
© ISO 2019

Health informatics — Electronic
health record communication —
Part 2:
Archetype interchange specification
Informatique de santé — Communication du dossier de santé
informatisé —
Partie 2: Spécification d'échange d'archétype

INTERNATIONAL
STANDARD

ISO
13606-2

Second edition
2019-06

Reference number
ISO 13606-2:2019(E)

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)
﻿

ii� © ISO 2019 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO 2019
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)
﻿

Foreword...iv
Introduction...vi
1	 Scope.. 1
2	 Normative references... 1
3	 Terms and definitions.. 1
4	 Abbreviations... 2
5	 Conformance.. 2
6	 Archetype representation requirements... 3

6.1	 General.. 3
6.2	 Archetype definition, description and publication information... 3
6.3	 Archetype node constraints.. 6
6.4	 Data value constraints... 8

7	 Archetype object model..10
7.1	 Preface.. 10

7.1.1	 Purpose.. 10
7.1.2	 Nomenclature...10

7.2	 Model overview.. 10
7.2.1	 Package structure..10
7.2.2	 Definition and utility classes... 11

7.3	 The archetype package.. 13
7.3.1	 Overview... 13
7.3.2	 Archetype identification.. 15
7.3.3	 Top-level meta-data...16
7.3.4	 Governance meta-data..16
7.3.5	 Structural definition...18
7.3.6	 Class descriptions...22
7.3.7	 Validity rules..29

7.4	 Constraint model package... 30
7.4.1	 Overview... 30
7.4.2	 Semantics... 32
7.4.3	 Second order constraints... 38
7.4.4	 AOM type substitutions.. 39
7.4.5	 Class definitions...41

7.5	 The rules package... 56
7.5.1	 Overview... 56
7.5.2	 Semantics... 57
7.5.3	 Class descriptions...57

7.6	 Terminology package.. 62
7.6.1	 Overview... 62
7.6.2	 Semantics... 64
7.6.3	 Class descriptions...65

7.7	 Templates.. 67
Annex A (informative) Archetype Definition Language..69
Annex B (informative) Example Representation...70
Bibliography..71

© ISO 2019 – All rights reserved� iii

Contents� Page

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www​.iso​.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www​.iso​.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www​.iso​
.org/iso/foreword​.html.

This document was prepared by Technical Committee ISO/TC 215, Health Informatics.

This second edition cancels and replaces the first edition (ISO 13606-2:2008), which has been
technically revised. The main changes compared to the previous edition are as follows:

—	 Introduction of new internal coding scheme, consisting of id-codes, at-codes and ac-codes.

—	 Replace string archetype identifier with multi-part, namespace identifier.

—	 Addition of explicit value-sets replacing in-line value sets in the terms and definitions.

—	 Renaming archetype ontology section to terminology.

—	 Expression of all external term bindings as URIs following IHTSDO format.

—	 Introduction of ‘tuple’ constraints for co-varying attributes within Quantity, Ordinal structures.

—	 Re-engineering of all primitive constrainer types, i.e. C_STRING, C_DATE etc.

—	 Removal of the Archetype Profile specification.

—	 Full specialisation support: the addition of an attribute to the C_ATTRIBUTE class, allowing the
inclusion of a path that enables specialised archetype redefinitions deep within a structure.

—	 Addition of node-level annotations.

—	 Structural simplification of archetype ontology section.

—	 The name of the invariant section has been changed to rules, to better reflect its purpose.

—	 A template is now just an archetype.

A list of all parts in the ISO 13606 series can be found on the ISO website.

﻿

iv� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www​.iso​.org/members​.html.

﻿

© ISO 2019 – All rights reserved� v

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://www.iso.org/members.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Introduction

This document is part of a five-part standard series, published jointly by CEN and ISO through the
Vienna Agreement. In this document dependency upon any of the other parts of this series is explicitly
stated where it applies.

Comprehensive, multi-enterprise and longitudinal electronic health records will often in practice be
achieved through the joining up of multiple clinical applications, databases (and increasingly devices)
that are each tailored to the needs of individual conditions, specialties or enterprises.

This requires that Electronic Health Record (EHR) data from diverse systems be capable of being
mapped to and from a single comprehensive representation, which is used to underpin interfaces
and messages within a distributed network (federation) of EHR systems and services. This common
representation has to be sufficiently generic and rich to represent any conceivable health record data,
comprising part or all of an EHR (or a set of EHRs) being communicated.

The approach adopted in the ISO 13606 standards series, underpinned by international research on the
EHR, has been to define a rigorous and generic Reference Model that is suitable for all kinds of data and
data structures within an EHR, and in which all labelling and context information is an integral part of
each construct. An EHR Extract (as defined in ISO 13606-1) will contain all of the names, structure and
context required for it to be interpreted faithfully on receipt even if its organisation and the nature of
the clinical content have not been “agreed” in advance.

However, the wide-scale sharing of health records, and their meaningful analysis across distributed
sites, also requires that a consistent approach is used for the clinical (semantic) data structures that
will be communicated via the Reference Model, so that equivalent clinical information is represented
consistently. This is necessary in order for clinical applications and analysis tools safely to process EHR
data that have come from heterogeneous sources.

0.1 Archetypes

The challenge for EHR interoperability is therefore to devise a generalised approach to representing
every conceivable kind of health record data structure in a consistent way. This needs to cater for
records arising from any profession, speciality or service, whilst recognising that the clinical data sets,
value sets, templates etc. required by different health care domains will be diverse, complex and will
change frequently as clinical practice and medical knowledge advance. This requirement is part of the
widely acknowledged health informatics challenge of semantic interoperability.

The approach adopted by this standard series distinguishes a Reference Model, used to represent the
generic properties of health record information, and Archetypes (conforming to an Archetype Model),
which are meta-data used to define patterns for the specific characteristics of the clinical data that
represent the requirements of each particular profession, speciality or service.

The Reference Model is specified as an Open Distributed Processing (ODP) Information Viewpoint
model, representing the global characteristics of health record components, how they are aggregated,
and the context information required to meet ethical, legal and provenance requirements. In the 13606
standards series, the Reference Model is defined in Part 1. This model defines the set of classes that
form the generic building blocks of the EHR. It reflects the stable characteristics of an electronic health
record, and would be embedded in a distributed (federated) EHR environment as specific messages or
interfaces (as specified in Part 5 of this standard series).

Archetypes are effectively pre-coordinated combinations of named RECORD_COMPONENT hierarchies
that are agreed within a community in order to ensure semantic interoperability, data consistency and
data quality.

For an EHR_EXTRACT, as defined in ISO 13606-1, an archetype specifies (and effectively constrains)
a particular hierarchy of RECORD_COMPONENT sub-classes, defining or constraining their names
and other relevant attribute values, optionality and multiplicity at any point in the hierarchy, the
datatypes and value ranges that ELEMENT data values can take, and might include other dependency
constraints. Archetype instances themselves conform to a formal model, known as an Archetype Model

﻿

vi� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

(which is a constraint model, also specified as an ODP Information Viewpoint Model). Although the
Archetype Model is stable, individual archetype instances can be revised or succeeded by others as
clinical practice evolves. Version control ensures that new revisions do not invalidate data created with
previous revisions.

Archetypes can be used within EHR systems to govern the EHR data committed to a repository.
However, for the purposes of this interoperability standard series, no assumption is made about the
use of archetypes within the EHR Provider system whenever this standard series is used for EHR
communication. It is assumed that the original EHR data, if not already archetyped, can be mapped to a
set of archetypes, if desired, when generating the EHR_EXTRACT.

The reference model defined in ISO 13606-1 has a property that can be used to specify the archetype
to which any RECORD_COMPONENT within an EHR_EXTRACT conforms. The class RECORD_
COMPONENT includes an attribute archetype_id to identify the archetype and node to which that
RECORD_COMPONENT conforms.

Part 3 of this standard series includes a set of Reference Archetypes: which are base archetypes that
are likely to be specialised further before they are used. Those archetypes are example instances of
this Archetype Model.

The Archetype Model specified in this document was originally developed by the openEHR Foundation,
which publishes its archetypes using Archetype Definition Language, conforming to this Archetype
Model, referenced within Annex A. The Archetype Model has been the subject of collaborative updating
to incorporate the requirements and modelling inputs from the Clinical Information Modeling Initiative
(CIMI). CIMI is in the process of submitting a modelling language (Archetype Modeling Language, AML)
to the Object Management Group. AML also aligns to this Archetype Model.

0.2 Archetype datatypes

It should be noted that ISO 13606-1 and ISO 13606-2 use datatypes for different purposes.

Part 1 defines datatypes to represent the properties of the Reference Model, as a profile of ISO 21090,
in 5.3. It separately defines in Clause 7 the data types that can be the values of Element, also a subset
of ISO 21090. All these datatypes are finally expressed in terms of the so-called “primitive” datatypes
(Integer, Real, String, Boolean, Date/Time/Datetime).

Part 2 uses the same set of primitive datatypes to represent the properties of the Archetype Object
Model. Additionally, Part 2 defines a set of classes that allow defining constraints over primitive
datatypes of Part 1. These constraining classes are shown in Figure 9 of Part 2, as descendants of the
C_PRIMITIVE_OBJECT class.

A single Part 1 complex datatype (e.g. PHYSICAL_QUANTITY) can be constrained by a combination of
the constraining classes of the Archetype Object Model, defining constraints on both the complex and
primitive datatypes it contains. Thus, Part 1 complex datatypes are treated as classes when defining
constraints with Part 2, while Part 1 primitive data types are constrained by the C_PRIMITIVE_OBJECT
hierarchy.

An example of a PHYSICAL_QUANTITY archetype can be seen in the example below. In this example,
the value on a PHYSICAL_QUANTITY shall be between 0.0 and 1000.0 and their units shall be UCUM
‘mm[Hg]’ code.

 PHYSICAL_QUANTITY matches {

 value matches {|0.0..<1000.0|}

 units matches {

 CODED_SIMPLE matches {

 value matches {"mm[Hg]"}

﻿

© ISO 2019 – All rights reserved� vii

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

 }

 }

 }

This example archetype, expressed in terms of the Archetype Object Model, would have the structure
shown in Table 1.

Table 1 — Example structure for representing physical quantity

Reference Model class, attribute or primitive
value Archetype Model constraining class

PHYSICAL_QUANTITY C_COMPLEX_OBJECT
 value C_ATTRIBUTE
 Real C_REAL
 units C_ATTRIBUTE
 CODED_SIMPLE C_COMPLEX_OBJECT
 value C_ATTRIBUTE
 String C_STRING

Since the Archetype Object Model is also used to constrain other reference models, as for example
the openEHR Reference Model, there will be a need to transform openEHR archetypes to ISO 13606
archetypes, and vice versa. The openEHR Reference Model also uses the same primitive datatypes, but
includes a different set of complex datatypes, such as DV_ORDINAL, or DV_TEXT1). When transforming
an openEHR archetype constraint to an ISO 13606 archetype, it might be necessary to introduce an
additional CLUSTER structure to represent the equivalent openEHR sub-components as ELEMENTs.

For example, a representation of an openEHR DV_ORDINAL in ISO 13606 would have the structure
shown in Table 2.

Table 2 — Example structure for representing an ordinal data value

openEHR ISO 13606
DV_ORDINAL CLUSTER matches { -- DV_ORDINAL
 parts matches {
 symbol ELEMENT matches { -- symbol
 value matches {
 DV_CODED_TEXT CODED_VALUE matches {*}
 }
 }
 value ELEMENT matches { -- value
 value matches {
 Integer INTEGER matches {*}
 }
 }
 }
 }

An example of how the LINK class defined in Part 1 of this standard series can be represented using the
Archetype Object Model defined in this document is given in Annex B.

1)	 Please see http:​//www​.openehr​.org/releases/RM/latest/docs/data​_types/data​_types​.html​#​_text​_package for
the specification of this datatype.

﻿

viii� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

http://www.openehr.org/releases/RM/latest/docs/data_types/data_types.html#_text_package
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0.3 Archetype repositories

The range of archetypes required within a shared EHR community will depend upon its range of clinical
activities. The total set needed on a national basis is presently unknown, but there might eventually be
several thousand archetypes globally. The ideal sources of knowledge for developing such archetype
definitions will be clinical guidelines, care pathways, scientific publications and other embodiments of
best practice. However, “de facto” sources of agreed clinical data structures might also include:

—	 the data schemata (models) of existing clinical systems;

—	 the lay-out of computer screen forms used by these systems for data entry and for the display of
analyses performed;

—	 data-entry templates, pop-up lists and look-up tables used by these systems;

—	 shared-care data sets, messages and reports used locally and nationally;

—	 the structure of forms used for the documentation of clinical consultations or summaries within
paper records;

—	 health information used in secondary data collections;

—	 the pre-coordinated terms in terminology systems.

Despite this list of de facto ways in which clinical data structures are currently represented, these
formats are very rarely interoperable without substantial costs. The use of standardised archetypes
provides an interoperable way of representing and sharing these specifications, in support of consistent
(good quality) health care record-keeping and the semantic interoperability of shared EHRs.

The involvement of national health services, academic organisations and professional bodies in the
development of archetypes will enable this approach to contribute to the pursuit of quality evidence-
based clinical practice. A key next challenge is to foster communities to build up libraries of archetypes.
It is beyond the scope of this document to assert how this work should be advanced, but in several
countries so far it would appear that national eHealth programmes are beginning to organise clinical-
informatics-vendor teams to develop and operationalise sets of archetypes to meet the needs of specific
healthcare domains. In the future regional or national public domain libraries of archetype definitions
might be accessed via the Internet, and downloaded for local use within EHR systems. Such usage will
also require processes to verify and certify the quality of shared archetypes, which are also beyond the
scope of this document but are being taken forward by not for profit organisations such as the open
EHR Foundation (www​​.openehr​​.org), the Clinical Information Modeling Initiative (CIMI, http:​//www​​
.opencimi​​.org) the EN13606 Association (http:​//www​​.en13606​​.org) and the European Institute for
Innovation through Health Data (www​​.i​​-hd​​.eu).

0.4 Communicating archetypes

This document specifies, in Clause 6, the requirements for a comprehensive and interoperable
archetype representation and defines, in Clause 7, the ODP Information Viewpoint representation for
the Archetype Object Model.

This document does not require that any particular model be adopted as the internal architecture
of archetype repositories, services or components used to author, store or deploy archetypes in
collaboration with EHR services. It does require that these archetypes are capable of being mapped
to the Archetype Object Model defined in this document in order to support EHR communication and
interoperability within an EHR-sharing community.

