

INTERNATIONAL
STANDARD

ISO
18275

Third edition
2018-08

**Welding consumables — Covered
electrodes for manual metal arc
welding of high-strength steels —
Classification**

*Produits consommables pour le soudage — Électrodes enrobées
pour le soudage manuel à l'arc des aciers à haute résistance —
Classification*

STANDARDSISO.COM : Click to view the full PDF of ISO 18275:2018

Reference number
ISO 18275:2018(E)

© ISO 2018

STANDARDSISO.COM : Click to view the full PDF of ISO 18275:2018

COPYRIGHT PROTECTED DOCUMENT

© ISO 2018

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

Contents

	Page
Foreword	iv
Introduction	v
1 Scope	1
2 Normative references	1
3 Terms and definitions	1
4 Classification	2
4.1 General	2
4.2 Compulsory and optional sections	3
5 Symbols and requirements	3
5.1 Symbol for the product/process	3
5.2 Symbol for tensile properties of all-weld metal	3
5.3 Symbol for impact properties of all-weld metal	4
5.4 Symbol for chemical composition of all-weld metal	5
5.5 Symbol for type of electrode covering	7
5.6 Symbol for condition of post-weld heat treatment of all-weld metal	8
5.7 Symbol for electrode efficiency and type of current	9
5.8 Symbol for welding position	9
5.9 Symbol for diffusible hydrogen content of deposited metal	10
5.10 Mechanical property and composition requirements	10
6 Mechanical property tests	16
6.1 General	16
6.2 Preheating and interpass temperatures	16
6.3 Pass sequence	16
7 Chemical analysis	16
8 Rounding procedure	17
9 Retests	17
10 Technical delivery conditions	17
11 Examples of designation	17
Annex A (informative) Classification systems	20
Annex B (informative) Description of types of electrode covering — Classification by yield strength and 47 J impact energy	23
Annex C (informative) Description of types of electrode covering — Classification by tensile strength and 27 J impact energy	24
Annex D (informative) Notes on diffusible hydrogen	26
Annex E (informative) Description of chemical composition symbols — Classification by yield strength and 47 J impact energy	27
Annex F (informative) Description of chemical composition symbols — Classification by tensile strength and 27 J impact energy	28
Bibliography	29

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO documents should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any patent rights identified during the development of the document will be in the Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 44, *Welding and allied processes*, Subcommittee SC 3, *Welding consumables*.

Any feedback, question or request for official interpretation related to any aspect of this document should be directed to the Secretariat of ISO/TC 44/SC 3 via your national standards body. A complete listing of these bodies can be found at www.iso.org/members.html. Official interpretations, where they exist, are available from this page: <https://committee.iso.org/sites/tc44/home/interpretation.html>.

This third edition cancels and replaces the second edition (ISO 18275:2011), which has been technically revised. The main changes compared to the previous edition are as follows:

- fillet weld testing has been removed from the document;
- requirements for diffusible hydrogen removal treatment have been revised;
- new classifications have been added: NiCrCu, E6218-N4M2 P;
- post-weld heat treatment details have been clarified on the B-side;
- [Clauses 7, 8](#) and [9](#) have been updated to reflect agreed text for all ISO/TC 44/SC 3 standards.

Introduction

This document recognizes that there are two somewhat different approaches in the global market to classifying a given electrode, and allows for either or both to be used, to suit a particular market need. Application of either type of classification designation (or of both, where suitable) identifies a product as classified in accordance with this document. The classification in accordance with system A was originally based on EN 757:1997. The classification in accordance with system B is mainly based on standards used around the Pacific Rim.

This document provides a classification system for covered electrodes for high-strength steels in terms of the tensile properties, impact properties and chemical composition of the all-weld metal, as well as the type of electrode covering. The ratio of yield strength to tensile strength of weld metal is generally higher than that of parent metal. Users should note that matching weld metal yield strength to parent metal yield strength does not necessarily ensure that the weld metal tensile strength matches that of the parent metal. Therefore, where the application requires matching tensile strength, selection of the consumable should be made by reference to column 3 of Table 1A or column 2 of [Table 8B](#).

It should be noted that the mechanical properties of all-weld metal test specimens used to classify covered electrodes can vary from those obtained in production joints because of differences in welding procedure such as electrode size, width of weave, welding position, and parent metal composition.

STANDARDSISO.COM : Click to view the full PDF of ISO 18275:2018

Welding consumables — Covered electrodes for manual metal arc welding of high-strength steels — Classification

1 Scope

This document specifies requirements for classification of covered electrodes and deposited metal in the as-welded condition and in the post-weld heat-treated condition for manual metal arc welding of high-strength steels with a minimum yield strength greater than 500 MPa or a minimum tensile strength greater than 570 MPa.

This document is a combined specification providing a classification utilizing a system based on the yield strength and an average impact energy of 47 J of the all-weld metal, or utilizing a system based on the tensile strength and an average impact energy of 27 J of the all-weld metal.

- a) Subclauses and tables which carry the suffix letter "A" are applicable only to covered electrodes classified under the system based on the yield strength and an average impact energy of 47 J of the all-weld metal given in this document.
- b) Subclauses and tables which carry the suffix letter "B" are applicable only to covered electrodes classified under the system based on the tensile strength and an average impact energy of 27 J of the all-weld metal given in this document.
- c) Subclauses and tables which do not have either the suffix letter "A" or the suffix letter "B" are applicable to all covered electrodes classified under this document.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 544, *Welding consumables — Technical delivery conditions for filler materials and fluxes — Type of product, dimensions, tolerances and markings*

ISO 2401, *Covered electrodes — Determination of the efficiency, metal recovery and deposition coefficient*

ISO 2560:2009, *Welding consumables — Covered electrodes for manual metal arc welding of non-alloy and fine grain steels — Classification*

ISO 3690, *Welding and allied processes — Determination of hydrogen content in arc weld metal*

ISO 6847, *Welding consumables — Deposition of a weld metal pad for chemical analysis*

ISO 6947, *Welding and allied processes — Welding positions*

ISO 14344, *Welding consumables — Procurement of filler materials and fluxes*

ISO 15792-1, *Welding consumables — Test methods — Part 1: Test methods for all-weld metal test specimens in steel, nickel and nickel alloys*

ISO 80000-1:2009, *Quantities and units — Part 1: General*

3 Terms and definitions

No terms and definitions are listed in this document.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

- ISO Online browsing platform: available at <https://www.iso.org/obp>
- IEC Electropedia: available at <https://www.electropedia.org/>

4 Classification

4.1 General

Classification designations are based on two approaches to indicate the tensile properties and the impact properties of the all-weld metal obtained with a given electrode. The two designation approaches include additional designators for some other classification requirements, but not all, as will be clear from the following subclauses. In most cases, a given commercial product can be classified in both systems. Then either or both classification designations can be used for the product.

