls physical devices. Certain special workstations provide facilities for the storage and exchange of graphical information.

For every type of workstation present in a GKS implementation (except for the special workstations), there exists a workstation description table which describes the capabilities and characteristics of the workstation. The application program can inquire which capabilities are available and adapt its behaviour accordingly. If a capability is requested that a particular workstation does not provide, a standard error reaction is defined. Certain minimal capabilities of a workstation are detailed in 4.10.

An abstract graphical workstation with maximum capabilities

- a) has one addressable display surface of fixed resolution;
- b) allows only rectangular display spaces (the display space does not consist of a number of separate parts);
- c) permits the specification and use of smaller display spaces than the maximum while guaranteeing that no display image is generated outside the specified display space;
- d) supports several linetypes, text fonts, character sizes, etc., to allow output primitives to be drawn with different aspects;
- e) has one or more logical input devices for each input class;
- f) permits REQUEST, SAMPLE and EVENT type input;
- g) allows logical input devices to be set in REQUEST, SAMPLE or EVENT mode independently of each other;
- h) stores segments and provides facilities for changing and manipulating them.

In practice, the workstation is not necessarily equipped with all of these capabilities.

Each workstation has a type. Each workstation type falls into one of six categories:

OUTPUT	Output
INPUT	Input
OUTIN	Output and input
WISS	Workstation Independent Segment Storage(WISS)
MO	GKS Metafile (GKSM) output
MI	GKSM input

A workstation of category OUTPUT has only output capabilities. It can display all output primitives, with the possible exception of the GENERALIZED DRAWING PRIMITIVE which is optional. Minimal requirements for displaying TEXT and FILL AREA primitives are listed in 4.4, and for CELL ARRAY in 5.3.

GKS allows the appearance of output primitives to vary between workstations, thus allowing advantage to be taken of their differing capabilities. The facilities which allow this variation are:

- polyline representation (see 4.4)
- polymarker representation (see 4.4)
- text representation (see 4.4)
- fill area representation (see 4.4)
- pattern representation (see 4.4)
- colour representation (see 4.4)
- deferral state (see 4.5.3)
- workstation transformation (see 4.6.3)

Workstations

Figure 2 (see 4.4) illustrates the binding of the workstation attributes.

A workstation of category INPUT has at least one logical input device, but no output capability.

A workstation of category OUTIN has the characteristics of both an OUTPUT and INPUT workstation. In addition, the existence of a workstation in this category in a GKS implementation gives rise to additional requirements regarding logical input devices (see 4.8.1).

The last three categories WISS, MO and MI are special GKS facilities that provide a means for temporarily or permanently storing graphical information. They are treated as workstations for the purposes of control, but otherwise have quite different characteristics (see 4.7.5 and 4.9).

Clause A.5 of annex A gives a complete listing of all GKS functions which apply directly or indirectly to each category of workstation.

Actual workstations may provide more capabilities than those listed in the workstation description table. These cannot be used by GKS. However, if the workstation itself provides sufficient intelligence, the additional capabilities may be accessed via the GENERALIZED DRAWING PRIMITIVE or ESCAPE functions, or used locally by the workstation operator. As an example, if a workstation has two display surfaces, the operator may switch locally from one to the other without notifying GKS or the application program. More than one display surface can be controlled by GKS only by defining a separate workstation for each display surface.

4.5.2 Selecting a workstation

The application program references a workstation by means of a workstation identifier. Connection to a particular workstation is established by the function OPEN WORKSTATION, which associates the workstation identifier with a workstation type and a connection identifier (for example, a unit number in FORTRAN). The current state of each open workstation is kept in a workstation state list. Segment manipulation and input can be performed on all open workstations. Output primitives are sent to, and segments are stored on, all active workstations and no others; an open workstation is made active by the function ACTIVATE WORKSTATION.

An active workstation is made inactive by the function DEACTIVATE WORKSTATION; an open workstation is closed by the function CLOSE WORKSTATION.

The following sequence of functions illustrates workstation selection:

OPEN WORKSTATION (N1,conid1,workstation type A);

OPEN WORKSTATION (N2,conid2,workstation type B);

ACTIVATE WORKSTATION (N1);

Output functions;

{generated only on N1}

Input functions;

{possible on N1,N2}

ACTIVATE WORKSTATION (N2);

Output functions;

{generated on N1,N2}

DEACTIVATE WORKSTATION (N1);

Output functions; {generated only on N2}
 Input functions; {possible on N1,N2}

CLOSE WORKSTATION (N1);
 DEACTIVATE WORKSTATION (N2);
 CLOSE WORKSTATION (N2);

4.5.3 Deferring picture changes

It is desirable that the display of a workstation reflects, as far as possible, the actual state of the picture as defined by the application program. However, to use the capabilities of a workstation efficiently, GKS allows a workstation to delay, for a certain period of time, the actions requested by the application program. During this period, the state of the display may be undefined.

The function SET DEFERRAL STATE allows the application program to choose that deferral state which takes into account the capabilities of the workstation and the requirements of the application program. Two attributes are defined for this purpose. Deferral mode controls the time at which output functions have their visual effects. Implicit regeneration controls the time at which picture changes have their visual effects: picture changes in general imply an alteration not just an addition to the picture.

The concept of deferral refers only to visible effects of GKS functions. Effects on the segment storage or on the state of the workstation are (conceptually) not deferred.

Deferral mode controls the possible delaying of output functions: for example, data sent to a device may be buffered to optimize data transfer. The values of deferral mode (in increasing order of delay) are:

- a) ASAP: The visual effect of each function will be achieved on the workstation As Soon As Possible (ASAP). GKS ensures that the actions necessary to achieve this visual effect are initiated before control is returned to the application program, but, owing to possible delays not under the influence of GKS, the actions are not necessarily completed before control is returned.
- b) BNIG: The visual effect of each function will be achieved on the workstation Before the Next Interaction Globally (BNIG), i.e. before the next interaction with a logical input device gets underway on any workstation (see 4.8.2). If an interaction on any workstation is already underway, the visual effect will be achieved as soon as possible.
- c) BNIL: The visual effect of each function will be achieved on the workstation Before the Next Interaction Locally (BNIL), i.e. before the next interaction with a logical input device gets underway on that workstation (see 4.8.2). If an interaction on that workstation is already underway, the visual effect will be achieved as soon as possible.
- d) ASTI: The visual effect of each function will be achieved on the workstation At Some Time (ASTI).

Deferral applies to the following functions that generate output:

POLYLINE
 POLYMARKER
 TEXT
 FILL AREA
 CELL ARRAY
 GENERALIZED DRAWING PRIMITIVE
 INSERT SEGMENT
 ASSOCIATE SEGMENT WITH WORKSTATION
 COPY SEGMENT TO WORKSTATION
 INTERPRET ITEM

For none of the possible values of deferral mode is it mandatory for an implementation to delay the visual

Workstations**The Graphical Kernel System**

effect of output functions. If the application program requires a delay, it can achieve this using the segment storage facility and the visibility attribute. This restriction means that the buffer for deferred actions can be chosen in an implementation dependent manner.

Certain functions can be performed immediately on some workstations, but on other workstations imply a regeneration of the whole picture to achieve their effect. For example, an implicit regeneration is necessary when picture changes require new paper to be put on a plotter. The entries 'dynamic modification accepted' in the workstation description table indicate which changes

- e) lead to an implicit regeneration (IRG);
- f) can be performed immediately (IMM).

If changes can be performed immediately, those changes may affect primitives outside segments in addition to those inside segments. If regeneration occurs, all primitives outside segments will be deleted from the display surface.

An implicit regeneration is equivalent to an invocation of the function REDRAW ALL SEGMENTS. Its possible delay is controlled by the implicit regeneration mode, a single entry in the workstation state list. The values of implicit regeneration mode are

- g) SUPPRESSED: Implicit regeneration of the picture is suppressed, until it is explicitly requested: the entry 'new frame necessary at update' is set to YES.
- h) ALLOWED: Implicit regeneration of the picture is allowed.

An implicit regeneration is made necessary, if any of the following occur:

- i) if the functions listed below have a visible effect on the display image of the respective workstation:
 - 1) if the 'dynamic modification accepted' entry in the workstation description table is IRG (implicit regeneration necessary) for the specified representation:

SET POLYLINE REPRESENTATION
 SET POLYMARKER REPRESENTATION
 SET TEXT REPRESENTATION
 SET FILL AREA REPRESENTATION
 SET PATTERN REPRESENTATION
 SET COLOUR REPRESENTATION

- 2) if the 'dynamic modification accepted' entry in the workstation description table is IRG for the workstation transformation:

SET WORKSTATION WINDOW
 SET WORKSTATION VIEWPORT

- 3) if the 'dynamic modification accepted' entry in the workstation description table is IRG for segment priority and this workstation supports segment priority:

- if primitives are added to open segment overlapping a segment of higher priority:

POLYLINE
 POLYMARKER
 TEXT
 FILL AREA
 CELL ARRAY
 GENERALIZED DRAWING PRIMITIVE
 INSERT SEGMENT

(since only segments have priority, primitives outside segments do not make an implicit regeneration necessary.)

- if the complete execution of one of the following actions would be affected by segment priority:

The Graphical Kernel System

Workstations

DELETE SEGMENT
DELETE SEGMENT FROM WORKSTATION
ASSOCIATE SEGMENT WITH WORKSTATION
SET SEGMENT TRANSFORMATION
SET VISIBILITY
SET SEGMENT PRIORITY

4) if the 'dynamic modification accepted' entry in the workstation description table is IRG for segment transformation:

SET SEGMENT TRANSFORMATION

5) if the 'dynamic modification accepted' entry in the workstation description table is IRG for 'visibility (visible → invisible)':

SET VISIBILITY (INVISIBLE)

6) if the 'dynamic modification accepted' entry in the workstation description table is IRG for 'visibility (invisible → visible)':

SET VISIBILITY (VISIBLE)

7) if the 'dynamic modification accepted' entry in the workstation description table is IRG for highlighting:

SET HIGHLIGHTING

8) if the 'dynamic modification accepted' entry in the workstation description table is IRG for delete segment:

DELETE SEGMENT

DELETE SEGMENT FROM WORKSTATION

j) if any of the above situations occurs as a result of **INTERPRET ITEM**.

An implicit regeneration has to be done (including deletion of primitives outside segments) only if one of the functions listed causes a visible effect on the display; for example, if an invisible segment is deleted, a regeneration need not be done. However, an implementation is allowed to perform an implicit regeneration in any of the cases listed above.

Deferred actions can be made visible at any time by the use of the **UPDATE WORKSTATION** function or by an appropriate change of the deferral state.

4.5.4 Clearing the display surface

Two capabilities for clearing the display surface are recognized, namely:

- a) clear the display surface even if it is empty;
- b) ensure that the display surface is clear without clearing the display surface needlessly.

The second capability means that the display surface is only cleared when needed: this would normally be when the display surface is not clear, (i.e. when the 'display surface empty' entry in the workstation state list is NOTEMPTY). The entry 'display surface empty' in the workstation state list is set to NOTEMPTY if output is sent to the device. It may be set to NOTEMPTY even if output does not appear on the display surface (for example, a GDP primitive which has been clipped at the device to non-existence).

Both capabilities for clearing the display surface are available to the user through the function **CLEAR WORKSTATION**. The second capability is also used in **UPDATE WORKSTATION** and **REDRAW ALL SEGMENTS ON WORKSTATION**.

Workstations**4.5.5 Elimination of primitives outside segments**

Elimination of primitives outside segments occurs in the following situations:

- a) if the following GKS functions are invoked:

CLEAR WORKSTATION

REDRAW ALL SEGMENTS ON WORKSTATION

UPDATE WORKSTATION

if the parameter update regeneration flag is PERFORM and if 'new frame action necessary at update' in the workstation state list is YES;

SET DEFERRAL STATE

if 'implicit regeneration mode' is ALLOWED and 'new frame action necessary at update' is YES;

- b) if an implicit regeneration is made necessary (see 4.5.3) and 'implicit regeneration mode' is ALLOWED;

- c) if any of the above situations occurs as a result of INTERPRET ITEM.

4.5.6 Sending messages to a workstation

The MESSAGE function allows a character string to be sent to a workstation. The application program has no control over the position and appearance of the character string and an implementation is allowed to place the string on a device distinct from, but associated with, the workstation. The rules to be followed by an implementation are stated in 5.2.

4.6 Coordinate systems and transformations

4.6.1 Normalization transformations

In GKS, the application programmer can compose his graphical picture from separate parts each of which, conceptually, is defined with its own world coordinate system (WC). The relative positioning of the separate parts is defined by having a single normalized device coordinate space (NDC) onto which all the defined world coordinate systems are mapped. A set of normalization transformations define the mappings from the world coordinate systems onto the single normalized device coordinate space, which can be regarded as a workstation independent abstract viewing surface. This normalized picture can be stored and manipulated via the segment mechanism; it can also be stored on a metafile.

For output, a single normalization transformation is current at any one time and this is used to transform world coordinates specified, for example in output primitives and geometric attributes, into normalized device coordinates.

A normalization transformation is specified by defining the limits of an area in the world coordinate system (window) which is to be mapped onto a specified area of the normalized device coordinate space (viewport). Window and viewport limits specify rectangles parallel to the coordinate axes in WC and NDC. The rectangles include their boundaries. The normalization transformation performs a mapping from WC onto NDC that includes translation and differential scaling with positive scale factors for the two axes.

Although NDC space conceptually extends to infinity, the part of NDC space in which the viewport needs to be located and that can be viewed at a workstation is the closed range $[0,1] \times [0,1]$. In addition, an implementation may support only a restricted range of NDCs. However, this range is always sufficiently greater than the $[0,1] \times [0,1]$ square that useful effects of INSERT SEGMENT can be achieved. In particular, NDCs in the range $[-7,7] \times [-7,7]$ are always handled.

Each normalization transformation is identified by a transformation number which is an integer between 0 and an implementation dependent value n which can be inquired from the GKS state list. The normalization transformation with transformation number 0 is the unity transformation which maps $[0,1] \times [0,1]$ in world coordinates to $[0,1] \times [0,1]$ in normalized device coordinates. It cannot be changed.

Initially, all other normalization transformations are set to a default transformation which is the same as transformation number 0. Different transformations can be specified at any time when GKS is open. Since GKS provides a number of different normalization transformations, it is possible for the application program to specify them prior to outputting the graphical picture. The separate parts of the picture are output by selecting a particular normalization transformation before outputting the associated graphical primitives. However, specifying a normalization transformation, while the graphical output is taking place, is allowed.

A normalization transformation may be selected by SELECT NORMALIZATION TRANSFORMATION, and it will be used for all output until another is selected. By default, normalization transformation 0 is selected.

4.6.2 Clipping

The viewport of a particular normalization transformation is used to define a clipping rectangle, as well as, with the window, specifying the normalization transformation. When the viewport of the current normalization transformation is set or when a normalization transformation is selected, the 'clipping rectangle' entry in the GKS state list is set to the resulting viewport of the current normalization transformation. Clipping to this clipping rectangle can either be enabled or disabled. There is a single global switch (the clipping indicator) which defines whether or not the clipping rectangle is to be used for clipping.

Clipping does not take place when the normalization transformation is performed but is delayed until the output primitives are to be displayed on the display surface of a workstation. Output primitives stored in segments have their coordinates transformed to NDC and the associated clipping rectangle is stored with the primitives. The INSERT SEGMENT function allows the clipping rectangle in the GKS state list to replace the clipping rectangle, stored with an output primitive when the segment was defined.

Primitives sent to a workstation of category MO are not clipped.

4.6.3 Workstation transformations

The normalized device coordinate space can be regarded as a workstation independent abstract viewing surface. Each open workstation can select independently some part of the NDC space in the range $[0,1] \times [0,1]$ to be displayed somewhere on the workstation display surface. A particular workstation transformation is a mapping from NDC space onto the device coordinates (DC) for that workstation.

The units of device coordinates are metres on a device capable of producing a precisely scaled image (for example, on most plotters) and appropriate workstation dependent units otherwise (for example, on a display unit with unknown monitor size). In either case the device coordinate system maps onto the display space in the following way:

- a) the DC origin is at the bottom left corner of the display space;
- b) the device coordinate units are related to the display space in such a way that a square in device coordinates appears as a square on the display surface (this is trivially true if device coordinate units are metres);
- c) x and y increase to the right and upwards respectively.

On some devices, device coordinate units do not coincide with addressable units, for example if the addressable units do not satisfy the above conditions.

The size of the display space in device coordinate units is recorded in the workstation description table.

The workstation transformation is a uniform mapping from NDC onto DC and thus performs translation and *equal* scaling with a positive scale factor for the two axes. Thus picture composition can be achieved using the normalization transformations whereas the workstation transformation allows different aspects of the composed picture to be viewed on different workstations. For example, a drawing could be output to a plotter at the correct scale and simultaneously some part of the drawing could be displayed on the full display surface of an interactive terminal.

The workstation transformation can be specified at any time after the workstation has been opened. However, actually changing the workstation transformation may cause an implicit regeneration of the picture.

A workstation transformation is specified by defining the limits of an area in the normalized device coordinate system within the range $[0,1] \times [0,1]$ (workstation window) which is to be mapped onto a specified area of the device coordinate space (workstation viewport). Workstation window and workstation viewport limits specify rectangles parallel to the coordinate axes in NDC and DC. The rectangles include their boundaries. To ensure that no output outside the workstation window is displayed, GKS clips at the workstation window boundaries, and this clipping cannot be disabled. As the workstation window is defined somewhere in the NDC range $[0,1] \times [0,1]$, this ensures that the only part of NDC space that can be viewed on any workstation lies in the range $[0,1] \times [0,1]$. If the workstation window and workstation viewport have different aspect ratios, the scaling specified would be different on each axis if the workstation window was mapped onto the workstation viewport in its entirety. To ensure equal scaling on each axis, the workstation transformation maps the workstation window onto the largest rectangle that can fit within the workstation viewport such that:

- d) aspect ratio is preserved;
- e) the lower left-hand corner of the workstation window is mapped to the lower left-hand corner of the workstation viewport.

Thus, space is left unused at the top or right side of the workstation viewport if the aspect ratios of the workstation window and workstation viewport are different.

All workstation transformations are set by default to map NDC space $[0,1] \times [0,1]$ onto the whole of the workstation display space. If the display space is not square, the same rules as above apply to achieve equal scaling on each axis.

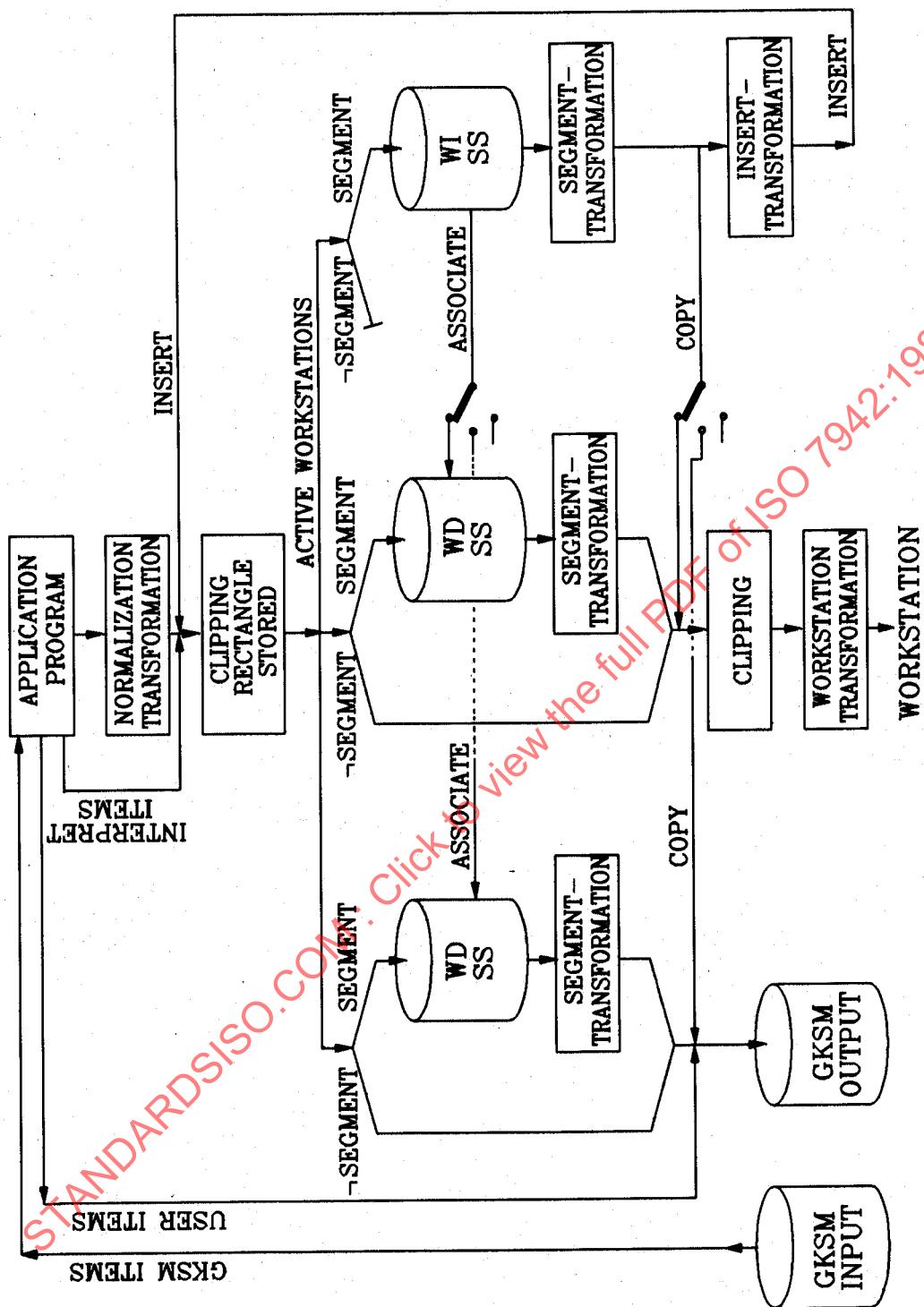


Figure 9 - Data flow chart for graphical output in GKS

Workstation transformations can be changed by SET WORKSTATION WINDOW or SET WORKSTATION VIEWPORT. As a specification of the workstation transformation may be deferred (see 4.5.3), these two functions only set the 'requested workstation window' and 'requested workstation viewport' entries in the workstation state list. The 'current workstation window' and 'current workstation viewport' entries continue to hold the previously set transformation parameters. When the display is updated, the current values are set to the requested values.

A complete data flow chart for graphical output is given in figure 9. It should be noted that all three coordinate systems (WC, NDC and DC) are two dimensional Cartesian coordinate systems.

4.6.4 Transformation of locator input

The application programmer requires LOCATOR input to define a position in the most appropriate world coordinate system currently defined by the set of normalization transformations.

This is achieved by first transforming the input data from DC to NDC by the inverse workstation transformation which is in effect when LOCATOR input is generated. LOCATOR input can only be obtained from positions within the part of the current workstation viewport into which the current workstation window is mapped (note that this is a subset of the workstation viewport whenever the aspect ratio of the workstation viewport and workstation window differ). Thus, LOCATOR input always defines a position in the NDC range $[0,1] \times [0,1]$.

To return to the application program a position in world coordinates, the position in NDC space needs to be transformed from NDC to WC by the inverse of one of the normalization transformations. Each normalization transformation has associated with it a viewport input priority which is only relevant to LOCATOR and STROKE input. Normalization transformations are ordered in a list defined by the viewport input priority. At GKS initialisation, an implementation defined number of normalization transformations are initialised to have window and viewport set to the unit square and their viewport input priorities are set relative to the transformation number with transformation number 0 given the highest priority, transformation number 1 the next highest and so on. Changing the viewport input priority of any normalization transformation is allowed at any time.

The LOCATOR input position in NDC space is compared with the viewports of the normalization transformations, to find the normalization transformation with the viewport which has the highest viewport input priority and contains the LOCATOR position. The LOCATOR position is transformed by the inverse of this normalization transformation to the associated WC. This LOCATOR position is returned to the application program in WC together with the number of the normalization transformation used.

As transformation number 0 is the unity transformation with viewport $[0,1] \times [0,1]$ and cannot be changed, this ensures that LOCATOR input is always within at least one viewport. A data flow chart for LOCATOR input is given in figure 10.

As transformation number 0 is given the highest viewport input priority initially, LOCATOR input is effectively returned in WC equivalent to NDC until a normalization transformation is defined with a viewport input priority greater than that of transformation number 0. If a normalization transformation is no longer required for mapping LOCATOR input back to WC, it can effectively be hidden by reassigning it a viewport input priority lower than transformation number 0.

Changing the viewport input priority of transformation number 0 is allowed.

In an event report, generated by a LOCATOR device in EVENT mode, the DC position is transformed to the appropriate WC position before the event report is placed on the input queue. These transformations may be performed while the normalization and workstation transformations are being changed; thus, there is a race condition. The implementation has therefore to treat the transformations as resources to be allocated and deallocated between the competing processes.

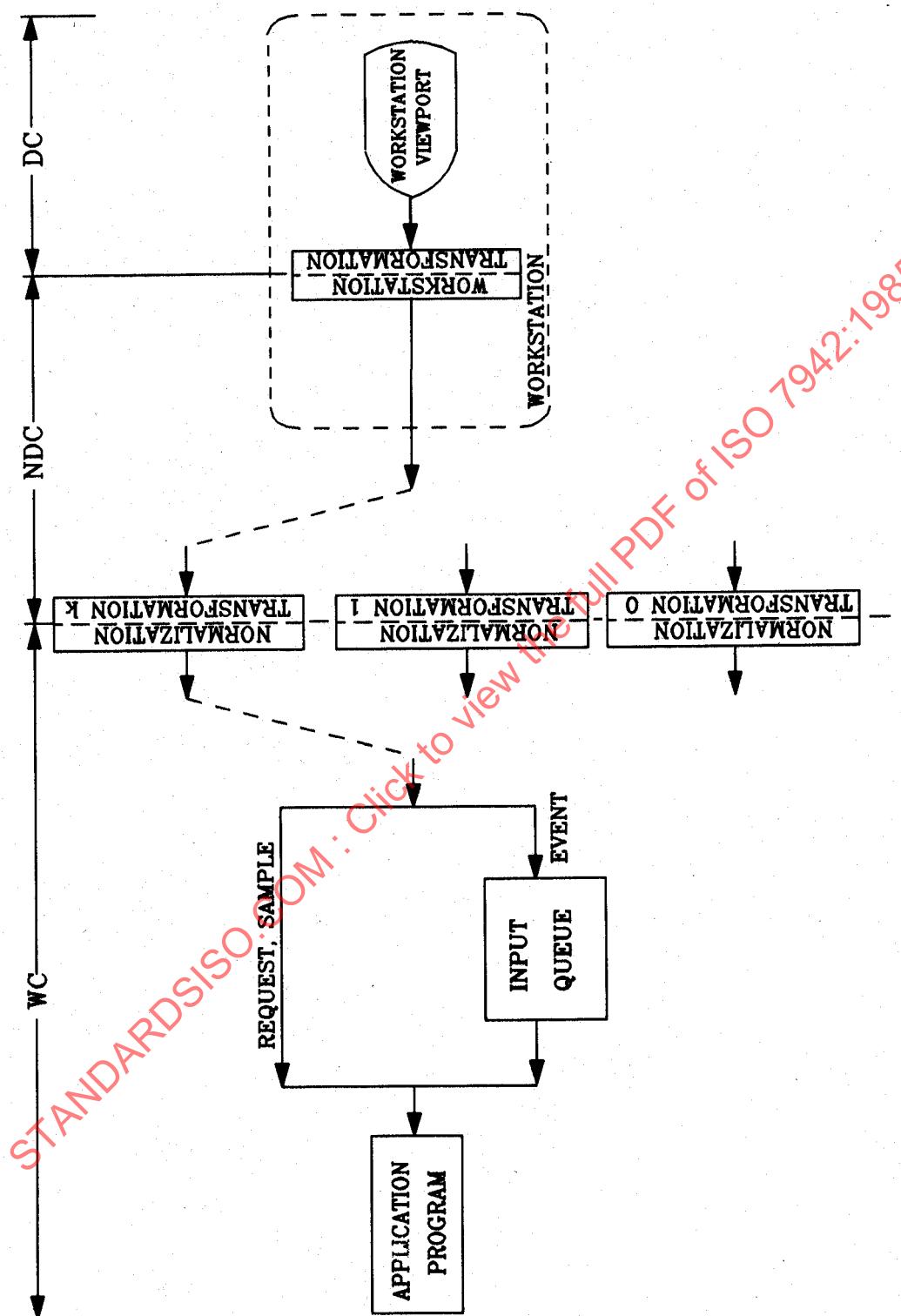


Figure 10 - Data flow chart for locator input

Between placing on the input queue and the execution of AWAIT EVENT which removes the LOCATOR position from the queue, it is possible for the normalization transformation and the workstation transformation to be changed by the application program. To ensure that the DC position located is equivalent to the WC position retrieved from the input queue, it is advisable for the application program not to change a transformation while a LOCATOR is in EVENT mode.

4.6.5 Transformation of stroke input

Similar considerations apply to transformation of STROKE input as apply to LOCATOR input, with the complication that more than one point is involved.

When each point of a stroke is generated, the coordinates of the point are transformed from DC to NDC by the inverse workstation transformation then in effect. STROKE input can only be obtained from positions within the part of the current workstation viewport into which the current workstation window is mapped (analogous to LOCATOR input). Thus STROKE input always consists of points in the NDC range $[0,1] \times [0,1]$.

To return to the application program points in world coordinates, the points in NDC space need to be transformed from NDC to WC by the inverse of one of the normalization transformations. The STROKE points in NDC space are compared with the viewports of the normalization transformations, to find the normalization transformation with the viewport which has the highest viewport input priority and contains all of the points. The STROKE points are then transformed by the inverse of this normalization transformation and returned to the application program in WC together with the number of the normalization transformation used.

If the STROKE device is in SAMPLE mode, the normalization transformation used may vary between successive samples.

In EVENT mode, there is a similar race condition to that applying to LOCATOR input. Between placing an event report on the input queue and the execution of AWAIT EVENT which removes the STROKE event from the queue, it is possible for the normalization transformation and the workstation transformation to be changed by the application program. To ensure that the DC points input by the operator are equivalent to the WC points retrieved from the input queue, it is advisable for the application program not to change transformations while a STROKE device is in EVENT mode.

4.7 Segments

4.7.1 Introduction to segments

In GKS, graphical output primitives may be grouped in segments as well as being created outside segments. Each segment is identified by a unique, application specified segment name. Segments may be

- a) transformed;
- b) made visible or invisible;
- c) highlighted;
- d) ordered front to back, which impacts overlapping primitives;
- e) made detectable or undetectable;
- f) deleted;
- g) renamed;
- h) inserted into the open segment or into the stream of primitives outside segments (see 4.7.6).

Only primitives contained inside segments are affected by these operations. The application program has no access to primitives outside segments once they have been created.

Every primitive within a segment has an attribute **PICK IDENTIFIER** which establishes a second level of naming. The sole function of the **PICK IDENTIFIER** is the identification of primitives; it cannot be used for manipulations. This level of naming is provided in GKS to reduce the segment overhead for applications where a great number of picture parts need to be distinguished for input but the need for manipulation is less important.

Whereas segment names are unique, the same value for **PICK IDENTIFIER** can be assigned arbitrarily to single output primitives or groups of output primitives within segments, as illustrated in the following sequence of functions:

```

SET PICK IDENTIFIER(4);
CREATE SEGMENT (1);
  Output functions;
SET PICK IDENTIFIER (2);
  Output functions;
CLOSE SEGMENT;
  Output functions;

SET PICK IDENTIFIER (5);
  Output functions;
CREATE SEGMENT (2);
  Output functions;
SET PICK IDENTIFIER (3);
  Output functions;
CLOSE SEGMENT;

```

{segment = 1, PICK IDENTIFIER = 4}

{segment = 1, PICK IDENTIFIER = 2}

{primitives not pickable}

{PICK IDENTIFIER = 2}

{primitives not pickable}

{PICK IDENTIFIER = 5}

{segment = 2, PICK IDENTIFIER = 5}

{segment = 2, PICK IDENTIFIER = 3}

After a segment is closed, primitives in it cannot be modified nor can primitives be added to or deleted from the segment. No function is provided to extend a segment after it has been closed. Clipping rectangles and primitive attributes (geometric attributes, attributes controlling non-geometric aspects, and **PICK IDENTIFIER**) are stored along with primitives in segment storage. Geometrical transformations, changes of the segment attributes and changes of the workstation specific bundle and colour tables referenced from within a segment are possible. All values describing the state of a segment (i.e. name, segment attributes, and workstations active at creation time) are stored in a segment state list that GKS keeps during a segment's lifetime.

Each segment is stored on all workstations active at the time the segment is created (**CREATE SEGMENT**). It can be deleted on all workstations by the **DELETE SEGMENT** function. It can be deleted on a specific workstation by the **DELETE SEGMENT FROM WORKSTATION** function. All segments stored on a

Segments

specific workstation can be deleted from it by the CLEAR WORKSTATION function.