A more detailed overview of archetypes can be found here:

http:​//www​​.openehr​​.org/releases/AM/latest/docs/Overview/Overview​​.html

﻿

© ISO 2019 – All rights reserved� ix

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

http://www.openehr.org
http://www.opencimi.org
http://www.opencimi.org
http://www.en13606.org
http://www.i-hd.eu
http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

Health informatics — Electronic health record
communication —

Part 2:
Archetype interchange specification

1	 Scope

This document specifies a means for communicating part or all of the electronic health record (EHR)
of one or more identified subjects of care between EHR systems, or between EHR systems and a
centralised EHR data repository.

It can also be used for EHR communication between an EHR system or repository and clinical
applications or middleware components (such as decision support components) that need to access or
provide EHR data, or as the representation of EHR data within a distributed (federated) record system.

This document will predominantly be used to support the direct care given to identifiable individuals, or
to support population monitoring systems such as disease registries and public health surveillance. Uses
of health records for other purposes such as teaching, clinical audit, administration and reporting, service
management, research and epidemiology, which often require anonymization or aggregation of individual
records, are not the focus of this standard series but such secondary uses might also find it useful.

This document defines an Archetype Model to be used to represent Archetypes when communicated
between repositories, and between archetype services. It defines an optional serialised representation,
which may be used as an exchange format for communicating individual archetypes. Such
communication might, for example, be between archetype libraries or between an archetype service
and an EHR persistence or validation service.

2	 Normative references

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 639-1, Codes for the representation of names of languages — Part 1: Alpha-2 code

ISO 8601, Data elements and interchange formats — Information interchange — Representation of dates
and times

ISO 13606-1, Health informatics — Electronic health record communication — Part 1: Reference model

3	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13606-1 and the following apply.

ISO and IEC maintain terminological databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https:​//www​.iso​.org/obp

—	 IEC Electropedia: available at http:​//www​.electropedia​.org/

INTERNATIONAL STANDARD� ISO 13606-2:2019(E)

© ISO 2019 – All rights reserved� 1

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

3.1
archetype repository
persistent repository of archetype definitions, accessed by a client authoring tool or by a run-time
component within an electronic health record service

3.2
concept
unit of knowledge created by a unique combination of characteristics

[SOURCE: ISO 1087-1:2000]

Note 1 to entry: Concepts are not necessarily bound to particular languages. They are, however, influenced by
the social or cultural background often leading to different categorizations.

3.3
operational template
template in which all references have been substituted by the corresponding structure

3.4
template
archetype defining a particular document or message intended for specific use cases

4	 Abbreviations

For the purposes of this document, the following abbreviations apply.

ADL Archetype Definition Language

AOM Archetype Object Model (synonym for Archetype Model)

CIMI Clinical Information Modelling Initiative

EHR Electronic Health Record

ODP Open Distributed Processing (ISO/IEC 10746 series, used for describing distributed
systems)

OWL Ontology Web Language

RM Reference Model e.g. the ISO 13606 Part 1 Reference Model

UML Unified Modelling Language

XML Extensible Mark-up Language

5	 Conformance

The communication of an archetype that is used to constrain part of an EHR_EXTRACT shall conform
to the information model defined in Clause 7. Conformance to the functions defined for each class in
Clause 7, where specified, is optional. This document does not prescribe any particular representation
of archetypes to be used internally within an archetype repository, server or EHR system. The
representation of archetypes shall meet the requirements listed in Clause 6.

﻿

2� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6	 Archetype representation requirements

6.1	 General

This clause lists a set of formal requirements for an archetype representation. This provides the basis
on which the archetype model specified in 7.2 has been designed.

6.2	 Archetype definition, description and publication information

6.2.1	 The definition of an archetype shall include the following information.

6.2.1.1	 The globally-unique identifier of this archetype definition.

6.2.1.2	 The identifier of the repository in which this archetype originated or is now primarily held, or
of the authority responsible for maintaining it. This repository shall be the one in which the definitive
publication status of this archetype will be managed.

6.2.1.3	 The concept that best defines the overall clinical scope of instances conforming to this
archetype as a whole, expressed as a coded term or as free text in a given natural language.

6.2.1.4	 The health informatics domain to which this archetype applies (e.g. EHR). This shall map to a
set of reference models with which this archetype may be used.

6.2.1.5	 The underlying reference model for which this archetype was ideally fashioned.

NOTE	 An archetype can be capable of use with more than one relevant reference model within a given health
informatics domain, but it is expected that the archetype will be optimised for one.

6.2.1.6	 The natural language in which this archetype was originally defined, represented by its
ISO 639-code. In the event of imprecise translations, this is the definitive language for interpretation of
the archetype.

6.2.2	 The definition of an archetype may include the following information, if applicable.

6.2.2.1	 The globally-unique identifier for the archetype of which this archetype is a specialisation and
to which it shall also conform.

6.2.2.2	 The globally-unique identifier of the former archetype that this definition replaces, if it not the
first version of an archetype.

6.2.2.3	 The reason for defining this new version of a pre-existing archetype.

6.2.2.4	 The identifier of the replacement for this archetype, if it has been superseded.

NOTE	 It is possible that this information can only be added by reference within a version-controlled
repository; how this is effected is not in scope for this document.

6.2.2.5	 An archetype shall have one or more description sets, defining its usage and purpose. Multiple
versions of this information may be included, represented in different natural languages or to inform
different kinds of potential user.

﻿

© ISO 2019 – All rights reserved� 3

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6.2.3	 An archetype description set shall include the following information.

6.2.3.1	 The uniquely-identified person or organisation responsible for providing this description set.
This may include contact information for that person or organisation.

6.2.3.2	 The uniquely-identified person or organisation responsible for defining the archetype
hierarchy itself. This may include contact information for that person or organisation.

6.2.3.3	 The natural language in which this description set is provided, represented by its ISO 639-code.

6.2.3.4	 A formal statement defining the scope and purpose of this archetype, expressed as a coded
term or as free text in a given natural language.

NOTE	 These criteria can be expressed as coded terms to improve queries for relevant archetypes from the
repository.

EXAMPLE	 The scope and purpose can specify:

1)	 the principal clinical specialty or kinds of user for which it is intended;

2)	 A list of clinical terms (keywords): diagnoses, acts, drugs, findings etc.;

3)	 the kind of patient in whom it is intended to be used (age, gender, etc.);

4)	 the kind of demographic entities it is intended to represent.

6.2.4	 An archetype description set may include the following information, if applicable.

6.2.4.1	 A formal statement of the intended use of this archetype.

NOTE	 Ideally this can be a coded expression, although a suitable terminology for this is not yet available.

6.2.4.2	 A formal statement of situations in which users might erroneously believe this archetype
should be used. This may also stipulate any kinds of Reference Model for which it is unsuitable.

6.2.4.3	 A detailed explanation of the purpose of this archetype, including any features of particular
interest or note. This may include an indication of the persons for which this definition is intended e.g.
for students. This information might be included explicitly, and/or by reference (e.g. via a URL).

6.2.4.4	 A description, reference or link to the published medical knowledge that has underpinned the
definition of this archetype.

6.2.4.5	 Information about evidence that has informed its development, e.g. an existing specification or
standard, published knowledge or clinical experience.

6.2.4.6	 How the archetype may be used in quality healthcare delivery.

6.2.4.7	 The care processes it has been designed to support.

6.2.4.8	 Information about which organisations, professional bodies or government bodies have
endorsed the model, when this endorsement occurred, and under which criteria.

6.2.5	 An archetype definition shall include a statement of its publication status.

6.2.5.1	 An archetype definition may evolve through a series of publication states, for example an
approval process, without otherwise being changed. These successive states shall be retained as part of

﻿

4� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

the archetype, for audit purposes. However, the modification of the publication status of an archetype
shall not itself constitute a formal revision of the identifier by which the archetype is referenced within
an EHR_EXTRACT, since the constraint specification will not have been changed.

6.2.6	 The publication status of an archetype shall specify the following information.

6.2.6.1	 The publication status of this archetype, taken from the following list:

—	 Test;

—	 In development;

—	 Release candidate;

—	 Rejected;

—	 Definitive;

—	 Deprecated.

6.2.6.2	 The date when this particular publication status applied

NOTE	 The first instance of a publication status for this archetype will also be the date when it was first
composed.

6.2.6.3	 The unique identifier of the person committing this archetype to the repository and thereby
asserting this publication status. This identification might optionally include the organisation which that
person represents.

6.2.6.4	 The unique identifier of the body authorising this change in publication status.

6.2.6.5	 The date when it is anticipated that the present publication status, and the archetype content
itself, ought to be reviewed to confirm it remains valid.

6.2.6.6	 The unique identifier of the person or organisation that is nominated, authorised or has
accepted responsibility for reviewing the validity of the archetype and optionally for updating it, when
appropriate.

6.2.6.7	 A clear statement of any copyright or licensing restrictions which apply to the use of the
archetype.

6.2.6.8	 The copyright holder and/or governing authority.

6.2.7	 Version management.

6.2.7.1	 An archetype definition shall indicate the version of the constraints it specifies.

6.2.7.2	 An archetype definition may indicate the person or organization responsible for that version.

6.2.7.3	 An archetype definition may indicate the date on which the current version was created.

6.2.7.4	 The archetype version identifiers or other properties may indicate the nature of changes made
from the previous version, and in particular if EHR instances communicated with the current and the
previous version are compatible with each other.

﻿

© ISO 2019 – All rights reserved� 5

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6.3	 Archetype node constraints

6.3.1	 General

An archetype definition shall include a specification of the hierarchical schema to which instances of
data (e.g. EHR data) shall conform. This schema defines the hierarchical organisation of a set of nodes,
the relationships between them, and constraints on the permitted values of attributes and data values.
These shall also conform to the underlying reference model(s) for which this definition is applicable.

6.3.2	 Archetype node references

6.3.2.1	 Any node in the archetype hierarchy might be defined explicitly or, by reference, be specified to
be part or whole of a pre-existing archetype.

6.3.2.2	 A reference to a pre-existing archetype or archetype fragment may be explicit, by specifying the
archetype identifier, and optionally the identifier of the node of the archetype fragment.

6.3.2.3	 A reference to an archetype fragment may be internal to (i.e. part of) the current archetype.

6.3.2.4	 An archetype node may be specified to be one of a set of possible archetypes, by defining an
explicit list of candidates and/or by specifying a set of constraints on any of the attributes of an archetype
definition.

6.3.2.5	 In addition to specifying one or more archetype fragments by reference or constraint, it shall
be possible to include an explanation of the rationale for incorporating that specification at the given
point in the current archetype hierarchy.

6.3.3	 The specification of an archetype node (if not by reference) shall include the following
information.

6.3.3.1	 A unique identifier of this archetype node. Either in itself or when combined with the globally-
unique identifier of this archetype definition, it shall be a globally unique reference to the node itself.

6.3.3.2	 The class in the EHR instance hierarchy, mapping to the underlying reference model that this
archetype constrains, that shall be instantiated in order to conform to this archetype node.

6.3.3.3	 The number of occurrences, expressed as a range that may be instantiated corresponding to
this archetype node within an instance hierarchy.

6.3.3.4	 Other constraints and rules may optionally be specified to govern the creation of instances
corresponding to this archetype node.

6.3.3.5	 Constraint rules may be expressed as logical conditions, and may include reference to
environment parameters such as the current time or location or participants, or be related to the (pre-
existing) values other nodes in the instance hierarchy. Constraint rules may be used to represent the
relationship between EHR data and workflow or care pathway processes.

6.3.3.6	 Constraint rules may be expressed as inclusion or exclusion criteria.

6.3.3.7	 An archetype shall identify the formalism (including version) in which constraint rules are
expressed (e.g. ADL, OWL).

﻿

6� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6.3.4	 Binding archetype nodes to terms

6.3.4.1	 Every node of an archetype schema hierarchy shall be associated with at least one term, which
most accurately expresses the intended concept to be represented by that node on instantiation in the
corresponding instance hierarchy. This term can usually be included or referenced within the instance.

6.3.4.2	 Every node of an archetype schema hierarchy may additionally be associated with a description
that elaborates on the meaning given by the term labelling that node.

6.3.4.3	 Any node of an archetype may be mapped to any number of additional concepts, terms and
synonyms from terminology systems, to support either the interrogation of the archetype repository or
of the corresponding instances.

6.3.4.4	 Any concept mapping term or text shall specify the purpose that this mapping serves, using
one of the following list of values:

—	 Principal concept;

—	 Term binding;

—	 Synonym;

—	 Language translation.

6.3.4.5	 Any reference to a coded term shall include the code, rubric, and identify the coding system
(including version) from which the code and rubric have been taken. In addition, it shall be possible to
specify the natural language in which this term was mapped, or in which a translation is expressed.

6.3.4.6	 The meaning of every node in an archetype should be defined through a binding to the
appropriate concept identifier from an appropriate concept model.

6.3.4.7	 The meaning of any specified link between two or more nodes in an archetype may be defined
through a binding to the appropriate concept identifier from an appropriate concept model.

6.3.5	 Attribute and association constraints

6.3.5.1	 An archetype node may specify constraints on any attributes or associations that correspond to
the attributes and associations of that node in the underlying reference model.

NOTE	 These constraints can pre-determine or restrict some or all of the contextual information that is
included within the corresponding instance, as represented within the reference model. Context information,
such as the person to whom a particular observation or inference relates, is formally-represented in most generic
EHR-like models to facilitate safe querying and retrieval, even if that information can be inferred from the
archetype name or an axis within a terminology system used for the data value. Some archetypes or fragments
will pre-determine the values of some of these, which shall be capable of specification within the archetype
definition (for example, to constrain the subject of information to be a relative of the patient, and not the patient,
in an archetype for family history).

6.3.6	 For any given reference model property it shall be possible to specify the following
information.

6.3.6.1	 The name of the attribute or association, mapping to the underlying reference model for which
this archetype was ideally fashioned, to which this constraint applies.

6.3.6.2	 For a given reference model, if an attribute or association corresponding to this aspect of
context is mandatory to be included within a valid EHR instance.

﻿

© ISO 2019 – All rights reserved� 7

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6.3.6.3	 The number of instances (expressed as a range) corresponding to this aspect of context that
may be instantiated.

6.3.6.4	 If multiple instances are permitted, it shall be possible to specify if these are to be represented
as an ordered or unordered list.

6.3.6.5	 If multiple instances are permitted, it shall be possible to specify if the corresponding data
values (of leaf nodes or attributes) shall be unique.

6.3.6.6	 Constraints may be specified for the data values of leaf nodes or leaf attributes.

6.3.6.7	 It shall be possible to specify if instances conforming to an archetype shall include one or
more optional or mandatory LINKs, where the value of the role attribute is to be one of a specified set of
codes, and where the target attribute should refer to an instance of a RECORD_COMPONENT based on an
archetype that is one of a specified set of archetypes.

6.3.6.8	 It shall be possible to specify that the LINK shall have an external target where the target
information type should be included in a specified set of such types.