The classification is based on an electrode diameter of 4,0 mm.

Classification is as follows:

4.1A Classification by yield strength and 47 J impact energy

The classification is divided into nine parts:

- 1) the first part gives a symbol indicating the product/process to be identified;
- 2) the second part gives a symbol indicating the strength and elongation of the all-weld metal (see Table 1A);
- 3) the third part gives a symbol indicating the impact properties of the all-weld metal (see Table 2A);
- 4) the fourth part gives a symbol indicating the chemical composition of the all-weld metal (see Table 3A);
- 5) the fifth part gives a symbol indicating the type of electrode covering (see 5.5A);
- 6) the sixth part gives a symbol indicating post-weld heat treatment if this is applied (see 5.6A);
- 7) the seventh part gives a symbol indicating the nominal electrode efficiency and type of current (see Table 5A);
- 8) the eighth part gives a symbol indicating the welding position (see Table 6A);
- 9) the ninth part gives a symbol indicating the diffusible hydrogen content of the deposited metal (see [Table 7](#)).

In both systems, the electrode classification shall include all compulsory sections and may include optional sections as outlined in 4.2A and 4.2B.

4.1B Classification by tensile strength and 27 J impact energy

The classification is divided into seven parts:

- 1) the first part gives a symbol indicating the product/process to be identified;
- 2) the second part gives a symbol indicating the strength of the all-weld metal (see Table 1B);
- 3) the third part gives a symbol indicating the type of electrode covering, the type of current, and the welding position (see Table 4B);
- 4) the fourth part gives a symbol indicating the chemical composition of the all-weld metal (see Table 3B);
- 5) the fifth part gives a symbol indicating the condition of the post-weld heat treatment under which the all-weld metal test was conducted (see 5.6B);
- 6) the sixth part gives a symbol indicating that the electrode has satisfied a requirement for 47 J impact energy at the temperature normally used for the 27 J requirement;
- 7) the seventh part gives a symbol indicating the diffusible hydrogen content of the deposited metal (see [Table 7](#)).

4.2 Compulsory and optional sections

4.2A Classification by yield strength and 47 J impact energy

a) Compulsory section

This section includes the symbols for the type of product, the strength and elongation, the impact properties, the chemical composition and the type of covering, i.e. the symbols defined in [5.1](#), [5.2A](#), [5.3A](#), [5.4A](#) and [5.5A](#).

b) Optional section

This section includes the symbols for post-weld heat treatment, the weld metal recovery, the type of current, the welding positions for which the electrode is suitable, and the symbol for diffusible hydrogen content, i.e. the symbols defined in [5.6A](#), [5.7A](#), [5.8A](#) and [5.9](#).

The designation (see [Clause 11](#)) shall be used on packages and in the manufacturer's literature and data sheets. [Figure A.1](#) gives a schematic representation of the designation of electrodes classified by yield strength and 47 J impact energy (system A). [Figure A.2](#) gives a schematic representation of the designation of electrodes classified by tensile strength and 27 J impact energy (system B).

5 Symbols and requirements

5.1 Symbol for the product/process

The symbol for the covered electrode used in the manual metal arc process shall be the letter E.

5.2 Symbol for tensile properties of all-weld metal

5.2A Classification by yield strength and 47 J impact energy

The symbols in Table 1A indicate the yield strength, tensile strength and elongation of the all-weld metal in the as-welded condition or, if a T is added to the designation, after post-weld heat treatment as described in [5.6](#), determined in accordance with [Clause 6](#).

5.2B Classification by tensile strength and 27 J impact energy

a) Compulsory section

This section includes the symbols for the type of product, the strength, the type of covering (which includes the type of current and the welding position), the chemical composition and the condition of heat treatment, i.e. the symbols defined in [5.1](#), [5.2B](#), [5.4B](#), [5.5B](#) and [5.6B](#).

b) Optional section

This section includes the symbol for the optional supplemental designator for 47 J impact energy, i.e. the symbol defined in [5.3B](#), and the symbol for the diffusible hydrogen content, i.e. the symbol defined in [5.9](#).

NOTE Post-weld heat treatment (sometimes referred to as stress relief heat treatment) can alter the mechanical properties of the weld from those obtained in the as-welded condition.

Table 1A — Symbol for tensile properties of all-weld metal
(Classification by yield strength and 47 J impact energy)

Symbol	Minimum yield strength ^a MPa	Tensile strength MPa	Minimum elongation ^b %
55	550	610 to 780	18
62	620	690 to 890	18
69	690	760 to 960	17
79	790	880 to 1 080	16
89	890	980 to 1 180	15

^a For yield strength, the lower yield strength (R_{eL}) shall be used when yielding occurs, otherwise the 0,2 % proof strength ($R_{p0,2}$) shall be used.

^b The gauge length is equal to five times the test specimen diameter.

Table 1B — Symbol for tensile strength of all-weld metal
(Classification by tensile strength and 27 J impact energy)

Symbol	Minimum tensile strength MPa
59	590
62	620
69	690
76	760
78	780
83	830

5.3 Symbol for impact properties of all-weld metal

5.3A Classification by yield strength and 47 J impact energy

The symbols in Table 2A indicate the temperature at which an average impact energy of 47 J is achieved under the conditions given in [Clause 6](#). Three test specimens shall be tested. Only one individual value may be lower than 47 J, but it shall not be lower than 32 J. When an all-weld metal has been classified for a certain temperature, this automatically covers any higher temperature in Table 2A.