Segment storage on an OUTPUT or OUTIN workstation is referred to as Workstation Dependent Segment Storage (WDSS). GKS provides a second segment storage system for workstation independent storage of pictures at run time, Workstation Independent Segment Storage (WISS: see 4.7.5 and 4.7.6). Segments cannot be moved from WDSS to another workstation, but from WISS they can.

Segments have a unique name across all segment storage. A GKS implementation provides a large number of available segment names (for example 32 000).

4.7.2 Segment attributes

Segment attributes affect all the primitives in a segment. The segment attributes are:

- a) SEGMENT TRANSFORMATION: (see 4.7.3);
- b) VISIBILITY: a segment is either displayed or not;
- c) HIGHLIGHTING: a visible segment is either highlighted or not;
- d) SEGMENT PRIORITY: if parts of segments (for example, FILL AREA, CELL ARRAY) overlap, the segment with the higher priority will be preferred, both when the segments are displayed and when they are picked;
- e) DETECTABILITY: a segment can either be selected by a pick input device or it cannot.

The segment attributes are unique for each segment and do not vary on different workstations. The default segment attributes (identity transformation, visible, not highlighted, priority 0, undetectable) are assigned to a segment when it is opened. The segment attributes of any segment in existence, including the open segment, may be changed. The binding of segment attributes is shown in figure 2 (see 4.4).

Segment priority affects segments being displayed (i.e. performing segment and workstation transformations, including clipping, for each primitive of the segment). If parts of primitives overlap with others of a visible segment with higher priority, these parts may be invisible. Whether a workstation supports this feature is indicated in the workstation description table. This feature is intended to address appropriate hardware capabilities only. It is not intended to mandate shielding on non-raster displays. When primitives within a segment overlap, the implementation determines the appearance of the overlapped parts. The actual effect is listed in the documentation accompanying an implementation.

When primitives of segments overlapping each other are picked, the segment with higher priority is selected. When primitives of the same segment or of segments with equal priority overlap, the results are implementation dependent.

4.7.3 Segment transformations

Segment transformations are a mapping from NDC onto NDC. They perform translation, scaling and rotation.

Segment transformations are characterized by:

- a) segment name;
- b) transformation matrix.

The transformation matrix is a 2×3 matrix, consisting of a 2×2 scaling and rotation portion and a 2×1 translation portion. Utility functions (EVALUATE TRANSFORMATION MATRIX, ACCUMULATE TRANSFORMATION MATRIX) are available to the application program for setting up the transformation matrices. A fixed point for scaling and rotation, and a shift vector in either WC or NDC may be specified. In the former case, the WC values of the fixed point and shift vector are first transformed using the current normalization transformation.

The segment transformation takes place after the normalization transformation, but before any clipping.

The Graphical Kernel System**Segments**

A segment transformation, specified by the SET SEGMENT TRANSFORMATION function, is not actually performed in the segment storage but only saved in the segment state list. Every time the segment is redrawn this segment transformation is applied before clipping. Successive SET SEGMENT TRANSFORMATION function calls for the same segment are not accumulated; each succeeding transformation matrix replaces its predecessor. By calling SET SEGMENT TRANSFORMATION with an identity transformation matrix, the original segment can be obtained without loss of information.

Locator input data is not affected by any segment transformation.

4.7.4 Clipping and WDSS

Clipping takes place after the normalization and segment transformations have been applied. Each primitive is clipped against the clipping rectangle associated with the primitive when it was put into the segment. If the 'clipping indicator' entry in the GKS state list was CLIP when this occurred, the clipping rectangle associated with the primitive is the clipping rectangle in the GKS state list at that time, otherwise it is $[0,1] \times [0,1]$ in NDC.

Clipping rectangles are not transformed by the segment transformation and thus clipping is always performed against a rectangle whose edges are parallel to the NDC space coordinate axes.

4.7.5 Workstation Independent Segment Storage

One Workstation Independent Segment Storage (WISS) is defined, where segments can be stored for use by the COPY SEGMENT TO WORKSTATION, ASSOCIATE SEGMENT WITH WORKSTATION, and INSERT SEGMENT functions, as described in 4.7.6. None of these functions modify the contents of the segments to which they are applied. Only one WISS is permitted in a GKS implementation.

The ability to manipulate segments requires the storage of all segments so that they can be reused on whatever workstations are active when they are created. By contrast, primitives outside segments cannot be reused. GKS does not define the manner and format of the storage of segments as long as all segment operations can be performed and as long as the correct clipping is applied to each primitive.

The point in the viewing pipeline at which primitives are recorded in the WISS immediately follows the point at which data are distributed to workstations, as shown in figure 9 (see 4.6). For this reason the WISS is treated like a workstation (of category WISS), as far as control functions are concerned. Primitives are transformed from world coordinates to NDC before they are distributed to workstations.

Whether the WISS is realized within the GKS nucleus or by utilizing the capabilities of an appropriate physical workstation or other input/output device is left to the implementor.

4.7.6 WISS functions and clipping

Just as in other workstations, a segment is stored in WISS if WISS is active when the segment is created and a clipping rectangle is associated with each primitive. If the 'clipping indicator' entry in the GKS state list is CLIP when this occurs, the clipping rectangle associated with the primitive is the clipping rectangle in the GKS state list; otherwise it is $[0,1] \times [0,1]$ in NDC.

COPY SEGMENT TO WORKSTATION copies primitives from a segment in WISS to be output on the specified workstation. The function takes a copy of each primitive and its associated clipping rectangle from a segment in the WISS, transforms the primitives by the segment transformation and puts the clipping rectangles and the transformed primitives into the viewing pipeline at the place equivalent to the one where the information left (but it is sent only to the workstation specified in the invocation), as shown in figure 9 (see 4.6). This function cannot be invoked when a segment is open. By contrast with ASSOCIATE SEGMENT WITH WORKSTATION, this function does not cause a segment to exist on the specified workstation.

ASSOCIATE SEGMENT WITH WORKSTATION copies the segment to the WDSS of the specified workstation in the same way as if the workstation were active when the segment was created. Clipping rectangles are copied unchanged. This function cannot be invoked when a segment is open.

Segments

INSERT SEGMENT allows previously stored primitives (in segments in WISS) to be transformed and again placed into the stream of output primitives. INSERT SEGMENT reads the primitives from a segment in the WISS, applies the segment transformation followed by the insert transformation and then inserts them into the viewing pipeline at the point before data are distributed to the workstations. All clipping rectangles in the inserted segment are ignored. Each primitive processed is assigned a new clipping rectangle, which is the clipping rectangle in the GKS state list if the 'clipping indicator' entry in the GKS state list is CLIP and is $[0,1] \times [0,1]$ if the 'clipping indicator' entry in the GKS state list is NOCLIP. In other words, inserted primitives are assigned clipping rectangles in the same manner as directly created primitives. Thus, all primitives processed by a single invocation of INSERT SEGMENT receive the same clipping rectangle. Inserted information may re-enter the WISS, if the WISS is active and a segment is open.

An invocation of INSERT SEGMENT has no effect on output primitives passing through the pipeline before or after the invocation. The INSERT SEGMENT function can be used when a segment is open but the open segment cannot, itself, be inserted.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

4.8 Graphical input

4.8.1 Introduction to logical input devices

An application program obtains graphical input from an operator by controlling the activity of one or more logical input devices, which deliver logical input values to the program.

A logical input device is identified by a workstation identifier, an input class and a device number.

The workstation identifier identifies an open workstation, belonging to category INPUT or OUTIN, of which the logical input device is a part. The logical input device is implemented in terms of a physical input device or devices present on the workstation.

The input class determines the type of logical input value that the logical input device delivers. The six input classes and the logical input values they provide are:

- a) LOCATOR: a position in world coordinates and a normalization transformation number.
- b) STROKE: a sequence of points in world coordinates and a normalization transformation number.
- c) VALUATOR: a real number.
- d) CHOICE: a CHOICE status and a non-negative integer which represents a selection from a number of choices.
- e) PICK: a PICK status, a segment name and a pick identifier. Primitives outside segments cannot be picked.
- f) STRING: a character string

The device number distinguishes different logical input devices of the same class on the same workstation.

A workstation of category INPUT or OUTIN contains at least one logical input device. A GKS implementation providing at least one OUTIN workstation always provides an operator with at least one logical input device in each class defined at the level (see 4.10.3) of the implementation.

Each logical input device can be operated in three modes, called operating modes. At any time a logical input device is in one, and only one, of the modes set by the invocation of a function in the group SET <input class> MODE. The three operating modes are REQUEST, SAMPLE and EVENT. Input from devices is obtained in different ways depending on the mode as follows.

- g) REQUEST: A specific invocation of REQUEST <input class> causes an attempt to read a logical input value from a specified logical input device. This can only occur when the logical input device is in REQUEST mode. GKS waits until the input is entered by the operator or a break action is performed by the operator. The break action is dependent on the logical input device and on the implementation. If a break occurs, the logical input value is not valid.

Graphical input**The Graphical Kernel System**

h) **SAMPLE:** A specific invocation of SAMPLE <input class> causes GKS, without waiting for an operator action, to return the current logical input value of a specified logical input device. This can only occur when the logical input device is in SAMPLE mode.

i) **EVENT:** GKS maintains one input queue containing temporally ordered event reports. An event report contains the identification of a logical input device and a logical input value from that device. Event reports are generated asynchronously, by operator action only, from input devices in EVENT mode.

The application program can remove the oldest event report from the queue and examine its contents. The application can also flush from the queue all event reports from a specified logical input device.

A specific logical input device is said to be taking part in an interaction during the whole time that it is in SAMPLE or EVENT mode, but, when it is in REQUEST mode, only during the execution of a REQUEST <input class> function for that device. Alternatively, an interaction with the device may be said to be underway during that time. Many devices on many workstations may be taking part in interactions simultaneously.

4.8.2 Logical input device model

To describe the precise actions of the logical input devices, it is first necessary to describe their relationship with physical input devices, using the concept of measures and triggers.

A logical input device contains a measure, a trigger, an initial value, a prompt and echo type, an echo area and a data record containing details about the prompt and echo type. A logical input device's measure and trigger are parts of the implementation of the workstation containing the logical input device. Initial value, prompt and echo type, echo area, and data record can be supplied by the application program.

The measure of a logical input device is a value determined by one or more physical input devices together with a 'measure mapping'. More than one measure can simultaneously be determined by a single physical device; a separate measure mapping applies for each measure. A measure can be seen as the state of an independent, active process (a measure process). Each state corresponds exactly with a logical input value.

The current state of the measure process (i.e. the device's measure) is available to GKS as a logical input value. Whenever the device is taking part in an interaction, the measure process is in existence. Under other conditions, this process does not exist.

When a measure process comes into existence, the data in the workstation state list entry for the logical input device are examined. The initial value is checked for legality according to input class dependent rules explained in 4.8.4. If the check succeeds, the initial value is used as the current state of the process; otherwise a value dependent on the logical input device is used. Next, a prompt is output to indicate that the device is ready for use. (The prompt technique used by a device is determined by its prompt and echo type, which may be selected by calling the appropriate INITIALISE function.) Creation of the measure process is then complete.

While the measure process is in existence, if echoing is required, output indicating the current state of the measure process is provided to the operator.

The trigger of a logical input device is a physical input device or a set of them together with a 'trigger mapping'. The operator can use a trigger to indicate significant moments in time. At these moments, the trigger is said to 'fire'. A single operator action (for example, pressing a button or a light pen tip switch) causes the firing of not more than one trigger. Several logical input devices can refer to the same trigger.

A trigger can be seen as an independent, active process (a trigger process) that sends a message to one or more recipients when it fires. A logical input device is a recipient of its trigger if there is a pending REQUEST for it or if it is in EVENT mode. Both of these conditions can be true simultaneously for different logical input devices. If there is at least one recipient for a trigger, the trigger process is in existence. Under other conditions this process does not exist.

If a REQUEST for a logical input device is pending when the device's trigger fires, the measure of that device is used to satisfy the REQUEST. If one or more devices containing a given trigger are in EVENT mode when the trigger fires, the identifications of those devices and their measure values are passed to the input queue mechanism as separate event reports. The input queue mechanism is described in detail in 4.8.5.

When a trigger firing succeeds in satisfying a REQUEST, or adding event records to the input queue, GKS provides to the operator an acknowledgement the form of which depends on the implementation of the logical input device. The acknowledgement is not controllable by a GKS function.

4.8.3 Operating modes of logical input devices

The mode of a logical input device may be changed by invoking the appropriate SET <input class> MODE function.

After an invocation of SET <input class> MODE with the parameter REQUEST, no measure process exists for the specified device and the device's identifier is not on its trigger's list of recipients. After an invocation with the parameter EVENT, a newly initiated measure process is in existence for the specified device and the device's identifier is on its trigger's list of recipients.

After an invocation with the parameter SAMPLE, a newly initiated measure process is in existence for the specified device, but the device's identifier is not on its trigger's list of recipients.

Initially a logical input device is in REQUEST mode.

While a device is in REQUEST mode, a logical input value may be obtained by invoking the appropriate REQUEST <device class> function. The effects of doing so are as follows.

- a) To create a measure process for the specified device and to set its value to the initial value from the workstation state list as described in 4.8.4. Echoing is performed by the measure process if echoing is on for the specified device.
- b) To add the device's identifier to its trigger's list of recipients. If the list was previously empty, the trigger process is started.
- c) To suspend GKS until the trigger of the specified device fires, or the operator invokes the break facility.
- d) If the trigger fired, to set the logical input value to the current state of the measure process.
- e) To destroy the measure process.
- f) To remove the device's identifier from its trigger's list of recipients. If this list becomes empty, the trigger process is destroyed.
- g) If the trigger fired, to return the logical input value and the status OK, otherwise to return the status NONE.

While a logical input device is in SAMPLE mode, a logical input value may be obtained by invoking the appropriate SAMPLE <input class> function. The effect of doing so is to set the logical input value to the current state of the measure process without waiting for a trigger firing.

While a logical input device is in EVENT mode, logical input values are added as event reports to the input queue, and may be obtained in sequence by invoking AWAIT EVENT, and then invoking the appropriate GET <device class> function. (More details of the input queue are given in 4.8.5.)

Figure 11 shows the effect of every operating mode on the measure and trigger of a logical input device.

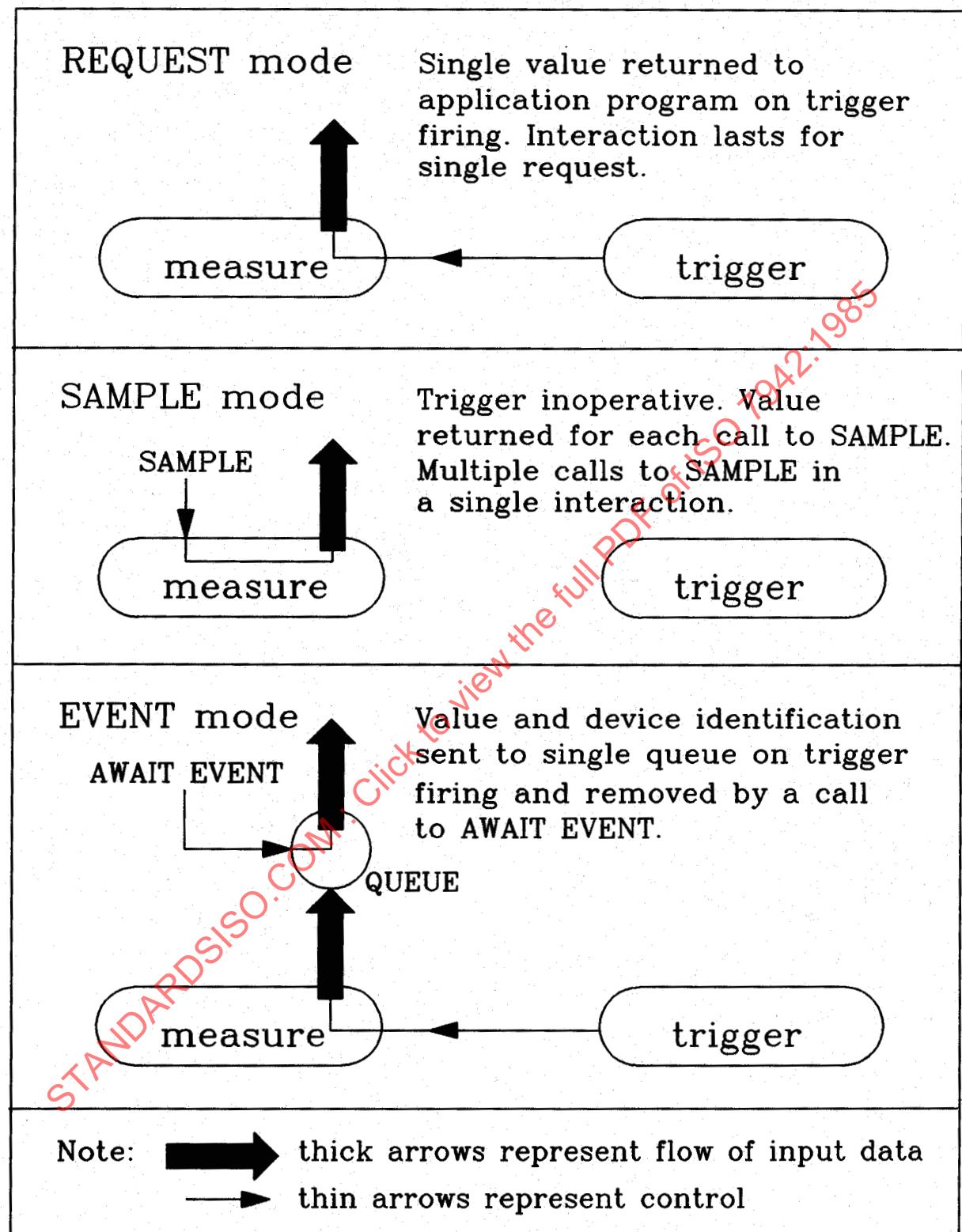


Figure 11 - The relationship between the measure and trigger for different operating modes, illustrated for a single logical input device

4.8.4 Measures of each input class

Details of the measures of logical input devices of different classes are as follows.

A LOCATOR measure consists of a position in world coordinates and a normalization transformation number. Let P and N denote these values.

Then P transformed to NDC by N lies within the workstation window. Also P lies within the window specified by N and, in addition, P transformed to NDC by N lies outside all viewports of higher priority than N.

A STROKE measure consists of a sequence of points in world coordinates and a normalization transformation number. Let P_1, \dots, P_m be the points and N be the transformation number.

Then P_i ($1 \leq i \leq m$) transformed to NDC by N lie within the workstation window. Also P_i ($1 \leq i \leq m$) lie within the window specified by N and, in addition, there is no viewport of higher priority than N containing all the points P_i transformed to NDC by N. Thus, N may change as points are added to the stroke.

Any invocation of SET WINDOW, SET VIEWPORT or SET VIEWPORT INPUT PRIORITY can cause a change in P (any P_i for STROKE) or N or both, but the above conditions hold for the new values.

The rules imply that no normalization transformation having priority less than that of transformation 0 can appear in the state of a LOCATOR or STROKE measure process (with the default settings of the viewport input priorities, normalization transformation 0 has the highest).

A VALUATOR measure provides logical input values that are real numbers. Each value lies between (possibly including) minimum and maximum values, which are in the data record in the workstation state list.

A CHOICE measure provides logical input values whose components are OK or NOCHOICE and an integer in the range 1 to a device dependent maximum specified in the workstation description table. If the first component is OK, then the integer is valid. CHOICE input typically occurs when an operator presses a button (the numeric identifier of the button determines the measure) or combination of buttons (the measure is derived from the combination of buttons pressed).

A PICK measure provides logical input values whose components are OK or NOPICK, segment name and a pick identifier. If the first component is OK, then the segment name and pick identifier obey the following rules:

- a) The segment exists and has VISIBILITY on and DETECTABILITY on.
- b) The segment is present on the workstation containing the PICK device.
- c) The pick identifier is the pick identifier attribute of at least one output primitive in the segment. This is tested using the clipping parameters in effect when the primitive arrived at the workstation. Part of the primitive lies within the workstation window and, if clipping was on, part also lies within the primitive's (normalization) clipping rectangle. Further, the primitive is not completely overlapped by primitives in a segment of higher priority.

The PICK initial value is tested against the above rules whenever the PICK measure process is initiated. If the rules are not satisfied, the process state is set to NOPICK.

For certain workstations, testing rule c) when the PICK measure process is initiated, may be very expensive. In such cases, only rules a) and b) need be tested.

The PICK measure is defined using the properties of output primitives and segments. PICK devices exist only on workstations of category OUTIN.

A STRING measure provides logical input values which are character strings up to a device dependent maximum length specified by the buffer size value in the data record in the workstation state list.

4.8.5 Input queue and current event report

The input queue contains zero or more event reports. Event reports contain pairs of values (device identifier, logical input value) resulting from trigger firings. Event reports can be added to the input queue when logical input devices in EVENT mode are triggered by the operator. Events can be removed from the input queue by invocations of AWAIT EVENT, FLUSH DEVICE EVENTS and CLOSE WORKSTATION.

When a trigger that is part of one or more logical input devices in EVENT mode fires, the resulting event reports are entered into the queue and marked as a group of simultaneous event reports. An event report for each device is added to the input queue, if and only if there is room for the whole group of simultaneous event reports.

The order of reports within a group of simultaneous event reports is undefined.

If there is not room in the queue for all event reports when a trigger fires, input queue overflow has occurred. Input queue overflow is not reported to the application program immediately. It is reported via the error mechanism during the next invocation of any GKS function that can remove event reports from the input queue (AWAIT EVENT, FLUSH DEVICE EVENTS, and CLOSE WORKSTATION). The input queue has to be emptied before further event reports will be added. Between the detection of input queue overflow and the next time AWAIT EVENT is invoked with the input queue empty, no events are generated by trigger firings and thus no acknowledgements are provided. (This permits the application program to determine how many events were in the queue when overflow occurred by calling AWAIT EVENT with zero timeout.)

When the 'input queue overflow' error is reported, the trigger causing the overflow is indicated by placing into the error state list the identification of any one of the logical input devices using that trigger which was in EVENT mode at the time the overflow was detected.

AWAIT EVENT, if the queue is not empty, removes the first event report after copying the logical input value into the current event report in the GKS state list. The workstation identifier, input class and device number are returned to the application program directly by AWAIT EVENT. If the queue is empty, AWAIT EVENT suspends execution until an event report is queued or until the specified timeout period has elapsed.

The application program may obtain the contents of the current event report by calling the appropriate GET <input class> function.

If, after removing the event report there remain in the queue other reports in the same group of simultaneous events as the removed report, the 'more simultaneous events' entry in the GKS state list is set to MORE. Otherwise it is set to NOMORE.

FLUSH DEVICE EVENTS removes all event reports for a specific device from the input queue. CLOSE WORKSTATION removes from the input queue all event reports for all logical input devices on that workstation.

If the 'more simultaneous events' entry has the value MORE, when either FLUSH DEVICE EVENTS or CLOSE WORKSTATION is invoked, and they remove all the remaining reports in the group of simultaneous event reports at the head of the queue, then the entry is set to NOMORE.

4.8.6 Initialisation of input devices

For each input class, there is an INITIALISE function which can only be called if the logical input device it specifies is in REQUEST mode. These functions provide the following information to a device via the workstation state list (if the INITIALISE function is not called, then default values apply):

- a) An initial value appropriate to the class. If the initial value violates the rules, an error occurs and the workstation state list is unchanged.

The Graphical Kernel System

Graphical input

- b) A prompt and echo type that selects the prompting technique and, if echoing is on, the echoing technique for a logical input device. An implementation dependent prompt and echo type (type 1) is required for all logical input devices. Further prompt and echo types appropriate to each class are defined but not required. These further types are listed with the appropriate INITIALISE function. Prompt and echo types above those are reserved for registration (see 4.1.2). Prompt and echo types less than 0 are device dependent.
- c) An echo area (xmin,xmax,ymin,ymax) in device coordinates. Input device implementations may use the echo area for certain prompt and echo types to display prompts or echoes.
- d) A data record. Some input classes have mandatory control values in the data record. Some prompt and echo types within an input class also have mandatory control values in the data record. These values occupy well defined places in the data record. In any data record used in initialising an input device, values mandatory to the input class, if any, appear first followed by values mandatory to the prompt and echo type if any. Depending on the device and prompt and echo type, the data record may contain other (additional) information.

When a logical input device is REQUESTed, or when it is set to EVENT or SAMPLE mode, its measure is set to the initial value from the workstation state list, unless this is not a valid measure for the device. If it is not a valid measure for the device, the measure is set to a device dependent value, except for PICK devices, for which the measure is set to NOPICK.

Prompt and echo types describe both the prompt, which informs the operator that the device is available, and the echo, which informs the operator of the state of the measure. The functions provided to control input device mode, SET <input class> MODE, also control whether echo is on or off. In addition, an implementation dependent acknowledgement of successful trigger firings is provided.

The items in data records mandatory for each class are: in a STROKE data record, input buffer size in number of points; in a VALUATOR data record, low value and high value; in a STRING data record, input buffer size and initial cursor position. Prompt and echo types which have mandatory values are types 2, 3, 4 and 5 for CHOICE.

STANDARDSISO.COM : Click to view the full file of ISO 7942-1985

4.9 GKS Metafile interface

For the purpose of long-term filing of graphical information, GKS provides an interface to sequential files called GKS Metafiles (GKSMs). They can be used for:

- a) transporting graphical information between systems;
- b) transporting graphical information from one place to another (for example, by means of magnetic tapes);
- c) transporting graphical information from one GKS application to another;
- d) storing accompanying non-graphical information.

The GKSMs behave like workstations. For output and input, several different workstations of the categories MO and MI can be used concurrently. However, some workstation control and inquiry functions are not applicable to these workstations (they are not meaningful). Clause A.5 of annex A gives a complete listing of all GKS functions which affect workstations of category MO and MI.

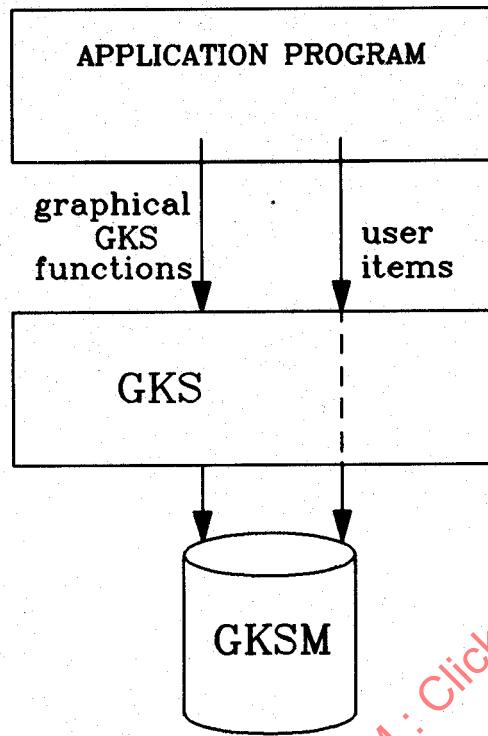
The application program may write data in a metafile using **WRITE ITEM TO GKSM**. After closing an MO workstation the metafile may be opened as an MI workstation.

Three functions, **GET ITEM TYPE FROM GKSM**, **READ ITEM FROM GKSM** and **INTERPRET ITEM** are provided to read and interpret metafiles. These functions assume that a metafile consists of a sequence of items. Each item comprises an item type, an item data record length and an item data record. The item type indicates either that the item contains information that can be interpreted by GKS or that it contains information that was written by an application program (using **WRITE ITEM TO GKSM**). When an MI workstation is opened, the first item in the metafile becomes the 'current item'.

GET ITEM FROM GKSM delivers the item type and item data record length of the current item.

READ ITEM FROM GKSM copies the contents of the item data record of the current item into a data area supplied by the application program and then makes the next item in the metafile the current item.

INTERPRET ITEM takes the contents of a GKSM item data record supplied by the application program (as delivered by **READ ITEM FROM GKSM**) and causes appropriate changes in the set of GKS state variables and generates appropriate graphical output as determined by the metafile specification. The information in metafile item data records can be regarded as falling into classes corresponding to the classes of GKS functions. The interpretation of primitive attribute, clipping rectangle or clipping indicator information causes appropriate changes to entries in the GKS state list. The geometric primitive attribute information, which is expressed in NDC, is transformed by the inverse of the currently selected normalization transformation before being used to set the appropriate entries in the GKS state list. Information corresponding to GKS functions which control a single workstation, but where a workstation is not specified, may be interpreted on all active workstations.


The specification of the format and content of a metafile is not part of this standard. Annex E describes a format which is sufficient for GKS purposes.

In order to preserve consistency of the file contents, the GKSM may be written and read only under GKS control. Figure 12 shows the relationship between the application program, GKS, and the GKSM.

The Graphical Kernel System

GKS Metafile interface

Writing the GKSM

Reading the GKSM

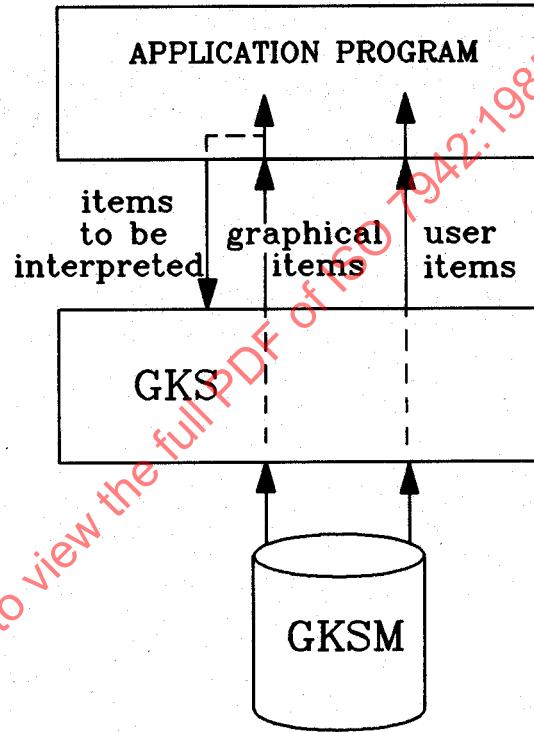


Figure 12 - Relationship between GKS and GKSM

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

GKS levels**4.10 GKS levels****4.10.1 Introduction to levels**

The GKS system is designed to be usable by a wide range of applications, from static plotting to dynamic motion and real time interaction. In addition, many display devices lack features (such as picking) that would require considerable implementation effort to simulate with software. It is therefore desirable to permit GKS implementations that do not include all of the functional capabilities defined in this International Standard.

4.10.2 The level structure

The functional capabilities of GKS can be grouped into the major areas:

- a) output (minimal performance, full performance);
- b) input (no input, REQUEST input, full input);
- c) number of workstations (one workstation, multiple workstations);
- d) attributes (only predefined bundles and individual attribute specifications possible, full bundle concept);
- e) segmentation (none, basic segmentation (without Workstation Independent Segment Storage), full segmentation).

If an arbitrary combination of capabilities were to be considered a valid GKS implementation, an almost unlimited number of different standard dialects would result and program portability, one of the major goals of this International Standard, would not be achieved. Therefore, nine valid levels of the GKS system are defined, in order to address the most common classes of equipment and applications. Each GKS implementation provides precisely the functions of one level. A GKS implementation is invalid if it lies between two defined levels.

The level structure has two independent axes: input and 'all the other functions', summarized as output.

The output level axis has the three possibilities:

- 0: Minimal output;
- 1: Basic segmentation with full output;
- 2: Workstation Independent Segment Storage.

The input level axis has the three possibilities:

- a: No input;
- b: REQUEST input;
- c: Full input.

In GKS, capabilities are expressed by functions and by ranges of parameters.

There are three different types of capability at each level:

- f) An explicitly defined and required capability. Every GKS implementation at a specific level supports the capability at that level.
- g) An explicitly defined and non-required capability. A GKS implementation may support the capability and, if it does, it is implemented according to the explicit function definitions.
- h) A conceptually defined and non-required capability. A GKS implementation may provide the capability. Its implementation follows general rules given by the GKS concepts and functional definitions.

The set of explicitly defined and required capabilities includes:

- i) predefined bundle numbers up to the required minimum;
- j) linetypes 1 to 4;
- k) marker types 1 to 5;
- l) text precision STROKE (output levels 1 and 2);

The Graphical Kernel System**GKS levels**

- m) interior style HOLLOW;
- n) one input device for each input class defined at that level (input levels b and c);
- o) prompt and echo type 1 (input levels b and c).

The set of explicitly defined and non-required capabilities includes:

- p) text precision STROKE (output level 0);
- q) interior style SOLID, PATTERN, HATCH;
- r) transformable patterns;
- s) segment priority (output levels 1 and 2);
- t) prompt and echo types above 1 that are defined (input levels b and c).

The set of conceptually defined and non-required capabilities includes:

- u) linetypes above 4;
- v) marker types above 5;
- w) specific generalized drawing primitives;
- x) prompt and echo types above the defined set (input levels b and c);
- y) specific escape functions.