6.3.6.9	 Other constraints and rules may optionally be specified to govern the creation of instances
corresponding to a reference model attribute or association.

6.4	 Data value constraints

6.4.1	 It shall be possible to specify constraints and rules for the data values of leaf nodes in the
Reference Model hierarchy, or for any other attributes of any archetype node.

6.4.2	 Constrains on a leaf node shall include specifying a single datatype for instance values, in
conformance with the underlying reference model that this archetype constrains.

6.4.3	 It shall be possible to specify the following data value constraint information.

6.4.3.1	 If the data value is permitted to have a null value, and optionally to specify a reason (e.g. to
specify a null flavour value).

6.4.3.2	 If the constraint or rule is an inclusion or exclusion criterion.

6.4.3.3	 The formalism (including version) in which this constraint specification is represented.

6.4.3.4	 The intended fixed (prescribed) value for conforming instances.

6.4.3.5	 The intended default value for conforming instances.

6.4.3.6	 A list of permitted candidate values for conforming instances (i.e. to be a subset of those values
legally permissible in the underlying reference model).

6.4.4	 For quantity datatypes it shall be possible to specify:

—	 a value range within which values for conforming instances shall lie;

—	 a range within which values are considered exceptional or critical (e.g. cut off points, ranges, min,
max values);

—	 the intended measurement units for conforming instances.

﻿

8� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

6.4.5	 For date and time datatypes it shall be possible to specify:

—	 a value range within which values for conforming instances shall lie;

—	 the intended measurement units for conforming instances.

6.4.6	 For textual datatypes it shall be possible to specify:

—	 a string pattern defining a range of possible values;

—	 the intended coding scheme to be used for conforming instances;

—	 a valid value domain, by referencing a list of individual concepts from a given terminology (with
appropriate identification of the terminology referenced);

—	 a valid value domain, by stating an intentional definition of the set of valid values from an identified
terminology system;

—	 a valid value domain, by binding the coded data element to a predefined reference set from an
identified terminology system;

—	 terminology value domains from different languages;

—	 optionally to specify different terminology value domains for different documentation purposes.

6.4.7	 Constraint rules might be expressed as logical conditions, and may include reference to
environment parameters such as the current time or location or participants, or be related to the (pre-
existing) values other nodes in the instance hierarchy.

6.4.8	 The reference to a pre-existing value shall specify that instance precisely and unambiguously. For
example, it might be necessary to include a reference to:

—	 the archetype identifier;

—	 the archetype node identifier;

—	 the attribute or association name;

—	 the occurrence in the instance hierarchy, for example:

—	 first;

—	 most-recent;

—	 any;

—	 n ordered by y (the nth element of a set of instances ordered on y);

—	 highest value;

—	 lowest value;

—	 one or more instances within a (definable) recent time interval.

—	 the intended relationship between this specified instance value and the data value being constrained,
for example:

—	 the same value as;

—	 a subset or substring of;

—	 greater than, greater than or equal to, less than, less than or equal to;

﻿

© ISO 2019 – All rights reserved� 9

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

—	 earlier than, later than, etc.;

—	 if ... then...;

—	 shall not be the same as.

6.4.9	 These relative constraints may be nested, and include logical or set operators in order to
represent compound rules.

7	 Archetype object model

7.1	 Preface

7.1.1	 Purpose

This clause contains the normative description of archetype and template semantics in the form of an
object model. The model presented here can be used as a basis for building software that represents
archetypes and templates, independent of their persistent representation. Equally, it can be used to
develop the output side of parsers that process archetypes in a linguistic format.

7.1.2	 Nomenclature

In this document, the term ‘attribute’ denotes any stored property of a type defined in an object model,
including primitive attributes and any kind of relationship such as an association or aggregation. XML
‘attributes’ are always referred to explicitly as ‘XML attributes’.

The word ‘archetype’ in a broad sense is also used to designate what are commonly understood to be
‘archetypes’ (specifications of clinical data groups / data constraints) and ‘templates’ (data sets based
on archetypes). Statements about ‘archetypes’ in this specification can be always understood to also
apply to templates, unless otherwise indicated.

7.2	 Model overview

The model described here is a pure object-oriented model that can be used with archetype parsers and
software that manipulates archetypes and templates in memory. It is typically the output of a parser of
any serialised form of archetypes.

7.2.1	 Package structure

The Archetype Object Model is defined as the package am.archetype , as illustrated in Figure 1.

﻿

10� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Figure 1 — Package Overview

7.2.2	 Definition and utility classes

7.2.2.1	 Overview

Various definitional classes are used in the AOM. Some are defined in the aom.definitions package,
while others come from the definitions package. These are illustrated in Figure 2 below.

Figure 2 — Definition Package

﻿

© ISO 2019 – All rights reserved� 11

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

The enumeration type VALIDITY_KIND is provided in order to define standard values representing
mandatory, optional, or disallowed in any model. It is used in this model in classes such as C_DATE , C_
TIME and C_DATE_TIME. The VERSION_STATUS enumeration type serves a similar function within various
AOM types.

Other classes used from the base package include AUTHORED_RESOURCE (resource package) and its
subordinate classes. These are shown in full within the packages that use them.

7.2.2.2	 Class definitions

7.2.2.2.1	 VERSION_STATUS enumeration

Enumeration VERSION_STATUS
Description Status of a versioned artefact, as one of a number of possible values: uncontrolled,

prerelease, release, build.
Attributes Signature Meaning

 alpha Value representing a version which is ‘unstable’, i.e. contains an
unknown size of change with respect to its base version. Rendered
with the build number as a string in the form “N.M.P-alpha.B” e.g.
“2.0.1-alpha.154”.

 beta Value representing a version which is ‘beta’, i.e. contains an un-
known but reducing size of change with respect to its base version.
Rendered with the build number as a string in the form “N.M.P-be-
ta.B” e.g. “2.0.1-beta.154”.

 release_candidate Value representing a version which is ‘release candidate’, i.e. con-
tains only patch-level changes on the base version. Rendered as a
string as “N.M.P-rc.B” e.g. “2.0.1-rc.27”.

 released Value representing a version which is ‘released’, i.e. is the definitive
base version. Rendered with the build number as a string in the
form “N.M.P” e.g. “2.0.1”.

 build Value representing a version which is a build of the current base
release. Rendered with the build number as a string in the form
“N.M.P+B” e.g. “2.0.1+33”.

7.2.2.2.2	 VALIDITY_KIND enumeration

Enumeration VALIDITY_KIND
Description An enumeration of three values that might commonly occur in constraint models.

Use as the type of any attribute within this model, which expresses constraint on
some attribute in a class in a reference model. For example to indicate validity of
Date/Time fields.

Attributes Signature Meaning
 mandatory Constant to indicate mandatory presence of something.
 optional Constant to indicate optional presence of something.
 prohibited Constant to indicate disallowed presence of something.

7.2.2.2.3	 ADL_CODE_DEFINITIONS class

Class ADL_CODE_DEFINITIONS
Description Definitions relating to the internal code system of archetypes.
Attributes Signature Meaning

﻿

12� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

1..1 Id_code_leader: String = "id" String leader of ‘identifier’ codes, i.e. codes used
to identify archetype nodes.

1..1 Value_code_leader: String = "at" String leader of ‘value’ codes, i.e. codes used
to identify codes values, including value set
members.

1..1 Value_set_code_leader:
String = "ac"

String leader of ‘value set’ codes, i.e. codes used
to identify value sets.

1..1 Specialisation_separator: char = '.' Character used to separate numeric parts of
codes belonging to different specialisation levels.

1..1 Code_regex_pattern:
String = "(0|[1-9][0-9]*)(\.(0|[1-
9][0-9]*))*"

Regex used to define the legal numeric part of
any archetype code. Corresponds to the simple
pattern of dotted numbers, as used in typical
multi-level numbering schemes.

1..1 Root_code_regex_pattern:
String = "^id1(\.1)*$"

Regex pattern of the root id code of any arche-
type. Corresponds to codes of the form id1,
id1.1, id1.1.1 etc..

1..1 Primitive_node_id:
String = "id9999"

Code id used for C_PRIMITIVE_OBJECT nodes
on creation.

7.3	 The archetype package

7.3.1	 Overview

The top-level model of archetypes and templates (all variant forms) is illustrated in Figure 3: Archetype
Package. The model defines a standard structural representation of an archetype. Archetypes
authored as independent entities are instances of the class AUTHORED_ARCHETYPE which is a descendant
of AUTHORED_RESOURCE and ARCHETYPE. The former provides a standardised model of descriptive meta-
data, language information, annotations and revision history for any resource. The latter class defines
the core structure of any kind of archetype, including definition, terminology, and optional rules part,
along with a ‘semantic identifier’ (ARCHETYPE.archetype_id).

The AUTHORED_ARCHETYPE class adds identifying attributes, flags and descriptive meta-data, and is the
ancestor type for two further specialisations - TEMPLATE and OPERATIONAL_TEMPLATE. The TEMPLATE class
defines the notion of a ‘templated’ archetype, i.e. an archetype containing fillers/references (e.g. ADL’s
use_archetype statements), typically designed to represent a data set. To enable this, it may contain
‘overlays’, private archetypes that specialise one or more of the referenced / filler archetypes it uses.
Overlays are instances of the TEMPLATE_OVERLAY class, have no meta-data of their own, but are otherwise
computationally just like any other archetype.

﻿

© ISO 2019 – All rights reserved� 13

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Figure 3 — Archetype Package

The OPERATIONAL_TEMPLATE class represents the fully flattened form of a template, i.e. with all fillers
and references substituted and overlays processed, to form what is in practical terms, a single custom-
made ‘operational’ artefact, ready for transformation to downstream artefacts. Because an operational
template includes one or more other archetype structures inline, it also includes their terminologies,
enabling it to be treated as a self-standing artefact.

﻿

14� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.2	 Archetype identification

7.3.2.1	 Human-Readable Identifier (HRID)

All archetype variants based on ARCHETYPE have a human-readable, structured identifier defined by
the ARCHETYPE_HRID class. This identifier places the artefact in a multi-dimensional space based on a
namespace, its reference model class and its informational concept. This class defines an atomised
representation of the identifier, enabling variant forms to be used as needed. Its various parts can be
understood from Figure 4, which also shows the computed semantic_id and physical_id forms.

Figure 4 — Archetype HRID structure

For specialised archetypes, the parent_archetype_id is also required. This is a string reference to an
archetype, and is normally the ‘interface’ form of the id, i.e. down to the major version only. In some
circumstances, it is useful to include the minor and patch version numbers as well.

An important aspect of identification relates to the rules governing when the HRID namespace changes
or is retained, with respect to when ‘moves’ or ‘forks’ occur. Its value is always the same as one of
the original_namespace and custodian_namespace properties inherited from AUTHORED_RESOURCE.
description (or both, in the case where they are the same).

7.3.2.2	 Machine identifiers

Two machine identifiers are defined for archetypes. The ARCHETYPE.uid attribute defines a machine
identifier equivalent to the human readable archetype_id.semantic_id, i.e. ARCHETYPE_HRID up to its
major version, and changes whenever the latter does. It is defined as optional but to be practically useful
would need to be mandatory for all archetypes within a custodian organisation where this identifier
was in use. It could in principle be synthesised at any time for a custodian that decided to implement it.

The ARCHETYPE.build_uid attribute is also optional, and if used, is intended to provide a unique identifier
that corresponds to any change in version of the artefact. At a minimum, this means generating a new
UID for each change to:

—	 ARCHETYPE.archetype_id.release_version;

—	 ARCHETYPE.archetype_id.build_count;

—	 ARCHETYPE.description.lifecycle_state.

For every change made to an archetype inside a controlled repository (for example, addition or update
of meta-data fields), this field should be updated with a new GUID value, generated in the normal way.

﻿

© ISO 2019 – All rights reserved� 15

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.3	 Top-level meta-data

7.3.3.1	 ADL version

The version of the archetype formalism in which the current archetype is expressed. For reasons
of convenience, the version number is still taken from the ADL specification, but now refers to all
archetype-related specifications together, since they are always updated in a synchronised fashion.

7.3.3.2	 Reference model release

The ARCHETYPE.rm_release attribute designates the release of the reference model on which the
archetype is based, in the archetype’s current version. This means rm_release can change with new
versions of the archetype, where re-versioning includes upgrading the archetype to a later RM release.
However, such upgrading still has to obey the basic rule of archetype compatibility: later minor, patch
versions and builds cannot create data that is not valid with respect to the prior version.

This should be in the same semver.org 3-part form as the ARCHETYPE_HRID.release_version property,
e.g. "1.0.2". This property does not indicate conformance to any particular reference model version(s)
other than the named one, since most archetypes can easily conform to more than one. More minimal
archetypes are likely to technically conform to more old and future releases than more complex
archetypes.

7.3.3.3	 Generated flag

The ARCHETYPE.is_generated flag is used to indicate that an archetype has been machine-generated
from another artefact, e.g. an older ADL version (say 1.4), or a non-archetype artefact. If true, it indicates
to tools that the current archetype can potentially be overwritten, and that some other artefact is
considered the primary source. If manual authoring occurs, this attribute should be set to false.

7.3.4	 Governance meta-data

Various meta-data elements are inherited from the AUTHORED_RESOURCE class, and provide the natural
language description of the archetype, authoring and translation details, use, misuse, keywords and so
on. There are three distinct parts of the meta-data: governance, authorship, and descriptive details.

7.3.4.1	 Governance meta-data items

Governance meta-data is visible primarily in the RESOURCE_DESCRIPTION class, inherited via AUTHORED_
RESOURCE, and consists of items relating to management and intellectual property status of the artefact.

The optional resource_package_uri property enables the recording of a reference to a package of
archetypes or other resources, to which this archetype is considered to below. It may be in the form of
‘text <URL>’.

Lifecycle_state

The description.lifecycle_state is an important property of an archetype, which is used to record its
state in a defined lifecycle.

Original_namespace and Original_publisher

These two optional properties indicate the original publishing organisation, and its namespace, i.e.
the original publishing environment where the artefact was first imported or created. The original_
namespace property is normally the same value as archetype_id.namespace, unless the artefact has been
forked into its current custodian, in which case archetype_id.namespace will be the same as custodian_
namespace.

Custodian_namespace and Custodian_organisation

﻿

16� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

These two optional properties state a formal namespace, and a human-readable organisation identifier
corresponding to the current custodian, i.e. maintainer and publisher of the artefact, if there is one.

Intellectual property items

There are three properties in the class that RESOURCE_DESCRIPTION relate to intellectual property (IP).
Licence is a String field for recording of the licence (US: ‘license’) under which the artefact can be used.
The recommended format is

licence name <reliable URL to licence statement>
The copyright property records the copyright applying to the artefact, and is normally in the standard
form ‘(c) name’ or ‘(c) year name’. The special character © may also be used (UTF-8 0xC2A9).