5.3B Classification by tensile strength and 27 J impact energy

There is no specific symbol for impact properties. The complete classification in [Table 8B](#) determines the temperature at which an impact energy of 27 J is achieved in the as-welded condition or in the post-weld heat-treated condition under the conditions given in [Clause 6](#). Five test specimens shall be tested. The lowest and highest values obtained shall be disregarded. Two of the three remaining values shall be greater than the specified 27 J level, one of the three may be lower but shall not be less than 20 J. The average of the three remaining values shall be at least 27 J.

The addition of the optional symbol U, immediately after the symbol for condition of heat treatment, indicates that the supplemental requirement of 47 J impact energy at the normal 27 J impact test temperature has also been satisfied. For the 47 J impact requirement, the number of specimens tested and values obtained shall meet the requirements of 5.3A.

Table 2A — Symbol for impact properties of all-weld metal

(Classification by yield strength and 47 J impact energy)

Symbol	Temperature for minimum average impact energy 47 J °C
Z	No requirements
A	+20
0	0
2	-20
3	-30
4	-40
5	-50
6	-60
7	-70
8	-80

NOTE Post-weld heat treatment (sometimes referred to as stress relief heat treatment) can alter the mechanical properties of the weld from those obtained in the as-welded condition.

5.4 Symbol for chemical composition of all-weld metal

5.4A Classification by yield strength and 47 J impact energy

The symbols in Table 3A indicate the chemical composition of the all-weld metal, determined in accordance with [Clause 7](#).

5.4B Classification by tensile strength and 27 J impact energy

The symbols in Table 3B indicate the principal alloying elements, and sometimes the nominal alloy level of the most significant alloy element, of the all-weld metal, determined in accordance with [Clause 7](#). The symbol for chemical composition does not immediately follow the symbol for strength, but follows the symbol for covering type. The complete compulsory classification designation, given in 5.10B, determines the exact chemical composition requirements for a particular electrode classification.

Table 3A — Symbol for chemical composition of all-weld metal
 (Classification by yield strength and 47 J impact energy)

Alloy symbol	Chemical composition ^{a,b} % (by mass)			
	Mn	Ni	Cr	Mo
MnMo	1,4 to 2,0	—	—	0,3 to 0,6
Mn1Ni	1,4 to 2,0	0,6 to 1,2	—	—
1NiMo	1,4	0,6 to 1,2	—	0,3 to 0,6
1,5NiMo	1,4	1,2 to 1,8	—	0,3 to 0,6
2NiMo	1,4	1,8 to 2,6	—	0,3 to 0,6
Mn1NiMo	1,4 to 2,0	0,6 to 1,2	—	0,3 to 0,6
Mn2NiMo	1,4 to 2,0	1,8 to 2,6	—	0,3 to 0,6
Mn2NiCrMo	1,4 to 2,0	1,8 to 2,6	0,3 to 0,6	0,3 to 0,6
Mn2Ni1CrMo	1,4 to 2,0	1,8 to 2,6	0,6 to 1,0	0,3 to 0,6
Z ^c	Any other agreed composition			

^a If not specified, Mo < 0,2; Ni < 0,3; Cr < 0,2; V < 0,05; Nb < 0,05; Cu < 0,3; 0,03 ≤ C ≤ 0,10; P < 0,025; S < 0,020; Si < 0,80.

^b Single values are maxima.

^c Consumables for which the chemical composition is not listed shall be symbolized similarly and prefixed by the letter Z. The chemical composition ranges are not specified and it is possible that two electrodes with the same Z classification are not interchangeable.

Table 3B — Symbol for chemical composition of all-weld metal
 (Classification by tensile strength and 27 J impact energy)

Alloy symbol	Chemical composition % (by mass)	
	Principal alloy element(s)	Nominal level
3 M2	Mn	1,5
	Mo	0,4
4 M2	Mn	2,0
	Mo	0,4
3 M3	Mn	1,5
	Mo	0,5
N1M1	Ni	0,5
	Mo	0,2
N2M1	Ni	1,0
	Mo	0,2
N3M1	Ni	1,5
	Mo	0,2
N3M2	Ni	1,5
	Mo	0,4
N4M1	Ni	2,0
	Mo	0,2
N4M2	Ni	2,0
	Mo	0,4
N4M3	Ni	2,0
	Mo	0,5
N5M1	Ni	2,5
	Mo	0,2
N5M4	Ni	2,5
	Mo	0,6
N9M3	Ni	4,5
	Mo	0,5
N13L	Ni	6,5
N3CM1	Ni	1,5
	Cr	0,2
	Mo	0,2
N4CM2	Ni	1,8
	Cr	0,3
	Mo	0,4
N4C2M1	Ni	2,0
	Cr	0,7
	Mo	0,3
N4C2M2	Ni	2,0
	Cr	1,0
	Mo	0,4

N5CM3	Ni	2,5
	Cr	0,3
	Mo	0,5
N7CM3	Ni	3,5
	Cr	0,3
	Mo	0,5
P1	Mn	1,2
	Ni	1,0
	Mo	0,5
P2	Mn	1,3
	Ni	1,0
	Mo	0,5
G ^a	Any other agreed composition	

^a Consumables for which the chemical composition is not listed shall be symbolized similarly and prefixed by the letter G. The chemical composition ranges are not specified and it is possible that two electrodes with the same G classification are not interchangeable.

5.5 Symbol for type of electrode covering

5.5A Classification by yield strength and 47 J impact energy

Most electrodes of this type have a basic covering and the symbol for this shall be B.

Cellulosic and other electrode coverings shall be in accordance with ISO 2560:2009, 4.5A.

NOTE A description of the characteristics of each of the types of covering is given in [Annex B](#).

5.5B Classification by tensile strength and 27 J impact energy

The type of covering of a covered electrode depends substantially on the types of slag-forming component. The type of covering also determines the positions suitable for welding and the type of current, in accordance with Table 4B.

Table 4B — Symbol for type of covering(Classification by tensile strength
and 27 J impact energy)

Symbol	Type of covering	Welding positions ^a	Type of current ^b
10	Cellulosic	All	DC (+)
11	Cellulosic	All	AC or DC (+)
13	Rutile	Allc	AC or DC (±)
15	Basic	Allc	DC (+)
16	Basic	Allc	AC or DC (+)
18	Basic + iron powder	Allc	AC or DC (+)
45	Basic	Alld	DC (+)

NOTE A description of the characteristics of each of the types of covering is given in Annex C.