Explicitly defined and non-required capabilities of a specific level can become explicitly defined and required capabilities in a higher level of GKS, through variations in the ranges of parameters, for example text precision STROKE and metafile workstations. Each GKS level contains precisely those functions that are explicitly defined and required in that level. However, ranges of parameters may contain additional explicitly defined and non-required capabilities and conceptually defined and non-required capabilities.

4.10.3 Level functionality

The facilities making up each of the components of a level are as follows:

- a) Output level 0: Minimal output
 - 1) basic control;
 - 2) all primitives available at least in minimal performance;
 - 3) use of predefined bundles only (no modification to bundles);
 - 4) colour representation modification possible;
 - 5) only one workstation with output capabilities available at a time;
 - 6) metafile workstations not required; if provided, then both input and output are available; if not provided, then metafile functions return appropriate errors;
 - 7) multiple normalization transformations (but a system with normalization transformation 0 and only one settable normalization transformation is allowable);
 - 8) suitable basic inquiries;
 - 9) pixel readback provided (non-pixel devices may report non-processing).

b) Output level 1: Basic segmentation with full output

- 1) all output level 0 capabilities;
- 2) full workstation control;
- 3) full output features;
- 4) full bundle concept;
- 5) multiple workstation concept;
- 6) metafile workstations required;
- 7) multiple settable normalization transformations;
- 8) basic segmentation (no Workstation Independent Segment Storage);
- 9) suitable inquiries.

c) Output level 2: Workstation Independent Segment Storage

- 1) all output level 1 capabilities;
- 2) Workstation Independent Segment Storage.

d) Input level a: No input

- 1) no facilities.

e) Input level b: REQUEST input

- 1) input device initialisation and mode setting functions;
- 2) REQUEST functions on all appropriate devices;
- 3) appropriate logical input devices include PICK if and only if combined with output level 1 capabilities;
- 4) function to set viewport input priority.

f) Input level c: Full input

- 1) all input level b capabilities;
- 2) SAMPLE and EVENT mode input.

Table 1 gives a summary of the functionality of each valid GKS level. Each box contains only those functions added to the previous boxes of the same row and column.

Table 1 - GKS level concept

Output Level	Input Level		
	a	b	c
0	No input, minimal control, only predefined bundles, multiple normalization transformation facilities but minimum settable required is 1, and all output functions; metafile workstations optional.	REQUEST input, mode setting and initialise functions for logical input devices, no PICK, and set viewport input priority	SAMPLE and EVENT input, no PICK.
1	Full output including full bundle concept, multiple workstation concept, basic segmentation (everything except Workstation Independent Segment Storage); metafile workstations required	REQUEST PICK, mode setting and initialise for PICK	SAMPLE and EVENT input for PICK
2	Workstation Independent Segment Storage.		

Embedded in the levels summarized above are variations in the number of possibilities required in the set of explicitly defined and required capabilities. Table 2 exactly identifies the minimum support which is always provided at each level.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

Table 2 - Minimum support required at each level

CAPABILITY	Level									
	0a	0b	0c	1a	1b	1c	2a	2b	2c	
Foreground colours (intensity)	1	1	1	1	1	1	1	1	1	1
Linetypes	4	4	4	4	4	4	4	4	4	4
Linewidths	1	1	1	1	1	1	1	1	1	1
Predefined polyline bundles	5	5	5	5	5	5	5	5	5	5
Settable polyline bundles	-	-	-	20	20	20	20	20	20	20
Marker types	5	5	5	5	5	5	5	5	5	5
Marker sizes	1	1	1	1	1	1	1	1	1	1
Predefined polymarker bundles	5	5	5	5	5	5	5	5	5	5
Settable polymarker bundles	-	-	-	20	20	20	20	20	20	20
Character heights (see note 1)	1	1	1	1	1	1	1	1	1	1
Character expansion factors (see note 1)	1	1	1	1	1	1	1	1	1	1
String precision fonts	1	1	1	1	1	1	1	1	1	1
Character precision fonts	1	1	1	1	1	1	1	1	1	1
Stroke precision fonts	0	0	0	2	2	2	2	2	2	2
Predefined text bundles	2	2	2	6	6	6	6	6	6	6
Settable text bundles	-	-	-	20	20	20	20	20	20	20
Predefined patterns (see note 2)	1	1	1	1	1	1	1	1	1	1
Settable patterns (see notes 2 and 5)	-	-	-	10	10	10	10	10	10	10
Hatch styles (see note 3)	3	3	3	3	3	3	3	3	3	3
Predefined fill area bundles	5	5	5	5	5	5	5	5	5	5
Settable fill area bundles	-	-	-	10	10	10	10	10	10	10
Settable normalization transformations	1	1	1	10	10	10	10	10	10	10
Segment priorities (see note 4)	-	-	-	2	2	2	2	2	2	2
Input classes	-	5	5	-	6	6	-	6	6	
Prompt and echo types per device	-	1	1	-	1	1	-	1	1	
Length of input queue (see note 5)	-	20	-	-	20	-	-	20		
Maximum string buffer size (characters)	-	72	72	-	72	72	-	72	72	
Maximum stroke buffer size (points)	-	64	64	-	64	64	-	64	64	
Workstations of category OUTPUT or OUTIN	1	1	1	1	1	1	1	1	1	1
Workstations of category INPUT or OUTIN	-	1	1	-	1	1	-	1	1	
Workstation Independent Segment Storage	-	-	-	-	-	-	1	1	1	
MO workstations	0	0	0	1	1	1	1	1	1	
MI workstations	0	0	0	1	1	1	1	1	1	

0 indicates explicitly defined and non-required at that level

- indicates not defined at that level

NOTES

- 1 Relevant only for character and string precision text.
- 2 Relevant only for workstation supporting pattern interior style.
- 3 Relevant only for workstation supporting hatch interior style.
- 4 Relevant only for workstation supporting segment priorities.
- 5 Since available resources are finite and entries have variable size, it may not always be possible to achieve the minimum values in a particular application.

4.11 States of GKS and inquiry functions

4.11.1 Description of states

GKS exists in one of five different operating states (see figure 13):

GKCL = GKS closed;
 GKOP = GKS open;
 WSOP = At least one workstation open;
 WSAC = At least one workstation active;
 SGOP = Segment open.

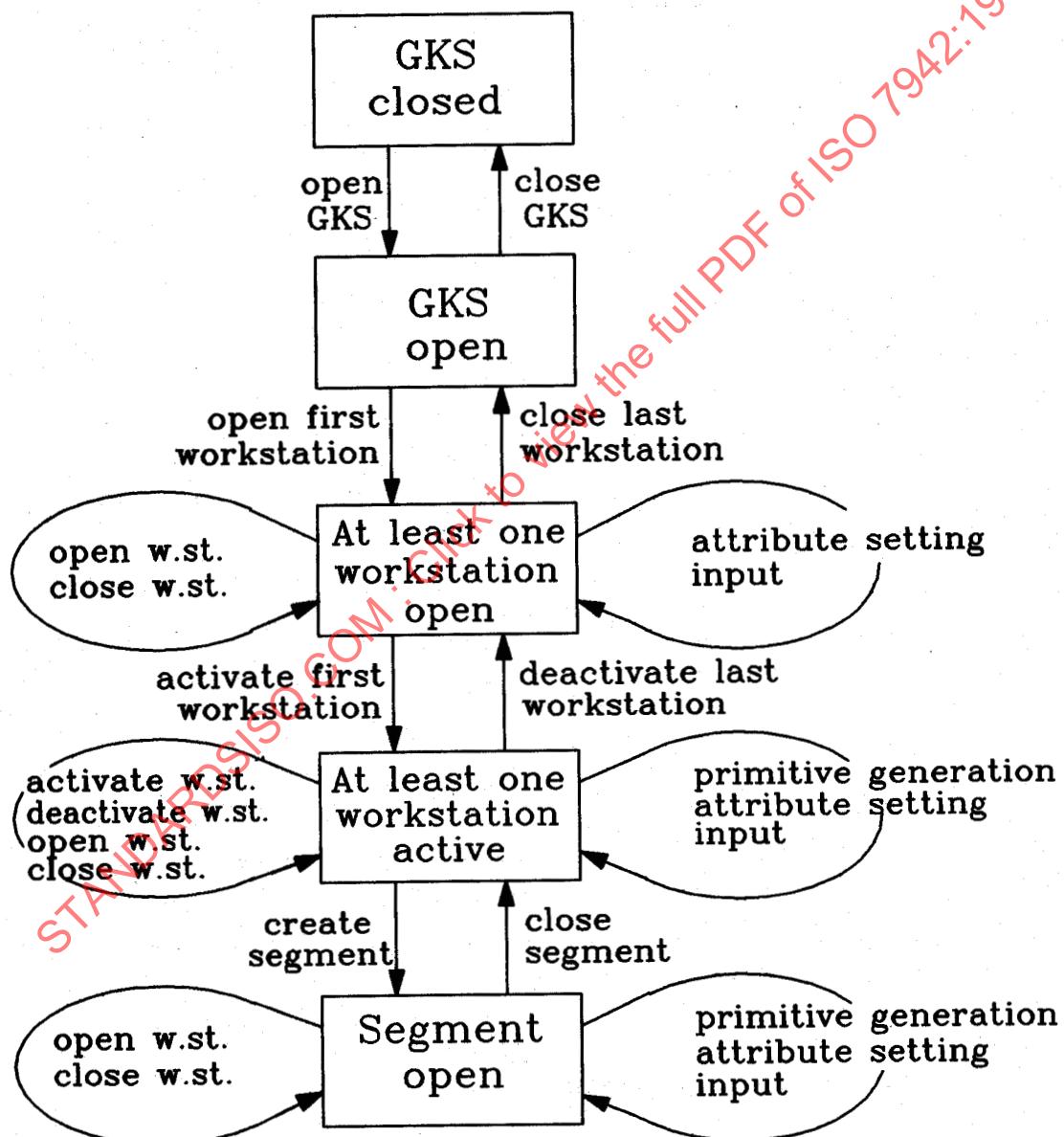


Figure 13 - Some transitions between operating states

States of GKS and inquiry functions**The Graphical Kernel System**

The operating state value is contained in a global static variable that is initialised, before the first invocation of GKS, to the value GKCL. The operating states differ in so far as individual calls to GKS are allowed only in certain operating states, as indicated in the functional description in clause 5.

The overall state of GKS is defined by a set of state variables having specific values. These state variables are characterized by the fact that they allow a complete description of the effects of the functions. The total set of GKS state variables contains the following subsets:

- a) operating state;
- b) GKS state list;
- c) segment state list for every existing segment;
- d) input queue;
- e) workstation state list for every open workstation;
- f) GKS error state list.

Certain functions cause these state subsets to be allocated, made available and cancelled. When these state subsets are allocated, they are initialised with default values. When initialising a workstation state list, some of the default values are taken from the workstation description table for that workstation type. There is a workstation description table for each workstation type supported by the GKS implementation. The variables of the state subsets are modified and inquired by invocations of GKS functions.

When an error condition is detected during execution of a GKS function, GKS calls the ERROR HANDLING procedure. During execution of the ERROR HANDLING procedure, GKS is in an error state. In this error state, GKS allows only inquiry functions, the ERROR LOGGING procedure and the EMERGENCY CLOSE GKS procedure to be executed and no modifications to any of the state lists except the error state list.

4.11.2 Inquiry functions

Inquiry functions return values directly from or derived from the various state lists and workstation description tables. The data types of the values and the default values of the entries are summarized in clause 6.

The inquiry functions of GKS are designed in such a way that they do not cause any errors to be generated. Inquiry functions for values that may be logically unavailable have an output parameter, 'error indicator', that determines whether or not the other returned values are valid. The availability parameter is of type integer and, in the event of the other values not being available, returns an error number, which identifies the appropriate GKS error condition. The same error numbers are used as for non-inquiry functions and thus the standard list of error messages should be consulted. If GKS is not in the proper state, then the error number appropriate to this condition is the one returned, even if there are other reasons for the values being unavailable. If the values are available, zero is returned in the error indicator parameter.

For all values except zero the returned output values are implementation dependent. The description of each inquiry function lists the error indicator values that the function can return.

Some inquiry functions that retrieve values from the workstation state lists have an input parameter of type 'enumeration' that can take the following values :

- a) SET: the values returned are those provided by the application program;
- b) REALIZED: the values returned are those used by the workstation when the actual values are mapped to the available values in the workstation.

4.12 Error handling

For each GKS function, a finite number of error situations is specified, any of which will cause the ERROR HANDLING procedure to be called. Every GKS implementation supports this error checking. The ERROR HANDLING procedure provides an interface between GKS and the application program. The ERROR HANDLING procedure, if provided by the application program, may interpret the information about the error and may store data in a data area for subsequent interpretation by the application program after return from the GKS function that caused the error.

The GKS error handling strategy is derived from the following classification of errors:

- I errors resulting in a precisely defined reaction;
- II errors resulting in an attempt to save the results of previous operations;
- III errors which cause unpredictable results including the loss of information.

GKS recognizes three situations in which errors are detected:

- A error detected in GKS procedures;
- B error detected in procedures called from GKS (driver procedures, operating system procedures);
- C error detected in other areas of the application program.

If errors are detected outside GKS (situation C), either the application program may regain control over the execution or program execution will be terminated abnormally. In the latter case, results are unpredictable (class III), and in the worst situation, all graphical information produced so far in this job may be lost. If, however, the application program obtains control, it may attempt to close GKS properly or at least attempt an emergency closure by calling the EMERGENCY CLOSE GKS procedure. Similarly, if the error occurs in procedures called by GKS and control is not returned properly to GKS, the effects are unpredictable.

The EMERGENCY CLOSE GKS procedure is an implementation dependent facility. Its purpose is to save as much of the graphical information produced as possible. The effects of this procedure on the workstations are left undefined in this International Standard. The EMERGENCY CLOSE GKS procedure may be called directly from the application program. It is also called from GKS itself as a standard error reaction to class II errors.

Finally, all errors that are listed explicitly as part of the definition of GKS functions belong to class I. Either they are detected within GKS itself (situation A) or a procedure called from GKS has returned control, to the corresponding GKS procedure, with the appropriate error information (situation B). In all these class I cases, GKS calls the ERROR HANDLING procedure. If a GKS function is called with more than one error condition applicable, at least one error is reported.

The application program may either provide its own ERROR HANDLING procedure or may use that provided as part of GKS. Any ERROR HANDLING procedure accepts the following information from GKS:

- a) the identification of the error condition;
- b) the identification of the GKS function that called the ERROR HANDLING procedure;
- c) the error file.

The ERROR HANDLING procedure provided by GKS just calls the ERROR LOGGING procedure, using the same set of parameters. The latter performs the following actions:

- d) prints an error message and GKS function identification on the error file;
- e) returns to the calling procedure.

This two-stage calling of the error procedures allows the application program to supply its own ERROR HANDLING procedure, while still having access to services provided by the ERROR LOGGING procedure, as shown in the following example of an application program supplied ERROR HANDLING procedure.

Error handling*Example*

PROCEDURE ERROR HANDLING (error number, identification of GKS function, error file);

Interpret GKS function and error identification

in order to select the following cases:

CASE 'special treatment':

Interpret error parameters as passed from GKS;

Store information for application program in application supplied data area;

Return to calling GKS procedure;

CASE 'standard treatment':

Call ERROR LOGGING procedure with all the above parameters;

Return to calling GKS procedure;

END.

All GKS procedures perform the following actions after detecting an error condition:

- f) set error state to ON;
- g) call ERROR HANDLING procedure with appropriate parameters;
- h) set error state to OFF;
- i) Perform built-in error reaction (normally, a function causing an error has no effect; to accomplish this in some cases requires clean-up operations).

All GKS procedures check on entry (in the following order):

- j) that GKS is in the correct state;
- k) that the values of input parameters are valid.

At least the first error detected is reported except that, in the case of inquiry functions, the first error detected is returned via the error indicator.

The application program supplied ERROR HANDLING procedure has access to the set of GKS state variables. However, no modification of GKS state is possible during error handling, i.e. only GKS inquiry functions, the ERROR LOGGING procedure and the EMERGENCY CLOSE GKS procedure may be called by the application program supplied ERROR HANDLING procedure. This is achieved by setting the error state to ON prior to calling the ERROR HANDLING procedure from GKS and setting the error state to OFF afterwards. An inquiry function cannot generate an error.

4.13 Special interfaces between GKS and the application program

A uniform escape mechanism for allowing access to installation and hardware specific features (a 'standard way of being non-standard') is provided by means of the ESCAPE function. Although the use of this mechanism reduces the portability of the application program, it does so in an easily identifiable manner.

The ESCAPE function does not generate geometrical output; by contrast, the GENERALIZED DRAWING PRIMITIVE can generate geometrical output not otherwise generated by GKS.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

5 GKS functions

5.1 Notational conventions

The heading of each function specifies

- a) the function's name;
- b) the GKS states in which the function may be used except that, for inquiry functions (see 5.9), only those states in which the inquiry function can return valid values is specified;
- c) the GKS lowest level L at which the function is explicitly defined and required.

More information about levels and states can be found in 4.10 and 4.11 respectively. Clauses A.3 and A.4 of annex A contain lists of all functions according to levels and states respectively. The GKS functional capabilities are summarized in annex G.

The parameter lists indicate for each entry

- d) whether the entry is an input (In) or output (Out) parameter;
- e) the name of the parameter;
- f) for coordinate data, the coordinate system (WC, NDC, DC) used in the function call (coordinate systems are explained in 4.6);
- g) either, for enumeration type data, the permitted values, or, for real and integer data, any restriction on their value range (for example, ' > 0 '); the notation is explained in 6.1;
- h) the data type, which is either of simple form (I, R, S, P, N, E) representing:

I	integer
R	real
S	string
P	point
N	name
E	enumeration type

or is a compound based on one or more of the simple forms (for example: $n \times P$) or is a compound, the content and structure of which are not defined in this International Standard:

D data record

The data types are explained in 6.1.

GKS functions**Control functions****5.2 Control functions****OPEN GKS****GKCL** **L0a****Parameters:**

In error file
 In amount of memory units for buffer area

N
I

Effect: GKS is set into the operating state GKOP = 'GKS open'. The GKS state list is allocated and initialised as indicated in 6.4. The GKS description table and the workstation description tables are made available.

The entry 'error file' in the GKS error state list is set to the value specified by the first parameter.
 The permitted buffer area which can be used by GKS for internal purposes is limited.

NOTE - Certain environments might not permit dynamic memory management. In this case, the buffer area may be limited in a static way to be described in the installation documentation.

References:

4.11
 4.12

Errors:

1 *GKS not in proper state: GKS shall be in the state GKCL*
 200 *Specified error file is invalid*

CLOSE GKS**GKOP** **L0a****Parameters:**

none

Effect: GKS is set into the operating state GKCL = 'GKS closed'. The GKS description table, GKS state list and the workstation description tables become unavailable. All GKS buffers are released and all GKS files are closed.

NOTE - GKS can be reopened by invoking the function OPEN GKS.

References:

4.11
 4.12

Errors:

2 *GKS not in proper state: GKS shall be in the state GKOP*

OPEN WORKSTATION**GKOP,WSOP,WSAC,SGOP** **L0a****Parameters:**

In workstation identifier
 In connection identifier
 In workstation type

N
N
N

Effect: If GKS is in operating state GKOP, it is set into the state WSOP = 'at least one workstation open'. GKS requests the operating system to establish the specified connection for a workstation characterized in the workstation description table by the 'workstation type'. The workstation state list is allocated and initialised as indicated in 6.5. The workstation identifier is added to the set of open workstations in the GKS state list.

Control functions**GKS functions**

OPEN WORKSTATION ensures that the display surface is clear, but does not clear the surface needlessly.

NOTE - The connection identifier is given in a form suitable for the application program language (for example, a 'unit number' in FORTRAN or a 'file identifier' in PL/I).

An attempt to open a workstation, with the same connection identifier and workstation type as one already open, causes error 26 to occur.

References:

4.5.2
4.11

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 21 *Specified connection identifier is invalid*
 22 *Specified workstation type is invalid*
 23 *Specified workstation type does not exist*
 24 *Specified workstation is open*
 26 *Specified workstation cannot be opened*
 28 *Workstation Independent Segment Storage is already open*
 42 *Maximum number of simultaneously open workstations would be exceeded*

CLOSE WORKSTATION

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier

N

Effect: An implicit UPDATE WORKSTATION (with the parameter update regeneration flag set to PERFORM) is performed for the specified workstation. The workstation state list is deallocated. The workstation identifier is deleted from the set of open workstations in the GKS state list and from the set of associated workstations in the segment state list of every segment containing it. If the set of associated workstations of a segment becomes empty, the segment is deleted. The input queue is flushed of all events from all devices on the workstation being closed. If the 'identification of one of the logical input devices that caused an input queue overflow' entry in the GKS error state list refers to this workstation identifier, then all the contents of that entry become undefined.

The connection to the workstation is released. GKS is set into operating state GKOP if no workstations remain open. The display surface need not be cleared when CLOSE WORKSTATION is invoked, but it may be cleared.

References:

4.5.2
4.8.5
4.11

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 29 *Specified workstation is active*
 147 *Input queue has overflowed*

GKS functions**ACTIVATE WORKSTATION**

WSOP,WSAC L0a

Parameters:

In workstation identifier

N

Effect: GKS is set into the operating state WSAC = 'At least one workstation active'. The specified workstation is marked active in the workstation state list. The workstation identifier is added to the set of active workstations in the GKS state list.

NOTE - Output primitives are sent to and segments are stored on all active workstations.

References:

4.5.2

4.11

Errors:

- 6 *GKS not in proper state: GKS shall be either in the state WSOP or in the state WSAC*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 29 *Specified workstation is active*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 43 *Maximum number of simultaneously active workstations would be exceeded*

DEACTIVATE WORKSTATION

WSAC L0a

Parameters:

In workstation identifier

N

Effect: The specified workstation is marked inactive in the workstation state list. The workstation identifier is deleted from the set of active workstations in the GKS state list. GKS is set into the operating state WSOP = 'At least one workstation open' if no workstation remains active.

NOTE - While a workstation is inactive, primitives are not sent to it nor does it store new segments. Segments already stored on this workstation are retained.

References:

4.5.2

4.11

Errors:

- 3 *GKS not in proper state: GKS shall be in the state WSAC*
- 20 *Specified workstation identifier is invalid*
- 30 *Specified workstation is not active*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*

CLEAR WORKSTATION

WSOP,WSAC L0a

Parameters:

In workstation identifier

N

In control flag

(CONDITIONALLY, ALWAYS)

E

Effect: All of the following actions are executed in the given sequence:

- a) All deferred actions for the specified workstation are executed (without intermediate clearing of the display surface).

Control functions

GKS functions

b) The display surface is set to a clear state according to the control flag as follows:

CONDITIONALLY:

the display surface is cleared only if the 'display surface empty' entry in the workstation state list is NOTEMPTY.

ALWAYS:

the display surface is cleared.

c) If the 'workstation transformation update state' entry in the workstation state list is PENDING, the 'current workstation window' and 'current workstation viewport' entries in the workstation state list are assigned the values of the 'requested workstation window' and 'requested workstation viewport' entries; the 'workstation transformation update state' entry is set to NOTPENDING.

d) For all segments stored on the specified workstation, the workstation identifier is deleted from the 'set of associated workstations' in the segment state list. If the 'set of associated workstations' of a segment becomes 'empty', the segment is deleted. The 'set of stored segments for this workstation' in the workstation state list is set to 'empty'.

e) The 'new frame action necessary at update' entry in the workstation state list is set to NO.

f) The 'display surface empty' entry in the workstation state list is set to EMPTY.

References:

4.5.3

4.5.4

4.5.5

4.7.1

Errors:

6 *GKS not in proper state: GKS shall be either in the state WSOP or in the state WSAC*

20 *Specified workstation identifier is invalid*

25 *Specified workstation is not open*

33 *Specified workstation is of category MI*

35 *Specified workstation is of category INPUT*

REDRAW ALL SEGMENTS ON WORKSTATION

WSOP,WSAC,SGOP

L1a

Parameters:

In workstation identifier

N

Effect: All of the following actions are executed in the given sequence:

a) All deferred actions for the specified workstation are executed (without intermediate clearing of the display surface).

b) The display surface is cleared only if the 'display surface empty' entry in the workstation state list is NOTEMPTY. The entry is set to EMPTY.

c) If the 'workstation transformation update state' entry in the workstation state list is PENDING, the 'current workstation window' and 'current workstation viewport' entries in the workstation state list are assigned the values of the 'requested workstation window' and 'requested workstation viewport' entries; the 'workstation transformation update state' entry is set to NOTPENDING.

d) All visible segments stored for this workstation (i.e. contained in the 'set of stored segments for this workstation' in the workstation state list) are redisplayed. This action typically causes the 'display surface empty' entry in the workstation state list to be set to NOTEMPTY.

e) The 'new frame action necessary at update' entry in the workstation state list is set to NO.

GKS functions**Control functions**

References:

- 4.5.3
- 4.5.4
- 4.5.5
- 4.7

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

UPDATE WORKSTATION

WSOP,WSAC,SGOP

L0a

Parameters:

- In workstation identifier
- In update regeneration flag

(PERFORM,POSTPONE)

- N
- E

Effect: All deferred actions for the specified workstation are executed (without intermediate clearing of the display surface). If the update regeneration flag is set to PERFORM and the 'new frame action necessary at update' entry in the workstation state list is YES, then the following actions are executed in the given sequence:

- a) The display surface is cleared only if the 'display surface empty' entry in the workstation state list is NOTEMPTY. The entry is set to EMPTY.
- b) If the 'workstation transformation update state' entry in the workstation state list is PENDING, the 'current workstation window' and 'current workstation viewport' entries in the workstation state list are assigned the values of the 'requested workstation window' and 'requested workstation viewport' entries; the 'workstation transformation update state' entry is set to NOTPENDING.
- c) All visible segments stored on this workstation (i.e. contained in the 'set of stored segments for this workstation' in the workstation state list) are redisplayed. This action typically causes the 'display surface empty' entry in the workstation state list to be set to NOTEMPTY.
- d) The 'new frame action necessary at update' entry in the workstation state list is set to NO.

NOTE - If the update regeneration flag is PERFORM, UPDATE WORKSTATION suspends the effect of SET DEFERRAL STATE. In that case, it is equivalent to the following sequence of functions:

INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES;

save deferral state;

SET DEFERRAL STATE (ASAP,ALLOWED);

set deferral state to saved value;

If the value of the 'new frame action necessary at update' entry is NO or the update regeneration flag is POSTPONE, UPDATE WORKSTATION merely initiates the transmission of blocked data. If the value of the entry 'new frame action necessary at update' is YES and the update regeneration flag is PERFORM, UPDATE WORKSTATION behaves as REDRAW ALL SEGMENTS ON WORKSTATION.

The 'new frame action necessary at update' entry in a workstation state list is set to YES during deferred action generation if both of the following are true (see 4.5):

- a) an action causing modification of the picture is actually deferred on that workstation;
- b) the workstation display surface does not allow modification of the image without redrawing the whole picture (for example, plotter, storage tube display).

Control functions	GKS functions
References:	
4.5.3	
4.5.4	
4.5.5	
Errors:	
7 <i>GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP</i>	
20 <i>Specified workstation identifier is invalid</i>	
25 <i>Specified workstation is not open</i>	
33 <i>Specified workstation is of category MI</i>	
35 <i>Specified workstation is of category INPUT</i>	
36 <i>Specified workstation is Workstation Independent Segment Storage</i>	

SET DEFERRAL STATE

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
In deferral mode	E
In implicit regeneration mode	E

Effect: The entries 'deferral mode' and 'implicit regeneration mode' for the specified workstation are set in the workstation state list. Depending on the new value of 'deferral mode', deferred output may be unblocked. If in the workstation state list, the new value of 'implicit regeneration mode' is ALLOWED and 'new frame action necessary at update' is YES, then an action equivalent to REDRAW ALL SEGMENTS is performed.

References:

4.5.3
4.5.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
20 *Specified workstation identifier is invalid*
25 *Specified workstation is not open*
33 *Specified workstation is of category MI*
35 *Specified workstation is of category INPUT*
36 *Specified workstation is Workstation Independent Segment Storage*

MESSAGE

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
In message	S

Effect: The message function:

- may display a message at an implementation dependent location on the workstation viewport or on some separate device associated with the workstation.
- does not alter the GKS state list.
- may affect the workstation in a purely local way (for example, requesting the operator to change paper). Possible effects on the execution of the application program or on subsequent commands sent to the workstation by GKS are stated explicitly in the implementation dependencies manual.

GKS functions**Control functions****References:**

4.5.6

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 36 *Specified workstation is Workstation Independent Segment Storage*

ESCAPE**GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

- In specific escape function identification
- In escape input data record
- Out escape output data record

- N
- D
- D

Effect: The specified non-standard specific escape function is invoked. The form of the escape data records and which of them are used may vary for different functions. Also the GKS states allowing the invocation of a specific escape function may be restricted. The following rules govern the definition of a new specific escape function:

- a) the GKS design concept (see clause 0) is not violated;
- b) the GKS state lists are not altered;
- c) the function does not generate geometrical output;
- d) any side effects are well documented.

Specific escape functions may apply to more than one workstation, for example all open workstations or all active workstations. The escape input data record can include a workstation identifier where this is required.

NOTE - Examples of specific escape functions anticipated at present are:

- a) support of raster devices allowing the display of more than one frame buffer;
- b) use of rasterop hardware to manipulate data previously output by cell array.

Where the specific escape function identification is bound to an integer in a programming language, specific escape function identifications greater than 0 are reserved for registration and specific escape function identifications less than 0 are implementation dependent.

Specific escape function identifications are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a specific escape function has been approved by ISO, the specific escape function identification will be assigned by the Registration Authority.

References:

4.13

Errors:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 180 *Specified escape function is not supported*
- 181 *Specified escape function identification is invalid*
- 182 *Contents of escape data record are invalid*

Output functions**GKS functions****5.3 Output functions****POLYLINE**

WSAC,SGOP L0a

Parameters:In number of points
In points(2..n) I
WC n × P**Effect:** A sequence of connected straight lines is generated, starting from the first point and ending at the last point. The current values of the polyline attributes, as given by the GKS state list (see 6.4), are bound to the primitive. The polyline attributes are listed in 4.4.2.

If, after the workstation transformation, all points coincide, no error is generated and whether anything is drawn is workstation dependent.

References:4.4.1
4.4.2
4.4.3
4.5.3**Errors:**5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*
100 *Number of points is invalid***POLYMARKER**

WSAC,SGOP L0a

Parameters:In number of points
In points(1..n) I
WC n × P**Effect:** A sequence of markers is generated to identify all the given positions. The current values of the polymarker attributes, as given by the GKS state list (see 6.4), are bound to the primitive. The polymarker attributes are listed in 4.4.2.**NOTE** - A marker is visible if and only if the marker position is within the clipping rectangle. The clipping of partially visible markers is workstation dependent.**References:**4.4.1
4.4.2
4.4.4
4.5.3**Errors:**5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*
100 *Number of points is invalid*

GKS functions**Output functions****TEXT**

WSAC,SGOP L0a

Parameters:

In	text position	WC	P
In	character string		S

Effect: A character string is generated. The current values of the text attributes, as given by the GKS state list (see 6.4), are bound to the primitive. The text attributes are listed in 4.4.2.

The text position is given in WC and transformed by the current normalization transformation.

If, after the workstation transformation, the height or width of a character is zero, no error is generated and whether anything is drawn is workstation dependent.

If the character string contains a control character (for example, characters outside the range 2/0 to 7/14 inclusive in ISO 646), the effect is workstation dependent. Either error 101 is generated or some visual effect may be generated or the character may be ignored. Even if error 101 occurs, the character string is displayed on all active workstations which do not generate error 101.

NOTE - Text is clipped in a way that depends on the text precision as defined by the text font and precision currently selected (either via the text bundle or individually, depending upon the corresponding ASF).

References:

4.4.1
4.4.2
4.4.5
4.5.3

Errors:

5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*

101 *Invalid code in string*

FILL AREA

WSAC,SGOP L0a

Parameters:

In	number of points	(3..n)	I
In	points	WC	$n \times P$

Effect: A FILL AREA primitive is generated. The current values of the fill area attributes, as given by the GKS state list (see 6.4), are bound to the primitive. The fill area attributes are listed in 4.4.2.

The polygon defined by the points is filled according to the fill area interior style currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF). The boundary is drawn for interior style HOLLOW, whereas, for other interior styles, the amount of the boundary that is drawn ensures that two regions which share a common edge appear without an apparent gap or overlap at that edge, to the extent that can reasonably be achieved.

If parts of the area are clipped, the resulting new boundaries become part of the area boundaries. Multiple subareas may be generated (see figure 14).

The interior of a polygon is defined in the following way (see figure 15). For a given point, create a straight line starting at that point and going to infinity. If the number of intersections between the straight line and the polygon is odd, the point is within the polygon; otherwise it is outside. If the straight line passes a polygon vertex tangentially, the intersection count is not affected. If a point is within the polygon, it is included in the area to be filled subject to the rule for boundaries.