7.3.4.2	 Authorship meta-data

Authorship meta-data consists of items such as author name, contributors, and translator information.

Original author

The RESOURCE_DESCRIPTION.original_author property defines a simple list of name/value pairs via
which the original author can be documented. Typical key values include ‘name’, ‘organi[zs]ation’,
‘email’ and ‘date’.

Contributors

The RESOURCE_DESCRIPTION.other_contributors property is a simple list of strings, one for each
contributor. The recommended format of the string is one of:

first names last name, organization
first names last name, organisation <contributor email address>
first names last name, organisation <organisation email address>
Languages and translation

The AUTHORED_RESOURCE.original_language and TRANSLATION_DETAILS class enable the original language
of authoring and information relating to subsequent translations to be expressed. TRANSLATION_
DETAILS.author allows each translator to be represented in the same way as the original_author , i.e. a
list of name/values. The version_last_translated property is used to record a copy of the archetype_
id.physical_id for each language, when the translation was carried out. This enables maintainers to
know when new translations are needed for some or all languages.

Version_last_translated

This String property records the full version identifier (i.e. ARCHETYPE.archetype_id.version_id) at the
time of last translation, enabling tools to determine if and when translations might be out of date.

7.3.4.3	 Descriptive meta-data

Various descriptive meta-data may be provided for an archetype in multiple translations in the
RESOURCE_DESCRIPTION_ITEM class, using one instance for each translation language.

Purpose

The purpose item is a String property for recording the intended design concept of the artefact.

Use and misuse

The use and misuse properties enable specific uses and misuses to be documented. The latter normally
relate to common errors of use, or apparently reasonable but wrong assumptions about use.

Keywords

The keywords property is a list of Strings designed to record search keywords for the artefact.

﻿

© ISO 2019 – All rights reserved� 17

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Resources

The original_resource_uri property is used to record one or more references to resources in each
particular language.

TBD: This property does not appear to have ever been used, and it might not be useful, since ‘resources’
are not typically available for each language.

7.3.5	 Structural definition

7.3.5.1	 Common structural parts

The archetype definition is the main definitional part of an archetype and is an instance of a C_COMPLEX_
OBJECT. This means that the root of the constraint structure of an archetype always takes the form of a
constraint on a non-primitive object type.

The terminology section of an archetype is represented by its own classes, and is what allows archetypes
to be natural language- and terminology-neutral. It is described in detail in the Terminology Package.

An archetype may include one or more rules. Rules are statements expressed in a subset of predicate
logic, which can be used to state constraints on multiple parts of an object. They are not needed to
constrain single attributes or objects (since this can be done with an appropriate C_ATTRIBUTE or C_
OBJECT), but are necessary for constraints referring to more than one attribute, such as a constraint
that ‘systolic pressure should be >= diastolic pressure’ in a blood pressure measurement archetype.
They can also be used to declare variables, including external data query results, and make other
constraints dependent on a variable value, e.g. the gender of the record subject.

Lastly, annotations and revision history sections, inherited from the AUTHORED_RESOURCE class, can be
included as required. The annotations section is of particular relevance to archetypes and templates,
and is used to document individual nodes within an archetype or template, and/or nodes in reference
model data, that might not be constrained in the archetype, but whose specific use in the archetyped
data needs to be documented. In the former case, the annotations are keyed by an archetype path, while
in the latter case, by a reference model path.

7.3.5.2	 Structural variants

The model in Figure 3: Archetype Package defines the structures of a number of variants of the
‘archetype’ idea. All concrete instances are instances of one of the concrete descendants of ARCHETYPE.
Figure 5: Source Archetype Structure illustrates the typical object structure of a source archetype - the
form of archetype created by an authoring tool - represented by a DIFFERENTIAL_ARCHETYPE instance.
Mandatory parts are shown in bold.

﻿

18� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Figure 5 — Source archetype structure

Source archetypes can be specialised, in which case their definition structure is a partial overlay on the
flat parent, or ‘top-level’, in which case the definition structure is complete. C_ARCHETYPE_ROOT instances
may only occur representing direct references to other archetypes - ‘external references’.

A flat archetype is generated from one or more source archetypes via the flattening process described in
the next subclause of this specification. This generates a FLAT_ARCHETYPE from a DIFFERENTIAL_ARCHETYPE
instance. The main two changes that occur in this operation are a) specialised archetype overlays are
applied to the flat parent structure, resulting in a full archetype structure, and b) internal references
(use_nodes) are replaced by their expanded form, i.e. a copy of the subtrees to which they point.

This form is used to represent the full ‘operational’ structure of a specialised archetype, and has two
uses. The first is to generate backwards compatible ADL 1.4 legacy archetypes (always in flat form); the
second is during the template flattening process, when the flat forms of all referenced archetypes and
templates are ultimately combined into a single operational template.

Figure 6: Source template structure illustrates the structure of a source template, i.e. instances of
TEMPLATE. A source template is an archetype containing C_ARCHETYPE_ROOT objects representing slot
fillers - each referring to an external archetype or template, or potentially an overlay archetype.

﻿

© ISO 2019 – All rights reserved� 19

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Figure 6 — Source template structure

Another archetype variant, also shown in Figure 6: Source template structure is the template overlay,
i.e. an instance of TEMPLATE_OVERLAY. These are purely local components of templates, and include only
the definition and terminology. The definition structure is always a specialised overlay on something
else, and may not contain any slot fillers or external references, i.e. no C_ARCHETYPE_ROOT objects. No
identifier, adl_version, languages or description are required, as they are considered to be propagated
from the owning root template. Accordingly, template overlays act like a simplified specialised
archetype. Template overlays can be thought of as being similar to ‘anonymous’ or ‘inner’ classes in
some object-oriented programming languages.

Figure 7: Operational template structure illustrates the resulting operational template, or compiled
form of a template. This is created by building the composition of referenced archetypes and/or
templates and/or template overlays, in their flattened form, to generate a single ‘giant’ archetype. The
root node of this archetype, along with every archetype/template root node within, is represented using
a C_ARCHETYPE_ROOT object. An operational template also has a component_terminologies property
containing the ontologies from every constituent archetype, template and overlay.

Class ARCHETYPE (abstract)
Description The ARCHETYPE class defines the core formal model of the root object of any archetype

or template. It includes only basic identification information, and otherwise provides
the structural connections from the Archetype to its constituent parts, i.e. definition
(a C_COMPLEX_OBJECT), terminology (ARCHEYTPE_TERMINOLOGY) and so on. It is the
parent class of all concrete types of archetype.

Attributes Signature Meaning
0..1 parent_archetype_id: String Archetype reference of the specialisation parent of

this archetype, if applicable. May take the form of
an archetype interface identifier, i.e. the identifier
up to the major version only, or can be deeper.

1..1 archetype_id: ARCHETYPE_HRID Identifier of this archetype.
1..1 is_differential: Boolean Flag indicating whether this archetype is differen-

tial or flat in its contents. Top-level source arche-
types have this flag set to True.

1..1 definition: C_COMPLEX_OBJECT Root node of the definition of this archetype.

﻿

20� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

1..1 terminology: ARCHETYPE_
TERMINOLOGY

The terminology of the archetype.

0..1 rules: List<RULE_STATEMENT> Rules relating to this archetype. Statements are
expressed in first order predicate logic, and usually
refer to at least two attributes.

Functions Signature Meaning
 concept_code: String

post-condition: Result.is_equal
(definition.node_id)

The concept code of the root object of the arche-
type, also standing for the concept of the archetype
as a whole.

 physical_paths: List<String> Set of language-independent paths extracted from
archetype. Paths obey Xpath-like syntax and are
formed from alternations of C_OBJECT.node_id and
C_ATTRIBUTE.rm_attribute_name values.

 logical_paths (lang: String):
List<String>

Set of language-dependent paths extracted from
archetype. Paths obey the same syntax as phys-
ical_paths, but with node_ids replaced by their
meanings from the ontology.

 specialisation_depth: Integer
post-condition: Result = terminolo-
gy.specialisation_depth

Specialisation depth of this archetype; larger than
0 if this archetype has a parent. Derived from ter-
minology.specialisation_depth.

 is_specialised: Boolean
post-condition: Result implies par-
ent_archetype_hrid /= Void

True if this archetype is a specialisation of another.

Invariant Invariant_concept_valid: terminology.has_term_code (concept_code)
 Invariant_specialisation_validity: is_specialised implies specialisation_depth > 0

Figure 7 — Operational template structure

More details of template development, representation and semantics are described in the next
subclause.

﻿

© ISO 2019 – All rights reserved� 21

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.6	 Class descriptions

7.3.6.1	 AUTHORED_RESOURCE Class

Class AUTHORED_RESOURCE (abstract)
Description Abstract idea of an online resource created by a human author.
Attributes Signature Meaning

1..1 original_language: TERMINOLOGY_CODE Language in which this resource was initial-
ly authored. Although there is no language
primacy of resources overall, the language of
original authoring is required to ensure natural
language translations can preserve quality.
Language is relevant in both the description
and ontology sections.

0..1 is_controlled: Boolean True if this resource is under any kind of
change control (even file copying), in which
case revision history is created.

0..1 description: RESOURCE_DESCRIPTION Description and lifecycle information of the
resource.

0..1 uid: UUID Unique identifier of the family of archetypes
having the same interface identifier (same
major version).

0..1 annotations: RESOURCE_ANNOTATIONS Annotations on individual items within the
resource, keyed by path. The inner table takes
the form of a Hash table of String values keyed
by String tags.

0..1 translations: Hash<TRANSLATION_
DETAILS, String>

List of details for each natural translation made
of this resource, keyed by language. For each
translation listed here, there shall be corre-
sponding sections in all language-dependent
parts of the resource. The original_language
does not appear in this list.

Functions Signature Meaning
 current_revision: String

Post: Result = revision_history.most_
recent_version

Most recent revision in revision_history if
is_controlled else (uncontrolled) .

 languages_available: List<String> Total list of languages available in this re-
source, derived from original_language and
translations.

Invariant Original_language_valid: code_set (Code_set_id_languages).has_code (original_lan-
guage.as_string)

 Current_revision_valid: (current_revision /= Void and not is_controlled) implies cur-
rent_revision.is_equal (“(uncontrolled)”)

 Translations_valid: translations /= Void implies (not translations.is_empty and not
translations.has (orginal_language.code_string))

 Description_valid: translations /= Void implies (description.details.for_all (d | transla-
tions.has_key (d.language.code_string)))

 Languages_available_valid: languages_available.has (original_language)
 Revision_history_valid: is_controlled xor revision_history = Void

﻿

22� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.6.2	 RESOURCE_DESCRIPTION class

Class RESOURCE_DESCRIPTION
Description Defines the descriptive meta-data of a resource.
Attributes Signature Meaning

1..1 original_author: Hash<String, String> Original author of this resource, with all
relevant details, including organisation.

0..1 original_namespace: String Namespace of original author’s organisa-
tion, in reverse internet form, if applicable.

0..1 original_publisher: String Plain text name of organisation that origi-
nally published this artefact, if any.

0..1 other_contributors: List<String> Other contributors to the resource, each
listed in "name <email>" form.

1..1 lifecycle_state: TERMINOLOGY_CODE Lifecycle state of the resource, typically
including states such as: initial, in_devel-
opment, in_review, published, superseded,
obsolete.

1..1 parent_resource: AUTHORED_RESOURCE = Reference to owning resource.
0..1 custodian_namespace: String Namespace in reverse internet id form, of

current custodian organisation.
0..1 custodian_organisation: String Plain text name of current custodian

organisation.
0..1 copyright: String Optional copyright statement for the re-

source as a knowledge resource.
0..1 licence: String Licence of current artefact, in format

"short licence name <URL of licence>", e.g.
"Apache 2.0 License <http:​//www​.apache​
.org/licenses/LICENSE​-2​.0​.html>"

0..1 ip_acknowledgements: Hash<String,
String>

List of acknowledgements of other IP
directly referenced in this archetype, typ-
ically terminology codes, ontology ids etc.
Recommended keys are the widely known
name or namespace for the IP source, as
shown in the following example:
ip_acknowledgements = < ["loinc"] =
<"This content from LOINC® is copyright
© 1995 Regenstrief Institute, Inc. and
the LOINC Committee, and available at
no cost under the license at http:​//loinc​
.org/terms​-of​-use">; ["snomedct"] =
<"Content from SNOMED CT® is copyright
© 2007 IHTSDO <ihtsdo.org>">>

0..1 references: Hash<String, String> List of references of material on which
this artefact is based, as a keyed list of
strings. The keys should be in a standard
citation format.

0..1 resource_package_uri: String URI of package to which this resource
belongs.

﻿

© ISO 2019 – All rights reserved� 23

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

http://www.apache.org/licenses/LICENSE-2.0.html%3E
http://www.apache.org/licenses/LICENSE-2.0.html%3E
http://loinc.org/terms-of-use
http://loinc.org/terms-of-use
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0..1 conversion_details: Hash<String, String> Details related to conversion process that
generated this model from an original,
if relevant, as a list of name/value pairs.
Typical example with recommended tags:
conversion_details = < ["source_model"]
= <"CEM model xyz ["tool"] = <"ce-
m2adl v6.3.0"> ["time"] = <"2014-11-
03T09:05:00">>

0..1 other_details: Hash<String, String> Additional non language-sensitive resource
meta-data, as a list of name/value pairs.

0..1 details: Hash<RESOURCE_DESCRIPTION_
ITEM, String>

Details of all parts of resource descrip-
tion that are natural language-dependent,
keyed by language code.

7.3.6.3	 RESOURCE_DESCRIPTION_ITEM class

Class RESOURCE_DESCRIPTION_ITEM
Description Language-specific detail of resource description. When a resource is translated for use

in another language environment, each RESOURCE_DESCRIPTION_ITEM needs to be
copied and translated into the new language.

Attributes Signature Meaning
1..1 language: TERMINOLOGY_CODE The localised language in which the items in this

description item are written.
1..1 purpose: String Purpose of the resource.
0..1 keywords: List<String> Keywords which characterise this resource, used

e.g. for indexing and searching.
0..1 use: String Description of the uses of the resource, i.e. contexts

in which it could be used.
0..1 misuse: String Description of any misuses of the resource, i.e.

contexts in which it should not be used.
0..1 original_resource_uri:

List<Hash<String, String>>
URIs of original clinical document(s) or description
of which resource is a formalisation, in the lan-
guage of this description item; keyed by meaning.

0..1 other_details: Hash<String,
String>

Additional language-sensitive resource metadata,
as a list of name/value pairs.