^a The welding positions shall be in accordance with ISO 6947.

^b Alternating current = AC; direct current = DC; electrode positive = (+); electrode positive or electrode negative = (±).

^c The indication "all positions" may or may not include vertical down welding. This shall be specified in the manufacturer's trade literature.

^d Excluding vertical up welding.

5.6 Symbol for condition of post-weld heat treatment of all-weld metal

5.6A Classification by yield strength and 27 J impact energy

The letter T indicates that strength, elongation and impact properties in the classification of the deposited metal are obtained after a post-weld heat treatment between 560 °C and 600 °C for 1 h +10/-0 min. The test piece shall be left in the furnace to cool down to 300 °C.

5.6B Classification by tensile strength and 27 J impact energy

If the electrode has been classified in the as-welded condition, the symbol A shall be added to the classification. If the electrode has been classified in the post-weld heat-treated condition the post-weld heat treatment shall be 620 °C ± 15 °C for 1 h +10/-0 min except for E6218-N4M2 P which shall be 8 h ± 10 min or 580 °C ± 15 °C for 1 h +10/-0 min in the case of chemical composition N13L, and the symbol P shall be added to the classification. If the electrode has been classified in both conditions, the symbol AP shall be added to the classification. See [Table 9B](#) for the use of A and P in specific classifications.

The furnace shall be at a temperature not higher than 300 °C when the test assembly is placed in it. The heating rate, from that point to the specified holding temperature, shall not exceed 300 °C/h. When the holding time has been completed, the assembly shall be allowed to cool in the furnace to a temperature below 300 °C at a rate not exceeding 200 °C/h. The assembly may be removed from the furnace at any temperature below 300 °C, and allowed to cool in still air to room temperature.

5.7 Symbol for electrode efficiency and type of current

5.7A Classification by yield strength and 47 J impact energy

The symbols in Table 5A indicate the electrode efficiency, determined in accordance with ISO 2401 with the type of current shown in Table 5A.

Table 5A — Symbol for nominal electrode efficiency and type of current
(Classification by yield strength and 47 J impact energy)

Symbol	Electrode efficiency %	Type of current ^a
1	≤ 105	AC and DC
2	≤ 105	DC
3	> 105 ≤ 125	AC and DC
4	> 105 ≤ 125	DC
5	> 125 ≤ 160	AC and DC
6	> 125 ≤ 160	DC
7	> 160	AC and DC
8	> 160	DC

^a If an electrode is suitable for both DC and AC operation, the electrode efficiency shall be based on AC testing only.

5.7B Classification by tensile strength and 27 J impact energy

There is no specific symbol for electrode efficiency and type of current. Type of current is included in the symbol for type of covering (Table 4B). Electrode efficiency is not addressed.

5.8 Symbol for welding position

5.8A Classification by yield strength and 47 J impact energy

The symbols in Table 6A for welding positions indicate the positions for which the electrode is suitable.

5.8B Classification by tensile strength and 27 J impact energy

There is no specific symbol for welding position. The welding position requirements are included with the symbol for type of covering (Table 4B).

Table 6A — Symbol for welding position
(Classification by yield strength
and 47 J impact energy)

Symbol	Welding positions according to ISO 6947
1	PA, PB, PC, PD, PE, PF, PG
2	PA, PB, PC, PD, PE, PF
3	PA, PB
4	PA
5	PA, PB, PG

5.9 Symbol for diffusible hydrogen content of deposited metal

The symbols in [Table 7](#) indicate the diffusible hydrogen content determined in the metal deposited from an electrode of size 4,0 mm in accordance with the method given in ISO 3690. The current used shall be 70 % to 90 % of the maximum value recommended by the manufacturer. Electrodes recommended for use with AC shall be tested using AC. Electrodes recommended for DC only shall be tested using DC with the electrode positive [DC(+)].

The manufacturer shall provide information on the recommended type of current and drying conditions for achieving the diffusible hydrogen levels.

Table 7 — Symbol for diffusible hydrogen content of deposited metal

Symbol	Diffusible hydrogen content max. ml/100 g of deposited weld metal
H5	5
H10	10
H15	15

See [Annex D](#) for additional information about diffusible hydrogen.

5.10 Mechanical property and composition requirements

5.10A Classification by yield strength and 47 J impact energy

The mechanical property and chemical composition requirements are determined from the symbols with reference to Tables 1A, 2A and 3A. No additional information is required.

5.10B Classification by tensile strength and 27 J impact energy

The mechanical property and chemical composition requirements are only determined from the complete compulsory section of the electrode designation. Mechanical property requirements are specified in [Table 8B](#). Chemical composition requirements are specified in [Table 9B](#).

**Table 8B — Mechanical property requirements
(Classification by tensile strength and 27 J impact energy)**

Classification, compulsory section	Tensile strength ^a MPa	Yield strength ^{a,b} MPa	Minimum elongation ^c %	Temperature of Charpy V notch determination ^e °C
E5916-3 M2 A and/or P	590	490	16	-20
E5916-N1M1 A and/or P	590	490	16	-20
E5916-N5M1 A and/or P	590	490	16	-60
E5918-N1M1 A and/or P	590	490	16	-20
E6210-G A and/or P	620	530	15	—
E6210-P1 A	620	530	15	-30
E6211-G A and/or P	620	530	15	—
E6213-G A and/or P	620	530	12	—
E6215-G A and/or P	620	530	15	—
E6216-G A and/or P	620	530	15	—
E6218-G A and/or P	620	530	15	—
E6215-N13L P	620	530	15	-115
E6215-3 M2 P	620	530	15	-50
E6216-3 M2 A and/or P	620	530	15	-20
E6216-N1M1 A and/or P	620	530	15	-20
E6216-N2M1 A and/or P	620	530	15	-20
E6216-N4M1 A and/or P	620	530	15	-40
E6216-N5M1 A and/or P	620	530	15	-60
E6218-3 M2 P	620	530	15	-50
E6218-3 M3 P	620	530	15	-50
E6218-N1M1 A and/or P	620	530	15	-20
E6218-N2M1 A and/or P	620	530	15	-20
E6218-N3M1 A	620	540 to 620 ^d	21	-50
E6218-N4M2 P	620	530	15	-30
E6218-P2 A	620	530	15	-30
E6245-P2 A	620	530	15	-30
E6910-G A and/or P	690	600	14	—
E6911-G A and/or P	690	600	14	—
E6913-G A and/or P	690	600	11	—
E6915-G A and/or P	690	600	14	—
E6916-G A and/or P	690	600	14	—
E6918-G A and/or P	690	600	14	—
E6915-4 M2 P	690	600	14	-50

^a Single values are minima.