If, after the workstation transformation, all points coincide, no error is generated and whether anything is drawn is workstation dependent. If, after the workstation transformation, some or all lines in a bounding polygon have a line segment in common, no error is generated. Whether the resulting line segment is regarded as part of the boundary to be drawn or not is workstation dependent.

Output functions

GKS functions

For PICK input, a FILL AREA primitive displayed with interior style HOLLOW may be picked by pointing at any point on the bounding polygon. A FILL AREA primitive displayed with interior style SOLID or PATTERN may be picked by pointing at any point inside the polygon. Pointing at a hole in the area does not identify that area. A FILL AREA primitive displayed with interior style HATCH may be picked by pointing at any point on any hatch line.

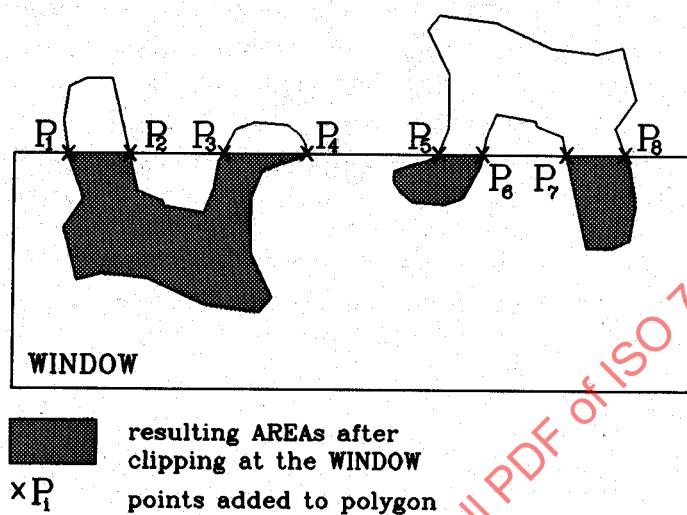


Figure 14 - Examples of FILL AREA clipping

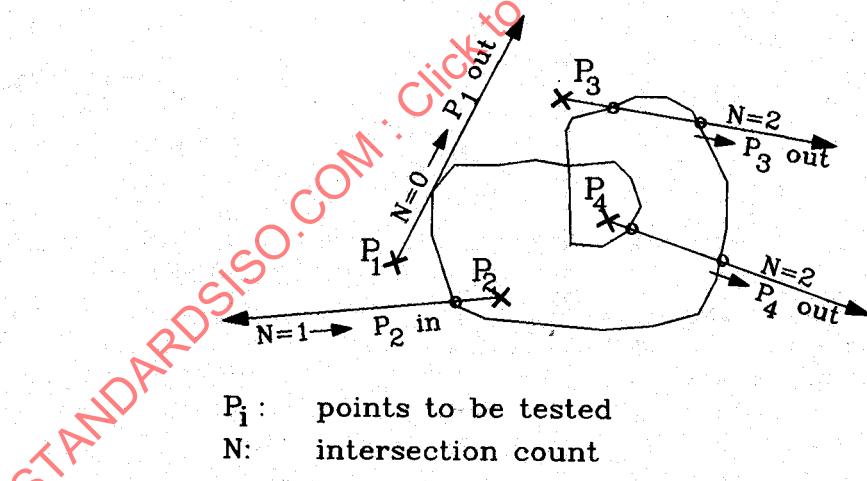


Figure 15 - Area inside a polygon

References:

- 4.4.1
- 4.4.2
- 4.4.6
- 4.5.3

Errors:

- 5 GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP
- 100 Number of points is invalid

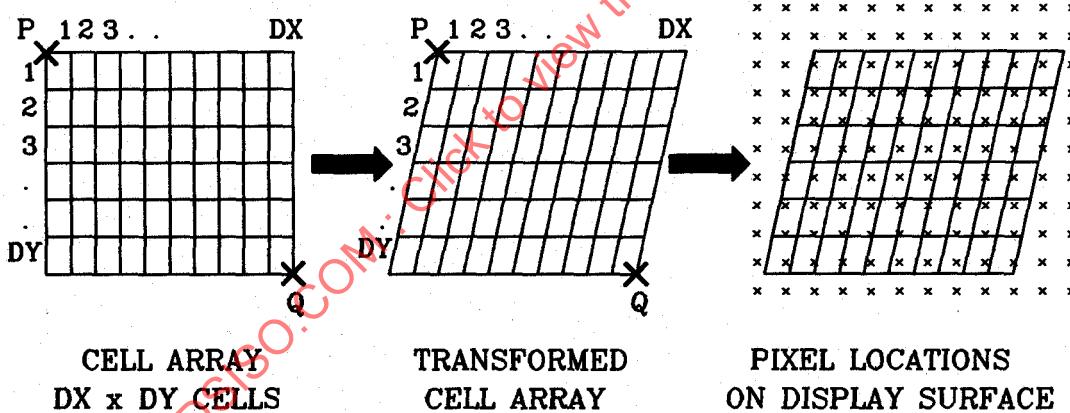
GKS functions

CELL ARRAY

Parameters:

- In cell rectangle (P,Q)
- In dimensions of colour index array DX,DY
- In colour index array

Effect: A CELL ARRAY primitive is generated using the cell rectangle corners, the dimensions of the colour index array and the colour index array.


A rectangle, which is taken to be aligned with the world coordinate axes, is defined by the points P and Q. This rectangle is conceptually divided into a grid in $DX \times DY$ cells. Each cell has a width of $|PX-QX|/DX$ and a height of $|PY-QY|/DY$, where (PX,PY) are the coordinates of the cornerpoint P and (QX,QY) are the coordinates of the cornerpoint Q. The colour index array is oriented with respect to the rectangle by associating the four corners as follows: the (1,1) element is associated with the cell having P at one corner; the (DX,DY) element with the cell having Q at one corner; the (1,DY) element with the cell having the point (PX,QY) at one corner; the (DX,1) element with the cell having the point (QX,PY) at one corner. The colour of each cell is specified by the index of the corresponding element of the colour index array. If an index is not present in the colour table on a workstation, a workstation dependent index is used on that workstation.

The rectangular grid defined by P,Q,DX and DY is subject to all transformations, potentially transforming the rectangular cells into parallelograms. If part of a transformed cell is outside the window, the transformed cell is partially clipped.

Output functions

WSAC,SGOP L0a

WC	$2 \times P$
(1..n)	$2 \times I$
(0..n)	$n \times n \times I$

NOTE - Cells are mapped on display surface. If display location is within cell then cell colour is assigned to pixel.

Figure 16 - Mapping of CELL ARRAYS

Mapping the transformed cells onto the pixels of a raster display (see figure 16) is performed by the following rules:

- a) If the centrepoint of a pixel lies inside the parallelogram defined by the transformed rectangle, its colour is set.

Output functions

GKS functions

b) The pixel is assigned the colour of the cell which contains the pixel's centrepoint. Thus, the pixel colour is selected by point sampling the transformed rectangle at the pixel centrepoint, not by area sampling or filtering.

The minimal simulation required is to draw the transformed boundaries of the cell rectangle, using implementation dependent colour, linewidth and linetype.

If, after the workstation transformation, the four corner points are coincident or collinear, no error is generated and whether anything is drawn is workstation dependent.

References:

4.4.1

4.4.2

4.4.7

4.5.3

Errors:

5 GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP

91 Dimensions of colour array are invalid

GENERALIZED DRAWING PRIMITIVE (GDP)

Parameters:

		WSAC,SGOP	L0a
In	number of points	(0..n)	I
In	points	WC	$n \times P$
In	GDP identifier		N
In	GDP data record		D

Effect: A Generalized Drawing Primitive (GDP) of the type indicated by the GDP identifier is generated on the basis of the given points and the GDP data record. The current values of the entries in the GKS state list (see 6.4) for the sets of polyline, polymarker, text or fill area attributes are bound to the primitive. These attributes are listed in 4.4.2. When the GDP generates output at the workstation, zero or more of the sets of attributes are used. These are the sets of attributes most appropriate for the specified GDP function and are selected for the GDP as part of the definition of the GDP. (They are defined in the workstation description table.)

NOTE - The parameters are transmitted to the workstation and interpreted in a workstation dependent way. In this way special capabilities of the workstation can be addressed. Even if error 104 or error 105 occurs, the GDP is displayed on all active workstations capable of doing so. For example, some of the primitives anticipated at present are:

- a) circle: points given are centre, peripheral point;
- b) circular arc: points given are centre, start point, end point to be connected anticlockwise in world coordinates;
- c) ellipse: points given are 2 focal points, peripheral point;
- d) elliptic arc: points given are 2 focal points, start point, end point to be connected anticlockwise in world coordinates;
- e) interpolating curve (for example, spline): points given are interpolated.

The recommended set of attributes to use for the above GDP examples would be the polyline attributes.

It should be emphasized that the points, specified as parameters, are transformed by GKS after the interpretation of the points (as defining, say, a spline curve or circle) is performed by the active workstations. For example, a GDP, which defines a circle, would appear as an ellipse when the transformation has differential scaling for the two axes. Each specific GDP definition defines how the transformation is applied to both the points and the shape of the GDP. Though the points cannot be clipped, the resulting output of the GDP is clipped against the clipping rectangle, if the 'clipping indicator' entry in the GKS state list is CLIP, and the workstation window. If a specific GDP is available on a workstation but is unable to be generated because the current transformations or clipping rectangle are such that the preceding conditions would be violated, error 105 occurs.

The GDP data record attribute list may contain additional data for each point (for example, vertex order for splines) which remain untransformed. These have to be defined for a specific GDP. In defining a new GDP, the GKS design concepts (see clause 0) are not violated. The set of generalized drawing primitives implemented on a workstation may be empty.

GKS functions

Where the GDP identifier is bound to an integer in a programming language, GDP identifiers greater than 0 are reserved for registration and GDP identifiers less than 0 are implementation dependent.

GDP identifiers are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a GDP has been approved by ISO, the GDP identifier will be assigned by the Registration Authority.

References:

- 4.4.1
- 4.4.2
- 4.4.8
- 4.5.3
- 4.13

Errors:

- 5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*
- 100 *Number of points is invalid*
- 102 *Generalized drawing primitive identifier is invalid*
- 103 *Content of generalized drawing primitive data record is invalid*
- 104 *At least one active workstation is not able to generate the specified generalized drawing primitive*
- 105 *At least one active workstation is not able to generate the specified generalized drawing primitive under the current transformations and clipping rectangle*

Output functions

STANDARDSISO.COM : Click to view the full PDF of ISO 7942-1985

Output attributes**GKS functions****5.4 Output attributes****5.4.1 Workstation independent primitive attributes****SET POLYLINE INDEX****GKOP,WSOP,WSAC,SGOP L0a**

Parameters:

In polyline index

(1..n) I

Effect: The 'current polyline index' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent POLYLINE output primitives.

References:

4.4.2

4.4.3

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*60 *Polyline index is invalid***SET LINETYPE****GKOP,WSOP,WSAC,SGOP L0a**

Parameters:

In linetype

(-n..-1,1..n) I

Effect: The 'current linetype' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYLINE output primitives, created when the 'current linetype ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYLINE output primitives, created when the 'current linetype ASF' entry in the GKS state list is BUNDLED.

Linetype values produce linetypes as indicated:

< 0	implementation dependent
1	solid line
2	dashed line
3	dotted line
4	dashed-dotted line
≥ 5	reserved for registration

If the specified linetype is not available on a workstation, linetype 1 is used on that workstation.

NOTE - Linetype values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a linetype has been approved by ISO, the linetype value will be assigned by the Registration Authority.

References:

4.4.2

4.4.3

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*63 *Linetype is equal to zero*

GKS functions**Output attributes****SET LINEWIDTH SCALE FACTOR****GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In linewidth scale factor

 ≥ 0 R

Effect: The 'current linewidth scale factor' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYLINE output primitives, created when the 'current linewidth scale factor ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYLINE output primitives, created when the 'current linewidth scale factor ASF' entry in the GKS state list is BUNDLED.

The linewidth scale factor is applied to the nominal linewidth on a workstation; the result is mapped by the workstation to the nearest available linewidth.

References:

4.4.2

4.4.3

Errors:8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*65 *Linewidth scale factor is less than zero***SET POLYLINE COLOUR INDEX****GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In polyline colour index

 $(0..n)$ I

Effect: The 'current polyline colour index' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYLINE output primitives, created when the 'current polyline colour index ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYLINE output primitives, created when the 'current polyline colour index ASF' entry in the GKS state list is BUNDLED.

The colour index is a pointer into the colour tables of the workstations. If the specified colour index is not present in a workstation colour table, a workstation dependent colour index is used on that workstation.

References:

4.4.2

4.4.3

Errors:8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*92 *Colour index is less than zero***SET POLYMARKER INDEX****GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In polymarker index

 $(1..n)$ I

Effect: The 'current polymarker index' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent POLYMARKER output primitives.

References:

4.4.2

4.4.4

Output attributes

GKS functions

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 66 *Polymarker index is invalid*

SET MARKER TYPE

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In marker type

(-n..-1,1..n)

I

Effect: The 'current marker type' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYMARKER output primitives, created when the 'current marker type ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYMARKER output primitives, created when the 'current marker type ASF' entry in the GKS state list is BUNDLED.

Marker type values produce centred symbols as indicated:

<0	implementation dependent
1	.
2	+
3	*
4	0
5	X
≥6	reserved for registration

Marker type 1 is always displayed as the smallest displayable dot. If the specified marker type is not available on a workstation, marker type 3 (*) is used on that workstation.

NOTE - Marker type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a marker type has been approved by ISO, the marker type value will be assigned by the Registration Authority.

References:

4.4.2
 4.4.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 69 *Marker type is equal to zero*

SET MARKER SIZE SCALE FACTOR

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In marker size scale factor

≥0

R

Effect: The 'current marker size scale factor' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYMARKER output primitives, created when the 'current marker size scale factor ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYMARKER output primitives, created when the 'current marker size scale factor ASF' entry in the GKS state list is BUNDLED.

The marker size scale factor is applied to the nominal marker size on a workstation; the result is mapped by the workstation to the nearest available marker size.

References:

4.4.2
 4.4.4

GKS functions**Output attributes**

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 71 *Marker size scale factor is less than zero*

SET POLYMARKER COLOUR INDEX

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In polymarker colour index

(0..n) I

Effect: The 'current polymarker colour index' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent POLYMARKER output primitives, created when the 'current polymarker colour index ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent POLYMARKER output primitives, created when the 'current polymarker colour index ASF' entry in the GKS state list is BUNDLED.

The colour index is a pointer into the colour tables of the workstations. If the specified colour index is not present in a workstation colour table, a workstation dependent colour index is used on that workstation.

References:

4.4.2
 4.4.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 92 *Colour index is less than zero*

SET TEXT INDEX

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In text index

(1..n) I

Effect: The 'current text index' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent TEXT output primitives.

References:

4.4.2
 4.4.5

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 72 *Text index is invalid*

SET TEXT FONT AND PRECISION

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In text font and precision

(-n..-1,1..n;STRING,CHAR,STROKE) (I;E)

Effect: The 'current text font and precision' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent TEXT output primitives, created when the 'current text font and precision ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent TEXT output primitives, created when the 'current text font and precision ASF' entry in the GKS state list is BUNDLED.

Output attributes**GKS functions**

Text font and precision is a single text aspect; a particular text font can be available at some, but not necessarily all, precisions. Text font 1 contains a graphical representation of the characters defined in ISO 646 (see 4.4.5). Text fonts greater than 1 are reserved for registration. Text fonts less than 0 are implementation dependent. The text precision value determines the fidelity with which the other text aspects are used. The values of text precision, in order of increasing fidelity, are STRING, CHAR and STROKE (see 4.4.5).

If the specified text font and precision is not available on a workstation, the value (1;STRING) is used on that workstation.

NOTE - Text font numbers are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a text font has been approved by ISO, the text font number will be assigned by the Registration Authority.

References:

4.4.2
4.4.5

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
75 *Text font is equal to zero*

SET CHARACTER EXPANSION FACTOR

GKOP,WSOP,WSAC,SGOP **L0a**

Parameters:

In character expansion factor >0 R

Effect: The 'current character expansion factor' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent TEXT output primitives, created when the 'current character expansion factor ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent TEXT output primitives, created when the 'current character expansion factor ASF' entry in the GKS state list is BUNDLED.

References:

4.4.2
4.4.5

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
77 *Character expansion factor is less than or equal to zero*

SET CHARACTER SPACING

GKOP,WSOP,WSAC,SGOP **L0a**

Parameters:

In character spacing R

Effect: The 'current character spacing' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent TEXT output primitives, created when the 'current character spacing ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent TEXT output primitives, created when the 'current character spacing ASF' entry in the GKS state list is BUNDLED.

References:

4.4.2
4.4.5

GKS functions**Output attributes****Errors:**

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

SET TEXT COLOUR INDEX

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In text colour index (0..n) I

Effect: The 'current text colour index' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent TEXT output primitives, created when the 'current text colour index ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent TEXT output primitives, created when the 'current text colour index ASF' entry in the GKS state list is BUNDLED.

The colour index is a pointer into the colour tables of the workstations. If the specified colour index is not present in a workstation colour table, a workstation dependent colour index is used on that workstation.

References:

4.4.2
4.4.5

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
92 *Colour index is less than zero*

SET CHARACTER HEIGHT

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In character height WC >0 R

Effect: The 'current character height' entry in the GKS state list is set to the value specified by the parameter. The 'current character width' entry in the GKS state list is also set to the value specified by the parameter. These values are used when creating subsequent TEXT output primitives.

References:

4.4.2
4.4.5

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
78 *Character height is less than or equal to zero*

SET CHARACTER UP VECTOR

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In character up vector WC $2 \times R$

Effect: The 'current character up vector' entry in the GKS state list is set to the value specified by the parameter. The 'current character base vector' entry in the GKS state list is set to a vector, of arbitrary length, at right angles in the clockwise direction to the value specified by the parameter. These values are used when creating subsequent TEXT output primitives.

Output attributes	GKS functions
References:	
4.4.2	
4.4.5	
Errors:	
8 <i>GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP</i>	
79 <i>Length of character up vector is zero</i>	
SET TEXT PATH	GKOP,WSOP,WSAC,SGOP L0a
Parameters:	
In text path	(RIGHT,LEFT,UP,DOWN) E
Effect:	The 'current text path' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent TEXT output primitives.
NOTE -	A change in the value of 'current text path' may make the value of the 'current text alignment' entry inappropriate.
References:	
4.4.2	
4.4.5	
Errors:	
8 <i>GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP</i>	
SET TEXT ALIGNMENT	GKOP,WSOP,WSAC,SGOP L0a
Parameters:	
In text alignment	(NORMAL,LEFT,CENTRE,RIGHT;NORMAL,TOP,CAP,HALF,BASE,BOTTOM) 2 × E
Effect:	The 'current text alignment' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent TEXT output primitives. Text alignment has two components: horizontal and vertical.
References:	
4.4.2	
4.4.5	
Errors:	
8 <i>GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP</i>	
SET FILL AREA INDEX	GKOP,WSOP,WSAC,SGOP L0a
Parameters:	
In fill area index	(1..n) I
Effect:	The 'current fill area index' entry in the GKS state list is set to the value specified by the parameter. This value is used when creating subsequent FILL AREA output primitives.
References:	
4.4.2	
4.4.6	

GKS functions**Output attributes****Errors:**

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 80 *Fill area index is invalid*

SET FILL AREA INTERIOR STYLE**GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In fill area interior style

(HOLLOW,SOLID,PATTERN,HATCH)

E

Effect: The 'current fill area interior style' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent FILL AREA output primitives, created when the 'current fill area interior style ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent FILL AREA output primitives, created when the 'current fill area interior style ASF' entry in the GKS state list is BUNDLED.

The fill area interior style is used to determine in what style the area is filled and the possible values are: HOLLOW, SOLID, PATTERN and HATCH (see 4.4.6).

If the requested interior style is not available on a workstation, HOLLOW is used on that workstation.

References:

4.4.2
 4.4.6

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

SET FILL AREA STYLE INDEX**GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In fill area style index

(-n...-1,1..n)

I

Effect: The 'current fill area style index' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent FILL AREA output primitives, created when the 'current fill area style index ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent FILL AREA output primitives, created when the 'current fill area style index ASF' entry in the GKS state list is BUNDLED.

For interior styles HOLLOW and SOLID, the style index value is unused. For interior style PATTERN, the style index value is greater than 0 and is a pointer into the pattern tables of the workstations. For interior style HATCH, the style index value is non-zero and determines which of a number of hatch styles is used: hatch styles greater than 0 are reserved for registration; hatch styles less than 0 are workstation dependent.

If the requested style index is not available on a particular workstation, style index 1 is used on that workstation. If style index 1 is not present on that workstation, the result is workstation dependent.

NOTE - Hatch style values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a hatch style has been approved by ISO, the hatch style value will be assigned by the Registration Authority.

References:

4.4.2
 4.4.6

Output attributes**GKS functions****Errors:**

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 84 *Style (pattern or hatch) index is equal to zero*

SET FILL AREA COLOUR INDEX**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In fill area colour index (0..n) I

Effect: The 'current fill area colour index' entry in the GKS state list is set to the value specified by the parameter. This value is used for the display of subsequent FILL AREA output primitives, created when the 'current fill area colour index ASF' entry in the GKS state list is INDIVIDUAL. This value does not affect the display of subsequent FILL AREA output primitives, created when the 'current fill area colour index ASF' entry in the GKS state list is BUNDLED.

The colour index is a pointer into the colour tables of the workstations. If the specified colour index is not present in a workstation colour table, a workstation dependent colour index is used on that workstation.

References:

4.4.2
 4.4.6

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 92 *Colour index is less than zero*

SET PATTERN SIZE**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In pattern size WC SX,SY > 0 2 × R

Effect: The 'current pattern width vector' entry in the GKS state list is set to the vector (SX,0). The 'current pattern height vector' entry in the GKS state list is set to the vector (0,SY). When the currently selected (either via the fill area bundle or individually, depending on the corresponding ASF) fill area interior style is PATTERN, these values are used, where possible, in conjunction with the 'current pattern reference point' entry in the GKS state list for displaying the FILL AREA output primitives.

References:

4.4.2
 4.4.6

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 87 *Pattern size value is not positive*

SET PATTERN REFERENCE POINT**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In reference point WC P

Effect: The 'current pattern reference point' entry in the GKS state list is set to the value specified by the parameter. When the currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF) fill area interior style is PATTERN, this value is used, where possible, in conjunction with the 'current pattern width vector' and 'current pattern height vector' entries in the

GKS functions**Output attributes**

GKS state list for displaying the FILL AREA output primitives.

References:

4.4.2

4.4.6

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

SET ASPECT SOURCE FLAGS

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In list of Aspect Source Flags

(BUNDLED,INDIVIDUAL) 13 × E

Effect: The Aspect Source Flags (ASFs) in the GKS state list are set to the values indicated by the parameter. The elements of the list of ASFs are arranged in the following order:

linetype ASF
 linewidth scale factor ASF
 polyline colour index ASF
 marker type ASF
 marker size scale factor ASF
 polymarker colour index ASF
 text font and precision ASF
 character expansion factor ASF
 character spacing ASF
 text colour index ASF
 fill area interior style ASF
 fill area style index ASF
 fill area colour index ASF

References:

4.4.2

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

SET PICK IDENTIFIER

GKOP,WSOP,WSAC,SGOP L1b

Parameters:

In pick identifier

N

Effect: The 'current pick identifier' entry in the GKS state list is set to the value specified by the parameter.

References:

4.4.2

4.7.1

4.8.1

4.8.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

97 *Pick identifier is invalid*

Output attributes**GKS functions****5.4.2 Workstation attributes (representations)****SET POLYLINE REPRESENTATION**

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier
 In polyline index
 In linetype
 In linewidth scale factor
 In polyline colour index

(1..n)	N
(-n..-1,1..n)	I
≥ 0	R
(0..n)	I

Effect: In the polyline bundle table of the workstation state list, the given polyline index is associated with the specified parameters.

Linetype:

linetype values produce linetypes as indicated:

<0	implementation dependent
1	solid line
2	dashed line
3	dotted line
4	dashed-dotted line
≥ 5	reserved for registration

Linewidth scale factor:

a scale factor applied to the nominal linewidth. The result is mapped by the workstation to the nearest available linewidth.

Polyline colour index:

pointer into the colour table of the workstation.

The polyline bundle table in the workstation state list has predefined entries taken from the workstation description table; a number (see table 2, in 4.10) are predefined for every workstation of category OUTPUT and OUTIN. Any table entry (including the predefined entries) may be redefined with this function.

When polylines are displayed, the polyline index refers to an entry in the polyline bundle table. If polylines are displayed with a polyline index that is not present in the polyline bundle table, polyline index 1 is used. Which of the aspects in the entry are used depends upon the setting of the corresponding ASFs (see 4.4.2).

NOTE - Linetype values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a linetype has been approved by ISO, the linetype value will be assigned by the Registration Authority.

References:

4.4.3
 4.5.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 33 *Specified workstation is of category MI*
 35 *Specified workstation is of category INPUT*
 36 *Specified workstation is Workstation Independent Segment Storage*
 60 *Polyline index is invalid*
 63 *Linetype is equal to zero*
 64 *Specified linetype is not supported on this workstation*
 65 *Linewidth scale factor is less than zero*
 93 *Colour index is invalid*

GKS functions**Output attributes****SET POLYMARKER REPRESENTATION****WSOP,WSAC,SGOP****L1a****Parameters:**

In	workstation identifier	N
In	polymarker index	(1..n)
In	marker type	(-n..-1,1..n)
In	marker size scale factor	≥ 0
In	polymarker colour index	(0..n)

Effect: In the polymarker bundle table of the workstation state list, the given polymarker index is associated with the specified parameters.

Markertype:

marker type values produce centred symbols as indicated:

< 0	implementation dependent
1	.
2	+
3	*
4	0
5	X
≥ 6	reserved for registration

Marker type 1 is always displayed as the smallest displayable dot.

Marker scale factor:

a scale factor applied to the nominal marker size. The result is mapped by the workstation to the nearest available marker size.

Polymarker colour index:

a pointer into the colour table of the workstation.

The polymarker bundle table in the workstation state list has predefined entries taken from the workstation description table; a number (see table 2, in 4.10) are predefined for every workstation of category OUTPUT and OUTIN. Any table entry (including the predefined entries) may be redefined with this function.

When polymarkers are displayed, the polymarker index refers to an entry in the polymarker bundle table. If polymarkers are displayed with a polymarker index that is not present in the polymarker bundle table, polymarker index 1 is used. Which of the aspects in the entry are used depends upon the setting of the corresponding ASFs (see 4.4.2).

NOTE - Marker type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a marker type has been approved by ISO, the marker type value will be assigned by the Registration Authority.

References:

4.4.4

4.5.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 66 *Polymarker index is invalid*
- 69 *Marker type is equal to zero*
- 70 *Specified marker type is not supported on this workstation*
- 71 *Marker size scale factor is less than zero*
- 93 *Colour index is invalid*

Output attributes**GKS functions****SET TEXT REPRESENTATION****WSOP,WSAC,SGOP L1a****Parameters:**

In	workstation identifier	N
In	text index	(1..n) I
In	text font and precision	(-n..-1,1..n;STRING,CHAR,STROKE) (I;E)
In	character expansion factor	>0 R
In	character spacing	R
In	text colour index	(0..n) I

Effect: In the text bundle table of the workstation state list, the given text index is associated with the specified parameters.

Text font and precision:

a single text aspect; a particular text font can be available at some, but not necessarily all, precision. The text font value is used to select a particular font on this workstation. Text font 1 contains a graphical representation of the characters defined in ISO 646 (see 4.4.5). Text fonts greater than 1 are reserved for registration. Text fonts less than 0 are implementation dependent. The text precision value determines the fidelity with which the other text aspects are used. The values of text precision, in order of increasing fidelity, are STRING, CHAR and STROKE (see 4.4.5).

Character expansion factor:

specifies the deviation of the width to height ratio of the characters from the ratio indicated by the font designer.

Character spacing:

specifies how much additional space is to be inserted between two adjacent character bodies. Character spacing is specified as a fraction of the font-nominal character height.

Text colour index:

a pointer into the colour table of the workstation.

The text bundle table in the workstation state list has predefined entries taken from the workstation description table; a number (see table 2 in 4.10) are predefined for every workstation of category OUTPUT and OUTIN. Any table entry (including the predefined entries) may be redefined with this function.

When text is displayed, the text index refers to an entry in the text bundle table. If text is displayed with a text index that is not present in the text bundle table, text index 1 is used. Which of the aspects in the entry are used depends upon the setting of the corresponding ASFs (see 4.4.2).

NOTE - Text font numbers are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a text font has been approved by ISO, the text font number will be assigned by the Registration Authority.

References:

- 4.4.5
- 4.5.3

Errors:

- 7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP
- 20 Specified workstation identifier is invalid
- 25 Specified workstation is not open
- 33 Specified workstation is of category MI
- 35 Specified workstation is of category INPUT
- 36 Specified workstation is Workstation Independent Segment Storage
- 72 Text index is invalid
- 75 Text font is equal to zero
- 76 Requested text font is not supported for the specified precision on this workstation
- 77 Character expansion factor is less than or equal to zero
- 93 Colour index is invalid

GKS functions**Output attributes****SET FILL AREA REPRESENTATION****WSOP,WSAC,SGOP****L1a**

Parameters:

In workstation identifier	N
In fill area index	(1..n) I
In fill area interior style	(HOLLOW,SOLID,PATTERN,HATCH) E
In fill area style index	(-n..-1,1..n) I
In fill area colour index	(0..n) I

Effect: In the fill area bundle table of the workstation state list, the given fill area index is associated with the specified parameters.

Fill area interior style:

is used to determine in what style the area is filled and the possible values are: HOLLOW, SOLID, PATTERN and HATCH (see 4.4.6).

Fill area style index:

For interior styles HOLLOW and SOLID, this value is unused. For interior style PATTERN, this value is greater than 0 and is a pointer into the pattern table of the workstation. For interior style HATCH, this value is non-zero and determines which of a number of hatch styles is used: hatch styles greater than 0 are reserved for registration; hatch styles less than 0 are workstation dependent.

Fill area colour index:

pointer into the colour table of the workstation.

The fill area bundle table in the workstation state list has predefined entries taken from the workstation description table; a number (see table 2 in 4.10) are predefined for every workstation of category OUTPUT and OUTIN. Any table entry (including the predefined entries) may be redefined with this function.

When fill area is displayed, the current fill area index refers to an entry in the fill area bundle table. If fill areas are displayed with a fill area index that is not present in the fill area bundle table, fill area index 1 is used. Which of the aspects in the entry are used depends upon the setting of the corresponding ASFs (see 4.4.2).

NOTE - Hatch style values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a hatch style has been approved by ISO, the hatch style value will be assigned by the Registration Authority.

References:

4.4.6
4.5.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 80 *Fill area index is invalid*
- 83 *Specified fill area interior style is not supported on this workstation*
- 85 *Specified pattern index is invalid*
- 86 *Specified hatch style is not supported on this workstation*
- 93 *Colour index is invalid*

Output attributes**GKS functions****SET PATTERN REPRESENTATION**

WSOP,WSAC,SGOP L1a

Parameters:

In	workstation identifier	N
In	pattern index	(1..n) I
In	dimensions of pattern array DX,DY	(1..n) 2 × I
In	pattern array	(0..n) n × n × I

Effect: In the pattern table of the workstation state list, the given pattern index is associated with the specified parameters.

A grid of $DX \times DY$ cells is specified. The colour is given individually for each cell by a colour index, a pointer into the colour table of the workstation. The arrangement of cells is described in 4.4.6.

If the workstation supports interior style PATTERN, the pattern table in the workstation state list has predefined entries taken from the workstation description table; a number (see table 2 in 4.10) are predefined for every workstation supporting interior style PATTERN. Any table entry (including the predefined entries) may be redefined with this function.

When a fill area is displayed, if the currently selected (either via the fill area bundle or individually, depending upon the corresponding ASF) interior style is PATTERN, the currently selected style index refers to an entry in the pattern table. If fill areas are displayed with a pattern index that is not present in the pattern table, pattern index 1 will be used. If pattern index 1 is not present (i.e. interior style PATTERN is not supported for this workstation), the result is workstation dependent.

References:

4.4.6
4.5.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 33 *Specified workstation is of category MI*
 35 *Specified workstation is of category INPUT*
 36 *Specified workstation is Workstation Independent Segment Storage*
 85 *Specified pattern index is invalid*
 90 *Interior style PATTERN is not supported on this workstation*
 91 *Dimensions of colour array are invalid*
 93 *Colour index is invalid*

SET COLOUR REPRESENTATION

WSOP,WSAC,SGOP L0a

Parameters:

In	workstation identifier	N
In	colour index	(0..n) I
In	colour (red,green,blue intensities)	[0,1] 3 × R

Effect: In the colour table of the workstation state list, the given colour index is associated with the specified colour. The colour is mapped by the workstation to the nearest available.