7.3.6.4	 RESOURCE_ANNOTATIONS class

Class RESOURCE_ANNOTATIONS

﻿

24� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Description Object representing annotations on an archetype. These can be of various forms, with a
documentation form defined so far, which has a multi-level tabular structure [[[String
value, String key], path key], language key]. Example instance, showing the documenta-
tion structure.
 documentation = <
 ["en"] = <
 ["/data[id2]"] = <
 ["ui"] = <"passthrough">
>

 ["/data[id2]/items[id3]"] = <
 ["design note"] = <"this is a design note on Statement">
 ["requirements note"] = <"this is a requirements note on
Statement">

 ["medline ref"] = <"this is a medline ref on Statement">
>

>

>

Other sub-structures might have different keys, e.g. based on programming languages,
UI toolkits etc.

Attributes Signature Meaning
1..1 documentation: Hash<Hash<Hash<String, String>,

String>, String>
Documentary annotations in a
multi-level keyed structure.

7.3.6.5	 TRANSLATION_DETAILS class

Class TRANSLATION_DETAILS
Description Class providing details of a natural language translation.
Attributes Signature Meaning

1..1 language: TERMINOLOGY_CODE Language of the translation.
1..1 author: Hash<String, String> Translator name and other demographic details.
0..1 accreditation: String Accreditation of translator, usually a national transla-

tor’s registration or association membership id.
0..1 other_details: Hash<String,

String>
Any other meta-data.

0..1 version_last_translated:
String

Version of this resource last time it was translated into
the language represented by this TRANSLATION_DE-
TAILS object.

7.3.6.6	 ARCHETYPE class

Class ARCHETYPE (abstract)
Description The ARCHETYPE class defines the core formal model of the root object of any archetype

or template. It includes only basic identification information, and otherwise provides
the structural connections from the Archetype to its constituent parts, i.e. definition
(a C_COMPLEX_OBJECT), terminology (ARCHEYTPE_TERMINOLOGY) and so on. It is the
parent class of all concrete types of archetype.

Attributes Signature Meaning

﻿

© ISO 2019 – All rights reserved� 25

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0..1 parent_archetype_id: String Archetype reference of the specialisation parent of
this archetype, if applicable. May take the form of
an archetype interface identifier, i.e. the identifier
up to the major version only, or can be deeper.

1..1 archetype_id: ARCHETYPE_HRID Identifier of this archetype.
1..1 is_differential: Boolean Flag indicating whether this archetype is differen-

tial or flat in its contents. Top-level source arche-
types have this flag set to True.

1..1 definition: C_COMPLEX_OBJECT Root node of the definition of this archetype.
1..1 terminology: ARCHETYPE_

TERMINOLOGY
The terminology of the archetype.

0..1 rules: List<RULE_STATEMENT> Rules relating to this archetype. Statements are
expressed in first order predicate logic, and usually
refer to at least two attributes.

Functions Signature Meaning
 concept_code: String

post-condition: Result.is_equal
(definition.node_id)

The concept code of the root object of the arche-
type, also standing for the concept of the archetype
as a whole.

 physical_paths: List<String> Set of language-independent paths extracted from
archetype. Paths obey Xpath-like syntax and are
formed from alternations of C_OBJECT.node_id and
C_ATTRIBUTE.rm_attribute_name values.

 logical_paths (lang: String):
List<String>

Set of language-dependent paths extracted from
archetype. Paths obey the same syntax as phys-
ical_paths, but with node_ids replaced by their
meanings from the ontology.

 specialisation_depth: Integer
post-condition: Result = terminolo-
gy.specialisation_depth

Specialisation depth of this archetype; larger than
0 if this archetype has a parent. Derived from ter-
minology.specialisation_depth.

 is_specialised: Boolean
post-condition: Result implies par-
ent_archetype_hrid /= Void

True if this archetype is a specialisation of another.

Invariant Invariant_concept_valid: terminology.has_term_code (concept_code)
 Invariant_specialisation_validity: is_specialised implies specialisation_depth > 0

7.3.6.7	 AUTHORED_ARCHETYPE class

Class AUTHORED_ARCHETYPE
Description Root object of a standalone, authored archetype, including all meta-data, description,

other identifiers and lifecycle.
Inherit ARCHETYPE, AUTHORED_RESOURCE

Attributes Signature Meaning
0..1 adl_version: String ADL version if archetype was read in from an ADL sharable archetype.
1..1 build_uid: UID Unique identifier of this archetype artefact instance. A new identi-

fier is assigned every time the content is changed by a tool. Used by
tools to distinguish different revisions and/or interim snapshots of
the same artefact.

1..1 rm_release: String Semver.org compatible release of the most recent reference model
release on which the archetype in its current version is based. This
does not imply conformance only to this release, since an archetype
might be valid with respect to multiple releases of a reference model.

﻿

26� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

1..1 i s _ g e n e r a t e d :
Boolean

If True, indicates that this artefact was machine-generated from
some other source, in which case, tools would expect to overwrite
this artefact on a new generation. Editing tools should set this
value to False when a user starts to manually edit an archetype.

1..1 other_meta_data:
Hash<String,
String>

Invariant Invariant_adl_version_validity: valid_version_id (adl_version)
 Invariant_rm_release: valid_version_id (rm_release)

7.3.6.8	 ARCHETYPE_HRID class

Class ARCHETYPE_HRID
Description Human_readable structured identifier (HRID) for an archetype or template.
Attributes Signature Meaning

0..1 namespace: String Reverse domain name namespace identifier.
1..1 rm_publisher: String Name of the Reference Model publisher.
1..1 rm_package: String Name of the package in whose reachability graph the rm_

class class is found (there can be more than one possibility
in many reference models).

1..1 rm_class: String Name of the root class of this archetype.
1..1 concept_id: String The short concept name of the archetype as used in the mul-

ti-axial archetype_hrid.
1..1 release_version: String The full numeric version of this archetype consisting of 3

parts, e.g. 1.8.2. The archetype_hrid feature includes only
the major version.

1..1 version_status:
VERSION_STATUS

The status of the version, i.e. released, release_candidate etc.

1..1 build_count: String The build count since last increment of any version part.
Functions Signature Meaning

 semantic_id: String The ‘interface’ form of the HRID, i.e. down to the major
version.

 physical_id: String The ‘physical’ form of the HRID, i.e. with complete version
information.

 version_id: String Full version identifier string, based on release_version and
lifecycle, e.g. 1.8.2-rc.4.

 major_version: String Major version of this archetype, extracted from release_version.
 minor_version: String Minor version of this archetype, extracted from release_version.
 patch_version: String Patch version of this archetype, extracted from release_ver-

sion. Equivalent to patch version in patch version in semver.
org system.

Invariant Inv_rm_publisher_validity: not rm_publisher.is_empty
 Inv_rm_package_validity: not rm_package.is_empty
 Inv_class_name_validity: not rm_class.is_empty
 Inv_concept_id_validity: not concept_id.is_empty
 Inv_release_version_validity: valid_version (release_version)

﻿

© ISO 2019 – All rights reserved� 27

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.6.9	 TEMPLATE class

Class TEMPLATE
Description Class representing source template, i.e. a kind of archetype that may include template

overlays, and may be restricted by tools to only defining mandations, prohibitions, and
restrictions on elements already defined in the flat parent.

Inherit AUTHORED_ARCHETYPE
Attributes Signature Meaning

0..1 overlays: List<TEMPLATE_OVERLAY> Overlay archetypes, i.e. partial archetypes that
include full definition and terminology, but logi-
cally derive all their meta-data from the owning
template.

Invariant Inv_is_specialised: is_specialised

7.3.6.10	 TEMPLATE_OVERLAY class

Class TEMPLATE_OVERLAY
Description A concrete form of the bare ARCHETYPE class, used to represent overlays in a source

template. Overlays have no meta-data of their own, and are instead documented by their
owning template.

Inherit ARCHETYPE
Invariant Inv_is_specialised: is_specialised

7.3.6.11	 OPERATIONAL_TEMPLATE class

Class OPERATIONAL_TEMPLATE
Description Root object of an operational template. An operational template is derived from a TEM-

PLATE definition and the ARCHETYPEs and/or TEMPLATE_OVERLAYs mentioned by
that template by a process of flattening, and potentially removal of unneeded languages
and terminologies.
An operational template is used for generating and validating canonical EHR data, and
also as a source artefact for generating other downstream technical artefacts, including
XML schemas, APIs and UI form definitions.

Inherit AUTHORED_ARCHETYPE
Attributes Signature Meaning

0..1 component_terminologies: Hash<ARCHETYPE_
TERMINOLOGY, String>

Compendium of flattened terminologies
of archetypes externally referenced
from this archetype, keyed by archetype
identifier. This will almost always be
present in a template.

0..1 terminology_extracts: Hash<ARCHETYPE_
TERMINOLOGY, String>

Directory of term definitions as a
two-level table. The outer hash keys are
term codes, e.g. "at4", and the inner hash
key are term attribute names, e.g. "text",
"description" etc.

Functions Signature Meaning
 component_terminology (an_id: String):

ARCHETYPE_TERMINOLOGY

Invariant Specialisation_validity: is_specialised

﻿

28� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.3.7	 Validity rules

The following validity rules apply to all varieties of ARCHETYPE object.

—	 VARAV: ADL version validity. The adl_version top-level meta-data item, if provided, shall exist and
consist of a valid 3-part version identifier.

—	 VARRV: RM release validity. The rm_release top-level meta-data item shall exist and consist of a
valid 3-part version identifier.

—	 VARCN: archetype concept validity. The node_id of the root object of the archetype shall be of the
form id1\{.1}*, where the number of ‘.1’ components equals the specialisation depth, and shall be
defined in the terminology.

—	 VATDF: value code validity. Each value code (at-code) used in a term constraint in the archetype
definition shall be defined in the term_definitions part of the terminology of the flattened form of
the current archetype.

—	 VACDF: constraint code validity. Each value set code (ac-code) used in a term constraint in the
archetype definition shall be defined in the term_definitions part of the terminology of the current
archetype.

—	 VATDA: value set assumed value code validity. Each value code (at-code) used as an assumed_value
for a value set in a term constraint in the archetype definition shall exist in the value set definition
in the terminology for the identified value set.

—	 VETDF: external term validity. Each external term used within the archetype definition shall exist
in the relevant terminology (subject to tool accessibility; codes for inaccessible terminologies should
be flagged with a warning indicating that no verification was possible).

—	 VOTM: terminology translations validity. Translations shall exist for term_definitions and
constraint_definitions sections for all languages defined in the description / translations section.

—	 VOKU: object key unique. Within any keyed list in an archetype, including the description,
terminology, and annotations sections, each item shall have a unique key with respect to its siblings.

—	 VARDT: archetype definition typename validity. The typename mentioned in the outer block of the
archetype definition section shall match the type mentioned in the first segment of the archetype id.

—	 VRANP: annotation path valid. Each path mentioned in an annotation within the annotations
section shall either be a valid archetype path, or a ‘reference model’ path, i.e. a path that is valid for
the root class of the archetype.

—	 VRRLP: rule path valid. Each path mentioned in a rule in the rules section shall be found within the
archetype, or be an RM-valid extension of a path found within the archetype.

The following validity rules apply to ARCHETYPE objects for which is_overlay = False.

—	 VARID: archetype identifier validity. The archetype shall have an identifier that conforms to the
specification for archetype identifiers.

—	 VDEOL: original language specified. An original_language section containing the meta-data of the
original authoring language shall exist.

—	 VARD: description specified. A description section containing the main meta-data of the archetype
shall exist.

The following rules apply to specialised archetypes.

—	 VASID: archetype specialisation parent identifier validity. The archetype identifier stated in the
specialise clause shall be the identifier of the immediate specialisation parent archetype.

﻿

© ISO 2019 – All rights reserved� 29

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

—	 VALC: archetype language conformance. The languages defined in a specialised archetype shall be
the same as or a subset of those defined in the flat parent.

—	 VACSD: archetype concept specialisation depth. The specialisation depth of the concept code shall
be one greater than the specialisation depth of the parent archetype.

—	 VATCD: archetype code specialisation level validity. Each archetype term (‘at’ code) and constraint
code (‘ac’ code) used in the archetype definition part shall have a specialisation level no greater
than the specialisation level of the archetype.

7.4	 Constraint model package

7.4.1	 Overview

Figure 8 and Figure 9 illustrate the object model of constraints used in an archetype definition. This
model is completely generic, and is designed to express the semantics of constraints on instances
of classes which are themselves described in any orthodox object-oriented formalism, such as UML.
Accordingly, the major abstractions in this model correspond to major abstractions in object-oriented
formalisms, including several variations of the notion of 'object' and the notion of 'attribute'. The notion
of 'object' rather than 'class' or 'type' is used because archetypes are about constraints on data (i.e.
'instances', or 'objects') rather than models, which are constructed from 'classes'. In this document, the
word 'attribute' refers to any data property of a class, regardless of whether regarded as a 'relationship'
(i.e. association, aggregation, or composition) or 'primitive' (i.e. value) attribute in an object model.

Figure 8 — constraint_model package

The definition part of an archetype is an instance of a C_COMPLEX_OBJECT and consists of alternate layers
of object and attribute constrainer nodes, each containing the next level of nodes. At the leaves are
primitive object constrainer nodes constraining primitive types such as String, Integer etc. There are
also nodes that represent internal references to other nodes, constraint reference nodes that refer to a
text constraint in the constraint binding part of the archetype terminology, and archetype constraint

﻿

30� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

nodes, which represent constraints on other archetypes allowed to appear at a given point. The full list
of concrete node types is as follows.

—	 C_COMPLEX_OBJECT : any interior node representing a constraint on instances of some non-primitive
type, e.g. OBSERVATION , SECTION.

—	 C_ATTRIBUTE : a node representing a constraint on an attribute (i.e. UML 'relationship' or 'primitive
attribute') in an object type.

—	 C_PRIMITIVE_OBJECT : an node representing a constraint on a primitive (built-in) object type.

—	 C_COMPLEX_OBJECT_PROXY : a node that refers to a previously defined C_COMPLEX_OBJECT node in the
same archetype. The reference is made using a path.

—	 ARCHETYPE_SLOT : a node whose statements define a constraint that determines which other
archetypes can appear at that point in the current archetype. It can be thought of like a keyhole, into
which few or many keys might fit, depending on how specific its shape is. Logically it has the same
semantics as a C_COMPLEX_OBJECT , except that the constraints are expressed in another archetype,
not the current one.

—	 C_ARCHETYPE_ROOT : stands for the root node of an archetype; enables another archetype to be
referenced from the present one. Used in both archetypes and templates.

The constraints define which configurations of reference model class instances are considered to
conform to the archetype. For example, certain configurations of the classes PARTY , ADDRESS , CLUSTER
and ELEMENT might be defined by a Person archetype as allowable structures for 'people with identity,
contacts, and addresses'. Because the constraints allow optionality, cardinality and other choices, a
given archetype usually corresponds to a set of similar configurations of objects.