^b For yield strength, the lower yield strength, R_{eL} , shall be used when yielding occurs. Otherwise, the 0,2 % proof strength, $R_{p0,2}$, shall be used.

^c The gauge length is equal to five times the specimen diameter.

^d For 2,4 mm electrodes, the upper limit may be 35 MPa greater.

^e Not specified = —.

Table 8B (continued)

Classification, compulsory section	Tensile strength ^a MPa	Yield strength ^{a,b} MPa	Minimum elongation ^c %	Temperature of Charpy V notch determination ^e °C
E6916-4 M2 P	690	600	14	-50
E6916-N3CM1 A	690	600	14	-20
E6916-N4M3 A and/or P	690	600	14	-20
E6916-N7CM3 A	690	600	14	-60
E6918-4 M2 P	690	600	14	-50
E6945-P2 A	690	600	14	-30
E6918-N3M2 A	690	610 to 690 ^d	18	+50
E7610-G A and/or P	760	670	13	—
E7611-G A and/or P	760	670	13	—
E7613-G A and/or P	760	670	11	—
E7615-G A and/or P	760	670	13	—
E7616-G A and/or P	760	670	13	—
E7618-G A and/or P	760	670	13	—
E7618-N4M2 A	760	680 to 760 ^d	18	-50
E7816-N4CM2 A	780	690	13	-20
E7816-N4C2M1 A	780	690	13	-40
E7816-N5M4 A	780	690	13	-60
E7816-N5CM3 A and/or P	780	690	13	-20
E7816-N9M3 A	780	690	13	-80
E8310-G A and/or P	830	740	12	—
E8311-G A and/or P	830	740	12	—
E8313-G A and/or P	830	740	10	—
E8315-G A and/or P	830	740	12	—
E8316-G A and/or P	830	740	12	—
E8318-G A and/or P	830	740	12	—
E8318-N4C2M2 A	830	745 to 830 ^d	16	-50

^a Single values are minima.

^b For yield strength, the lower yield strength, R_{eL} , shall be used when yielding occurs. Otherwise, the 0,2 % proof strength, $R_{p0,2}$, shall be used.

^c The gauge length is equal to five times the specimen diameter.

^d For 2,4 mm electrodes, the upper limit may be 35 MPa greater.

^e Not specified = —.

**Table 9B — Chemical composition requirements
(Classification by tensile strength and 27 J impact energy)**

Classification, compulsory section	Chemical composition % (by mass) ^a								
	C	Si	Mn	P	S	Ni	Cr	Mo	Others
E5916-3 M2 A and/or P	0,12	0,60	1,00 to 1,75	0,03	0,03	0,90	—	0,25 to 0,45	—
E5916-N1M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,30 to 1,00	—	0,10 to 0,40	—
E5916-N5M1 A and/or P	0,12	0,80	0,60 to 1,20	0,03	0,03	2,00 to 2,75	—	0,30	—
E5918-N1M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,30 to 1,00	—	0,10 to 0,40	—
E6210-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6210-P1 A	0,20	0,60	1,20	0,03	0,03	1,00	0,30	0,50	V: 0,10
E6211-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6213-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6215-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6216-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6218-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20b
E6218-P2 A	0,12	0,80	0,90 to 1,70	0,03	0,03	1,00	0,20	0,50	V: 0,05
E6215-N13L P	0,05	0,50	0,40 to 1,00	0,03	0,03	6,00 to 7,25	—	—	—
E6215-3 M2 P	0,12	0,60	1,00 to 1,75	0,03	0,03	0,90	—	0,25 to 0,45	—
E6216-3 M2 A and/or P	0,12	0,60	1,00 to 1,75	0,03	0,03	0,90	—	0,20 to 0,50	—
E6216-N1M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,30 to 1,00	—	0,10 to 0,40	—
E6216-N2M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,80 to 1,50	—	0,10 to 0,40	—
E6216-N4M1 A and/or P	0,12	0,80	0,75 to 1,35	0,03	0,03	1,30 to 2,30	—	0,10 to 0,30	—
E6216-N5M1 A and/or P	0,12	0,80	0,60 to 1,20	0,03	0,03	2,00 to 2,75	—	0,30	—
E6218-3 M2 P	0,12	0,80	1,00 to 1,75	0,03	0,03	0,90	—	0,25 to 0,45	—
E6218-3 M3 P	0,12	0,80	1,00 to 1,80	0,03	0,03	0,90	—	0,40 to 0,65	—

^a Unless otherwise stated, single values are maxima. Not specified = —.

^b In order to meet the alloy requirements of the "G" composition, the all-weld metal shall have the minimum level of at least one of the elements listed. Additional chemical requirements may be agreed to between supplier and purchaser.

Table 9B (continued)

Classification, compulsory section	Chemical composition % (by mass) ^a								
	C	Si	Mn	P	S	Ni	Cr	Mo	Others
E6218-N1M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,30 to 1,00	—	0,10 to 0,40	—
E6218-N2M1 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	0,80 to 1,50	—	0,10 to 0,40	—
E6218-N3M1 A	0,10	0,80	0,60 to 1,25	0,030	0,030	1,40 to 1,80	0,15	0,35	V: 0,05
E6218-N4M2 P	0,04 to 0,15	0,70	0,50 to 1,60	0,02	0,02	1,40 to 2,10	0,20	0,20 to 0,50	Cu: 0,10 Al: 0,05 V: 0,05
E6245-P2 A	0,12	0,80	0,90 to 1,70	0,03	0,03	1,00	0,20	0,50	V: 0,05
E6910-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6911-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6913-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6915-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6916-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6918-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E6915-4 M2 P	0,15	0,60	1,65 to 2,00	0,03	0,03	0,90	—	0,25 to 0,45	—
E6916-4 M2 P	0,15	0,60	1,65 to 2,00	0,03	0,03	0,90	—	0,25 to 0,45	—
E6916-N3CM1 A	0,12	0,80	1,20 to 1,70	0,03	0,03	1,20 to 1,70	0,10 to 0,30	0,10 to 0,30	—
E6916-N4M3 A and/or P	0,12	0,80	0,70 to 1,50	0,03	0,03	1,50 to 2,50	—	0,35 to 0,65	—
E6916-N7CM3 A	0,12	0,80	0,80 to 1,40	0,03	0,03	3,00 to 3,80	0,10 to 0,40	0,30 to 0,60	—
E6918-4 M2 P	0,15	0,80	1,65 to 2,00	0,03	0,03	0,90	—	0,25 to 0,45	—
E6918-N3M2 A	0,10	0,60	0,75 to 1,70	0,030	0,030	1,40 to 2,10	0,35	0,25 to 0,50	V: 0,05
E6945-P2 A	0,12	0,80	0,90 to 1,70	0,03	0,03	1,00	0,20	0,50	V: 0,05
E7610-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b