The colour table in the workstation state list has predefined entries taken from the workstation description table; at least indices 0 and 1 are predefined for every workstation of category OUTPUT and OUTIN. Any table entry (including the predefined entries) may be redefined with this function.

When output primitives are displayed, the colour index refers to an entry in the colour table. If output primitives are displayed with a colour index that is not present in the colour table, a workstation dependent colour index, derived from the colour index not present, will be used. The background colour is defined by colour index 0.

GKS functions**Output attributes**

NOTE - On monochrome workstations, the intensity is computed from the colour values in a workstation dependent way.

References:

- 4.4.2
- 4.4.9
- 4.5.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 93 *Colour index is invalid*
- 96 *Colour is outside range [0,1]*

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

Transformation functions**GKS functions****5.5 Transformation functions****5.5.1 Normalization transformation****SET WINDOW****GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In transformation number
 In window limits $XMIN < XMAX, YMIN < YMAX$

(1..n) I
 WC $4 \times R$

Effect: The window limits entry of the specified normalization transformation in the GKS state list is set to the value specified by the parameter.

References:

4.6.1
 4.8.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 50 *Transformation number is invalid*
 51 *Rectangle definition is invalid*

SET VIEWPORT**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In transformation number
 In viewport limits $XMIN < XMAX, YMIN < YMAX$

(1..n) I
 NDC $4 \times R$

Effect: The viewport limits entry of the specified normalization transformation in the GKS state list is set to the value specified by the parameter. If the 'current normalization transformation number' entry in the GKS state list is the same as the specified transformation number, the 'clipping rectangle' entry in the GKS state list is set to the specified viewport limits.

References:

4.6.1
 4.8.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
 50 *Transformation number is invalid*
 51 *Rectangle definition is invalid*
 52 *Viewport is not within the Normalized Device Coordinate unit square*

SET VIEWPORT INPUT PRIORITY**GKOP,WSOP,WSAC,SGOP L0b****Parameters:**

In transformation number
 In reference transformation number
 In relative priority

(0..n) I
 (0..n) I
 (HIGHER,LOWER) E

Effect: The viewport input priority of the specified normalization transformation in the GKS state list is set to the next higher or next lower priority relative to the reference transformation according to the specified relative priority. If the specified transformation number is the same as the reference transformation number, the function has no effect.

GKS functions**Transformation functions****References:**

4.6.4
4.8.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
50 *Transformation number is invalid*

SELECT NORMALIZATION TRANSFORMATION**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In transformation number

(0..n) I

Effect: The 'current normalization transformation number' entry in the GKS state list is set to the value specified by the parameter. The 'clipping rectangle' entry in the GKS state list is set to the viewport limits of the specified transformation number.

References:

4.6.1

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
50 *Transformation number is invalid*

SET CLIPPING INDICATOR**GKOP,WSOP,WSAC,SGOP L0a****Parameters:**

In clipping indicator

(CLIP,NOCLIP) E

Effect: The 'clipping indicator' entry in the GKS state list is set to the value specified by the parameter.

References:

4.6.2
4.7.4
4.7.6
4.8.4

Errors:

8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*

5.5.2 Workstation transformation**SET WORKSTATION WINDOW****WSOP,WSAC,SGOP L0a****Parameters:**

In workstation identifier

N

In workstation window limits XMIN < XMAX, YMIN < YMAX

NDC

4 × R

Effect: The 'requested workstation window' entry in the workstation state list of the specified workstation is set to the value specified by the parameter.

If the 'dynamic modification accepted for workstation transformation' entry in the workstation description table is set to IMM, or if the 'display surface empty' entry in the workstation state list is set to EMPTY, then the 'current workstation window' entry in the workstation state list is set to the value specified by the parameter and the 'workstation transformation update state' entry is set to NOTPENDING. Otherwise the 'workstation transformation update state' entry in the workstation

Transformation functions**GKS functions**

state list is set to PENDING and the 'current workstation window' entry is not changed.

References:

4.6.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 51 *Rectangle definition is invalid*
- 53 *Workstation window is not within the Normalized Device Coordinate unit square*

SET WORKSTATION VIEWPORT

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier	N
In workstation viewport limits XMIN < XMAX, YMIN < YMAX	DC 4 × R

Effect: The 'requested workstation viewport' entry in the workstation state list of the specified workstation is set to the value specified by the parameter.

If the 'dynamic modification accepted for workstation transformation' entry in the workstation description table is set to IMM, or if the 'display surface empty' entry in the workstation state list is set to EMPTY, then the 'current workstation viewport' entry in the workstation state list is set to the value specified by the parameter and the 'workstation transformation update state' entry is set to NOTPENDING. Otherwise the 'workstation transformation update state' entry in the workstation state list is set to PENDING and the 'current workstation viewport' entry is not changed.

References:

4.6.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 51 *Rectangle definition is invalid*
- 54 *Workstation viewport is not within the display space*

GKS functions**Segment functions****5.6 Segment functions****5.6.1 Segment manipulation functions****CREATE SEGMENT****WSAC L1a****Parameters:**

In segment name

N

Effect: GKS is set into the operating state SGOP = 'Segment open'. The segment state list is set up and initialised as indicated in 6.7. The segment name is recorded as the 'name of the open segment' in the GKS state list (see 6.4). All subsequent output primitives until the next CLOSE SEGMENT will be collected into this segment. The segment name is entered in the 'set of stored segments for this workstation' in the workstation state list (see 6.5) for every active workstation. All active workstations are included in the 'set of associated workstations' of the segment state list of the newly opened segment. The segment name is entered into the 'set of segment names in use' in the GKS state list. Primitive attributes are not affected.

References:

4.7.1

Errors:

3 *GKS not in proper state: GKS shall be in the state WSAC*
 120 *Specified segment name is invalid*
 121 *Specified segment name is already in use*

CLOSE SEGMENT**SGOP L1a****Parameters:**

none

Effect: GKS is put into the operating state WSAC = 'At least one workstation active'. Primitives may no longer be added to the previously open segment. The 'name of the open segment' in the GKS state list (see 6.4) becomes unavailable for inquiry.

References:

4.7.1

Errors:

4 *GKS not in proper state: GKS shall be in the state SGOP*

RENAME SEGMENT**WSOP,WSAC,SGOP L1a****Parameters:**

In old segment name

N

In new segment name

N

Effect: Each occurrence of old segment name in the 'set of stored segments for this workstation' in a workstation state list (see 6.5) and in the 'set of segment names in use' in the GKS state list is replaced by new segment name. If old segment name is the name of the open segment, the 'name of the open segment' in the GKS state list is set to new segment name.

NOTE - The old segment name may be reused by the application program.

Segment functions	GKS functions
References:	

4.7.1

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 121 *Specified segment name is already in use*
 122 *Specified segment does not exist*

DELETE SEGMENT

WSOP,WSAC,SGOP L1a

Parameters:

In segment name

N

Effect: The segment is deleted. The segment name is removed from each 'set of stored segments for this workstation' (in the workstation state lists (see 6.5)) which contains it and from the 'set of segment names in use' in the GKS state list. The segment's state list is cancelled.

NOTE - The segment name may be reused by the application program.

References:

4.5.3

4.7.1

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 122 *Specified segment does not exist*
 125 *Specified segment is open*

DELETE SEGMENT FROM WORKSTATION

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier

N

In segment name

N

Effect: The segment is deleted from the specified workstation. The segment name is removed from the 'set of stored segments for this workstation' in the workstation state list (see 6.5). The workstation identifier is removed from the 'set of associated workstations' in the segment state list (see 6.7). If the 'set of associated workstations' becomes empty, the segment is deleted, i.e. the **DELETE SEGMENT** function is performed.

References:

4.5.3

4.7.1

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 33 *Specified workstation is of category MI*
 35 *Specified workstation is of category INPUT*
 120 *Specified segment name is invalid*
 123 *Specified segment does not exist on specified workstation*
 125 *Specified segment is open*

GKS functions**Segment functions****ASSOCIATE SEGMENT WITH WORKSTATION****WSOP, WSAC L2a**

Parameters:

In	workstation identifier	N
In	segment name	N

Effect: The segment is sent to the specified workstation in the same way as if the workstation were active when the segment was created. Clipping rectangles are copied unchanged. The segment name is added to the 'set of stored segments for this workstation' in the workstation state list (see 6.5). The workstation identifier is included in the 'set of associated workstations' in the segment state list (see 6.7).

NOTE - If the specified segment is not present in the Workstation Independent Segment Storage, an error occurs.

If the segment is already associated with the specified workstation, the function has no effect.

References:

4.5.3
4.7.1
4.7.6

Errors:

- 6 *GKS not in proper state: GKS shall be either in the state WSOP or in the state WSAC*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 27 *Workstation Independent Segment Storage is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 120 *Specified segment name is invalid*
- 124 *Specified segment does not exist on Workstation Independent Segment Storage*

COPY SEGMENT TO WORKSTATION**WSOP, WSAC L2a**

Parameters:

In	workstation identifier	N
In	segment name	N

Effect: The primitives in the segment are sent to the specified workstation after segment transformation and clipping at the clipping rectangle stored with each primitive. The primitives are not stored in a segment.

NOTE - If the specified segment is not present in the Workstation Independent Segment Storage, an error occurs. The specified workstation cannot be the Workstation Independent Segment Storage.

All primitives keep the values of the primitive attributes (for example, polyline index, character path, pick identifier), that were assigned to them when they were created, for their whole lifetime (see 4.7.1). In particular, when segments are copied, the values of the primitive attributes within the copied segments are unchanged.

References:

4.5.3
4.7.1
4.7.6

Segment functions

GKS functions

Errors:

- 6 *GKS not in proper state: GKS shall be either in the state WSOP or in the state WSAC*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 27 *Workstation Independent Segment Storage is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 120 *Specified segment name is invalid*
- 124 *Specified segment does not exist on Workstation Independent Segment Storage*

INSERT SEGMENT

WSAC,SGOP L2a

Parameters:

- In segment name N
- In transformation matrix $2 \times 3 \times R$

Effect: Having been transformed as described below, the primitives contained in the segment are copied either (in state SGOP) into the open segment or (in state WSAC) into the stream of primitives outside segments.

In both cases the transformed primitives are sent to all active workstations. The coordinates of the primitives contained in the inserted segment are transformed, firstly, by the segment transformation of the inserted segment, and, secondly, by applying the following matrix multiplication to them:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The original coordinates are (x, y) , the transformed coordinates are (x', y') , both in NDC. The values M_{13} and M_{23} of the transformation matrix are NDC coordinates, the other values are unitless. For geometric attributes which are vectors (for example, CHARACTER UP VECTOR), the values M_{13} and M_{23} are ignored.

The insert transformation (conceptually) takes place in NDC space. Other than the segment transformation, attributes of the inserted segment are ignored.

All clipping rectangles in the inserted segment are ignored. Each primitive processed is assigned a new clipping rectangle which is the clipping rectangle in the GKS state list if the 'clipping indicator' entry in the GKS state list is CLIP and is $[0,1] \times [0,1]$ if the 'clipping indicator' entry in the GKS state list is NOCLIP. All primitives processed by a single invocation of INSERT SEGMENT receive the same clipping rectangle.

NOTE - If the specified segment is not in the Workstation Independent Segment Storage or is the open segment, an error occurs.

All primitives keep the values of the primitive attributes (for example, POLYLINE INDEX, TEXT PATH, PICK IDENTIFIER), that were assigned to them when they were created, for their whole lifetime (see 4.7.1). In particular, when segments are inserted, the values of the primitive attributes within the inserted segments are unchanged. The values of primitive attributes in the GKS state list, that are used in the creation of subsequent primitives within the segment into which the insertion takes place, are not changed by that insertion.

References:

- 4.5.3
- 4.7.6

GKS functions**Segment functions**

Errors:

- 5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*
- 27 *Workstation Independent Segment Storage is not open*
- 120 *Specified segment name is invalid*
- 124 *Specified segment does not exist on Workstation Independent Segment Storage*
- 125 *Specified segment is open*

5.6.2 Segment attributes**SET SEGMENT TRANSFORMATION**

WSOP,WSAC,SGOP L1a

Parameters:

- In segment name
- In transformation matrix

N
2 × 3 × R

Effect: The 'segment transformation matrix' entry in the segment state list of the named segment is set to the value specified by the parameter. When a segment is displayed, the coordinates of its primitives are transformed by applying the following matrix multiplication to them:

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \end{bmatrix} \times \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The original coordinates are (x, y) , the transformed coordinates are (x', y') , both in NDC. The values M_{13} and M_{23} of the transformation matrix are in NDC coordinates, the other values are unitless. For geometric attributes which are vectors (for example, CHARACTER UP VECTOR), the values M_{13} and M_{23} are ignored.

This function can be used to transform a segment stored on a workstation. The transformation applies to all workstations where the specified segment is stored even if they are not all active.

The segment transformation (conceptually) takes place in NDC space. The segment transformation will be stored in the segment state list and will not affect the contents of the segment. The segment transformation is not cumulative, i.e. it always applies to the segment as originally created.

NOTE - Applying the same segment transformation twice to a segment gives identical results. The identity transformation shows the segment in its original geometrical appearance.

References:

- 4.5.3
- 4.7.3

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 120 *Specified segment name is invalid*
- 122 *Specified segment does not exist*

SET VISIBILITY

WSOP,WSAC,SGOP L1a

Parameters:

- In segment name
- In visibility

N
(VISIBLE,INVISIBLE) E

Effect: The 'visibility' entry in the segment state list of the named segment is set to the value specified by the parameter.

Segment functions**GKS functions****References:**

4.5.3
4.7.2
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 122 *Specified segment does not exist*

SET HIGHLIGHTING

WSOP,WSAC,SGOP

L1a

Parameters:

In segment name
 In highlighting

(NORMAL,HIGHLIGHTED)

N
E

Effect: The 'highlighting' entry in the segment state list of the named segment is set to the value specified by the parameter. If the segment is marked as HIGHLIGHTED and VISIBLE, the primitives in it are highlighted in an implementation dependent manner.

References:

4.5.3
4.7.2

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 122 *Specified segment does not exist*

SET SEGMENT PRIORITY

WSOP,WSAC,SGOP

L1a

Parameters:

In segment name
 In segment priority

[0,1] R

Effect: The 'segment priority' entry in the segment state list of the named segment is set to the value specified by the parameter. Segment priority affects the display of segments and pick input if segments overlap, in which case GKS gives precedence to segments with higher priority. If segments with the same priority overlap, the result is implementation dependent.

NOTE - The use of segment priority applies only to workstations where the entry 'number of segment priorities supported' in the workstation description table is greater than 1 or equal to 0 (indicating that a continuous range of priorities is supported).

If 'number of segment priorities supported' is greater than 1, the range [0,1] for segment priority is mapped onto the range 1 to 'number of segment priorities supported' for a specific workstation before being used by a device driver. If 'number of segment priorities supported' is equal to 0, the implementation allows all values of segment priority to be differentiated.

This feature is intended to address appropriate hardware capabilities only. It cannot be used to force software checking of interference between segments on non-raster displays.

The segment priority is also used for picking segments. When overlapping or intersecting segments are picked, the segment with higher priority is delivered as a result of the pick input primitive. All workstations having pick input provide this mechanism.

GKS functions**Segment functions****References:**

4.5.3
4.7.2
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 122 *Specified segment does not exist*
 126 *Segment priority is outside the range [0,1]*

SET DETECTABILITY

WSOP,WSAC,SGOP L1b

Parameters:

In segment name
 In detectability

N
 (UNDETECTABLE,DETECTABLE) E

Effect: The 'detectability' entry in the segment state list of the named segment is set to the value specified by the parameter. If the segment is marked as DETECTABLE and VISIBLE, the primitives in it are available for pick input. DETECTABLE but INVISIBLE segments cannot be picked.

References:

4.7.2
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 120 *Specified segment name is invalid*
 122 *Specified segment does not exist*

STANDARDSISO.COM : Click to view the full PDF ISO 7942-1985

Input functions**GKS functions****5.7 Input functions****5.7.1 Initialisation of input devices****INITIALISE LOCATOR**

WSOP,WSAC,SGOP L0b

Parameters:

In	workstation identifier	N
In	locator device number	(1..n)
In	initial normalization transformation number	(0..n)
In	initial locator position	WC
In	prompt and echo type	(-n..1,1..n)
In	echo area XMIN < XMAX, YMIN < YMAX	DC
In	locator data record	4 × R

Effect: The initial locator position, initial normalization transformation number, prompt and echo type, echo area and locator data record are stored in the workstation state list entry for the specified LOCATOR device.

For some LOCATOR prompt and echo types, two positions are required. One of the positions, which remains fixed during the input operation, is the initial locator position. The other position is the current locator position that varies dynamically as the operator uses the LOCATOR.

Prompt and echo types:

- <0 prompting and echoing is LOCATOR device dependent.
- 1 designate the current position of the LOCATOR using an implementation-defined technique.
- 2 crosshair, i.e. designate the current position of the LOCATOR using a vertical line and a horizontal line spanning over the display surface or the workstation viewport intersecting at the current locator position.
- 3 designate the current position of the LOCATOR using a tracking cross.
- 4 designate the current position of the LOCATOR using a rubber band line connecting the initial locator position given by this function and the current locator position.
- 5 designate the current position of the LOCATOR using a rectangle. The diagonal of the rectangle is the line connecting the initial locator position given by this function and the current locator position.
- 6 display a digital representation of the current position of the LOCATOR in LOCATOR device dependent coordinates within the echo area.
- ≥7 reserved for registration.

NOTE - LOCATOR prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a LOCATOR prompt and echo type has been approved by ISO, the LOCATOR prompt and echo type value will be assigned by the Registration Authority.

References:

- 4.8.2
- 4.8.6

GKS functions

Input functions

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 51 *Rectangle definition is invalid*
- 140 *Specified input device is not present on workstation*
- 141 *Input device is not in REQUEST mode*
- 144 *Specified prompt and echo type is not supported on this workstation*
- 145 *Echo area is outside display space*
- 146 *Contents of input data record are invalid*
- 152 *Initial value is invalid*

INITIALISE STROKE

WSOP,WSAC,SGOP L0b

Parameters:

In	workstation identifier	N
In	stroke device number	I
In	initial normalization transformation number	I
In	number of points in initial stroke	I
In	points in initial stroke	WC n × P
In	prompt and echo type	(-n..-1,1..n) I
In	echo area XMIN < XMAX, YMIN < YMAX	DC 4 × R
In	stroke data record	D

Effect: The initial stroke, initial normalization transformation number, prompt and echo type, echo area and stroke data record are stored in the workstation state list entry for the specified STROKE device.

For all prompt and echo types, the first entry in the stroke data record is the input buffer size which is an integer in the range (1..n). This is compared against an implementation defined 'maximum input buffer size' for this device (contained in the workstation description table). If the requested buffer size is greater, the 'maximum input buffer size' is substituted in the stored data record. If the initial stroke is longer than the buffer size, an error is issued.

When a STROKE measure process comes into existence, it obtains a buffer of the current input buffer size. The initial stroke is copied into the buffer, and the editing position is placed at the initial buffer editing position within it. Replacement of points begins at this initial position. If the initial buffer editing position cannot be specified in the stroke data record, the value 1 is used.

Prompt and echo types:

- < 0 prompting and echoing is STROKE device dependent.
- 1 display the current stroke using an implementation defined technique.
- 2 display a digital representation of the current stroke position within the echo area.
- 3 display a marker at each point of the current stroke.
- 4 display a line joining successive points of the current stroke.
- ≥ 5 reserved for registration.

If the operator enters more points than the current input buffer size, the additional points are lost. The operator should be informed of this situation.

Stroke data record entries for variables such as intervals in X, Y and time may be provided to constrain the number of points delivered.

NOTE - For all prompt and echo types, the stroke data record may contain an initial buffer editing position, which may range from 1 to length of initial stroke plus 1.

Input functions**GKS functions**

STROKE prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a STROKE prompt and echo type has been approved by ISO, the STROKE prompt and echo type value will be assigned by the Registration Authority.

References:

4.8.2
4.8.6

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 51 *Rectangle definition is invalid*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*
 144 *Specified prompt and echo type is not supported on this workstation*
 145 *Echo area is outside display space*
 146 *Contents of input data record are invalid*
 152 *Initial value is invalid*
 153 *Number of points in the initial stroke is greater than the buffer size*

INITIALISE VALUATOR

WSOP,WSAC,SGOP

L0b

Parameters:

In	workstation identifier	N
In	valuator device number	(1..n)
In	initial value	R
In	prompt and echo type	(-n..-1,1..n)
In	echo area $XMIN < XMAX, YMIN < YMAX$	DC
In	valuator data record	$4 \times R$

Effect: The initial value, prompt and echo type, echo area and valuator data record are stored in the workstation state list entry for the specified VALUATOR device. For all VALUATOR prompt and echo types, the valuator data record includes, in the first two positions, a low value and a high value, in that order, specifying the range. The values from the device will be scaled linearly to the specified range.

Prompt and echo types:

<0 prompting and echoing is VALUATOR device dependent.
 1 designate the current VALUATOR value using an implementation defined technique.
 2 display a graphical representation of the current VALUATOR value within the echo area (for example, a dial or a pointer).
 3 display a digital representation of the current VALUATOR value within the echo area.
 ≥4 reserved for registration.

NOTE - VALUATOR prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a VALUATOR prompt and echo type has been approved by ISO, the VALUATOR prompt and echo type value will be assigned by the Registration Authority.

References:

4.8.2
4.8.6

Input functions

GKS functions

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 51 *Rectangle definition is invalid*
- 140 *Specified input device is not present on workstation*
- 141 *Input device is not in REQUEST mode*
- 144 *Specified prompt and echo type is not supported on this workstation*
- 145 *Echo area is outside display space*
- 146 *Contents of input data record are invalid*
- 152 *Initial value is invalid*

INITIALISE CHOICE

WSOP,WSAC,SGOP

L0b

Parameters:

In	workstation identifier	N
In	choice device number	I
In	initial status	E
In	initial choice number	I
In	prompt and echo type	I
In	echo area $XMIN < XMAX, YMIN < YMAX$	$4 \times R$
In	choice data record	D

Effect: The initial status, initial choice number, prompt and echo type, echo area and choice data record are stored in the workstation state list entry for the specified CHOICE device.

Prompt and echo types:

- <0 prompting and echoing is CHOICE device dependent.
- 1 designate the current CHOICE number using an implementation defined technique.
- 2 the physical input devices that are most commonly used to implement a CHOICE logical input device normally have a built-in prompting capability. This prompt and echo type allows the application program to invoke this prompting capability. If the value of the i-th element of 'prompt array' in the choice data record is OFF, prompting of the i-th alternative of the specified choice input device is turned off. An ON value indicates that prompting for that alternative is turned on. The first entry in the choice data record is the number of choice alternatives. This is compared against an implementation defined 'maximum number of choice alternatives' for this device (contained in the workstation description table). If the maximum value is exceeded, an error is issued. The second entry in the choice data record is the 'prompt array'.
- 3 allow the operator to indicate a CHOICE number by selecting, using an appropriate technique, one of a set of CHOICE strings. The CHOICE strings are contained in the choice data record and are displayed within the echo area. The logical input value is the number of the string selected. The first entry in the choice data record is the number of choice strings. This is compared against an implementation defined 'maximum number of choice alternatives' for this device (contained in the workstation description table). If the maximum value is exceeded, an error is issued. The second entry in the choice data record is the 'array of choice strings'.
- 4 allow the operator to indicate a CHOICE number by selecting, via an alphanumeric keyboard, one of a set of CHOICE strings. The CHOICE strings are contained in the choice data record and may be displayed in the echo area as a prompt. The string typed in by the operator is echoed in the echo area. The logical input value is the number of the string that has been typed in by the operator. The first entry in the choice data record is the number of choice strings. This is compared against an implementation defined 'maximum number of choice alternatives' for this device (contained in the workstation description table).

Input functions

GKS functions

description table). If the maximum value is exceeded, an error is issued. The second entry in the choice data record is the 'array of choice strings'.

5 the segment named by the choice data record is interpreted during execution of INITIALISE CHOICE for later use as a prompt of the specified CHOICE device. It will be displayed within the echo area by mapping the unit square $[0,1] \times [0,1]$ of NDC space onto the echo area. The pick identifiers in the segment are mapped to CHOICE numbers in a CHOICE device dependent fashion. Picking these primitives selects the corresponding CHOICE value. After the interpretation, no logical connection between the specified segment and the specified CHOICE device exists. The first entry in the choice data record is the segment name.

≥ 6 reserved for registration.

NOTE - CHOICE prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a CHOICE prompt and echo type has been approved by ISO, the CHOICE prompt and echo type value will be assigned by the Registration Authority.

References:

4.8.2
4.8.6

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 51 *Rectangle definition is invalid*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*
 144 *Specified prompt and echo type is not supported on this workstation*
 145 *Echo area is outside display space*
 146 *Contents of input data record are invalid*
 152 *Initial value is invalid*

INITIALISE PICK

WSOP,WSAC,SGOP L1b

Parameters:

In	workstation identifier		N
In	pick device number	(1..n)	I
In	initial status	(OK,NOPICK)	E
In	initial segment		N
In	initial pick identifier		N
In	prompt and echo type	(-n..-1,1..n)	I
In	echo area XMIN < XMAX, YMIN < YMAX	DC	$4 \times R$
In	pick data record		D

Effect: The initial status, initial segment, initial pick identifier, prompt and echo type, echo area and the pick data record are stored in the workstation state list entry for the specified PICK device.

Prompt and echo types:

<0 prompting and echoing is PICK device dependent.
 1 use an implementation-defined technique that at least highlights the 'picked' primitive for a short period of time.
 2 echo the contiguous group of primitives within the segment with the same pick identifier as the 'picked' primitive, or all primitives of the segment with the same pick identifier as the 'picked' primitive.

GKS functions**Input functions**

3 echo the whole segment containing the 'picked' primitive.
 ≥4 reserved for registration.

NOTE - PICK prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a PICK prompt and echo type has been approved by ISO, the PICK prompt and echo type value will be assigned by the Registration Authority.

References:

4.8.2
 4.8.6

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 37 *Specified workstation is not of category OUTIN*
 51 *Rectangle definition is invalid*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*
 144 *Specified prompt and echo type is not supported on this workstation*
 145 *Echo area is outside display space*
 146 *Contents of input data record are invalid*
 152 *Initial value is invalid*

INITIALISE STRING

WSOP,WSAC,SGOP L0b

Parameters:

In	workstation identifier		N
In	string device number	(1..n)	I
In	initial string		S
In	prompt and echo type	(-n...-1,1..n)	I
In	echo area XMIN < XMAX, YMIN < YMAX	DC	4 × R
In	string data record		D

Effect: The initial string, prompt and echo type, echo area and string data record are stored in the workstation state list entry for the specified STRING device.

For all prompt and echo types, the first entry of the string data record is the input buffer size, which is an integer in the range (1..n). This is compared against an implementation defined 'maximum input buffer size' for this device (contained in the workstation description table). If the requested buffer size is greater, the 'maximum input buffer size' is substituted in the stored record. If the initial string is longer than the buffer size, an error is issued.

For all prompt and echo types, the second entry of the string data record is an initial cursor position, which may range from 1 to the length of the initial string plus 1.

When a STRING measure process comes into existence, it obtains a buffer of the current input buffer size. The initial string is copied into the buffer, and the cursor is placed at the initial cursor position within it. Replacement of characters begins at this cursor position.

Prompt and echo types:

<0 prompting and echoing is STRING device dependent.
 1 display the current STRING value within the echo area.
 ≥2 reserved for registration.

NOTE - If the operator enters more characters than the current input buffer size, the additional characters are lost.

Input functions**GKS functions**

STRING prompt and echo type values are registered in the ISO International Register of Graphical Items, which is maintained by the Registration Authority (see 4.1.2). When a STRING prompt and echo type has been approved by ISO, the STRING prompt and echo type value will be assigned by the Registration Authority.

References:

4.8.2
4.8.6

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 51 *Rectangle definition is invalid*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*
 144 *Specified prompt and echo type is not supported on this workstation*
 145 *Echo area is outside display space*
 146 *Contents of input data record are invalid*
 152 *Initial value is invalid*
 154 *Length of the initial string is greater than the buffer size*

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

GKS functions

Input functions

5.7.2 Setting the mode of input devices

SET LOCATOR MODE

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier	N
In locator device number	(1..n) I
In operating mode	(REQUEST,SAMPLE,EVENT) E
In echo switch	(ECHO,NOECHO) E

Effect: The given LOCATOR device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given LOCATOR device.

References:

4.8.1
4.8.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 143 *EVENT and SAMPLE input mode are not available at this level of GKS*

SET STROKE MODE

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier	N
In stroke device number	(1..n) I
In operating mode	(REQUEST,SAMPLE,EVENT) E
In echo switch	(ECHO,NOECHO) E

Effect: The given STROKE device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given STROKE device.

References:

4.8.1
4.8.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 143 *EVENT and SAMPLE input mode are not available at this level of GKS*

Input functions	GKS functions		
SET VALUATOR MODE		WSOP,WSAC,SGOP	L0b
Parameters:			
In workstation identifier			N
In valuator device number	(1..n)		I
In operating mode	(REQUEST,SAMPLE,EVENT)		E
In echo switch	(ECHO,NOECHO)		E
Effect: The given VALUATOR device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given VALUATOR device.			
References:			
4.8.1			
4.8.3			
Errors:			
7 <i>GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP</i>			
20 <i>Specified workstation identifier is invalid</i>			
25 <i>Specified workstation is not open</i>			
38 <i>Specified workstation is neither of category INPUT nor of category OUTIN</i>			
140 <i>Specified input device is not present on workstation</i>			
143 <i>EVENT and SAMPLE input mode are not available at this level of GKS</i>			

SET CHOICE MODE		WSOP,WSAC,SGOP	L0b
Parameters:			
In workstation identifier			N
In choice device number	(1..n)		I
In operating mode	(REQUEST,SAMPLE,EVENT)		E
In echo switch	(ECHO,NOECHO)		E
Effect: The given CHOICE device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given CHOICE device.			
References:			
4.8.1			
4.8.3			
Errors:			
7 <i>GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP</i>			
20 <i>Specified workstation identifier is invalid</i>			
25 <i>Specified workstation is not open</i>			
38 <i>Specified workstation is neither of category INPUT nor of category OUTIN</i>			
140 <i>Specified input device is not present on workstation</i>			
143 <i>EVENT and SAMPLE input mode are not available at this level of GKS</i>			

GKS functions**SET PICK MODE**

Parameters:

In workstation identifier
 In pick device number
 In operating mode
 In echo switch

Effect: The given PICK device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given PICK device.

References:

4.8.1
 4.8.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 37 *Specified workstation is not of category OUTIN*
 140 *Specified input device is not present on workstation*
 143 *EVENT and SAMPLE input mode are not available at this level of GKS*

SET STRING MODE

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier
 In string device number
 In operating mode
 In echo switch

Effect: The given STRING device is set to the specified operating mode and its echoing state is set to ECHO or NOECHO. Depending on the specified operating mode, an interaction with the given device may begin or end. The input device state defined by 'operating mode' and 'echo switch' is stored in the workstation state list for the given STRING device.

References:

4.8.1
 4.8.3

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 143 *EVENT and SAMPLE input mode are not available at this level of GKS*

Input functions**GKS functions****5.7.3 Request input functions****REQUEST LOCATOR**

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier		N
In locator device number	(1..n)	I
Out status	(OK,NONE)	E
Out normalization transformation number	(0..n)	I
Out locator position	WC	P

Effect: GKS performs a REQUEST on the specified LOCATOR device. If the break facility is invoked by the operator, the status NONE is returned; otherwise OK is returned together with the logical input value which is the current measure of the LOCATOR device. This measure consists of a locator position in world coordinates and the normalization transformation number, which was used in the conversion to world coordinates. The locator position is within the window of the normalization transformation.

References:

4.6.4
4.8.1
4.8.2
4.8.3
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*

REQUEST STROKE

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier		N
In stroke device number	(1..n)	I
Out status	(OK,NONE)	E
Out normalization transformation number	(0..n)	I
Out number of points	(0..n)	I
Out points in stroke	WC	$n \times P$

Effect: GKS performs a REQUEST on the specified STROKE device. If the break facility is invoked by the operator, the status NONE is returned; otherwise OK is returned together with the logical input value which is the current measure of the STROKE device. This consists of a sequence of not more than 'input buffer size' (in the stroke data record) points in world coordinates, and the normalization transformation number, which was used in the conversion to world coordinates. The points in the stroke all lie within the window of the normalization transformation.

NOTE - If an operator enters more points than the stroke input buffer size (in the workstation state list) allows, the additional points are lost. The operator should be informed of this situation.

GKS functions**Input functions****References:**

- 4.6.5
- 4.8.1
- 4.8.2
- 4.8.3
- 4.8.4

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 141 *Input device is not in REQUEST mode*

REQUEST VALUATOR

WSOP,WSAC,SGOP

L0b

Parameters:

- In workstation identifier
- In valuator device number
- Out status
- Out value

(1..n)	N
(OK,NONE)	I
	E
	R

Effect: GKS performs a REQUEST on the specified VALUATOR device. If the break facility is invoked by the operator, the status NONE is returned; otherwise OK is returned together with the logical input value which is the current measure of the VALUATOR device. The value delivered is in the range specified in the workstation state list entry (for this device) in the data record.