Figure 9 — constraint_model.primitive package

﻿

© ISO 2019 – All rights reserved� 31

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

The type-name nomenclature C_XXX used here is intended to be read as "constraint on objects of type
XXXX ", i.e. a C_COMPLEX_OBJECT is a "constraint on a complex object (defined by a complex reference
model type)". These type names are used below in the formal model.

7.4.2	 Semantics

The effect of the model is to create archetype description structures that are a hierarchical alternation
of object and attribute constraints. The repeated object/attribute hierarchical structure of an archetype
provides the basis for using paths to reference any node in an archetype, e.g. /attributeA[objectIdX]/
attribute[objectIdY]. Archetype paths follow a syntax that is a directly convertible in and out of the
W3C Xpath syntax.

7.4.2.1	 All node types

Path functions

A small number of properties are defined for all node types. The path feature computes the path to the
current node from the root of the archetype, while the has_path function indicates whether a given
path can be found in an archetype.

Conformance functions

All node types include two functions that formalise the notion of conformance of a specialised
archetype to a parent archetype. Both functions take an argument which shall be a corresponding node
in a parent archetype, not necessarily the immediate parent. A 'corresponding' node is one found at the
same or a congruent path. A congruent path is one in which one or more at-codes have been redefined in
the specialised archetype.

The c_conforms_to function returns True if the node on which it is called is a valid specialisation of the
'other' node. The c_congruent_to function returns True if the node on which it is called is the same as the
other node, with the possible exception of a redefined at-code. The latter might happen due to the need
to restrict the domain meaning of node to a meaning narrower than that of the same node in the parent.

Any_allowed

The any_allowed function defined on some node types indicates that any value permitted by the
reference model for the attribute or type in question is allowed by the archetype; its use permits the
logical idea of a completely "open" constraint to be simply expressed, avoiding the need for any further
substructure.

7.4.2.2	 Attribute nodes

Constraints on reference model attributes, including computed attributes (represented by functions
with no arguments in most programming languages), are represented by instances of C_ATTRIBUTE .
The expressible constraints include:

—	 is_multiple: a flag that indicates whether the C_ATTRIBUTE is constraining a multiply-valued (i.e.
container) RM attribute or a single-valued one;

—	 existence: whether the corresponding instance (defined by the rm_attribute_name attribute)
shall exist;

—	 child objects: representing allowable values of the object value(s) of the attribute.

In the case of single-valued attributes (such as Person.date_of_birth) the children represent one or more
alternative object constraints for the attribute value.

For multiply-valued attributes (such as Person.contacts: List<Contact>), a cardinality constraint on
the container can be defined. The constraint on child objects is essentially the same except that more

﻿

32� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

than one of the alternatives can co-exist in the data. Figure 10: C_ATTRIBUTE variants illustrates the
two possibilities.

The appearance of both existence and cardinality constraints in C_ATTRIBUTE deserves some
explanation, especially as the meanings of these notions are often confused in object-oriented literature.
An existence constraint indicates whether an object will be found in a given attribute field, while a
cardinality constraint indicates what the valid membership of a container object is. Cardinality is only
required for container objects such as List<T> , Set<T> and so on, whereas existence is always possible.
If both are used, the meaning is as follows: the existence constraint says whether the container object
will be there (at all), while the cardinality constraint says how many items shall be in the container, and
whether it acts logically as a list, set or bag. Both existence and cardinality are optional in the model,
since they are only needed to override the settings from the reference model.

Figure 10 — C_ATTRIBUTE variants

7.4.2.3	 Object node types

Node_id and Paths

The node_id attribute in the class C_OBJECT, inherited by all subtypes, is of key importance in the
archetype constraint model. It has two functions:

—	 it allows archetype object constraint nodes to be individually identified, and in particular, guarantees
sibling node unique identification;

—	 it provides a code to which a human-understanding terminology definition can be attached, as well
as potentially a terminology binding.

The existence of node_ids in an archetype allows archetype paths to be created, which refer to each
node. Every node in the archetype needs a node_id , but only node_ids for nodes under container
attributes shall have a terminology definition. For nodes under single-valued attributes, the terminology
definition is optional (and typically not supplied), since the meaning is given by the reference model
attribute definition.

Sibling ordering

﻿

© ISO 2019 – All rights reserved� 33

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Within a specialised archetype, redefined or added object nodes may be defined under a container
attribute. Since specialised archetypes are in differential form, i.e. only redefined or added nodes are
expressed, not nodes inherited unchanged, the relative ordering of siblings can’t be stated simply by
the ordering of such items within the relevant list within the differential form of the archetype. An
explicit ordering indicator is required if indeed order is specific. The C_OBJECT.sibling_order attribute
provides this possibility. It can only be set on a C_OBJECT descendant within a multiply-valued attribute,
i.e. an instance of C_ATTRIBUTE for which the cardinality is ordered.

Node deprecation

It is possible to mark an instance of any defined node type as deprecated, meaning that by preference it
should not be used, and that there is an alternative solution for recording the same information. Rules
or recommendations for how deprecation should be handled are outside the scope of the archetype
proper, and should be provided by the governance framework under which the archetype is managed.

7.4.2.4	 Defined object nodes (C_DEFINED_OBJECT)

The C_DEFINED_OBJECT subtype corresponds to the category of C_OBJECTs that are defined in an
archetype by value, i.e. by inline definition. Four properties characterize C_DEFINED_OBJECTs as follows.

Valid_value

The valid_value function tests a reference model object for conformance to the archetype. It is designed
for recursive implementation in which a call to the function at the top of the archetype definition would
cause a cascade of calls down the tree. This function is the key function of an 'archetype-enabled kernel'
component that can perform runtime data validation based on an archetype definition.

Prototype_value

This function is used to generate a reasonable default value of the reference object being constrained
by a given node. This allows archetype-based software to build a 'prototype' object from an archetype
which can serve as the initial version of the object being constrained, assuming it is being created new
by user activity (e.g. via a GUI application). Implementation of this function will usually involve use of
reflection libraries or similar.

Default_value

This attribute allows a user-specified default value to be defined within an archetype. The default_value
object shall be of the same type as defined by the prototype_value function, pass the valid_value test.
Where defined, the prototype_value function would return this value instead of a synthesised value.

'Frozen' nodes

A node may be redefined into multiple child nodes in a specialised archetype. If the children are
considered to exhaustively define the value space corresponding to the original node, the latter may be
'frozen', meaning no further children can be defined. This also has a runtime implication: a frozen node
cannot have any instances, only its children can.

7.4.2.5	 Reference objects

The types ARCHETYPE_SLOT and C_COMPLEX_OBJECT_PROXY are used to express, respectively, a 'slot' where
further archetypes can be used to continue describing constraints; a reference to a part of the current
archetype that expresses exactly the same constraints needed at another point.

7.4.2.6	 Complex objects (C_COMPLEX_OBJECT)

Along with C_ATTRIBUTE, C_COMPLEX_OBJECT is the key structuring type of the constraint_model
package, and consists of attributes of type C_ATTRIBUTE , which are constraints on the attributes (i.e. any
property, including relationships) of the reference model type. Accordingly, each C_ATTRIBUTE records
the name of the constrained attribute (in rm_attr_name) , the existence and cardinality expressed by

﻿

34� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

the constraint (depending on whether the attribute it constrains is a multiple or single relationship),
and the constraint on the object to which this C_ATTRIBUTE refers via its children attribute (according
to its reference model) in the form of further C_OBJECTs .

7.4.2.7	 Primitive types (C_PRIMITIVE_OBJECT descendants)

Constraints on primitive types are defined by the classes inheriting from C_PRIMITIVE_OBJECT , i.e. C_
STRING , C_INTEGER and so on. The primitive types are represented in such a way as to accommodate
both 'tuple' constraints and logically unary constraints, using a tuple array whose members are
each a primitive constraint corresponding to each primitive type. Tuple constraints are second
order constraints, described below, enable co-varying constraints to be stated. In the unary case, the
constraint is the first member of a tuple array.

The primitive constraint for each primitive type may itself be complex. Its type is given by the type of the
constraint accessor in each C_PRIMITIVE_OBJECT descendant and is summarised in the following table.

Primitive type Primitive constrainer type Explanation
Boolean List <Boolean> Can represent one or two Boolean

values, enabling the logical constraints
'true', 'false' and 'true or false' to be
expressed.

String List <String> A list of possible string values, which
may include regular expressions,
which are delimited by '/' characters.

Terminology_code String - [acN] or [atN]` A string containing either a single at-
code or a single ac-code. In the latter
case, the constraint refers to either a
locally defined value set or (via a bind-
ing) an external value set.

Ordered types List <Interval<T>> Can represent a single value (which is
a point interval), a list of values (list
of point intervals), a list of intervals,
which may be mixed proper and point
intervals.

Integer List <Interval<Integer>> As for Ordered type, with T = Integer
Real List <Interval<Real>> As for Ordered type, with T = Real
Temporal types List <Interval<T→ISO8601_TYPE>>

OR
String (ADL pattern)

As for ordered types, with T being an
ISO8601-based type, with the addition
of a second type constraint - a pattern
based on ISO 8601 syntax.

Date List <Interval<ISO8601_DATE>>
OR
pattern

As for Temporal types with T =
ISO8601_DATE

Time List <Interval<ISO8601_TIME>>
OR
pattern

As for Temporal types with T =
ISO8601_TIME

Date_time List <Interval<ISO8601_DATE_TIME>>
OR
pattern

As for Temporal types with T =
ISO8601_DATE_TIME

Duration List <Interval<ISO8601_DURATION>>
OR
pattern

As for Temporal types with T =
ISO8601_DURATION

Assumed_value

﻿

© ISO 2019 – All rights reserved� 35

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

The assumed_value attribute is useful for archetypes containing any optional constraint. and provides
an ability to define a value that can be assumed for a data item for which no data is found at execution
time. If populated, it can contain a single at-code that shall be in the local value set referred to by the ac-
code in the constraint attribute.

For example, an archetype for the concept 'blood pressure measurement' might contain an optional
protocol section containing a data point for patient position, with choices 'lying', 'sitting' and 'standing'.
Since the section is optional, data could be created according to the archetype which does not contain
the protocol section. However, a blood pressure cannot be taken without the patient in some position, so
clearly there is an implied value for patient position. Amongst clinicians, basic assumptions are nearly
always made for such things: in general practice, the position could always safely be assumed to be
"sitting" if not otherwise stated; in the hospital setting, "lying" would be the normal assumption. The
assumed_value feature of archetypes allows such assumptions to be explicitly stated so that all users/
systems know what value to assume when optional items are not included in the data.

Note that the notion of assumed values is distinct from that of 'default values'. The latter notion is that
of a default 'pre-filled' value that is provided (normally in a local context by a template) for a data item
that is to be filled in by the user, but which is typically the same in many cases. Default values are thus
simply an efficiency mechanism for users. As a result, default values do appear in data, while assumed
values don’t.

7.4.2.8	 Terminology constraints (C_TERMINOLOGY_CODE)

The C_TERMINOLOGY_CODE type entails some complexity and merits further explanation. This is the
only constrainer type whose constraint semantics are not self-contained, but located in the archetype
terminology and/or in external terminologies.

A C_TERMINOLOGY_CODE instance in an archetype is simple: it can only be one of the following constraints:

—	 a single ac-code, referring to either a value-set defined in the archetype terminology or bound to an
external value set or ref set;

—	 in this case, an additional at-code may be included as an assumed value; the at-code shall come
from the locally defined value set;

—	 a single at-code, representing a single possible value.

NOTE	 The second case in theory can be done using an ac-code referring to a value set containing a single
value, but there seems little value in this extra verbiage, and little cost in providing the single-member value set
short cut.

This class may be used to constrain coded types such as ISO 13606-1 CODED_VALUE or CODED_SIMPLE
datatypes.

In addition, a C_TERMINOLOGY_CODE instance can reconstitute the internal value set via access to the
archetype terminology (this has to be set up within the implementation). If bindings are evaluated,
the external form of a value set can potentially be obtained as well. The utility of this is to be able to
evaluate and cache certain external 'ref sets' when evaluating the Operational Template.

Terminology code resolution

When an archetype is deployed in the form of an operational template, the internally defined value sets,
and any bindings are processed in stages in order to obtain the final terminology codes from which the
user should choose. The C_TERMINOLOGY_CODE class provides a number of functions to formalize this as
follows.

—	 value_set_expanded: List<String>: this function converts an ac-code to its corresponding set of
at-codes, as defined in the value_sets section of the archetype.

—	 value_set_substituted: List<URI>: where bindings exist to the value set at-codes, this function
converts each code to its corresponding binding target, i.e. a URI.

﻿

36� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

—	 value_set_resolved: List<TERMINOLOGY_CODE>: this function converts the list of URIs to final
terms, including with textual rubrics, i.e. a list of TERMINOLOGY_CODEs.

These functions would normally be implemented as 'lambdas' or 'agents', in order to obtain access to
the target terminologies.

Since an archetype might not contain external terminology bindings for all (or even any) of its
terminological constraints, a 'resolved' archetype will usually contain at-codes in its cADL definition.
These at-codes would be treated as real coded terms in any implementation that was creating data, and
as a consequence, archetype at-codes could occur in real data.

7.4.2.9	 Constraints on enumeration types

Enumeration types in the reference model are assumed to have semantics expected in UML, and
mainstream programming languages, i.e. to be a distinct type based on a primitive type, normally
Integer or String. Each such type consists of a set of values from the domain of its underlying type, thus,
a set of Integer, String or other primitive values. Each of these values is assumed to be named in the
manner of a symbolic constant. Although strictly speaking UML does not require an enumerated type
to be based on an underlying primitive type, programming languages do, hence the assumption here
that values from the domain of such a type are involved.

A constraint on an enumerated type therefore consists of an AOM instance of a C_PRIMITIVE descendant,
almost always C_INTEGER or C_STRING. The flag is_enumerated_type_constraint defined on C_PRIMITIVE
indicates that a given C_PRIMITIVE is a constrainer for an enumerated type.

Since C_PRIMITIVEs don’t have type names in ADL, the type name is inferred by any parser or compiler
tool that deserialises an archetype from ADL, and stored in the rm_type attribute inherited from C_
OBJECT. An example is shown below in Figure 11 of a type enumeration.

Figure 11 — Enumerated constraint

A parser that deserializes from an object dump format such as ODIN, JSON or XML will not need to do this.

The form of the constraint itself is simply a series of Integer, String or other primitive values, or an
equivalent range or ranges. In the above example, the ADL equivalent of the pk_percent, pk_fraction
constraint on a field of type PROPORTION_KIND is in fact just \{2, 3}, and it is visualised by lookup to show
the relevant symbolic names.