^a Unless otherwise stated, single values are maxima. Not specified = —.

^b In order to meet the alloy requirements of the "G" composition, the all-weld metal shall have the minimum level of at least one of the elements listed. Additional chemical requirements may be agreed to between supplier and purchaser.

Table 9B (continued)

Classification, compulsory section	Chemical composition % (by mass) ^a								
	C	Si	Mn	P	S	Ni	Cr	Mo	Others
E7611-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E7613-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E7615-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E7616-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E7618-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E7618-N4M2 A	0,10	0,60	1,30 to 1,80	0,030	0,030	1,25 to 2,50	0,40	0,25 to 0,50	V: 0,05
E7816-N4CM2 A	0,12	0,80	1,20 to 1,80	0,03	0,03	1,50 to 2,10	0,10 to 0,40	0,25 to 0,55	—
E7816-N4C2M1 A	0,12	0,80	1,00 to 1,50	0,03	0,03	1,50 to 2,50	0,50 to 0,90	0,10 to 0,40	—
E7816-N5M4 A	0,12	0,80	1,40 to 2,00	0,03	0,03	2,10 to 2,80	N.S	0,50 to 0,80	—
E7816-N5CM3 A	0,12	0,80	1,00 to 1,50	0,03	0,03	2,10 to 2,80	0,10 to 0,40	0,35 to 0,65	—
E7816-N9M3 A	0,12	0,80	1,00 to 1,80	0,03	0,03	4,20 to 5,00	—	0,35 to 0,65	—
E8310-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8311-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8313-G and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8315-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8316-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8318-G A and/or P	—	0,80 ^b	1,00 ^b	—	—	0,50 ^b	0,30 ^b	0,20 ^b	V: 0,10 ^b Cu: 0,20 ^b
E8318-N4C2M2 A	0,10	0,60	1,30 to 2,25	0,030	0,030	1,75 to 2,50	0,30 to 1,50	0,30 to 0,55	V: 0,05

^a Unless otherwise stated, single values are maxima. Not specified = —.

^b In order to meet the alloy requirements of the "G" composition, the all-weld metal shall have the minimum level of at least one of the elements listed. Additional chemical requirements may be agreed to between supplier and purchaser.

6 Mechanical property tests

6.1 General

Tensile and impact tests shall be carried out on weld metal in the as-welded condition and/or in the post-weld heat-treated condition, using an all-weld metal test assembly in accordance with ISO 15792-1, type 1.3 using 4,0 mm electrodes and welding conditions specified in [6.2](#) and [6.3](#).

When diffusible hydrogen removal treatment is specified by the manufacturer, it shall be carried out in accordance with ISO 15792-1 or at $100\text{ }^{\circ}\text{C} \pm 5\text{ }^{\circ}\text{C}$ for 16 h to 24 h.

6.2 Preheating and interpass temperatures

6.2A Classification by yield strength and 47 J impact energy

Welding of the all-weld metal test assembly shall be executed in the temperature range $120\text{ }^{\circ}\text{C}$ to $175\text{ }^{\circ}\text{C}$ with the exception of the first layer which may be welded without preheat.

6.2B Classification by tensile strength and 27 J impact energy

Welding of the all-weld metal test assembly for non-low-hydrogen coatings (covering of types 10, 11, and 13) shall be executed in the temperature range $160\text{ }^{\circ}\text{C}$ to $190\text{ }^{\circ}\text{C}$. Welding of electrodes with basic coatings (covering of types 15, 16, 18 and 45) shall be executed in the temperature range $90\text{ }^{\circ}\text{C}$ to $130\text{ }^{\circ}\text{C}$.

6.3 Pass sequence

The direction of welding to complete a pass shall not vary. Each pass shall be executed with a welding current of 70 % to 90 % of the maximum current recommended by the manufacturer (see Table 5A or Table 4B, as appropriate). Regardless of the type of covering, welding shall be performed with AC for electrodes classified for use with both AC and DC and with DC using the recommended polarity for electrodes classified for use with only DC.

6.3A Classification by yield strength and 47 J impact energy

The test assembly shall be completed using six to ten layers of weld metal. All layers except the top two shall consist of two passes. The top two layers may be completed with either two or three passes each.

6.3B Classification by tensile strength and 27 J impact energy

The test assembly shall be completed using seven to nine layers of weld metal. All layers shall consist of two passes, except the top two layers may be completed with three passes per layer.

7 Chemical analysis

Chemical analysis may be performed on any suitable test piece, but in cases of dispute, specimens in accordance with ISO 6847 shall be used. Any analytical technique may be used, but in cases of dispute, reference shall be made to established published methods.

7A Classification by yield strength and 47 J impact energy

The results of the chemical analysis shall fulfil the requirements given in [Table 3A](#).

7B Classification by tensile strength and 27 J impact energy

The results of the chemical analysis shall fulfil the requirements given in [Table 9B](#) for the classification under test.

8 Rounding procedure

Actual test values obtained shall be subject to ISO 80000-1:2009, B.3, Rule A. If the measured values are obtained by equipment calibrated in units other than those of this document, the measured values shall be converted to the units of this document before rounding. If an average value is to be compared to the requirements of this document, rounding shall be done only after calculating the average. The rounded results shall fulfil the requirements of the appropriate table for the classification under test.