References:

- 4.8.1
- 4.8.2
- 4.8.3
- 4.8.4

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 141 *Input device is not in REQUEST mode*

REQUEST CHOICE

WSOP,WSAC,SGOP

L0b

Parameters:

- In workstation identifier
- In choice device number
- Out status
- Out choice number

(1..n)	N
(OK,NOCHOICE,NONE)	I
(1..n)	E
	I

Effect: GKS performs a REQUEST on the specified CHOICE device. If the break facility is invoked by the operator, the status NONE is returned; if the measure of the CHOICE device indicates no choice, status NOCHOICE is returned; otherwise OK is returned together with a choice number which is set according to the current measure of the CHOICE device.

Input functions**GKS functions**

References:

4.8.1
4.8.2
4.8.3
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*

REQUEST PICK

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier	N
In pick device number	(1..n) I
Out status	(OK,NOPICK,NONE) E
Out segment name	N
Out pick identifier	N

Effect: GKS performs a REQUEST on the specified PICK device. If the break facility is invoked by the operator, the status NONE is returned; if the measure of the PICK device indicates no pick, status NOPICK is returned; otherwise OK is returned together with a segment name and a pick identifier which are set according to the current measure of the PICK device. The pick identifier is associated with the primitive, within the segment, that was picked.

References:

4.8.1
4.8.2
4.8.3
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 37 *Specified workstation is not of category OUTIN*
 140 *Specified input device is not present on workstation*
 141 *Input device is not in REQUEST mode*

REQUEST STRING

WSOP,WSAC,SGOP L0b

Parameters:

In workstation identifier	N
In string device number	(1..n) I
Out status	(OK,NONE) E
Out character string	S

GKS functions**Input functions**

Effect: GKS performs a REQUEST on the specified STRING device. If the break facility is invoked by the operator, the status NONE is returned; otherwise OK is returned together with the logical input value which is the current measure of the STRING device.

NOTE - The length of the returned string is less than or equal to the buffer size specified in the workstation state list entry (for this device) in the data record.

References:

- 4.8.1
- 4.8.2
- 4.8.3
- 4.8.4

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 141 *Input device is not in REQUEST mode*

5.7.4 Sample input functions**SAMPLE LOCATOR**

WSOP,WSAC,SGOP L0c

Parameters:

In	workstation identifier	N
In	locator device number	(1..n) I
Out	normalization transformation number	(0..n) I
Out	locator position	WC P

Effect: The logical input value, which is the current measure of the specified LOCATOR device, is returned. The measure consists of a locator position in world coordinates and the normalization transformation number, which was used in the conversion to world coordinates. The locator position is within the window of the normalization transformation.

References:

- 4.6.4
- 4.8.1
- 4.8.3
- 4.8.4

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 142 *Input device is not in SAMPLE mode*

Input functions**GKS functions****SAMPLE STROKE**

WSOP,WSAC,SGOP L0c

Parameters:

In workstation identifier	N
In stroke device number	(1..n) I
Out normalization transformation number	(0..n) I
Out number of points	(0..n) I
Out points in stroke	WC n × P

Effect: The logical input value, which is the current measure of the specified STROKE device, is returned. The measure consists of a sequence of points in world coordinates, and the normalization transformation number which was used in the conversion to world coordinates. The points in the stroke all lie within the window of the normalization transformation.

NOTE - If an operator enters more points than the stroke input buffer size (in the workstation state list) allows, the additional points are lost. It is anticipated that the operator would be informed of this situation.

References:

4.6.5
4.8.1
4.8.3
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 142 *Input device is not in SAMPLE mode*

SAMPLE VALUATOR

WSOP,WSAC,SGOP L0c

Parameters:

In workstation identifier	N
In valuator device number	(1..n) I
Out value	R

Effect: The logical input value, which is the current measure of the specified VALUATOR device, is returned. The value delivered is in the range specified in the workstation state list entry (for this device) in the data record.

References:

4.8.1
4.8.3
4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 142 *Input device is not in SAMPLE mode*

GKS functions**Input functions****SAMPLE CHOICE**

WSOP,WSAC,SGOP L0c

Parameters:

In workstation identifier
 In choice device number
 Out status
 Out choice number

N
 (1..n) I
 (OK,NOCHOICE) E
 (1..n) I

Effect: If the current measure of the specified CHOICE device is indicating no choice, status NOCHOICE is returned; otherwise OK is returned together with a choice number which is set according to the current measure of the CHOICE device.

References:

4.8.1
 4.8.3
 4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
 140 *Specified input device is not present on workstation*
 142 *Input device is not in SAMPLE mode*

SAMPLE PICK

WSOP,WSAC,SGOP L1c

Parameters:

In workstation identifier
 In pick device number
 Out status
 Out segment name
 Out pick identifier

N
 (1..n) I
 (OK,NOPICK) E
 N
 N

Effect: If the current measure of the specified PICK device is indicating no pick, status NOPICK is returned; otherwise OK is returned together with a segment name and a pick identifier which are set according to the current measure of the PICK device. The pick identifier is associated with the primitive, within the segment, that was picked.

References:

4.8.1
 4.8.3
 4.8.4

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 37 *Specified workstation is not of category OUTIN*
 140 *Specified input device is not present on workstation*
 142 *Input device is not in SAMPLE mode*

Input functions	GKS functions		
SAMPLE STRING		WSOP,WSAC,SGOP	L0c
Parameters:			
In workstation identifier			N
In string device number		(1..n)	I
Out character string			S
Effect: The logical input value, which is the current measure of the specified STRING device, is returned.			
NOTE - The length of the returned string is less than or equal to the buffer size specified in the workstation state list entry (for this device) in the data record.			
References:			
4.8.1			
4.8.3			
4.8.4			

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 142 *Input device is not in SAMPLE mode*

5.7.5 Event input functions

AWAIT EVENT		WSOP,WSAC,SGOP	L0c
Parameters:			
In timeout (seconds)			R
Out workstation identifier			N
Out input class (NONE,LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)			E
Out logical input device number		(1..n)	I

Effect: If the input queue is empty, GKS is set into a wait state until an input event is written into the queue or the time specified in the timeout parameter has elapsed. If a timeout occurs and there is still no entry in the queue, a NONE value is returned for input class. If there is at least one entry in the queue, the oldest event report is moved from the event queue to the current event report in the GKS state list. The workstation identifier, the input class, and the logical input device number are returned and the corresponding values are made available for subsequent interrogation by the GET <input class> functions.

NOTE - The operation is performed even if error 147 has occurred.

A timeout of zero causes an immediate inspection of the queue, and a NONE value for input class is returned if the queue is empty.

Some operating systems may not provide a reliable timeout facility. In this case a timeout different from zero may never cause a timeout at all.

References:

- 4.8.1
- 4.8.2
- 4.8.3
- 4.8.5

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 147 *Input queue has overflowed*
- 151 *Timeout is invalid*

GKS functions	Input functions		
FLUSH DEVICE EVENTS	WSOP,WSAC,SGOP	L0c	

Parameters:

In workstation identifier		N
In input class	(LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)	E
In logical input device number	(1..n)	I

Effect: All entries in the input queue from the specified logical input device are removed.

NOTE - The operation is performed even if error 147 has occurred.

References:

4.8.5

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*
- 147 *Input queue has overflowed*

GET LOCATOR

WSOP,WSAC,SGOP	L0c
----------------	-----

Parameters:

Out normalization transformation number	(0..n)	I
Out locator position	WC	P

Effect: The LOCATOR logical input value in the current event report is returned. This consists of a locator position in world coordinates and the normalization transformation number, which was used in the conversion to world coordinates.

References:

4.6.4
4.8.4
4.8.5

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 150 *No input value of the correct class is in the current event report*

GET STROKE

WSOP,WSAC,SGOP	L0c
----------------	-----

Parameters:

Out normalization transformation number	(0..n)	I
Out number of points	(0..n)	I
Out points in stroke	WC	$n \times P$

Effect: The STROKE logical input value from the current event report is returned. This consists of a sequence of points in world coordinates, and the normalization transformation number, which was used in the conversion to world coordinates. The points in the stroke all lie within the window of the normalization transformation.

NOTE - The number of points in the stroke is less than or equal to the stroke buffer size specified in the workstation state list for this device.

Input functions	GKS functions
References:	

4.6.5
4.8.4
4.8.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
150 *No input value of the correct class is in the current event report*

GET VALUATOR

WSOP,WSAC,SGOP L0c

Parameters:

Out value

R

Effect: The VALUATOR logical input value in the current event report is returned. The value delivered is in the range specified in the workstation state list entry (for the device) in the data record.

References:

4.8.4
4.8.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
150 *No input value of the correct class is in the current event report*

GET CHOICE

WSOP,WSAC,SGOP L0c

Parameters:

Out status
Out choice number

(OK,NOCHOICE) E
(1..n) I

Effect: The CHOICE logical input value in the current event report is returned. This consists of a CHOICE status and a choice number.

References:

4.8.4
4.8.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
150 *No input value of the correct class is in the current event report*

GET PICK

WSOP,WSAC,SGOP L1c

Parameters:

Out status
Out segment name
Out pick identifier

(OK,NOPICK) E
N
N

Effect: The PICK logical input value in the current event report is returned. This consists of a PICK status, a segment name and the pick identifier associated with the primitive within the segment that was picked.

GKS functions**Input functions****References:**

4.8.4
4.8.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
150 *No input value of the correct class is in the current event report*

GET STRING

WSOP,WSAC,SGOP **L0c**

Parameters:

Out - character string

Effect: The STRING logical input value in the current event report is returned.

NOTE - The length of the returned string is less than or equal to the buffer size specified in the workstation state list entry (for this device) in the data record, at the time the event was queued.

References:

4.8.4
4.8.5

Errors:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
150 *No input value of the correct class is in the current event report*

STANDARDSISO.COM : Click to view the full PDF of ISO 7942-1985

Metafile functions

5.8 Metafile functions

WRITE ITEM TO GKSM

Parameters:

In workstation identifier
 In item type
 In item data record length
 In item data record

WSAC,SGOP L0a

N
I
I
D

Effect: An item containing non-graphical data provided by the application program is written to the GKSM. The parameters 'item data record' and 'item data record length' define the data to be output whilst 'item type' specifies their type.

NOTE - This function can only be used to transfer non-graphical information to GKSM. Graphical data are sent automatically after a workstation of category MO has been activated.

References:

4.9

Errors:

- 5 *GKS not in proper state: GKS shall be either in the state WSAC or in the state SGOP*
- 20 *Specified workstation identifier is invalid*
- 30 *Specified workstation is not active*
- 32 *Specified workstation is not of category MO*
- 160 *Item type is not allowed for user items*
- 161 *Item length is invalid*

GET ITEM TYPE FROM GKSM

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier
 Out item type
 Out item data record length

N
I
(0..n) I

Effect: GKS inspects the type of the current item and the length of its data record in the GKSM and returns the type and length back to the application program.

References:

4.9

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 34 *Specified workstation is not of category MI*
- 162 *No item is left in GKS Metafile input*
- 163 *Metafile item is invalid*

READ ITEM FROM GKSM

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier
 In maximum item data record length
 Out item data record

(0..n) I
D

GKS functions**Metafile functions**

Effect: GKS returns the current item on the GKSM back to the application program and then makes the next item in the metafile the current item. If the item data record length is greater than 'maximum item data record length', the excess parts of the item are lost.

NOTE - By specifying 'maximum item data record length' = 0, the current item can be skipped.

Any program which makes use of the access that this function provides to the content of GKSM items is using information that is not part of the standard, viz. the format and content of metafile items.

References:

4.9

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 34 *Specified workstation is not of category MI*
- 162 *No item is left in GKS Metafile input*
- 163 *Metafile item is invalid*
- 165 *Content of item data record is invalid for the specified item type*
- 166 *Maximum item data record length is invalid*

INTERPRET ITEM

GKOP,WSOP,WSAC,SGOP **L0a**

Parameters:

In	item type	I
In	item data record length	(0..n) I
In	item data record	D

Effect: The supplied item is interpreted. This causes appropriate changes in the set of GKS state variables (see 4.9) and the generation of appropriate graphical output, as determined by the metafile specification.

NOTE - Apart from errors noted below, other GKS errors may occur as a result of interpreting the item.

References:

4.9

Errors:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 161 *Item length is invalid*
- 163 *Metafile item is invalid*
- 164 *Item type is not a valid GKS item*
- 165 *Content of item data record is invalid for the specified item type*
- 167 *User item cannot be interpreted*
- 168 *Specified function is not supported in this level of GKS*

Inquiry functions	GKS functions
-------------------	---------------

5.9 Inquiry functions

5.9.1 Introduction to inquiry functions

Inquiry functions return values from the various state lists. The data types of the values and the default values of the state list entries are summarized in clause 6. Errors detected by inquiry functions are reported through an error indicator parameter, see 4.11.2. The error handling procedure is not called. The list of states in the function heading indicates those states in which the inquiry function can return valid values. Some inquiry functions that retrieve values from the workstation state lists have an input parameter of type 'Enumeration' that can take the following values:

- a) SET: the values returned are those provided by the application program.
- b) REALIZED: the values returned are those used by the workstation when the actual values are mapped to the available values in the workstation.

Inquiries for predefined representations in the workstation description table (see 5.9.6) have no such parameter unlike the corresponding inquiries for the representations in the workstation state list (see 5.9.5). The values of predefined representations are available on the workstation. Thus all values returned from a predefined representation are such that, if used by an application program to set a representation, a subsequent inquiry for that representation in the workstation state list would return the same values whether SET or REALIZED was specified.

5.9.2 Inquiry function for operating state value

INQUIRE OPERATING STATE VALUE

GKCL,GKOP,WSOP,WSAC,SGOP L0a

Parameters:

Out operating state value

(GKCL,GKOP,WSOP,WSAC,SGOP) E

Effect: The operating state of GKS is returned.

References:

4.11.1

4.11.2

Errors:

none

5.9.3 Inquiry functions for GKS description table

INQUIRE LEVEL OF GKS

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

Out error indicator

Out level of GKS

(0a,0b,0c,1a,1b,1c,2a,2b,2c) E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.10

4.11.2

GKS functions**Inquiry functions**

Errors:

*none***INQUIRE LIST OF AVAILABLE WORKSTATION TYPES****GKOP,WSOP,WSAC,SGOP****L0a**

Parameters:

Out error indicator	I
Out number of available workstation types	(1..n) I
Out list of available workstation types	$n \times N$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.5.1
4.11.2

Errors:

*none***INQUIRE WORKSTATION MAXIMUM NUMBERS****GKOP,WSOP,WSAC,SGOP****L1a**

Parameters:

Out error indicator	I
Out maximum number of simultaneously open workstations	(1..n) I
Out maximum number of simultaneously active workstations	(1..n) I
Out maximum number of workstations associated with segment	(1..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and the values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.5
4.11.2

Errors:

none

Inquiry functions

GKS functions

INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION NUMBER

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

Out error indicator	I
Out maximum normalization transformation number	(1..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.6.1
4.11.2

Errors:

none

5.9.4 Inquiry functions for GKS state list

INQUIRE SET OF OPEN WORKSTATIONS

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

Out error indicator	I
Out number of open workstations	(0..n) I
Out set of open workstations	$n \times N$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.5.2
4.11.2

Errors:

none

INQUIRE SET OF ACTIVE WORKSTATIONS

GKOP,WSOP,WSAC,SGOP L1a

Parameters:

Out error indicator	I
Out number of active workstations	(0..n) I
Out set of active workstations	$n \times N$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

GKS functions**Inquiry functions**

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.5.2
4.11.2

Errors:

none

INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

Out error indicator		I
Out current polyline index	(1..n)	I
Out current polymarker index	(1..n)	I
Out current text index	(1..n)	I
Out current character height	WC	>0 R
Out current character up vector	WC	2 × R
Out current character width	WC	>0 R
Out current character base vector	WC	2 × R
Out current text path	(RIGHT,LEFT,UP,DOWN)	E
Out current text alignment	(NORMAL,LEFT,CENTRE,RIGHT;NORMAL, TOP,CAP,HALF,BASE,BOTTOM)	2 × E
Out current fill area index	(1..n)	I
Out current pattern width vector	WC	2 × R
Out current pattern height vector	WC	2 × R
Out current pattern reference point	WC	P

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.4.2
4.11.2

Errors:

none

INQUIRE CURRENT PICK IDENTIFIER VALUE

GKOP,WSOP,WSAC,SGOP

L1b

Parameters:

Out error indicator		I
Out current pick identifier		N

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

Inquiry functions

GKS functions

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.4.2
4.7.1
4.11.2

Errors:

none

INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

Out error indicator	I
Out current linetype	(-n..-1,1..n)
Out current linewidth scale factor	≥ 0
Out current polyline colour index	(0..n)
Out current marker type	(-n..-1,1..n)
Out current marker size scale factor	≥ 0
Out current polymarker colour index	(0..n)
Out current text font and precision	(-n..-1,1..n;STRING,CHAR,STROKE)
Out current character expansion factor	(I;E)
Out current character spacing	> 0
Out current text colour index	(0..n)
Out current fill area interior style	(HOLLOW,SOLID,PATTERN,HATCH)
Out current fill area style index	(-n..-1,1..n)
Out current fill area colour index	(0..n)
Out current list of aspect source flags	(BUNDLED,INDIVIDUAL)

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.4.2
4.11.2

Errors:

none

INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

Out error indicator	I
Out current normalization transformation number	(0..n)

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

GKS functions**Inquiry functions**

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.6.1
4.11.2

Errors:

none

INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

Out error indicator
Out list of transformation numbers

I
 $n \times I$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters. The transformation numbers are returned in a list, which is ordered by viewport input priority, starting with the highest priority transformation number.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

References:

4.6.1
4.11.2

Errors:

none

INQUIRE NORMALIZATION TRANSFORMATION

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In normalization transformation number	(0..n)	I
Out error indicator		I
Out window limits	WC	$4 \times R$
Out viewport limits	NDC	$4 \times R$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

50 Transformation number is invalid

References:

4.6.1
4.11.2

Inquiry functions	GKS functions
Errors: <i>none</i>	
INQUIRE CLIPPING	GKOP,WSOP,WSAC,SGOP L0a
Parameters:	
Out error indicator	I
Out clipping indicator	E
Out clipping rectangle	4 × R
Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.	
If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:	
8 <i>GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP</i>	
References:	
4.6.2	
4.11.2	
Errors: <i>none</i>	
INQUIRE NAME OF OPEN SEGMENT	SGOP L1a
Parameters:	
Out error indicator	I
Out name of open segment	N
Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.	
If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:	
4 <i>GKS not in proper state: GKS shall be in the state SGOP</i>	
References:	
4.7.1	
4.11.2	
Errors: <i>none</i>	
INQUIRE SET OF SEGMENT NAMES IN USE	WSOP,WSAC,SGOP L1a
Parameters:	
Out error indicator	I
Out number of segment names	(0..n) I
Out set of segment names in use	n × N

GKS functions**Inquiry functions**

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*

References:

4.7.1
4.11.2

Errors:

none

INQUIRE MORE SIMULTANEOUS EVENTS

WSOP,WSAC,SGOP

L0c

Parameters:

Out error indicator
Out more simultaneous events

(NOMORE,MORE)

I
E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to the following error number to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*

References:

4.8.5
4.11.2

Errors:

none

5.9.5 Inquiry functions for workstation state list**INQUIRE WORKSTATION CONNECTION AND TYPE**

WSOP,WSAC,SGOP

L0a

Parameters:

In workstation identifier
Out error indicator
Out connection identifier
Out workstation type

N
I
N
N

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*

20 *Specified workstation identifier is invalid*

25 *Specified workstation is not open*

Inquiry functions

GKS functions

References:

4.5.2

4.11.2

Errors:

none

INQUIRE WORKSTATION STATE

WSOP,WSAC,SGOP

L0a

Parameters:

In workstation identifier

Out error indicator

Out workstation state

N

I

(INACTIVE,ACTIVE)

E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*

20 *Specified workstation identifier is invalid*

25 *Specified workstation is not open*

33 *Specified workstation is of category MI*

35 *Specified workstation is of category INPUT*

References:

4.5.2

4.11.2

Errors:

none

INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES

WSOP,WSAC,SGOP

L0a

Parameters:

In workstation identifier

Out error indicator

Out deferral mode

Out implicit regeneration mode

Out display surface empty

Out new frame action necessary at update

N

I

(ASAP,BNIG,BNIL,ASTI)

E

(SUPPRESSED,ALLOWED)

E

(EMPTY,NOTEMPTY)

E

(NO,YES)

E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*

20 *Specified workstation identifier is invalid*

25 *Specified workstation is not open*

33 *Specified workstation is of category MI*

35 *Specified workstation is of category INPUT*

36 *Specified workstation is Workstation Independent Segment Storage*

GKS functions**Inquiry functions****References:**

4.5.3
4.5.4
4.11.2

Errors:

none

INQUIRE LIST OF POLYLINE INDICES

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
Out error indicator	I
Out number of polyline bundle table entries	(5..n) I
Out list of defined polyline indices	(1..n) n×I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
 20 *Specified workstation identifier is invalid*
 25 *Specified workstation is not open*
 33 *Specified workstation is of category MI*
 35 *Specified workstation is of category INPUT*
 36 *Specified workstation is Workstation Independent Segment Storage*

References:

4.4.3
4.11.2

Errors:

none

INQUIRE POLYLINE REPRESENTATION

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
In polyline index	(1..n) I
In type of returned values	(SET,REALIZED) E
Out error indicator	I
Out linetype	(-n...-1,1..n) I
Out linewidth scale factor	≥0 R
Out polyline colour index	(0..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified polyline index is not present in the polyline bundle table on the workstation and the specified type of returned values is REALIZED, the representation for polyline index 1 is returned.

Inquiry functions**GKS functions**

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 60 *Polyline index is invalid*
- 61 *A representation for the specified polyline index has not been defined on this workstation*

References:

- 4.4.3
- 4.11.2

Errors:

- none*

INQUIRE LIST OF POLYMARKER INDICES

WSOP,WSAC,SGOP

L1a

Parameters:

In workstation identifier	N
Out error indicator	I
Out number of polymarker bundle table entries	(5..n)
Out list of defined polymarker indices	(1..n) n × I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

References:

- 4.4.4
- 4.11.2

Errors:

- none*

GKS functions**INQUIRE POLYMARKER REPRESENTATION**

Parameters:

In workstation identifier		N
In polymarker index	(1..n)	I
In type of returned values	(SET,REALIZED)	E
Out error indicator		I
Out marker type	(-n..-1,1..n)	I
Out marker size scale factor	≥ 0	R
Out polymarker colour index	(0..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified polymarker index is not present in the polymarker bundle table on the workstation and the specified type of returned values is REALIZED, the representation for polymarker index 1 is returned.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 66 *Polymarker index is invalid*
- 67 *A representation for the specified polymarker index has not been defined on this workstation*

References:

- 4.4.4
- 4.11.2

Errors:

- none*

INQUIRE LIST OF TEXT INDICES**WSOP,WSAC,SGOP L1a**

Parameters:

In workstation identifier		N
Out error indicator		I
Out number of text bundle table entries	(6..n)	I
Out list of defined text indices	(1..n)	$n \times I$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

Inquiry functions**GKS functions****References:**

4.4.5
4.11.2

Errors:

none

INQUIRE TEXT REPRESENTATION

WSOP,WSAC,SGOP

L1a

Parameters:

In workstation identifier		N
In text index	(1..n)	I
In type of returned values	(SET,REALIZED)	E
Out error indicator		I
Out text font and precision	(-n..-1,1..n;STRING,CHAR,STROKE)	(I;E)
Out character expansion factor	>0	R
Out character spacing		R
Out text colour index	(0..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified text index is not present in the text bundle table on the workstation and the specified type of returned values is REALIZED, the representation for text index 1 is returned.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 72 *Text index is invalid*
- 73 *A representation for the specified text index has not been defined on this workstation*

References:

4.4.5
4.11.2

Errors:

none

GKS functions

Inquiry functions

INQUIRE TEXT EXTENT

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier	N
In text position	P
In character string	S
Out error indicator	I
Out concatenation point	P
Out text extent parallelogram	4 × P

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

The extent of the specified character string is computed using the text font and precision, character expansion factor and character spacing currently selected (either via the bundle or individually, depending upon the corresponding ASFs) and the current text attributes (CHARACTER HEIGHT, CHARACTER WIDTH, CHARACTER UP VECTOR, CHARACTER BASE VECTOR, TEXT PATH, TEXT ALIGNMENT). If the current text index is not present in the text bundle table, text index 1 is used.

At precisions STRING and CHAR, the text extent parallelogram is an approximation of that defined in 4.4.5, being the minimum which completely encloses the character bodies of the displayed string (see figure 17). For UP and DOWN text paths, the widest character body in the font is enclosed. The parallelogram is returned as four corner points in anticlockwise order. If, at STROKE precision, the CHARACTER WIDTH VECTOR and CHARACTER BASE VECTOR are perpendicular, the text extent parallelogram is a rectangle.

The concatenation point can be used as the origin of a subsequent TEXT output primitive for the concatenation of character strings, where meaningful. For certain combinations of TEXT PATH and TEXT ALIGNMENT, concatenation is not meaningful and the returned concatenation point is the same as the text position.

If TEXT PATH is RIGHT or LEFT, the concatenation point is displaced from the text position, in a direction determined by the horizontal component of TEXT ALIGNMENT. If this component is LEFT, the direction is to the right; if it is CENTRE, the displacement is zero; if it is RIGHT, the direction is to the left. Unless the horizontal component of TEXT ALIGNMENT is CENTRE, the magnitude of the displacement is the width of the text extent parallelogram plus one additional character spacing. (The width of the text extent parallelogram is the length of the sides parallel to the CHARACTER BASE VECTOR.)

If TEXT PATH is UP or DOWN, the concatenation point is displaced from the text position in a direction determined by the vertical component of TEXT ALIGNMENT. If this component is TOP or CAP, the direction is down; if it is HALF, the displacement is zero; if it is BASE or BOTTOM, the direction is up. Unless the vertical component of TEXT ALIGNMENT is HALF, the magnitude of the displacement is the height of the text extent parallelogram plus an additional character spacing. (The height of the text extent parallelogram is the length of the sides parallel to the CHARACTER UP VECTOR.)

Control characters in the character string have a workstation dependent effect consistent with their treatment in the TEXT function (see 5.3).

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP
- 20 Specified workstation identifier is invalid
- 25 Specified workstation is not open
- 39 Specified workstation is neither of category OUTPUT nor of category OUTIN
- 101 Invalid code in string

Inquiry functions

GKS functions

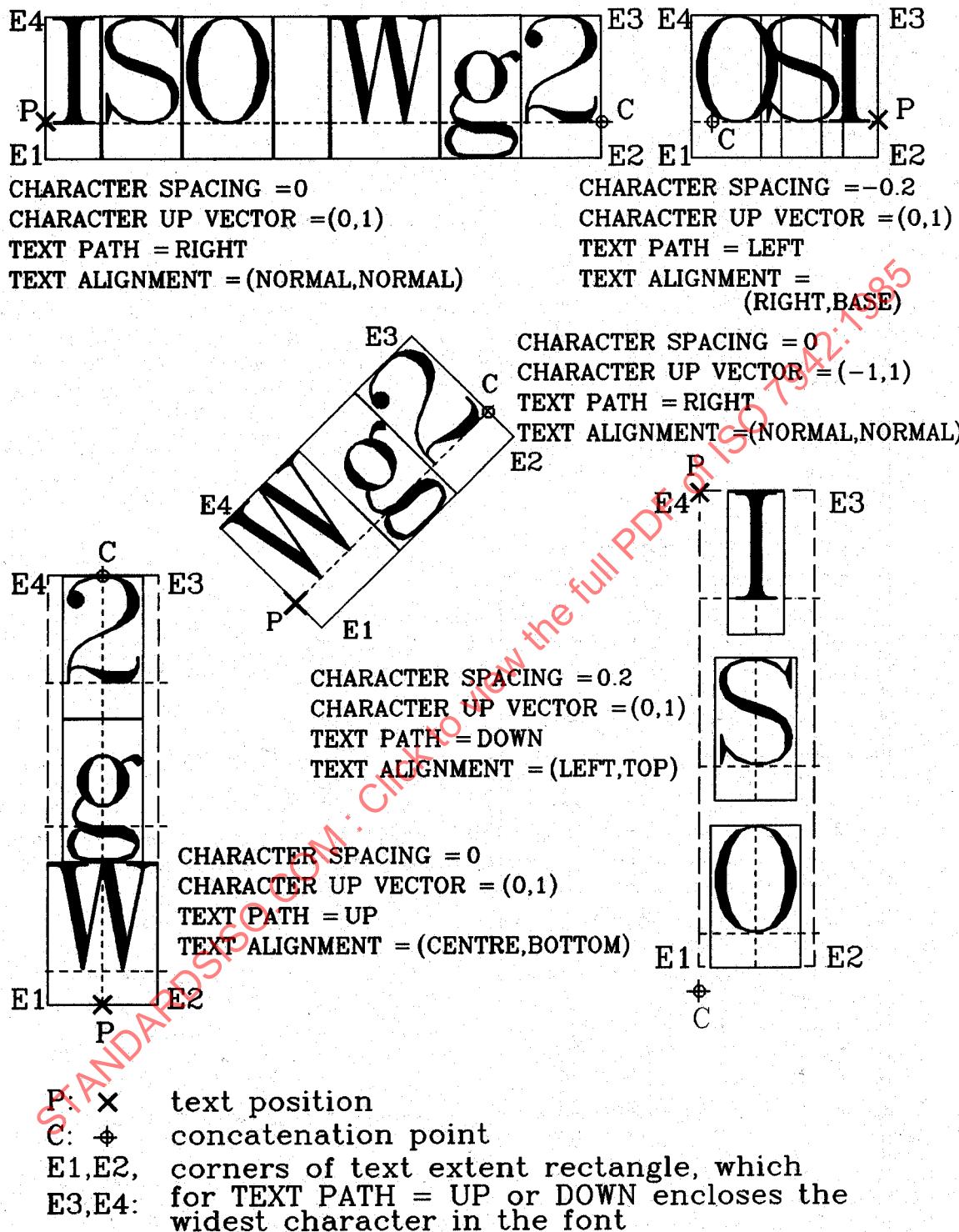


Figure 17 - Examples of replies to INQUIRE TEXT EXTENT with different text attributes

GKS functions**Inquiry functions**

References:

4.4.5
4.11.2

Errors:

none

INQUIRE LIST OF FILL AREA INDICES

WSOP,WSAC,SGOP **L1a**

Parameters:

In	workstation identifier	N
Out	error indicator	I
Out	number of fill area bundle table entries	(5..n) I
Out	list of defined fill area indices	(1..n) n × I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

References:

4.4.6
4.11.2

Errors:

none

INQUIRE FILL AREA REPRESENTATION

WSOP,WSAC,SGOP **L1a**

Parameters:

In	workstation identifier	N
In	fill area index	(1..n) I
In	type of returned values	(SET,REALIZED) E
Out	error indicator	I
Out	fill area interior style	(HOLLOW,SOLID,PATTERN,HATCH) E
Out	fill area style index	(-n..-1,1..n) I
Out	fill area colour index	(0..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified fill area index is not present in the fill area bundle table on the workstation and the specified type of returned values is REALIZED, the representation for fill area index 1 is returned.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

Inquiry functions

GKS functions

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 80 *Fill area index is invalid*
- 81 *A representation for the specified fill area index has not been defined on this workstation*

References:

- 4.4.6
- 4.11.2

Errors:

none

INQUIRE LIST OF PATTERN INDICES

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
Out error indicator	I
Out number of pattern table entries	(0..n) I
Out list of pattern indices	(1..n) n x I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

References:

- 4.4.6
- 4.11.2

Errors:

none

GKS functions

Inquiry functions

INQUIRE PATTERN REPRESENTATION

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
In pattern index	(1..n) I
In type of returned values	(SET,REALIZED) E
Out error indicator	I
Out pattern array dimensions	(1..n) 2 x I
Out pattern array	(0..n) n x n x I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified pattern index is not present in the pattern table on the workstation and the specified type of returned values is REALIZED, the representation for pattern index 1 is returned (pattern index 1 is present if interior style PATTERN is supported on the workstation).