﻿

© ISO 2019 – All rights reserved� 37

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.4.3	 Second order constraints

All of the constraint semantics described above can be considered 'first order' in the sense that they
define how specific object/attribute/object hierarchies are defined in the instance possibility space of
some part of a reference model.

Some constraints however do not fit directly within the object/attribute/object hierarchy scheme, and
are considered 'second order constraints' in the archetype formalism. The 'rule' constraints constitute
one such group. These constraints are defined in terms of first order predicate logic statements that can
refer to any number of constraint nodes within the main hierarchy. These are described in Figure 16:
Rules package.

Another type of second order constraint can be 'attached' to the object/attribute/object hierarchy in
order to further limit structural possibilities. Although these constraints could also theoretically be
expressed as rules, they are supported by direct additions to the main constraint model since they can
be easily and intuitively represented 'inline' in ADL and corresponding AOM structures.

7.4.3.1	 Tuple constraints

Tuple constraints are designed to account for the very common need to constrain the values of more
than one RM class attribute together. This effectively treats the attributes in question as a tuple, and the
corresponding object constraints are accordingly modelled as tuples. Additions to the main constraint
model to support tuples are shown in Figure 12 below.

Figure 12 — Tuple constraint model

In this model, the type C_ATTRIBUTE_TUPLE groups the co-constrained C_ATTRIBUTE`s under a `C_
COMPLEX_OBJECT. Currently the concrete type is limited to being C_PRIMITIVE_OBJECT, to reduce
complexity, and since this caters for the known examples of tuple constraints. In principle, any C_
DEFINED_OBJECT would be allowed, and this might change in the future.

The tuple constraint type replaces all domain-specific constraint types defined in ADL/AOM 1.4,
including C_DV_QUANTITY and C_DV_ORDINAL.

These additions allow standard constraint structures (i.e. C_ATTRIBUTE / C_COMPLEX_OBJECT / C_
PRIMITIVE_OBJECT hierarchies) to be 'annotated', while leaving the first order structure intact. The
following example shows an archetype instance structure in which a notional ORDINAL type is constrained.
The logical requirement is to constrain an ORDINAL to one of three instance possibilities, each of which
consists of a pair of values for the attributes value and symbol, of type Integer and TERMINOLOGY_CODE

﻿

38� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

respectively. Each of these three instance constraints should be understood as an alternative for the
single valued owning attribute, ELEMENT .value. Tuple constraints achieve the requirement to express
the constraints as pairs not just as allowable alternatives at the final leaf level, which would incorrectly
allowing any mixing of the Integer and code values, as illustrated in Figures 13 and 14.

Figure 13 — Tuple constraint example AOM instances

Figure 14 — Tuple constraint example data

7.4.3.2	 Assertions

Assertions are also used in ARCHETYPE_SLOTs, in order to express the 'included' and 'excluded' archetypes
for the slot. In this case, each assertion is an expression that refers to parts of other archetypes, such
as its identifier (e.g. 'include archetypes with short_concept_name matching xxxx '). Assertions are
modelled here as a generic expression tree of unary prefix and binary infix operators.

7.4.4	 AOM type substitutions

Specialised archetypes can redefine the types of the AOM objects from parent archetypes. Not all type
substitutions are valid, so this section provides the rules for these substitutions.

The C_OBJECT types defined in Figure 8: constraint_model Package are reproduced below in Figure 15,
with concrete types that may actually occur in archetypes shown in dark yellow / non-italic.

﻿

© ISO 2019 – All rights reserved� 39

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Figure 15 — C_Object substitutions

Within a specialised archetype, nodes that redefine corresponding nodes in the parent are normally
of the same C_OBJECT type (we can think of this as a 'meta-type', since the RM type is the 'type' in the
information model sense), but in some cases might also be of different C_OBJECT types.

The rules for meta-type redefinition are as follows:

—	 A node of each meta-type can be redefined by a node of the same meta-type, with narrowed / added
constraints;

—	 ARCHETYPE_SLOT can be redefined by:

—	 one or more C_ARCHETYPE_ROOT nodes taken together, considered to define a 'filled' version of
the slot;

—	 an ARCHETYPE_SLOT , in order to close the slot.

—	 A C_ARCHETYPE_ROOT node can be redefined by:

—	 A C_ARCHETYPE_ROOT, where the archetype_ref of the redefining node is a specialisation of that
mentioned in the parent node.

—	 A terminal C_COMPLEX_OBJECT node containing no constraint other than RM type, node_id and
possibly occurrences (i.e. having no substructure), can be redefined by a constraint of any other
AOM type.

The 'terminal C_COMPLEX_OBJECT ' can be understood as a placeholder node primarily defined for the
purpose of stating meaning.

﻿

40� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.4.5	 Class definitions

7.4.5.1	 ARCHETYPE_CONSTRAINT class

Class ARCHETYPE_CONSTRAINT (abstract)
Description Defines common constraints for any class in the reference model that has an archetype_

id property.
Attributes Signature Meaning

0..1 parent:
0..1 soc_parent: C_SECOND_ORDER

Functions Signature Meaning
 is_prohibited: Boolean True if this node (and all its sub-nodes) is a valid

archetype node for its type. This function should
be implemented by each subtype to perform se-
mantic validation of itself, and then call the is_valid
function in any subparts, and generate the result
appropriately.

 has_path (a_path: String): boolean True if the relative path a_path exists at this node.
 path: String Path of this node relative to root of archetype.
 c_conforms_to (other: ARCHETYPE_

CONSTRAINT): Boolean
True if constraints represented by this node, ig-
noring any sub-parts, are narrower or the same as
other. Typically used during validation of special-
ised archetype nodes.

 c_congruent_to (other: ARCHETYPE_
CONSTRAINT): Boolean

True if constraints represented by this node con-
tain no further redefinitions with respect to the
node other, with the exception of node_id redefini-
tion in C_OBJECT nodes. Typically used to test if an
inherited node locally contains any constraints.

 is_second_order_constrained:
Boolean

 is_root: Boolean
 is_leaf: Boolean

7.4.5.2	 C_ATTRIBUTE class

Class C_ATTRIBUTE
Description Abstract model of constraint on any kind of attribute in a class model.

Inherit ARCHETYPE_CONSTRAINT
Attributes Signature Meaning

1..1 rm_attribute_name: String Reference model attribute within the enclos-
ing type represented by a C_OBJECT.

0..1 existence: MULTIPLICITY_INTERVAL Constraint settable on every attribute,
regardless of whether it is singular or of a
container type, which indicates whether its
target object exists or not (i.e. is mandatory
or not). Only set if it overrides the underly-
ing reference model or parent archetype in
the case of specialised archetypes.

﻿

© ISO 2019 – All rights reserved� 41

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0..1 children: List<C_OBJECT> Child C_OBJECT nodes. Each such node
represents a constraint on the type of this
attribute in its reference model. Multiples
occur both for multiple items in the case of
container attributes, and alternatives in the
case of singular attributes.

0..1 differential_path: String Path to the parent object of this attribute (i.e.
doesn’t include the name of this attribute).
Used only for attributes in differential form,
specialised archetypes. Enables only the
re-defined parts of a specialised archetype to
be expressed, at the path where they occur.

0..1 cardinality: CARDINALITY Cardinality constraint of attribute, if a con-
tainer attribute.

1..1 is_multiple: Boolean Flag indicating whether this attribute con-
straint is on a container (i.e. multiply-val-
ued) attribute.

Functions Signature Meaning
 any_allowed: Boolean
 is_mandatory: Boolean
 rm_attribute_path: String Path of this attribute with respect to owning

C_OBJECT, including differential path where
applicable.

 is_single: Boolean True if this node logically represents a
single-valued attribute. Evaluated as not
is_multiple.

(effected) c_congruent_to (other: ARCHETYPE_
CONSTRAINT): Boolean
Post: Result = existence = Void and is_sin-
gle and other.is_single) or (is_multiple and
other.is_multiple and cardinality = Void

True if constraints represented by this
node contain no further redefinitions with
respect to the node other, with the exception
of node_id redefnition in C_OBJECT nodes.
Typically used to test if an inherited node
locally contains any constraints.

(effected) c_conforms_to (other: ARCHETYPE_
CONSTRAINT): Boolean
Post: Result = existence_conforms_to
(other) and is_single and other.is_single)
or else (is_multiple and cardinality_con-
forms_to (other)

True if constraints represented by this node,
ignoring any sub-parts, are narrower or the
same as other. Typically used during valida-
tion of specialised archetype nodes.

Conformance semantics

The following functions formally define the conformance of an attribute node in a specialised archetype
to the corresponding node in a parent archetype, where 'corresponding' means a node found at the
same or a congruent path.

c_conforms_to (other: like Current): Boolean
 require
 other /= Void
 do
 Result := existence_conforms_to (other) and
 ((is_single and other.is_single) or else
 (is_multiple and cardinality_conforms_to (other)))
 end
c_congruent_to (other: like Current): Boolean
 require
 other /= Void
 do
 Result := existence = Void and ((is_single and other.is_single) or

﻿

42� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

 (is_multiple and other.is_multiple and cardinality = Void))
 end
existence_conforms_to (other: like Current): Boolean
 require
 other_exists: other /= Void
 do
 if existence /= Void and other.existence /= Void then
 Result := other.existence.contains (existence)
 else
 Result := True
 end
 end
cardinality_conforms_to (other: like Current): Boolean
 require
 other_exists: other /= Void
 do
 if cardinality /= Void and other.cardinality /= Void then
 Result := other.cardinality.contains (cardinality)
 else
 Result := True
 end
 end
Validity rules

The validity rules are as follows.

—	 VCARM: attribute name reference model validity: an attribute name introducing an attribute
constraint block shall be defined in the underlying information model as an attribute (stored or
computed) of the type which introduces the enclosing object block.

—	 VCAEX: archetype attribute reference model existence conformance: the existence of an attribute,
if set, shall conform, i.e. be the same or narrower, to the existence of the corresponding attribute in
the underlying information model.

—	 VCAM: archetype attribute reference model multiplicity conformance: the multiplicity, i.e. whether
an attribute is multiply- or single-valued, of an attribute shall conform to that of the corresponding
attribute in the underlying information model.

—	 VDIFV: archetype attribute differential path validity: an archetype may only have a differential
path if it is specialised.

The following validity rule applies to redefinition in a specialised archetype.

—	 VDIFP: specialised archetype attribute differential path validity: if an attribute constraint has a
differential path, the path shall exist in the flat parent, and also be valid with respect to the reference
model, i.e. in the sense that it corresponds to a legal potential construction of objects.

—	 VSANCE: specialised archetype attribute node existence conformance: the existence of a
redefined attribute node in a specialised archetype, if stated, shall conform to the existence of the
corresponding node in the flat parent archetype, by having an identical range, or a range wholly
contained by the latter.

—	 VSAM: specialised archetype attribute multiplicity conformance: the multiplicity, i.e. whether
an attribute is multiply- or single-valued, of a redefined attribute shall conform to that of the
corresponding attribute in the parent archetype.

The following validity rules apply to single-valued attributes, i.e. when C_ATTRIBUTE.is_multiple is False.

—	 VACSO: single-valued attribute child object occurrences validity: the occurrences of a child object
of a single-valued attribute cannot have an upper limit greater than 1.

The following validity rules apply to container attributes, i.e. when C_ATTRIBUTE.is_multiple is True.

—	 VACMCU: cardinality/occurrences upper bound validity: where a cardinality with a finite upper
bound is stated on an attribute, for all immediate child objects for which an occurrences constraint

﻿

© ISO 2019 – All rights reserved� 43

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

is stated, the occurrences shall either have an open upper bound (i.e. n..*) which is interpreted as
the maximum value allowed within the cardinality, or else a finite upper bound which is ⇐ the
cardinality upper bound.

—	 VACMCO: cardinality/occurrences orphans: it shall be possible for at least one instance of one
optional child object (i.e. an object for which the occurrences lower bound is 0) and one instance of
every mandatory child object (i.e. object constraints for which the occurrences lower bound is >= 1)
to be included within the cardinality range.

—	 VCACA: archetype attribute reference model cardinality conformance: the cardinality of an attribute
shall conform, i.e. be the same or narrower, to the cardinality of the corresponding attribute in the
underlying information model.

The following validity warnings apply to container attributes, i.e. when C_ATTRIBUTE.is_multiple is True.

—	 WACMCL: cardinality/occurrences lower bound validity: where a cardinality with a finite upper
bound is stated on an attribute, for all immediate child objects for which an occurrences constraint
is stated, the sum of occurrences lower bounds should be lower than the cardinality upper limit.

The following validity rule applies to cardinality redefinition in a specialised archetype.

—	 VSANCC: specialised archetype attribute node cardinality conformance: the cardinality of a
redefined (multiply-valued) attribute node in a specialised archetype, if stated, shall conform to the
cardinality of the corresponding node in the flat parent archetype by either being identical, or being
wholly contained by the latter.

7.4.5.3	 CARDINALITY class

Class CARDINALITY
Description Express constraints on the cardinality of container objects which are the values of mul-

tiply-valued attributes, including uniqueness and ordering, providing the means to state
that a container acts like a logical list, set or bag. The cardinality cannot contradict the
cardinality of the corresponding attribute within the relevant reference model.

Attributes Signature Meaning
1..1 interval: MULTIPLICITY_INTERVAL The interval of this cardinality.
1..1 is_ordered: Boolean True if the members of the container attribute

to which this cardinality refers are ordered.
1..1 is_unique: Boolean True if the members of the container attribute

to which this cardinality refers are unique.
Functions Signature Meaning

 is_bag: Boolean True if the semantics of this cardinality represent
a bag, i.e. unordered, non-unique membership.

 is_list: Boolean True if the semantics of this cardinality repre-
sent a list, i.e. ordered, non-unique membership.

 is_set: Boolean True if the semantics of this cardinality represent
a bag, i.e. unordered, non-unique membership.

7.4.5.4	 C_OBJECT class

Class C_OBJECT (abstract)
Description Abstract model of constraint on any kind of object node.

Inherit ARCHETYPE_CONSTRAINT
Attributes Signature Meaning

1..1 rm_type_name: String Reference model type that this node corresponds to.

﻿

44� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0..1 occurrences: MULTIPLICITY_
INTERVAL

Occurrences of this object node in the data, under the
owning attribute. Upper limit can only be greater than
1 if owning attribute has a cardinality of more than 1.
Only set if it overrides the parent archetype in the case
of specialised archetypes, or else the occurrences in-
ferred from the underlying reference model existence
and/or cardinality of the containing attribute.

1..1 node_id: String Semantic identifier of this node, used to distinguish
sibling nodes. All nodes shall have a node_id; for nodes
under a container C_ATTRIBUTE, the id shall be an
id-code shall be defined in the archetype terminolo-
gy. For valid structures, all node ids are id-codes. For
C_PRIMITIVE_OBJECTs, it will have the special value
Primitive_node_id.