9 Retests

If any test fails to meet the requirement(s), that test shall be repeated twice. The results of both retests shall meet the requirement. Specimens for the retest may be taken from the original test assembly or sample or from one or two new test assemblies. For chemical analysis, retests need only be for those specific elements that failed to meet the requirement. If the results of one or both retests fail to meet the requirement, the material under test shall be considered as not meeting the requirements of this document for that classification.

In the event that during preparation, or after completion of any test, it is clearly determined that prescribed or proper procedures were not followed in preparing the weld test assembly or sample(s) or test specimen(s), or in conducting the tests, the test shall be considered invalid. This determination is made without regard to whether the test was actually completed, or whether the test results met, or failed to meet, the requirements. That test shall be repeated, following proper prescribed procedures. In this case, the requirement for doubling the number of test specimens does not apply.

10 Technical delivery conditions

Technical delivery conditions shall be in accordance with ISO 544 and ISO 14344.

11 Examples of designation

11A Classification by yield strength and 47 J impact energy

The designation of the covered electrode is indicated by the suffix letter A given after the number of this document and shall follow the principle given in the examples below:

EXAMPLE 1A:

A basic covered electrode for manual metal arc welding (E) deposits a weld metal with a minimum yield strength of 620 MPa (62), a minimum average impact energy of 47 J at -70 °C (7) and a chemical composition of 1,8 % (by mass) Mn and 0,6 % (by mass) Ni (Mn1Ni). The electrode with basic covering (B) can be used with AC or DC with a metal recovery of 120 % (3) in flat butt and flat fillet welds (4). The diffusible hydrogen content, determined in accordance with ISO 3690, does not exceed 5 ml/100 g of deposited metal (H5).

11B Classification by tensile strength and 27 J impact energy

The designation of the covered electrode is indicated by the suffix letter B given after the number of this document and shall follow the principle given in the examples below:

EXAMPLE 1B:

A basic covered electrode for manual metal arc welding (E) deposits a weld metal with a minimum tensile strength of 690 MPa (69). The electrode with basic covering including iron powder may be used with AC and DC (+) in all positions except vertical down (18). The nominal all-weld metal chemical composition is 1,5 % (by mass) Ni and 0,35 % (by mass) Mo (N3M2) and the impact energy of the deposited weld metal exceeds 27 J at -50 °C in the as-welded condition (A). The diffusible hydrogen content, determined in accordance with ISO 3690, does not exceed 5 ml/100 g of deposited metal (H5).

The designation is

ISO 18275-A - E 62 7 Mn1Ni B 3 4 H5

Compulsory section:

ISO 18275-A - E 62 7 Mn1Ni B

or if tested after post-weld heat treatment:

ISO 18275-A - E 62 7 Mn1Ni B T

where

ISO 18275-A indicates the number of this document with classification by yield strength and 47 J impact energy;

E indicates covered electrode/manual metal arc welding (see [5.1](#));

62 indicates strength and elongation (see [Table 1A](#));

7 indicates impact properties (see [Table 2A](#));

Mn1Ni indicates the chemical composition of all-weld metal (see [Table 3A](#)) (see [Annex E](#) for a description of the symbols for chemical composition);

B indicates the type of electrode covering (see [5.5A](#));

3 indicates the recovery and type of current (see [Table 5A](#));

4 indicates the welding position (see [5.8A](#));

H5 indicates the diffusible hydrogen content (see [Table 7](#)).

EXAMPLE 2A:

A basic covered electrode for manual metal arc welding (E) deposits a weld metal with a minimum yield strength of 890 MPa (89), a minimum average impact energy of 47 J at -50°C (5) and a chemical composition outside the limits given in [Table 3A](#) (Z) with a nominal composition 1,6 % Mn, 2 %, Ni, 1,5 % Cr and 1 % Mo (Mn2Ni1,5Cr1Mo). The electrode with basic covering (B) may be used with DC with a metal recovery of 110 % (4) in all positions except for vertical down (2). The diffusible hydrogen, determined in accordance with ISO 3690, does not exceed 5 ml/100 g of deposited metal (H5).

The designation is

ISO 18275-B - E6918-N3M2 A H5

Compulsory section:

ISO 18275-B - E6918-N3M2 A

where

ISO 18275-B indicates the number of this document with classification by tensile strength and 27 J impact energy;

E indicates covered electrode/manual metal arc welding (see [5.1](#));

69 indicates tensile strength (see [Table 1B](#));

18 indicates basic iron powder covering suitable for AC and DC (+), in all positions (see [Table 4B](#));

N3M2 indicates the nominal composition comprising 1,5% (by mass) Ni and 0,35% (by mass) Mo (see [Table 3B](#)) (see [Annex F](#) for a description of the symbols for chemical composition);

A indicates the properties determined in the as-welded condition;

E6918-N3M2 A indicates the complete specification of composition limits and mechanical property requirements (see [Tables 8B](#) and [9B](#));

H5 indicates the diffusible hydrogen content (see [Table 7](#)).

EXAMPLE 2B:

A basic covered electrode for manual metal arc welding (E) deposits a weld metal with a minimum tensile strength of 830 MPa (83). The electrode with basic covering including iron powder may be used with AC and DC (+) in all positions (18). The all-weld metal chemical composition does not match any composition given in [Table 3B](#) or any composition range given in [Table 9B](#) (G). The diffusible hydrogen, determined in accordance with ISO 3690, does not exceed 5 ml/100 g of deposited metal (H5).

The designation is

ISO 18275-A - E 89 5 Z Mn2Ni1,5Cr1Mo B 4 2 H5

Compulsory section:

ISO 18275-A - E 89 5 Z Mn2Ni1,5Cr1Mo B

or after post-weld heat treatment:

ISO 18275-A - E 89 5 Z Mn2Ni1,5Cr1Mo B T

where

ISO 18275-A indicates the number of this document with classification by yield strength and 47 J impact energy;

E indicates covered electrode/manual metal arc welding (see [5.1](#));

89 indicates strength and elongation (see Table 1A);

5 indicates impact properties (see Table 2A);

Z indicates that the chemical composition ranges of all-weld metal are not specified (see Table 3A);

Mn2Ni1,5Cr1Mo indicates the nominal chemical composition of all-weld metal;

B indicates the type of electrode covering (see 5.5A);

4 indicates the recovery and type of current (see Table 5A);

2 indicates the welding position (see 5.8A);

H5 indicates the diffusible hydrogen content (see [Table 7](#)).