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 85 *Specified pattern index is invalid*
- 88 *A representation for the specified pattern index has not been defined on this workstation*
- 90 *Interior style PATTERN is not supported on this workstation*

References:

- 4.4.6
- 4.11.2

Errors:

- none*

INQUIRE LIST OF COLOUR INDICES

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier	N
Out error indicator	I
Out number of colour table entries	(2..n) I
Out list of colour indices	(0..n) n x I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*

Inquiry functions

GKS functions

References:

4.4.9
4.11.2

Errors:

none

INQUIRE COLOUR REPRESENTATION

WSOP,WSAC,SGOP

L0a

Parameters:

In	workstation identifier	N
In	colour index	(0..n)
In	type of returned values	(SET,REALIZED)
Out	error indicator	I
Out	colour (red,green,blue intensities)	[0,1] 3 × R

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the specified colour index is not present in the colour table on the workstation and the specified type of returned values is REALIZED, the representation of the workstation dependent colour index, that would be used if output primitives were displayed with the specified colour index, is returned.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*
- 36 *Specified workstation is Workstation Independent Segment Storage*
- 93 *Colour index is invalid*
- 94 *A representation for the specified colour index has not been defined on this workstation*

References:

4.4.9
4.11.2

Errors:

none

GKS functions

Inquiry functions

INQUIRE WORKSTATION TRANSFORMATION

WSOP,WSAC,SGOP L0a

Parameters:

In workstation identifier	N
Out error indicator	I
Out workstation transformation update state	(NOTPENDING,PENDING) E
Out requested workstation window	NDC 4 × R
Out current workstation window	NDC 4 × R
Out requested workstation viewport	DC 4 × R
Out current workstation viewport	DC 4 × R

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

The workstation transformation update state is PENDING if a workstation transformation change has been requested but not yet provided.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 36 *Specified workstation is Workstation Independent Segment Storage*

References:

- 4.6.3
- 4.11.2

Errors:

- none*

INQUIRE SET OF SEGMENT NAMES ON WORKSTATION

WSOP,WSAC,SGOP L1a

Parameters:

In workstation identifier	N
Out error indicator	I
Out number of segment names	(0..n) I
Out set of stored segments for this workstation	n × N

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 33 *Specified workstation is of category MI*
- 35 *Specified workstation is of category INPUT*

References:

- 4.5.2
- 4.7.1
- 4.11.2

Inquiry functions**GKS functions**

Errors:

*none***INQUIRE LOCATOR DEVICE STATE**

Parameters:

		WSOP,WSAC,SGOP	L0b
In	workstation identifier		N
In	locator device number	(1..n)	I
In	type of returned values	(SET,REALIZED)	E
Out	error indicator		I
Out	operating mode	(REQUEST,SAMPLE,EVENT)	E
Out	echo switch	(ECHO,NOECHO)	E
Out	initial normalization transformation number	(0..n)	I
Out	initial locator position	WC	P
Out	prompt and echo type	(-n..-1,1..n)	I
Out	echo area	DC	4 × R
Out	locator data record		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.8
- 4.11.2

Errors:

none

GKS functions

Inquiry functions

INQUIRE STROKE DEVICE STATE

WSOP,WSAC,SGOP

L0b

Parameters:

In	workstation identifier	N
In	stroke device number	(1..n)
In	type of returned values	(SET,REALIZED)
Out	error indicator	I
Out	operating mode	(REQUEST,SAMPLE,EVENT)
Out	echo switch	(ECHO,NOECHO)
Out	initial normalization transformation number	(0..n)
Out	initial number of points	(0..n)
Out	initial points in stroke	WC
Out	prompt and echo type	(-n..-1,1..n)
Out	echo area	DC
Out	stroke data record	4 × R
		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.8
- 4.11.2

Errors:

none

INQUIRE VALUATOR DEVICE STATE

WSOP,WSAC,SGOP

L0b

Parameters:

In	workstation identifier	N
In	valuator device number	(1..n)
Out	error indicator	I
Out	operating mode	(REQUEST,SAMPLE,EVENT)
Out	echo switch	(ECHO,NOECHO)
Out	initial value	R
Out	prompt and echo type	(-n..-1,1..n)
Out	echo area	DC
Out	valuator data record	4 × R
		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*

Inquiry functions

GKS functions

140 Specified input device is not present on workstation

References:

4.8
4.11.2

Errors:

none

INQUIRE CHOICE DEVICE STATE

WSOP,WSAC,SGOP

L0b

Parameters:

In	workstation identifier
In	choice device number
Out	error indicator
Out	operating mode
Out	echo switch
Out	initial status
Out	initial choice number
Out	prompt and echo type
Out	echo area
Out	choice data record

(REQUEST,SAMPLE,EVENT)	
(ECHO,NOECHO)	
(OK,NOCHOICE)	
(1..n)	I
(-n..-1,1..n)	I

DC

4 × R

D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP
- 20 Specified workstation identifier is invalid
- 25 Specified workstation is not open
- 38 Specified workstation is neither of category INPUT nor of category OUTIN
- 140 Specified input device is not present on workstation

References:

4.8
4.11.2

Errors:

none

GKS functions

Inquiry functions

INQUIRE PICK DEVICE STATE

WSOP,WSAC,SGOP

L1b

Parameters:

In workstation identifier		N
In pick device number	(1..n)	I
In type of returned values	(SET,REALIZED)	E
Out error indicator		I
Out operating mode	(REQUEST,SAMPLE,EVENT)	E
Out echo switch	(ECHO,NOECHO)	E
Out initial status	(OK,NOPICK)	E
Out initial segment		N
Out initial pick identifier		N
Out prompt and echo type	(-n..-1,1..n)	I
Out echo area	DC	4×R
Out pick data record		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 37 *Specified workstation is not of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.8
- 4.11.2

Errors:

none

INQUIRE STRING DEVICE STATE

WSOP,WSAC,SGOP

L0b

Parameters:

In workstation identifier		N
In string device number	(1..n)	I
Out error indicator		I
Out operating mode	(REQUEST,SAMPLE,EVENT)	E
Out echo switch	(ECHO,NOECHO)	E
Out initial string		S
Out prompt and echo type	(-n..-1,1..n)	I
Out echo area	DC	4×R
Out string data record		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*

Inquiry functions	GKS functions
140 Specified input device is not present on workstation	
References:	
4.8	
4.11.2	
Errors:	
none	
5.9.6 Inquiry functions for workstation description table	
INQUIRE WORKSTATION CATEGORY	GKOP,WSOP,WSAC,SGOP
Parameters:	L0a
In workstation type	N
Out error indicator	I
Out workstation category	E
	(OUTPUT,INPUT,OUTIN,VISS,MO,MI)
Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.	
If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:	
8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP	
22 Specified workstation type is invalid	
23 Specified workstation type does not exist	
References:	
4.5.1	
4.11.2	
Errors:	
none	
INQUIRE WORKSTATION CLASSIFICATION	GKOP,WSOP,WSAC,SGOP
Parameters:	L0a
In workstation type	N
Out error indicator	I
Out vector, raster, or other type	E
	(VECTOR,RASTER,OTHER)
Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.	
If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:	
8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP	
22 Specified workstation type is invalid	
23 Specified workstation type does not exist	
39 Specified workstation is neither of category OUTPUT nor of category OUTIN	
References:	
4.5.1	
4.11.2	

GKS functions

Inquiry functions

Errors:

none

INQUIRE DISPLAY SPACE SIZE

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In workstation type		N
Out error indicator		I
Out device coordinate units	(METRES, OTHER)	E
Out display space size in device coordinate units	DC	> 0 $2 \times R$
Out display space size in raster units	(1..n)	$2 \times I$

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 31 *Specified workstation is of category MO*
- 33 *Specified workstation is of category MI*
- 36 *Specified workstation is Workstation Independent Segment Storage*

References:

- 4.5.1
- 4.11.2

Errors:

none

INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES

GKOP,WSOP,WSAC,SGOP L1a

Parameters:

In workstation type		N
Out error indicator		I
Out polyline bundle representation changeable	(IRG, IMM)	E
Out polymarker bundle representation changeable	(IRG, IMM)	E
Out text bundle representation changeable	(IRG, IMM)	E
Out fill area bundle representation changeable	(IRG, IMM)	E
Out pattern representation changeable	(IRG, IMM)	E
Out colour representation changeable	(IRG, IMM)	E
Out workstation transformation changeable	(IRG, IMM)	E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

IRG means that implicit regeneration is necessary; IMM means the action is performed immediately.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*

Inquiry functions

GKS functions

23 Specified workstation type does not exist

39 Specified workstation is neither of category *OUTPUT* nor of category *OUTIN*

References:

4.5.1
4.5.3
4.11.2

Errors:

none

INQUIRE DEFAULT DEFERRAL STATE VALUES

GKOP,WSOP,WSAC,SGOP

L1a

Parameters:

In workstation type	N
Out error indicator	I
Out default value for deferral mode	E
Out default value for implicit regeneration mode	E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

8 GKS not in proper state: GKS shall be in one of the states *GKOP*, *WSOP*, *WSAC* or *SGOP*
 22 Specified workstation type is invalid
 23 Specified workstation type does not exist
 39 Specified workstation is neither of category *OUTPUT* nor of category *OUTIN*

References:

4.5.1
4.5.3
4.11.2

Errors:

none

INQUIRE POLYLINE FACILITIES

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In workstation type	N
Out error indicator	I
Out number of available linetypes	(4..n)
Out list of available linetypes	(-n..-1,1..n)
Out number of available linewidths	n × I
Out nominal linewidth	(0..n)
Out range of linewidths (minimum,maximum)	DC > 0 2 × R
Out number of predefined polyline indices	(5..n)

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the number of available linewidths is returned as 0, the workstation supports a continuous range of linewidths.

GKS functions**Inquiry functions**

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.11.2

Errors:

- none*

INQUIRE PREDEFINED POLYLINE REPRESENTATION

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In workstation type	N
In predefined polyline index	(1..n)
Out error indicator	I
Out linetype	I
Out linewidth scale factor	(-n..-1,1..n)
Out polyline colour index	R
	(0..n)
	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 60 *Polyline index is invalid*
- 62 *A representation for the specified polyline index has not been predefined on this workstation*

References:

- 4.5.1
- 4.11.2

Errors:

- none*

Inquiry functions

GKS functions

INQUIRE POLYMARKER FACILITIES

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In workstation type	N
Out error indicator	I
Out number of available marker types	(5..n) I
Out list of available marker types	(-n..-1,1..n) n × I
Out number of available marker sizes	(0..n) I
Out nominal marker size	DC >0 R
Out range of marker sizes (minimum,maximum)	DC >0 2 × R
Out number of predefined polymarker indices	(5..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the number of available marker sizes is returned as 0, the workstation supports a continuous range of marker sizes.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.11.2

Errors:

- none*

INQUIRE PREDEFINED POLYMARKER REPRESENTATION

GKOP,WSOP,WSAC,SGOP L0a

Parameters:

In workstation type	N
In predefined polymarker index	(1..n) I
Out error indicator	I
Out marker type	(-n..-1,1..n) I
Out marker size scale factor	R
Out polymarker colour index	(0..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 66 *Polymarker index is invalid*
- 68 *A representation for the specified polymarker index has not been predefined on this workstation*

GKS functions**Inquiry functions**

References:

4.5.1
4.11.2

Errors:

*none***INQUIRE TEXT FACILITIES****GKOP,WSOP,WSAC,SGOP L0a**

Parameters:

In workstation type		N
Out error indicator		I
Out number of text font and precision pairs	(1..n)	I
Out list of text font and precision pairs	(-n..-1,1..n;STRING,CHAR,STROKE)	$n \times (I;E)$
Out number of available character heights	(0..n)	I
Out range of character heights (minimum,maximum)	DC	$>0 \quad 2 \times R$
Out number of available character expansion factors	(0..n)	I
Out range of character expansion factors (minimum,maximum)		$>0 \quad 2 \times R$
Out number of predefined text indices	(2..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the number of available character heights is returned as 0, the workstation supports a continuous range of character heights. If the number of available character expansion factors is returned as 0, the workstation supports a continuous range of character expansion factors. If the available character heights and character expansion factors vary between fonts, the character heights and character expansion factors returned are for font 1.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state. GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

4.5.1
4.11.2

Errors:

none

Inquiry functions

GKS functions

INQUIRE PREDEFINED TEXT REPRESENTATION

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In workstation type		N
In predefined text index	(1..n)	I
Out error indicator		I
Out text font and precision	(-n..-1,1..n;STRING,CHAR,STROKE)	(I;E)
Out character expansion factor	>0	R
Out character spacing		R
Out text colour index	(0..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 72 *Text index is invalid*
- 74 *A representation for the specified text index has not been predefined on this workstation*

References:

- 4.5.1
- 4.11.2

Errors:

- none*

INQUIRE FILL AREA FACILITIES

GKOP,WSOP,WSAC,SGOP

L0a

Parameters:

In workstation type		N
Out error indicator		I
Out number of available fill area interior styles	(1..n)	I
Out list of available fill area interior styles	(HOLLOW,SOLID,PATTERN,HATCH)	n × E
Out number of available hatch styles	(0..n)	I
Out list of available hatch styles	(-n..-1,1..n)	n × I
Out number of predefined fill area indices	(5..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.11.2

GKS functions**Inquiry functions****Errors:***none***INQUIRE PREDEFINED FILL AREA REPRESENTATION****GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type		N
In predefined fill area index	(1..n)	I
Out error indicator		I
Out fill area interior style	(HOLLOW,SOLID,PATTERN,HATCH)	E
Out fill area style index	(-n..1..n)	I
Out fill area colour index	(0..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 80 *Fill area index is invalid*
- 82 *A representation for the specified fill area index has not been predefined on this workstation*

References:

4.5.1
4.11.2

Errors:*none***INQUIRE PATTERN FACILITIES****GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type		N
Out error indicator		I
Out number of predefined pattern indices	(0..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

4.5.1
4.11.2

Inquiry functions**Errors:***none***GKS functions****INQUIRE PREDEFINED PATTERN REPRESENTATION****GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type		N
In predefined pattern index	(1..n)	I
Out error indicator		I
Out pattern array dimensions	(1..n)	2 × I
Out pattern array	(0..n)	<i>n × n × I</i>

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 85 *Specified pattern index is invalid*
- 89 *A representation for the specified pattern index has not been predefined on this workstation*
- 90 *Interior style PATTERN is not supported on this workstation*

References:

- 4.5.1
- 4.11.2

Errors:*none***INQUIRE COLOUR FACILITIES****GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type		N
Out error indicator		I
Out number of available colours or intensities	(0,2..n)	I
Out colour available	(COLOUR,MONOCHROME)	E
Out number of predefined colour indices	(2..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the number of available colours or intensities is returned as 0, the workstation supports a continuous range of colours or intensities.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

GKS functions**Inquiry functions****References:**

4.5.1
4.11.2

Errors:

none

INQUIRE PREDEFINED COLOUR REPRESENTATION**GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type	N
In predefined colour index	(0..n) I
Out error indicator	I
Out colour (red, green, blue intensities)	[0,1] 3 × R

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 93 *Colour index is invalid*
- 95 *A representation for the specified colour index has not been predefined on this workstation*

References:

4.5.1
4.11.2

Errors:

none

INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES**GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In workstation type	N
Out error indicator	I
Out number of available generalized drawing primitives	(0..n) I
Out list of GDP identifiers	n × N

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

Inquiry functions**GKS functions**

References:

4.5.1
4.11.2

Errors:

none

INQUIRE GENERALIZED DRAWING PRIMITIVE**GKOP,WSOP,WSAC,SGOP****L0a**

Parameters:

In	workstation type	N
In	GDP identifier	N
Out	error indicator	I
Out	number of sets of attributes used	(0..4) I
Out	list of sets of attributes used	(POLYLINE,POLYMARKER,TEXT,FILL AREA) n × E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 41 *Specified workstation type is not able to generate the specified generalized drawing primitive*

References:

4.5.1
4.11.2

Errors:

none

INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES**GKOP,WSOP,WSAC,SGOP****L0a**

Parameters:

In	workstation type	N
Out	error indicator	I
Out	maximum number of polyline bundle table entries	(5..n) I
Out	maximum number of polymarker bundle table entries	(5..n) I
Out	maximum number of text bundle table entries	(2..n) I
Out	maximum number of fill area bundle table entries	(5..n) I
Out	maximum number of pattern indices	(0..n) I
Out	maximum number of colour indices	(2..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

GKS functions**Inquiry functions**

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.11.2

Errors:

none

INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED GKOP,WSOP,WSAC,SGOP**L1a****Parameters:**

In workstation type	N
Out error indicator	I
Out number of segment priorities supported	(0..n) I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the number of segment priorities supported is returned as 0, the workstation supports an infinite number of segment priorities.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.7.2
- 4.11.2

Errors:

none

Inquiry functions

GKS functions

INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES

GKOP, WSOP, WSAC, SGOP

L1a

Parameters:

In	workstation type	N
Out	error indicator	I
Out	segment transformation changeable	E
Out	visibility changeable from 'visible' to 'invisible'	E
Out	visibility changeable from 'invisible' to 'visible'	E
Out	highlighting changeable	E
Out	segment priority changeable	E
Out	adding primitives to the open segment	E
Out	segment deletion immediately visible	E

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

IRG means that implicit regeneration is necessary; IMM means the action is performed immediately.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

- 4.5.1
- 4.5.3
- 4.11.2

Errors:

- none*

INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES

GKOP, WSOP, WSAC, SGOP

L0b

Parameters:

In	workstation type	N
Out	error indicator	I
Out	number of locator devices	(0..n)
Out	number of stroke devices	(0..n)
Out	number of valuator devices	(0..n)
Out	number of choice devices	(0..n)
Out	number of pick devices	(0..n)
Out	number of string devices	(0..n)

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*

GKS functions**Inquiry functions**

References:

4.5.1
4.8.1
4.11.2

Errors:

none

INQUIRE DEFAULT LOCATOR DEVICE DATA**GKOP,WSOP,WSAC,SGOP****L0b**

Parameters:

In workstation type	N
In logical input device number	(1..n) I
Out error indicator	I
Out default initial locator position	WC P
Out number of available prompt and echo types	(1..n) I
Out list of available prompt and echo types	(-n..-1,1..n) n × I
Out default echo area	DC 4 × R
Out default locator data record	D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

4.5.1
4.8.1
4.8.6
4.11.2

Errors:

none

Inquiry functions

GKS functions

INQUIRE DEFAULT STROKE DEVICE DATA

GKOP,WSOP,WSAC,SGOP

L0b

Parameters:

In workstation type		N
In logical input device number	(1..n)	I
Out error indicator		I
Out maximum input buffer size	(64..n)	I
Out number of available prompt and echo types	(1..n)	I
Out list of available prompt and echo types	(-n..-1,1..n)	n × I
Out default echo area	DC	4 × R
Out default stroke data record		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.5.1
- 4.8.1
- 4.8.6
- 4.11.2

Errors:

- none*

INQUIRE DEFAULT VALUATOR DEVICE DATA

GKOP,WSOP,WSAC,SGOP

L0b

Parameters:

In workstation type		N
In logical input device number	(1..n)	I
Out error indicator		I
Out default initial value		R
Out number of available prompt and echo types	(1..n)	I
Out list of available prompt and echo types	(-n..-1,1..n)	n × I
Out default echo area	DC	4 × R
Out default valuator data record		D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

GKS functions**Inquiry functions**

References:

- 4.5.1
- 4.8.1
- 4.8.6
- 4.11.2

Errors:

none

INQUIRE DEFAULT CHOICE DEVICE DATA**GKOP,WSOP,WSAC,SGOP****L0b**

Parameters:

In workstation type		N
In logical input device number	(1..n)	I
Out error indicator		I
Out maximum number of choice alternatives	(1..n)	I
Out number of available prompt and echo types	(1..n)	I
Out list of available prompt and echo types	(-n..-1,1..n)	$n \times I$
Out default echo area	DC	$4 \times R$
Out default choice data record		D

Effect: If the required information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the required information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.5.1
- 4.8.1
- 4.8.6
- 4.11.2

Errors:

none

Inquiry functions

GKS functions	
GKOP,WSOP,WSAC,SGOP	L1b

INQUIRE DEFAULT PICK DEVICE DATA

Parameters:

In workstation type	N
In logical input device number	(1..n) I
Out error indicator	I
Out number of available prompt and echo types	(1..n) I
Out list of available prompt and echo types	(-n..-1,1..n) n × I
Out default echo area	DC 4 × R
Out default pick data record	D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

References:

- 4.5.1
- 4.8.1
- 4.8.6
- 4.11.2

Errors:

- none*

INQUIRE DEFAULT STRING DEVICE DATA

GKS functions	
GKOP,WSOP,WSAC,SGOP	L0b

Parameters:

In workstation type	N
In logical input device number	(1..n) I
Out error indicator	I
Out maximum string buffer size	(72..n) I
Out number of available prompt and echo types	(1..n) I
Out list of available prompt and echo types	(-n..-1,1..n) n × I
Out default echo area	DC 4 × R
Out default string data record	D

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 8 *GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP*
- 22 *Specified workstation type is invalid*
- 23 *Specified workstation type does not exist*
- 38 *Specified workstation is neither of category INPUT nor of category OUTIN*
- 140 *Specified input device is not present on workstation*

GKS functions**Inquiry functions**

References:

- 4.5.1
- 4.8.1
- 4.8.6
- 4.11.2

Errors:

none

5.9.7 Inquiry functions for segment state list**INQUIRE SET OF ASSOCIATED WORKSTATIONS**

WSOP,WSAC,SGOP L1a

Parameters:

In segment name	N
Out error indicator	I
Out number of associated workstations	(1..n)
Out set of associated workstation identifiers	n × N

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 120 *Specified segment name is invalid*
- 122 *Specified segment does not exist*

References:

- 4.7
- 4.11.2

Errors:

none

INQUIRE SEGMENT ATTRIBUTES

WSOP,WSAC,SGOP L1a

Parameters:

In segment name	N
Out error indicator	I
Out segment transformation matrix	2 × 3 × R
Out visibility	(VISIBLE,INVISIBLE)
Out highlighting	(NORMAL,HIGHLIGHTED)
Out segment priority	[0,1]
Out detectability	(UNDETECTABLE,DETECTABLE)

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 120 *Specified segment name is invalid*
- 122 *Specified segment does not exist*

Inquiry functions**References:**

4.7
4.11.2

Errors:

none

5.9.8 Pixel inquiries**INQUIRE PIXEL ARRAY DIMENSIONS**

WSOP,WSAC,SGOP **L0a**

Parameters:

In workstation identifier		N
In 2 points P,Q	WC	2 × P
Out error indicator		I
Out dimensions of pixel array		(1..n) 2 × I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

The points P,Q define a rectangle. By transforming P and Q by the current normalization and workstation transformations, the rectangle is mapped onto the display surface. The number of columns and the number of rows of pixels, whose positions lie within the rectangle, are returned. For this calculation no clipping is applied.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*

References:

4.11.2

Errors:

none

INQUIRE PIXEL ARRAY

WSOP,WSAC,SGOP **L0a**

Parameters:

In workstation identifier		N
In point P	WC	P
In dimensions of colour index array DX,DY		(1..n) 2 × I
Out error indicator		I
Out presence of invalid values	(ABSENT,PRESENT)	E
Out colour index array		(-1..n) n × n × I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

By transforming P by the current normalization and workstation transformations, it is mapped onto a pixel of the display surface. The colour indices of the array of pixels, whose upper left corner is this pixel (associated with the (1,1) element), are returned in the colour index array. The orientation of the array is such that the first dimension increases as the X device coordinate increases and the second dimension increases as the Y device coordinate decreases. If the colour index corresponding to a particular pixel cannot be ascertained (for example, the point P was transformed such that the position of

GKS functions

Inquiry functions

the pixel is not on the display surface), the value -1 (i.e. invalid) is assigned for that cell.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 40 *Specified workstation has no pixel store readback capability*
- 91 *Dimensions of colour array are invalid*

References:

4.11.2

Errors:

none

INQUIRE PIXEL

WSOP,WSAC,SGOP L0a

Parameters:

In	workstation identifier				N
In	point P			WC	P
Out	error indicator				I
Out	colour index			(-1..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

By transforming P by the current normalization and workstation transformations, it is mapped onto a pixel of the display surface. The colour index of this pixel is returned. If a colour index cannot be ascertained (for example, the point P was transformed such that the position of the pixel is not on the display surface), the value -1 (i.e. invalid) is returned.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

- 7 *GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP*
- 20 *Specified workstation identifier is invalid*
- 25 *Specified workstation is not open*
- 39 *Specified workstation is neither of category OUTPUT nor of category OUTIN*
- 40 *Specified workstation has no pixel store readback capability*

References:

4.11.2

Errors:

none

Inquiry functions

5.9.9 Inquiry function for GKS error state list

INQUIRE INPUT QUEUE OVERFLOW

GKS functions

WSOP,WSAC,SGOP L0c

Parameters:

Out error indicator		I
Out workstation identifier		N
Out input class	(LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)	E
Out logical input device number	(1..n)	I

Effect: If the inquired information is available, the error indicator is returned as 0 and values are returned in the output parameters.

If the input queue has overflowed since OPEN GKS or the last invocation of INQUIRE INPUT QUEUE OVERFLOW, the identification of the logical input device that caused the overflow is returned. The entry is removed from the error state list.

If the inquired information is not available, the values returned in the output parameters are implementation dependent and the error indicator is set to one of the following error numbers to indicate the reason for non-availability:

7 GKS not in proper state: GKS shall be in one of the states WSOP, WSAC or SGOP

148 Input queue has not overflowed since GKS was opened or the last invocation of INQUIRE INPUT QUEUE OVERFLOW

149 Input queue has overflowed, but associated workstation has been closed

References:

4.8.5

4.11.2

Errors:

none

GKS functions

Utility functions

5.10 Utility functions

EVALUATE TRANSFORMATION MATRIX

GKOP,WSOP,WSAC,SGOP L1a

Parameters:

In fixed point	WC or NDC	P
In shift vector	WC or NDC	$2 \times R$
In rotation angle in radians (positive if anticlockwise)		R
In scale factors		$2 \times R$
In coordinate switch	(WC,NDC)	E
Out segment transformation matrix		$2 \times 3 \times R$

Effect: The transformation defined by fixed point, shift vector, rotation angle, and scale factors is evaluated and the result is put in the output segment transformation matrix (for use, for example, by INSERT SEGMENT and SET SEGMENT TRANSFORMATION). The coordinate switch determines whether the shift vector and fixed point are given in WC coordinates or NDC coordinates. If WC coordinates are used, the shift vector and the fixed point are transformed by the current normalization transformation. The order of transformation is: scale, rotate (both relative to the specified fixed point), and shift. The elements M_{13} and M_{23} of the resulting 2×3 transformation matrix are in NDC coordinates; the other elements are unitless.

References:

4.7.3

Errors:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

ACCUMULATE TRANSFORMATION MATRIX

GKOP,WSOP,WSAC,SGOP L1a

Parameters:

In segment transformation matrix		$2 \times 3 \times R$
In fixed point	WC or NDC	P
In shift vector	WC or NDC	$2 \times R$
In rotation angle in radians (positive if anticlockwise)		R
In scale factors		$2 \times R$
In coordinate switch	(WC,NDC)	E
Out segment transformation matrix		$2 \times 3 \times R$

Effect: The transformation defined by fixed point, shift vector, rotation angle, and scale factors is composed with the input segment transformation matrix and the result is returned in the output segment transformation matrix (for use, for example, by INSERT SEGMENT and SET SEGMENT TRANSFORMATION). The coordinate switch determines whether the shift vector and fixed point are given in WC coordinates or NDC coordinates. If WC coordinates are used, the shift vector and the fixed point are transformed by the current normalization transformation. The order of transformation is: specified input matrix, scale, rotate (both relative to the specified fixed point), and shift. The elements M_{13} and M_{23} of the 2×3 input matrix and the resulting 2×3 transformation matrix are in NDC coordinates; the other elements are unitless.

References:

4.7.3

Errors:

8 GKS not in proper state: GKS shall be in one of the states GKOP, WSOP, WSAC or SGOP

Error handling**GKS functions****5.11 Error handling****EMERGENCY CLOSE GKS****GKCL,GKOP,WSOP,WSAC,SGOP****L0a****Parameters:***none***Effect:** GKS is emergency closed (see 4.12). The following actions are performed (if possible):

- a) CLOSE SEGMENT (if open);
- b) UPDATE for all open workstations;
- c) DEACTIVATE all active workstations;
- d) CLOSE all open workstations;
- e) CLOSE GKS.

This function may be called even if the error state is ON. If GKS is already closed (operating state GKCL), no action is taken.

References:

4.12

Errors:*none***ERROR HANDLING****GKCL,GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In error number as listed in annex B I
 In identification of the GKS procedure called by the N
 application program which caused the error detection
 In error file N

NOTE - The last parameter has been defined in OPEN GKS.**Effect:** The ERROR HANDLING procedure is called by GKS in any of the error situations listed in annex B. The standard procedure just calls the ERROR LOGGING procedure with the same parameters.**NOTE** - The ERROR HANDLING procedure may be replaced by an application program supplied procedure to allow specific reaction to some error situations.**References:**

4.12

Errors:*none***ERROR LOGGING****GKCL,GKOP,WSOP,WSAC,SGOP****L0a****Parameters:**

In error number as listed in annex B I
 In identification of the GKS procedure called by the N
 application program which caused the error detection
 In error file N

NOTE - The last parameter has been defined in OPEN GKS.

Error handling

GKS functions

Effect: The ERROR LOGGING procedure:

- a) prints an error message and GKS function identification on the error file;
- b) returns to the calling procedure.

References:

4.12

Errors:

none

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

6 GKS data structures

6.1 Notation and data types

In this clause, the contents of the GKS data structures are listed.

The information for each entry includes

- a) the name of the entry;
- b) the coordinate system (if appropriate);
- c) the permitted values;
- d) the data type;
- e) the initial value (if appropriate).

The notation used to express the data type, coordinate system and permitted values is also used to describe the parameters of the GKS functions in clause 5.

The data type can be a simple type, which is one of the following:

I integer	whole number
R real	floating point number
S string	number of characters and character sequence
P point	2 real values specifying the x- and y-coordinates of a location in WC, NDC or DC space
N name	identification (used for error file, workstation identifier, connection identifier, workstation type, specific escape function identification, GDP identifier, pick identifier, segment name and identification of a GKS function). In a programming language, not all these instances of the name data type need be bound to the same data type in the language.
E enumeration type	a data type comprising a set of values. The set is defined by enumerating the identifiers which denote the values. This type could be mapped, for example, onto scalar types in Pascal, or onto integers in FORTRAN.

Alternatively, the data type can be a combination of simple types, thus

- f) a vector of values, for example, $2 \times R$
- g) a matrix of values, for example, $2 \times 3 \times R$
- h) a list of values of one type: the type can be a simple type or a vector, for example, $n \times I$ and $n \times 4 \times R$
- i) an array of values of simple type, for example, $n \times n \times I$
- j) an ordered pair of different types, for example, $(I;E)$

or it can be:

- D data record a compound data type, the content and structure of which are not defined in this International Standard.

An occurrence of n merely indicates a variable integer value and does not necessarily relate to other occurrences of n .

How these data types are represented in a given implementation is dependent on the features of the programming language and on the capabilities of the system. Each language dependent layer has to map the GKS data types onto the data types available in the programming language.

For coordinate data, the relevant coordinate system is indicated

GKS data structures**Notation and data types**

- k) WC : world coordinate system;
- l) NDC : normalized device coordinate system;
- m) DC : device coordinate systems.

See 4.3 for more information about coordinate systems in GKS. It should be pointed out that different coordinate systems may be used in a function call and in the state lists to describe the same entry.

Permitted values can be specified by

- n) a condition, for example, >0 or $[0,1]$; the latter implies that the value lies between 0 and 1 inclusively;
- o) a standard range of integer values, for example, $(1..4)$;
- p) a range of integer values in which the maximum is determined by implementation or other constraints, for example $(32..n)$. An occurrence of n does not necessarily imply any relationship with other occurrences of n : n merely denotes a variable integer in this context;
- q) a list of values which constitute an enumeration type, for example, $(SUPPRESSED, ALLOWED)$;
- r) an ordered list of any of the above.

Initial values, if present, occur on the last column of the data structure lists. The following abbreviations occur:

- s) undef: undefined value;
- t) i.d: implementation dependent;
- u) w.d.t: initial value taken from workstation description table.

If no initial value is given, the value is set by the relevant GKS function.

STANDARDSISO.COM : Click to view the full PDF of ISO 7942-1985

Operating state**6.2 Operating state**

Operating state

value (static variable)

GKS data structures

(GKCL,GKOP,WSOP,WSAC,SGOP)

E

GKCL

Operating state is a static variable of type GKS data structure. It is used to store the current operating state of the GKS system. The operating state is composed of several sub-components, each representing a different aspect of the system's configuration. The sub-components are:

- GKCL (GKS Control List): This component contains information about the GKS control list, including the current control list number and the list of control items.
- GKOP (GKS Operation Parameters): This component contains information about the GKS operation parameters, including the current operation mode and the list of operation parameters.
- WSOP (Window System Operation Parameters): This component contains information about the window system operation parameters, including the current window system mode and the list of window system parameters.
- WSAC (Window System Application Configuration): This component contains information about the window system application configuration, including the current application configuration and the list of application configuration parameters.
- SGOP (System Global Operation Parameters): This component contains information about the system global operation parameters, including the current system global mode and the list of system global parameters.

The operating state is used to store the current configuration of the GKS system, and it is used to control the operation of the system. The operating state is updated whenever the user changes the configuration of the system, and it is used to determine the current state of the system. The operating state is also used to store the current configuration of the window system, and it is used to control the operation of the window system. The operating state is also used to store the current configuration of the application, and it is used to control the operation of the application. The operating state is also used to store the current configuration of the system, and it is used to control the operation of the system.

GKS data structures**GKS description table****6.3 GKS description table**

level of GKS	(0a,0b,0c,1a,1b,1c,2a,2b,2c)	E	i.d
number of available workstation types	(1..n)	I	i.d
list of available workstation types		$n \times N$	i.d
maximum number of simultaneously open workstations	(1..n)	I	i.d
maximum number of simultaneously active workstations	(1..n)	I	i.d
maximum number of workstations associated with a segment	(1..n)	I	i.d
maximum normalization transformation number	(1..n)	I	i.d

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

GKS state list

6.4 GKS state list

set of open workstations
 set of active workstations
 current polyline index
 current linetype
 current linewidth scale factor
 current polyline colour index
 current linetype ASF
 current linewidth scale factor ASF
 current polyline colour index ASF
 current polymarker index
 current marker type
 current marker size scale factor
 current polymarker colour index
 current marker type ASF
 current marker size scale factor ASF
 current polymarker colour index ASF
 current text index
 current text font and precision
 current character expansion factor
 current character spacing
 current text colour index
 current text font and precision ASF
 current character expansion factor ASF
 current character spacing ASF
 current text colour index ASF
 current character height
 current character up vector
 current character width
 current character base vector
 current text path
 current text alignment (horizontal and vertical)
 (NORMAL,LEFT,CENTRE,RIGHT;NORMAL,TOP,CAP,HALF,BASE,BOTTOM)

current fill area index
 current fill area interior style
 current fill area style index
 current fill area colour index
 current fill area interior style ASF
 current fill area style index ASF
 current fill area colour index ASF
 current pattern width vector
 current pattern height vector
 current pattern reference point
 current pick identifier

language binding dependent
 current normalization transformation number
 list of normalization transformations ordered by
 - viewport input priority (initially in numerical order with 0 highest),
 for every entry:
 - normalization transformation number
 - entry number
 window
 - WC
 - 4 × R
 - 0,1,0,1
 viewport
 - NDC
 - 4 × R
 - 0,1,0,1
 clipping indicator
 - (CLIP,NOCLIP)
 - E
 - CLIP
 clipping rectangle
 - NDC
 - 4 × R
 - 0,1,0,1
 name of open segment
 - N
 - undef

GKS data structures

n × N	empty
n × N	empty
(1..n)	I 1
(-n..-1,1..n)	I 1
≥ 0	R 1.0
(0..n)	I 1
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
(1..n)	I 1
(-n..-1,1..n)	I 3
≥ 0	R 1.0
(0..n)	I 1
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
(1..n)	I 1
(-n..-1,1..n;STRING,CHAR,STROKE)	(I;E) 1;STRING
> 0	R 1.0
	R 0.0
(0..n)	I 1
(BUNDLED,INDIVIDUAL)	E see the note
WC	R 0.01
WC	2 × R 0,1
WC	R 0.01
WC	2 × R 1,0
(RIGHT,LEFT,UP,DOWN)	E RIGHT

2 × E

(NORMAL;NORMAL)	
(1..n)	I 1
(HOLLOW,SOLID,PATTERN,HATCH)	E HOLLOW
(-n..-1,1..n)	I 1
(0..n)	I 1
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
(BUNDLED,INDIVIDUAL)	E see the note
WC	2 × R 1,0
WC	2 × R 0,1
WC	P (0,0)
	N

language binding dependent

(0..n)	I 0
--------	-----

GKS data structures

GKS state list

set of segment names in use		n × N	empty
set of segment state lists (one state list for every segment: see 6.7)			empty
input queue (one entry for each event report)			empty
for every entry:			
workstation identifier		N	undef
device number	(1..n)	I	undef
last of group of simultaneous events	(LAST,NOTLAST)	E	undef
(a single event is indicated by LAST)			
input class	(LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)	E	undef
if LOCATOR			
normalization transformation number	(0..n)	I	undef
position	WC	P	undef
if STROKE			
normalization transformation number	(0..n)	I	undef
number of points	(0..n)	I	undef
points in stroke	WC	n × P	undef
if VALUATOR			
value		R	undef
if CHOICE			
status	(OK,NOCHOICE)	E	undef
choice number	(1..n)	I	undef
if PICK			
status	(OK,NOPICK)	E	undef
segment name		N	undef
pick identifier		N	undef
if STRING			
string		S	undef
current event report containing:			
input class	(NONE,LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)	E	NONE
if LOCATOR			
normalization transformation number	(0..n)	I	undef
position	WC	P	undef
if STROKE			
normalization transformation number	(0..n)	I	undef
number of points	(0..n)	I	undef
points in stroke	WC	n × P	undef
if VALUATOR			
value		R	undef
if CHOICE			
status	(OK,NOCHOICE)	E	undef
choice number	(1..n)	I	undef
if PICK			
status	(OK,NOPICK)	E	undef
segment name		N	undef
pick identifier		N	undef
if STRING			
string		S	undef
more simultaneous events	(NOMORE,MORE)	E	NOMORE

NOTE - All the initial ASF values are the same. It is implementation dependent whether the initial ASF values are all BUNDLED or are all INDIVIDUAL.

Workstation state list

6.5 Workstation state list

One workstation state list exists for every open workstation. For workstations of category MO, the values marked w.d.t in the following list are actually implementation dependent because the workstation description table does not contain the corresponding entries.

Entries in this group exist for all workstation categories

workstation identifier

N

connection identifier

N

workstation type

N

the above 3 entries are initialised by OPEN WORKSTATION

Entries in this group do not exist for workstations of category INPUT and MI

workstation state

(INACTIVE,ACTIVE)

E INACTIVE

set of stored segments for this workstation

n × N

empty

Entries in this group do not exist for workstations of categories INPUT, WISS and MI

deferral mode

(ASAP,BNIG,BNIL,ASTI)

E w.d.t

implicit regeneration mode

(SUPPRESSED,ALLOWED)

E w.d.t

display surface empty

(EMPTY,NOTEMPTY)

E EMPTY

new frame action necessary at update

(NO,YES)

E NO

number of polyline bundle table entries

(5..n)

I w.d.t

table of defined polyline bundles,

for every entry:

polyline index

(1..n)

I w.d.t

linetype

(-n..-1,1..n)

I w.d.t

linewidth scale factor

≥ 0

R w.d.t

polyline colour index

(0..n)

I w.d.t

number of polypointer bundle table entries

(5..n)

I w.d.t

table of defined polypointer bundles,

for every entry:

polypointer index

(1..n)

I w.d.t

marker type

(-n..-1,1..n)

I w.d.t

marker size scale factor

≥ 0

R w.d.t

polypointer colour index

(0..n)

I w.d.t

number of text bundle table entries

(2..n)

I w.d.t

table of defined text bundles,

for every entry:

text index

(1..n)

I w.d.t

text font and precision

(-n..-1,1..n;STRING,CHAR,STROKE)

(I:E)

w.d.t

character expansion factor

> 0

R w.d.t

character spacing

R

w.d.t

text colour index

(0..n)

I w.d.t

number of fill area bundle table entries

(5..n)

I w.d.t

table of defined fill area bundles,

for every entry:

fill area index

(1..n)

I w.d.t

fill area interior style

(HOLLOW,SOLID,PATTERN,HATCH)

E w.d.t

fill area style index

(-n..-1,1..n)

I w.d.t

fill area colour index

(0..n)

I w.d.t

GKS data structures

Workstation state list

number of pattern table entries	(0..n)	I	w.d.t
table of pattern representations,			
for every entry:			
pattern index	(1..n)	I	w.d.t
pattern array dimensions	(1..n)	2 × I	w.d.t
pattern array	(0..n)	n × n × I	w.d.t
number of colour table entries	(2..n)	I	w.d.t
table of colour representations,			
for every entry:			
colour index	(0..n)	I	w.d.t
colour (red, green, blue intensities)	[0,1]	3 × R	w.d.t
workstation transformation update state	(NOTPENDING,PENDING)	E	
		NOTPENDING	
requested workstation window	NDC	4 × R	0,1,0,1
current workstation window	NDC	4 × R	0,1,0,1
requested workstation viewport	DC	4 × R	0,xd,0,yd
current workstation viewport	DC	4 × R	0,xd,0,yd

where (xd,yd) is the display space size from the w.d.t

Entries in this group do not exist for workstations of categories OUTPUT, WISS, MO and MI

for every logical input device of class LOCATOR:

locator device number	(1..n)	I	w.d.t
operating mode	(REQUEST,SAMPLE,EVENT)	E	REQUEST
echo switch	(ECHO,NOECHO)	E	ECHO
initial normalization transformation number	(0..n)	I	0
initial locator position	WC	P	w.d.t
prompt and echo type	(-n..-1,1..n)	I	1
echo area	DC	4 × R	w.d.t
locator data record		D	i.d

for every logical input device of class STROKE:

stroke device number	(1..n)	I	w.d.t
operating mode	(REQUEST,SAMPLE,EVENT)	E	REQUEST
echo switch	(ECHO,NOECHO)	E	ECHO
initial normalization transformation number	(0..n)	I	undef
initial number of points	(0..n)	I	0
initial points in stroke	WC	n × P	empty
prompt and echo type	(-n..-1,1..n)	I	1
echo area	DC	4 × R	w.d.t
stroke data record containing at least:		D	i.d
input buffer size	(1..n)	I	w.d.t

for every logical input device of class VALUATOR:

valuator device number	(1..n)	I	w.d.t
operating mode	(REQUEST,SAMPLE,EVENT)	E	REQUEST
echo switch	(ECHO,NOECHO)	E	ECHO
initial value		R	w.d.t
prompt and echo type	(-n..-1,1..n)	I	1
echo area	DC	4 × R	w.d.t
valuator data record containing at least:		D	i.d
low value		R	w.d.t
high value		R	w.d.t

Workstation state list

for every logical input device of class CHOICE:

choice device number
 operating mode
 echo switch
 initial status
 initial choice number
 prompt and echo type
 echo area
 choice data record

for every logical input device of class PICK:

pick device number
 operating mode
 echo switch
 initial status
 initial segment
 initial pick identifier
 prompt and echo type
 echo area
 pick data record

for every logical input device of class STRING:

string device number
 operating mode
 echo switch
 initial string
 prompt and echo type
 echo area
 string data record containing at least:
 input buffer size
 initial cursor position

GKS data structures

	(1..n)	I	w.d.t
(REQUEST,SAMPLE,EVENT)		E	REQUEST
(ECHO,NOECHO)		E	ECHO
(OK,NOCHOICE)		E	NOCHOICE
	(1..n)	I	undef
	(-n..-1,1..n)	I	I
DC		4 × R	w.d.t
		D	i.d
	(1..n)	I	w.d.t
(REQUEST,SAMPLE,EVENT)		E	REQUEST
(ECHO,NOECHO)		E	ECHO
(OK,NOPICK)		E	NOPICK
	N	undef	
	N	undef	
	(-n..-1,1..n)	I	I
DC		4 × R	w.d.t
		D	i.d
	(1..n)	I	w.d.t
(REQUEST,SAMPLE,EVENT)		E	REQUEST
(ECHO,NOECHO)		E	ECHO
	S	"	
	(-n..-1,1..n)	I	I
DC		4 × R	w.d.t
		D	i.d
	(1..n)	I	w.d.t
	(1..n)	I	w.d.t

STANDARDSISO.COM : Click to view the full PDF of ISO 7942-1985

GKS data structures**Workstation description table****6.6 Workstation description table**

There are three special categories of GKS workstation:

- a) WISS (Workstation Independent Segment Storage);
- b) MO (GKSM Output);
- c) MI (GKSM Input).

For levels 0 and 1 there is no WISS; for level 2 there is exactly one WISS.

There may be a number of different workstation types for MO and MI to accommodate different metafile formats. These special workstations have a restricted workstation description table.

Further workstation types may be assigned and are implementation dependent, for example:

- d) storage tube type 1;
- e) flat bed plotter 1.

The workstation description tables cannot be changed by the application program. There is only one workstation description table for each workstation type available in a given implementation.

Entries in this group exist for all workstation categories

workstation type	N		i.d
workstation category	E		i.d

(OUTPUT,INPUT,OUTIN,WISS,MO,MI)

Entries in this group do not exist for workstations of categories WISS, MO and MI

device coordinate units	(METRES,OTHER)	E	i.d	
display space size				
(visible area of the display surface or available area on tablet for workstations of category INPUT)				
in device coordinate units	DC	>0	2 × R	i.d
in raster units				
(integer by integer) >0			2 × I	i.d
(for vector displays, for example, the raster units give the highest possible resolution; for raster displays, the number of columns and lines of the raster array)				

Entries in this group do not exist for workstations of categories INPUT, WISS, MO and MI

raster or vector display	(VECTOR,RASTER,OTHER)	E	i.d
(VECTOR = vector display, RASTER = raster device, OTHER = other device, for example, vector + raster)			
dynamic modification accepted for:			
polyline bundle representation	(IRG,IMM)	E	i.d
polymarker bundle representation	(IRG,IMM)	E	i.d
text bundle representation	(IRG,IMM)	E	i.d
fill area bundle representation	(IRG,IMM)	E	i.d
pattern representation	(IRG,IMM)	E	i.d
colour representation	(IRG,IMM)	E	i.d
workstation transformation	(IRG,IMM)	E	i.d
where:			

IRG: implicit regeneration necessary (may be deferred)

IMM: performed immediately

default value for:

deferral mode	(ASAP,BNIG,BNIL,ASTI)	E	i.d	
implicit regeneration mode	(SUPPRESSED,ALLOWED)	E	i.d	
number of available linetypes	(4..n)	I	i.d	
list of available linetypes	(-n..-1,1..n)	n × I	i.d	
number of available linewidths	(0..n)	I	i.d	
(a value of 0 indicates that a continuous range of linewidths is supported)				
nominal linewidth	DC	>0	R	i.d

Workstation description table

GKS data structures

minimum linewidth	DC	>0	R	i.d
maximum linewidth	DC	>0	R	i.d
number of predefined polyline indices(bundles)		(5..n)	I	i.d
table of predefined polyline bundles,				
for every entry:				
linetype		(-n..-1,1..n)	I	i.d
linewidth scale factor			R	i.d
polyline colour index (within range of predefined colour indices)		(0..n)	I	i.d
number of available marker types		(5..n)	I	i.d
list of available marker types		(-n..-1,1..n)	n × I	i.d
number of available marker sizes		(0..n)	I	i.d
(a value of 0 indicates that a continuous range of marker sizes is supported)				
nominal marker size	DC	>0	R	i.d
minimum marker size	DC	>0	R	i.d
maximum marker size	DC	>0	R	i.d
number of predefined polymarker indices (bundles)		(5..n)	I	i.d
table of predefined polymarker bundles,				
for every entry:				
marker type		(-n..-1,1..n)	I	i.d
marker size scale factor			R	i.d
polymarker colour index (within range of predefined colour indices)		(0..n)	I	i.d
number of text font and precision pairs		(1..n)	I	i.d
list of text font and precision pairs		(-n..-1,1..n;STRING,CHAR,STROKE)	n × (I;E)	i.d
number of available character expansion factors		(0..n)	I	i.d
(a value of 0 indicates that a continuous range of character expansion factors is supported)				
minimum character expansion factor		>0	R	i.d
maximum character expansion factor		>0	R	i.d
(if the available character expansion factors vary between fonts, these values are for font 1)				
number of available character heights		(0..n)	I	i.d
(a value of 0 indicates that a continuous range of character heights is supported)				
minimum character height	DC	>0	R	i.d
maximum character height	DC	>0	R	i.d
(if the available character heights vary between fonts, these values are for font 1)				
number of predefined text indices(bundles)		(2..n)	I	i.d
table of predefined text bundles,				
for every entry:				
text font and precision		(-n..-1,1..n;STRING,CHAR,STROKE)	(I;E)	i.d
character expansion factor			>0	R
character spacing				R
text colour index (within range of predefined colour indices)		(0..n)	I	i.d
number of available fill area interior styles		(1..4)	I	i.d
list of available fill area interior styles		(HOLLOW,SOLID,PATTERN,HATCH)	n × E	i.d
number of available hatch styles		(0..n)	I	i.d
list of available hatch styles		(-n..-1,1..n)	n × I	i.d
number of predefined fill area indices(bundles)		(5..n)	I	i.d
table of predefined fill area bundles,				
for every entry:				
fill area interior style		(HOLLOW,SOLID,PATTERN,HATCH)	E	i.d
fill area style index		(-n..-1,1..n)	I	i.d
(for interior style PATTERN is within range of predefined pattern indices)				
(for interior style HATCH is within range of available hatch styles)				
fill area colour index (within range of predefined colour indices)		(0..n)	I	i.d
number of predefined pattern indices (representations)		(0..n)	I	i.d
table of predefined pattern representations,				
for every entry:				
pattern array dimensions		(1..n)	2 × I	i.d
pattern array		(0..n)	n × n × I	i.d

GKS data structures**Workstation description table**

number of available colours or intensities (a value of 0 indicates that a continuous range of colours is supported)	(0,2..n)	I	i.d
colour available	(COLOUR,MONOCHROME)	E	i.d
number of predefined colour indices(representations)	(2..n)	I	i.d
table of predefined colour representations, for every entry: colour(red, green, blue intensities)	at least entries zero and one [0,1] $3 \times R$		i.d
number of available generalized drawing primitives	(0..n)	I	i.d
list of available generalized drawing primitives (may be empty), for every GDP: GDP identifier			
number of sets of attributes used	(0..4)	I	i.d
list of sets of attributes used	(POLYLINE,POLYMARKER,TEXT,FILL AREA)	$n \times E$	i.d
maximum number of polyline bundle table entries	(5..n)	I	i.d
maximum number of polymarker bundle table entries	(5..n)	I	i.d
maximum number of text bundle table entries	(2..n)	I	i.d
maximum number of fill area bundle table entries	(3..n)	I	i.d
maximum number of pattern indices	(0..n)	I	i.d
maximum number of colour indices	(2..n)	I	i.d
number of segment priorities supported (a value of 0 indicates that a continuous range of priorities is supported)	(0..n)	I	i.d
dynamic modification accepted for:			
segment transformation	(IRG,IMM)	E	i.d
visibility (visible \rightarrow invisible)	(IRG,IMM)	E	i.d
visibility (invisible \rightarrow visible)			
highlighting	(IRG,IMM)	E	i.d
segment priority	(IRG,IMM)	E	i.d
adding primitives to open segment overlapping segment of higher priority	(IRG,IMM)	E	i.d
delete segment	(IRG,IMM)	E	i.d
where:			
IRG: implicit regeneration necessary (may be deferred)			
IMM: performed immediately			

Entries in this group do not exist for workstations of categories OUTPUT, WISS, MO and MI

for every logical input device of class LOCATOR:

locator device number	(1..n)	I	i.d
default initial locator position	WC	P	i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	$n \times I$	i.d
default echo area	DC	$4 \times R$	i.d
default locator data record		D	i.d

for every logical input device of class STROKE:

stroke device number	(1..n)	I	i.d
maximum input buffer size	(64..n)	I	i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	$n \times I$	i.d
default echo area	DC	$4 \times R$	i.d
default stroke data record containing at least: input buffer size	(1..n)	D	i.d

Workstation description table

GKS data structures

for every logical input device of class VALUATOR:

valuator device number	(1..n)	I	i.d
default initial value	R		i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	n × I	i.d
default echo area	DC	4 × R	i.d
default valuator data record containing at least:		D	i.d
low value		R	i.d
high value		R	i.d

for every logical input device of class CHOICE:

choice device number	(1..n)	I	i.d
maximum number of choice alternatives	(1..n)	I	i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	n × I	i.d
default echo area	DC	4 × R	i.d
default choice data record		D	i.d

for every logical input device of class PICK:

pick device number	(1..n)	I	i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	n × I	i.d
default echo area	DC	4 × R	i.d
default pick data record		D	i.d

for every logical input device of class STRING:

string device number	(1..n)	I	i.d
maximum input buffer size	(72..n)	I	i.d
number of available prompt and echo types	(1..n)	I	i.d
list of available prompt and echo types	(-n..-1,1..n)	n × I	i.d
default echo area	DC	4 × R	i.d
default string data record containing at least:		D	i.d
input buffer size	(1..n)	I	i.d
initial cursor position	(1..n)	I	i.d

GKS data structures**Segment state list****6.7 Segment state list**

One segment state list exists for the open segment and for each stored segment.

segment name	N	
set of associated workstations	n × N	
segment transformation matrix (the elements M_{13} and M_{23} are in NDC coordinates and the other elements are unitless)	2 × 3 × R	1,0,0 0,1,0
visibility	(VISIBLE,INVISIBLE)	E VISIBLE
highlighting	(NORMAL,HIGHLIGHTED)	E NORMAL
segment priority	[0,1]	R 0
detectability	(UNDETECTABLE,DETECTABLE)	E UNDETECTABLE

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

GKS error state list**GKS data structures****6.8 GKS error state list**

		(OFF,ON)	E	OFF
error state			N	i.d.
error file				
identification of one of the logical input devices that caused an input queue overflow:				
workstation identifier			N	undef
input class	(LOCATOR,STROKE,VALUATOR,CHOICE,PICK,STRING)		E	undef
logical input device number		(1..n)	I	undef

STANDARDSISO.COM : Click to view the full PDF of ISO 7942:1985

Annex A

Function lists

(This annex forms an integral part of the standard.)

A.1 Alphabetic

	Page
ACCUMULATE TRANSFORMATION MATRIX	173
ACTIVATE WORKSTATION	69
ASSOCIATE SEGMENT WITH WORKSTATION	101
AWAIT EVENT	122
CELL ARRAY	77
CLEAR WORKSTATION	69
CLOSE GKS	67
CLOSE SEGMENT	99
CLOSE WORKSTATION	68
COPY SEGMENT TO WORKSTATION	101
CREATE SEGMENT	99
DEACTIVATE WORKSTATION	69
DELETE SEGMENT	100
DELETE SEGMENT FROM WORKSTATION	100
EMERGENCY CLOSE GKS	174
ERROR HANDLING	174
ERROR LOGGING	174
ESCAPE	73
EVALUATE TRANSFORMATION MATRIX	173
FILL AREA	75
FLUSH DEVICE EVENTS	123
GENERALIZED DRAWING PRIMITIVE (GDP)	78
GET CHOICE	124
GET ITEM TYPE FROM GKSM	126
GET LOCATOR	123
GET PICK	124
GET STRING	125
GET STROKE	123
GET VALUATOR	124
INITIALISE CHOICE	109
INITIALISE LOCATOR	106
INITIALISE PICK	110
INITIALISE STRING	111
INITIALISE STROKE	107
INITIALISE VALUATOR	108
INQUIRE CHOICE DEVICE STATE	150
INQUIRE CLIPPING	134
INQUIRE COLOUR FACILITIES	160
INQUIRE COLOUR REPRESENTATION	146
INQUIRE CURRENT INDIVIDUAL ATTRIBUTE VALUES	132
INQUIRE CURRENT NORMALIZATION TRANSFORMATION NUMBER	132
INQUIRE CURRENT PICK IDENTIFIER VALUE	131
INQUIRE CURRENT PRIMITIVE ATTRIBUTE VALUES	131
INQUIRE DEFAULT CHOICE DEVICE DATA	167
INQUIRE DEFAULT DEFERRAL STATE VALUES	154
INQUIRE DEFAULT LOCATOR DEVICE DATA	165
INQUIRE DEFAULT PICK DEVICE DATA	168

INQUIRE DEFAULT STRING DEVICE DATA	168
INQUIRE DEFAULT STROKE DEVICE DATA	166
INQUIRE DEFAULT VALUATOR DEVICE DATA	166
INQUIRE DISPLAY SPACE SIZE	153
INQUIRE DYNAMIC MODIFICATION OF SEGMENT ATTRIBUTES	164
INQUIRE DYNAMIC MODIFICATION OF WORKSTATION ATTRIBUTES	153
INQUIRE FILL AREA FACILITIES	158
INQUIRE FILL AREA REPRESENTATION	143
INQUIRE GENERALIZED DRAWING PRIMITIVE	162
INQUIRE INPUT QUEUE OVERFLOW	172
INQUIRE LEVEL OF GKS	128
INQUIRE LIST OF AVAILABLE GENERALIZED DRAWING PRIMITIVES	161
INQUIRE LIST OF AVAILABLE WORKSTATION TYPES	129
INQUIRE LIST OF COLOUR INDICES	145
INQUIRE LIST OF FILL AREA INDICES	143
INQUIRE LIST OF NORMALIZATION TRANSFORMATION NUMBERS	133
INQUIRE LIST OF PATTERN INDICES	144
INQUIRE LIST OF POLYLINE INDICES	137
INQUIRE LIST OF POLYMARKER INDICES	138
INQUIRE LIST OF TEXT INDICES	139
INQUIRE LOCATOR DEVICE STATE	148
INQUIRE MAXIMUM LENGTH OF WORKSTATION STATE TABLES	162
INQUIRE MAXIMUM NORMALIZATION TRANSFORMATION NUMBER	130
INQUIRE MORE SIMULTANEOUS EVENTS	135
INQUIRE NAME OF OPEN SEGMENT	134
INQUIRE NORMALIZATION TRANSFORMATION	133
INQUIRE NUMBER OF AVAILABLE LOGICAL INPUT DEVICES	164
INQUIRE NUMBER OF SEGMENT PRIORITIES SUPPORTED	163
INQUIRE OPERATING STATE VALUE	128
INQUIRE PATTERN FACILITIES	159
INQUIRE PATTERN REPRESENTATION	145
INQUIRE PICK DEVICE STATE	151
INQUIRE PIXEL	171
INQUIRE PIXEL ARRAY	170
INQUIRE PIXEL ARRAY DIMENSIONS	170
INQUIRE POLYLINE FACILITIES	154
INQUIRE POLYLINE REPRESENTATION	137
INQUIRE POLYMARKER FACILITIES	156
INQUIRE POLYMARKER REPRESENTATION	139
INQUIRE PREDEFINED COLOUR REPRESENTATION	161
INQUIRE PREDEFINED FILL AREA REPRESENTATION	159
INQUIRE PREDEFINED PATTERN REPRESENTATION	160
INQUIRE PREDEFINED POLYLINE REPRESENTATION	155
INQUIRE PREDEFINED POLYMARKER REPRESENTATION	156
INQUIRE PREDEFINED TEXT REPRESENTATION	158
INQUIRE SEGMENT ATTRIBUTES	169
INQUIRE SET OF ACTIVE WORKSTATIONS	130
INQUIRE SET OF ASSOCIATED WORKSTATIONS	169
INQUIRE SET OF OPEN WORKSTATIONS	130
INQUIRE SET OF SEGMENT NAMES IN USE	134
INQUIRE SET OF SEGMENT NAMES ON WORKSTATION	147
INQUIRE STRING DEVICE STATE	151
INQUIRE STROKE DEVICE STATE	149
INQUIRE TEXT EXTENT	141
INQUIRE TEXT FACILITIES	157
INQUIRE TEXT REPRESENTATION	140
INQUIRE VALUATOR DEVICE STATE	149

Annex A

Alphabetic

INQUIRE WORKSTATION CATEGORY	152
INQUIRE WORKSTATION CLASSIFICATION	152
INQUIRE WORKSTATION CONNECTION AND TYPE	135
INQUIRE WORKSTATION DEFERRAL AND UPDATE STATES	136
INQUIRE WORKSTATION MAXIMUM NUMBERS	129
INQUIRE WORKSTATION STATE	136
INQUIRE WORKSTATION TRANSFORMATION	147
INSERT SEGMENT	102
INTERPRET ITEM	127
MESSAGE	72
OPEN GKS	67
OPEN WORKSTATION	67
POLYLINE	74
POLYMARKER	74
READ ITEM FROM GKSM	126
REDRAW ALL SEGMENTS ON WORKSTATION	70
RENAME SEGMENT	99
REQUEST CHOICE	117
REQUEST LOCATOR	116
REQUEST PICK	118
REQUEST STRING	118
REQUEST STROKE	116
REQUEST VALUATOR	117
SAMPLE CHOICE	121
SAMPLE LOCATOR	119
SAMPLE PICK	121
SAMPLE STRING	122
SAMPLE STROKE	120
SAMPLE VALUATOR	120
SELECT NORMALIZATION TRANSFORMATION	97
SET ASPECT SOURCE FLAGS	89
SET CHARACTER EXPANSION FACTOR	84
SET CHARACTER HEIGHT	85
SET CHARACTER SPACING	84
SET CHARACTER UP VECTOR	85
SET CHOICE MODE	114
SET CLIPPING INDICATOR	97
SET COLOUR REPRESENTATION	94
SET DEFERRAL STATE	72
SET DETECTABILITY	105
SET FILL AREA COLOUR INDEX	88
SET FILL AREA INDEX	86
SET FILL AREA INTERIOR STYLE	87
SET FILL AREA REPRESENTATION	93
SET FILL AREA STYLE INDEX	87
SET HIGHLIGHTING	104
SET LINETYPE	80
SET LINEWIDTH SCALE FACTOR	81
SET LOCATOR MODE	113
SET MARKER SIZE SCALE FACTOR	82
SET MARKER TYPE	82
SET PATTERN REFERENCE POINT	88
SET PATTERN REPRESENTATION	94
SET PATTERN SIZE	88
SET PICK IDENTIFIER	89
SET PICK MODE	115
SET POLYLINE COLOUR INDEX	81

Alphabetic

Annex A

SET POLYLINE INDEX	80
SET POLYLINE REPRESENTATION	90
SET POLYMARKER COLOUR INDEX	83
SET POLYMARKER INDEX	81
SET POLYMARKER REPRESENTATION	91
SET SEGMENT PRIORITY	104
SET SEGMENT TRANSFORMATION	103
SET STRING MODE	115
SET STROKE MODE	113
SET TEXT ALIGNMENT	86
SET TEXT COLOUR INDEX	85
SET TEXT FONT AND PRECISION	83
SET TEXT INDEX	83
SET TEXT PATH	86
SET TEXT REPRESENTATION	92
SET VALUATOR MODE	114
SET VIEWPORT	96
SET VIEWPORT INPUT PRIORITY	96
SET VISIBILITY	103
SET WINDOW	96
SET WORKSTATION VIEWPORT	98
SET WORKSTATION WINDOW	97
TEXT	75
UPDATE WORKSTATION	71
WRITE ITEM TO GKSM	126

A.2 Order of appearance

Control functions (5.2)	67
OPEN GKS	67
CLOSE GKS	67
OPEN WORKSTATION	67
CLOSE WORKSTATION	68
ACTIVATE WORKSTATION	69
DEACTIVATE WORKSTATION	69
CLEAR WORKSTATION	69
REDRAW ALL SEGMENTS ON WORKSTATION	70
UPDATE WORKSTATION	71
SET DEFERRAL STATE	72
MESSAGE	72
ESCAPE	73
Output functions (5.3)	74
POLYLINE	74
POLYMARKER	74
TEXT	75
FILL AREA	75
CELL ARRAY	77
GENERALIZED DRAWING PRIMITIVE (GDP)	78

Annex A

Order of appearance

Output attributes (5.4)	80
Workstation independent primitive attributes (5.4.1)	80
SET POLYLINE INDEX	80
SET LINETYPE	80
SET LINEWIDTH SCALE FACTOR	81
SET POLYLINE COLOUR INDEX	81
SET POLYMARKER INDEX	81
SET MARKER TYPE	82
SET MARKER SIZE SCALE FACTOR	82
SET POLYMARKER COLOUR INDEX	83
SET TEXT INDEX	83
SET TEXT FONT AND PRECISION	83
SET CHARACTER EXPANSION FACTOR	84
SET CHARACTER SPACING	84
SET TEXT COLOUR INDEX	85
SET CHARACTER HEIGHT	85
SET CHARACTER UP VECTOR	85
SET TEXT PATH	86
SET TEXT ALIGNMENT	86
SET FILL AREA INDEX	86
SET FILL AREA INTERIOR STYLE	87
SET FILL AREA STYLE INDEX	87
SET FILL AREA COLOUR INDEX	88
SET PATTERN SIZE	88
SET PATTERN REFERENCE POINT	88
SET ASPECT SOURCE FLAGS	89
SET PICK IDENTIFIER	89
Workstation attributes (representations) (5.4.2)	90
SET POLYLINE REPRESENTATION	90
SET POLYMARKER REPRESENTATION	91
SET TEXT REPRESENTATION	92
SET FILL AREA REPRESENTATION	93
SET PATTERN REPRESENTATION	94
SET COLOUR REPRESENTATION	94
Transformation functions (5.5)	96
Normalization transformation (5.5.1)	96
SET WINDOW	96
SET VIEWPORT	96
SET VIEWPORT INPUT PRIORITY	96
SELECT NORMALIZATION TRANSFORMATION	97
SET CLIPPING INDICATOR	97
Workstation transformation (5.5.2)	97
SET WORKSTATION WINDOW	97
SET WORKSTATION VIEWPORT	98