If tested in the as-welded condition, the designation is

ISO 18275-B - E8318-G A H5

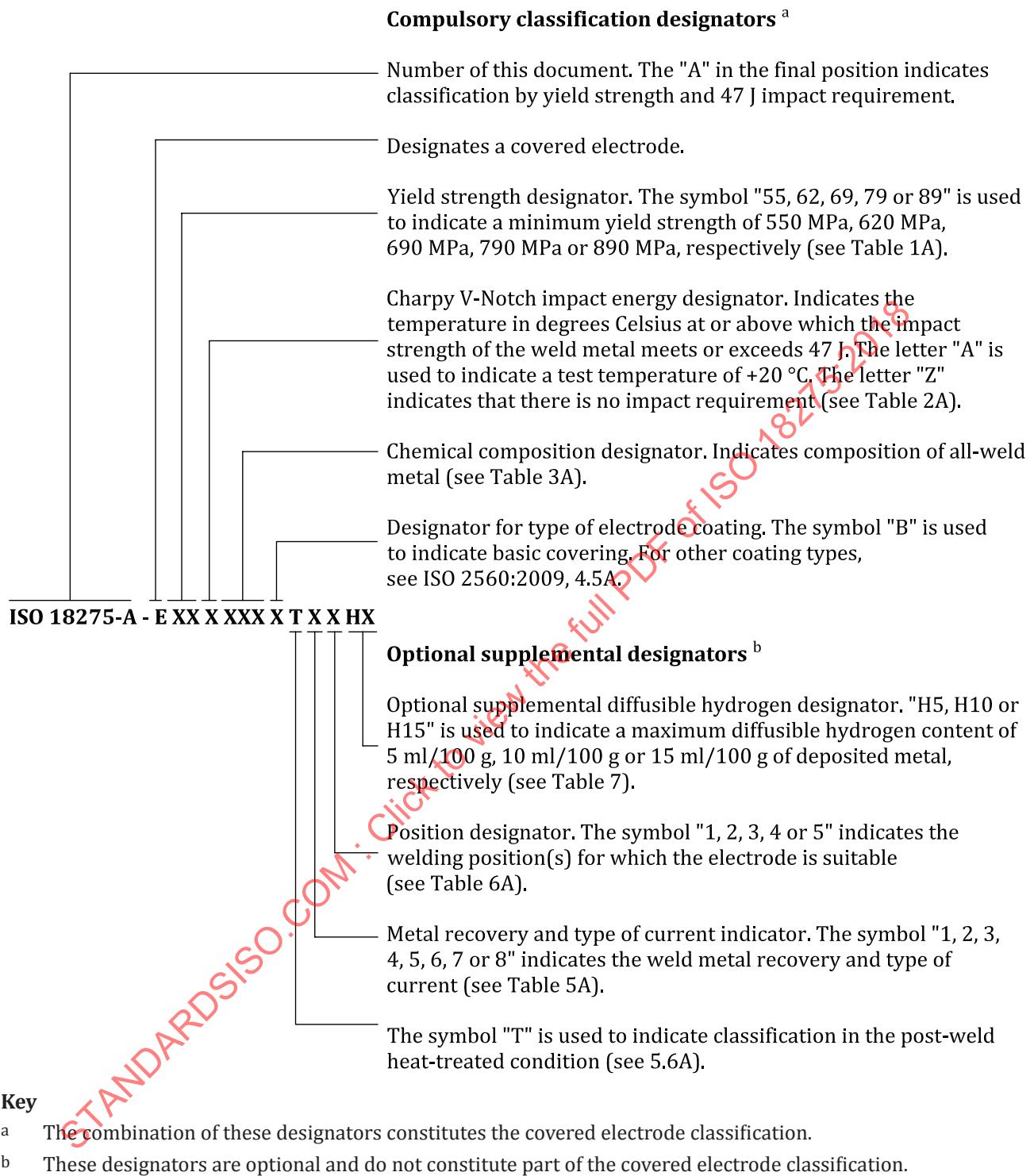
Compulsory section:

ISO 18275-B - E8318-G A

or if tested after post-weld heat treatment:

ISO 18275-B - E8318-G P

Annex A (informative)


Classification systems

A.1 ISO 18275-A

The ISO 18275-A classification system for covered electrodes for high tensile steels, based on yield strength and 47 J minimum impact energy, is shown in [Figure A.1](#).

A.2 ISO 18275-B

The ISO 18275-B classification system for covered electrodes for high tensile steels, based on tensile strength and 27 J minimum impact energy, is shown in [Figure A.2](#).

**Figure A.1 — Designation of electrodes in accordance with ISO 18275-A
(Classification by yield strength and 47 J impact energy)**

Compulsory classification designators^a

Number of this document. The "B" in the final position indicates classification by tensile strength and 27 J impact requirement.

Designates a covered electrode.

Tensile strength designator. The symbol "59, 62, 69, 76, 78 or 83" is used to indicate a minimum tensile strength of 590 MPa, 620 MPa, 690 MPa, 760 MPa, 780 MPa or 830 MPa, respectively (see Table 1B).

Type of covering designator (see Table 4B).

Chemical composition designator. Indicates composition of all-weld metal (see Table 3B).

Designator for condition of heat treatment. The symbols "A", "P" and "AP" are used to indicate, respectively, the as-welded condition, the post-weld heat-treated condition or both conditions (see 5.6B).

ISO 18275-B - XXXXX-XXX X U HX

Optional supplemental designators^b

Optional supplemental diffusible hydrogen designator. The symbol "H5, H10 or H15" is used to indicate a maximum diffusible hydrogen content of 5 ml/100 g, 10 ml/100 g or 15 ml/100 g of deposited metal, respectively (see Table 7).

Optional supplemental designator "U" (see 5.3B) to indicate 47 J impact energy at the normal 27 J test temperature.

Key

- a The combination of these designators constitutes the covered electrode classification.
- b These designators are optional and do not constitute part of the covered electrode classification.

**Figure A.2 — Designation of electrodes in accordance with ISO 18275-B
(Classification by tensile strength and 27 J impact energy)**