0..1 is_deprecated: Boolean True if this node and by implication all sub-nodes are
deprecated for use.

0..1 sibling_order: SIBLING_ORDER Optional indicator of order of this node with respect
to another sibling. Only meaningful in a specialised
archetype for a C_OBJECT within a C_ATTRIBUTE with
is_multiple = True.

Functions Signature Meaning
 specialisation_depth: Integer Level of specialisation of this archetype node, based

on its node_id. The value 0 corresponds to non-spe-
cialised, 1 to first-level specialisation and so on. The
level is the same as the number of ‘.’ characters in the
node_id code. If node_id is not set, the return value is
-1, signifying that the specialisation level should be
determined from the nearest parent C_OBJECT node
having a node_id.

Occurrences inferencing rules

The notion of 'occurrences' does not exist in an object model that might be used as the reference model
on which archetypes are based, because it is a class model. However, archetypes make statements
about how many objects conforming to a specific object constraint node might exist, within a container
attribute. In an operational template, an occurrences constraint is required on all children of container
attributes. Most such constraints come from the source template(s) and archetypes, but in some cases,
there will be nodes with no occurrences. In these cases, the occurrences constraint is inferred from the
reference model according to the following algorithm, where c_object represents any object node in an
archetype.

if not c_object.is_root and c_object.occurrences = Void then
 if is_container_attribute_in_rm (c_object.parent) then
 if rm_parent_attr.cardinality.upper_unbounded then
 c_object.set_occurrences (|0..*|)
 else
 c_object.set_occurrences (|0..rm_parent_attr.cardinality.upper|)
 end
 else
 c_object.set_occurrences (rm_parent_attr.existence)
 end
end
Occurrences is not really required on children of single-valued attributes, because the notional
occurrences is always the same as the existence constraint of the owning attribute in the flat parent
structure, or else the reference model.

Conformance semantics

﻿

© ISO 2019 – All rights reserved� 45

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

The following functions formally define the conformance of an object node in a specialised archetype to
the corresponding node in a parent archetype, where 'corresponding' means a node found at the same
or a congruent path.

c_conforms_to (other: like Current): Boolean
 require
 other /= Void
 do
 Result := node_id_conforms_to (other) and
 occurrences_conforms_to (other) and
 (rm_type_name.is_equal (other.rm_type_name) or else
 rm_types_conformant(rm_type_name, other.rm_type_name))
 end
c_congruent_to (other: like Current): Boolean
 -- True if this node makes no changes to 'other' (from a
 -- specialisation parent archetype) apart from possible
 -- change of node-id
 require
 other /= Void
 do
 Result := rm_type_name.is_case_insensitive_equal (other.rm_type_name) and
 (occurrences = Void or else occurrences ~ other.occurrences) and
 (sibling_order = Void or else sibling_order ~ other.sibling_order) and
 node_reuse_congruent (other)
 end
rm_type_conforms_to (other: like Current): Boolean
 require
 other /= Void
 do
 Result := rm_type_name.is_equal (other.rm_type_name) or
 rm_checker.is_sub_type_of (rm_type_name, other.rm_type_name)
 end
occurrences_conforms_to (other: like Current): Boolean
 require
 other_exists: other /= Void
 other_is_flat: other.occurrences /= Void
 do
 if occurrences /= Void and other.occurrences /= Void then
 Result := other.occurrences.contains (occurrences)
 else
 Result := True
 end
 end
node_id_conforms_to (other: like Current): Boolean
 require
 other_exists: other /= Void
 do
 Result := codes_conformant (node_id, other.node_id)
 end
Validity rules

The validity rules for all C_OBJECTs are as follows.

—	 VCORM object constraint type name existence: a type name introducing an object constraint block
shall be defined in the underlying information model.

—	 VCORMT object constraint type validity: a type name introducing an object constraint block shall
be the same as or conform to the type stated in the underlying information model of its owning
attribute.

—	 VCOCD object constraint definition validity: an object constraint block consists of one of the following
(depending on subtype): an 'any' constraint; a reference; an inline definition of sub-constraints, or
nothing, in the case where occurrences is set to {0}.

—	 VCOID object node identifier validity: every object node shall have a node identifier.

—	 VCOSU object node identifier validity: every object node shall be unique within the archetype.

﻿

46� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

The following validity rules govern C_OBJECTs in specialised archetypes.

—	 VSONT specialised archetype object node meta-type conformance: the meta-type of a redefined
object node (i.e. the AOM node type such as C_COMPLEX_OBJECT etc.) in a specialised archetype shall
be the same as that of the corresponding node in the flat parent, with the following exceptions: a C_
COMPLEX_OBJECT with no child attributes may be redefined by a node of any AOM type; a C_COMPLEX_
OBJECT_PROXY, may be redefined by a C_COMPLEX_OBJECT; a ARCHTEYPE_SLOT may be redefined by
C_ARCHETYPE_ROOT (i.e. 'slot-filling'). See also validity rules VDSSID and VARXID.

—	 VSONCT specialised archetype object node reference type conformance: the reference model type
of a redefined object node in a specialised archetype shall conform to the reference model type in
the corresponding node in the flat parent archetype by either being identical, or conforming via an
inheritance relationship in the relevant reference model.

—	 VSONIN specialised archetype new object node identifier validity: if an object node in a specialised
archetype is a new node with respect to the flat parent, and it carries a node identifier, the identifier
shall be a 'new' node identifier, specalised at the level of the child archetype.

—	 VSONIF specialised archetype object node identifier validity in flat siblings: the identification (or
not) of an object node in a specialised archetype shall be valid with respect to any sibling object
nodes in the flattened parent (see VACMI).

—	 VSONCO specialised archetype redefine object node occurrences validity: the occurrences of a
redefined object node in a specialised archetype, if stated, shall conform to the occurrences in the
corresponding node in the flat parent archetype by either being identical, or being wholly contained
by the latter.

—	 VSONPT specialised archetype prohibited object node AOM type validity: the occurrences of a
redefined object node in a specialised archetype, may only be prohibited (i.e. {0}) if the matching
node in the parent is of the same AOM type.

—	 VSONPI specialised archetype prohibited object node AOM node id validity: a redefined object node
in a specialised archetype with occurrences matching {0} shall have exactly the same node id as the
node in the flat parent being redefined.

—	 VSONPO specialised archetype object node prohibited occurrences validity: the occurrences of a
new (i.e. having no corresponding node in the parent flat) object node in a specialised archetype, if
stated, may not be 'prohibited', i.e. {0}, since prohibition only makes sense for an existing node.

—	 VSSM specialised archetype sibling order validity: the sibling order node id code used in a sibling
marker in a specialised archetype shall refer to a node found within the same container in the flat
parent archetype.

7.4.5.5	 SIBLING_ORDER class

Class SIBLING_ORDER
Description Defines the order indicator that can be used on a C_OBJECT within a container attrib-

ute in a specialised archetype to indicate its order with respect to a sibling defined in a
higher specialisation level.
Misuse: This type cannot be used on a C_OBJECT other than one within a container
attribute in a specialised archetype.

Attributes Signature Meaning
1..1 is_before: Boolean True if the order relationship is ‘before’, if False, it is ‘after’.
1..1 sibling_node_id: String Node identifier of sibling before or after which this node

should come.
Functions Signature Meaning

﻿

© ISO 2019 – All rights reserved� 47

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

 is_after: Boolean True if the order relationship is ‘after’, computed as the
negation of is_before.

7.4.5.6	 C_DEFINED_OBJECT class

Class C_DEFINED_OBJECT (abstract)
Description Abstract parent type of C_OBJECT subtypes that are defined by value, i.e. whose defini-

tions are actually in the archetype rather than being by reference.
Inherit C_OBJECT

Attributes Signature Meaning
0..1 is_frozen: Boolean True if this node is closed for further re-definition. Any child

nodes defined as sib-lings are considered to exhaustively rep-
resent the possible value space of this original parent node.

0..1 default_value: Any Default value set in a template, and present in an operational
template. Generally limited to leaf and near-leaf nodes.

Functions Signature Meaning
 valid_value (a_value:

Any): Boolean
True if a_value is valid with respect to constraint expressed in
concrete instance of this type.

 prototype_value: Any Generate a prototype value from this constraint object.
 h a s _ def au lt _v a lue :

Boolean
True if there is an assumed value.

7.4.5.7	 C_COMPLEX_OBJECT class

Class C_COMPLEX_OBJECT
Description Constraint on complex objects, i.e. any object that consists of other object constraints.

Inherit C_DEFINED_OBJECT
Attributes Signature Meaning

0..1 attributes: List<C_ATTRIBUTE> List of constraints on attributes of the refer-
ence model type represented by this object.

0..1 attribute_tuples: List<C_ATTRIBUTE_
TUPLE>

List of attribute tuple constraints under this
object constraint, if any.

Functions Signature Meaning
 any_allowed: Boolean True if any value (i.e. instance) of the reference

model type would be allowed. Redefined in
descendants.

Validity Rules

The validity rules for C_COMPLEX_OBJECTs are as follows.

—	 VCATU attribute uniqueness: sibling attributes occurring within an object node shall be uniquely
named with respect to each other, in the same way as for class definitions in an object reference model.

7.4.5.8	 C_ARCHETYPE_ROOT class

Class C_ARCHETYPE_ROOT

﻿

48� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Description A specialisation of C_COMPLEX_OBJECT whose node_id attribute is an archetype iden-
tifier rather than the normal internal node code (i.e. id-code). Used in two situations.
The first is to represent an ‘external reference’ to an archetype from within another
archetype or template. This supports re-use. The second use is within a template, where
it is used as a slot-filler.
For a new external reference, the node_id is set in the normal way, i.e. with a new code
at the specialisation level of the archetype. For a slot-filler or a redefined external refer-
ence, the node_id is set to a specialised version of the node_id of the node being special-
ised, allowing matching to occur during flattening.
In all uses within source archetypes and templates, the children attribute is Void.
In an operational template, the node_id is converted to the archetype_ref, and the struc-
ture contains the result of flattening any template overlay structure and the underlying
flat archetype.

Inherit C_COMPLEX_OBJECT
Attributes Signature Meaning

1..1 archetype_ref: String Reference to archetype is being used to fill a slot or redefine an
external reference. Typically an ‘interface’ archetype id, i.e. iden-
tifier with partial version information.

Validity rules

The following validity rules apply to C_ARCHETYPE_ROOT objects.

—	 VARXS external reference conforms to slot: the archetype reference shall conform to the archetype
slot constraint of the flat parent and be of a reference model type from the same reference model as
the current archetype.

—	 VARXNC external reference node identifier validity: if the reference object is a redefinition of either
a slot node, or another external reference node, the node_id of the object shall conform to (i.e. be the
same or a child of) the node_id of the corresponding parent node.

—	 VARXAV external reference node archetype reference validity: if the reference object is a
redefinition of another external reference node, the archetype_ref of the object shall match a real
archetype that has as an ancestor the archetype matched by the archetype reference mentioned in
the corresponding parent node.

—	 VARXTV external reference type validity: the reference model type of the reference object archetype
identifier shall be identical, or conform to the type of the slot, if there is one, in the parent archetype,
or else to the reference model type of the attribute in the flat parent under which the reference
object appears in the child archetype.

—	 VARXR external reference refers to resolvable artefact: the archetype reference shall refer to an
artefact that can be found in the current repository.

The following validity rules apply to a C_ARCHETYPE_ROOT that specialises a ARCHETYPE_SLOT in the
parent archetype:

—	 VARXID external reference slot filling id validity: an external reference node defined as a filler for
a slot in the parent archetype shall have a node id that is a specialisation of that of the slot.

7.4.5.9	 ARCHETYPE_SLOT class

Class ARCHETYPE_SLOT
Description Constraint describing a slot' where another archetype can occur.

Inherit C_OBJECT
Attributes Signature Meaning

﻿

© ISO 2019 – All rights reserved� 49

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

0..1 includes:
List<ASSERTION>

List of constraints defining other archetypes that could be
included at this point.

0..1 excludes:
List<ASSERTION>

List of constraints defining other archetypes that cannot be
included at this point.

1..1 is_closed: Boolean True if this slot specification in this artefact is closed to fur-
ther filling either in further specialisations or at runtime. De-
fault value False, i.e. unless explicitly set, a slot remains open.

Functions Signature Meaning
 any_allowed: Boolean True if no constraints stated, and slot is not closed.

Validity rules

The validity rules for ARCHETYPE_SLOTs are as follows.

—	 VDFAI archetype identifier validity in definition. Any archetype identifier mentioned in an
archetype slot in the definition section shall conform to the specification for archetype identifiers
in this document.

—	 VDSIV archetype slot 'include' constraint validity. The 'include' constraint in an archetype slot shall
conform to the slot constraint validity rules.

—	 VDSEV archetype slot 'exclude' constraint validity. The 'exclude' constraint in an archetype slot
shall conform to the slot constraint validity rules.

The slot constraint validity rules are as follows.

if includes not empty and = any then
 not (excludes empty or /= any) ==> VDSEV Error
elseif includes not empty and /= any then
 not (excludes empty or = any) ==> VDSEV Error
elseif excludes not empty and = any then
 not (includes empty or /= any) ==> VDSIV Error
elseif excludes not empty and /= any then
 not (includes empty or = any) ==> VDSIV Error
end
The following validity rules apply to ARCHETYPE_SLOTs defined as the specialisation of a slot in the
parent archetype.

—	 VDSSID slot redefinition child node id: a slot node in a specialised archetype that redefines a slot
node in the flat parent shall have an identical node id.

—	 VDSSM specialised archetype slot definition match validity. The set of archetypes matched from a
library of archetypes by a specialised archetype slot definition shall be a proper subset of the set
matched from the same library by the parent slot definition.

—	 VDSSP specialised archetype slot definition parent validity. The flat parent of the specialisation of
an archetype slot shall be not be closed (is_closed = False).

—	 VDSSC specialised archetype slot definition closed validity. In the specialisation of an archetype
slot, either the slot can be specified to be closed (is_closed = True) or the slot can be narrowed, but
not both.

7.4.5.10	 C_COMPLEX_OBJECT_PROXY class

Class C_COMPLEX_OBJECT_PROXY

﻿

50� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Description A constraint defined by proxy, using a reference to an object constraint defined else-
where in the same archetype. Note that since this object refers to another node, there
are two objects with available occurrences values. The local occurrences value on a
COJMPLEX_OBJECT_PROXY should always be used; when setting this from a serialised
form, if no occurrences is mentioned, the target occurrences should be used (not the
standard default of {1..1}); otherwise the locally specified occurrences should be used
as normal. When serialising out, if the occurrences is the same as that of the target, it
can be left out.

Inherit C_OBJECT
Attributes Signature Meaning

1..1 target_path: String Reference to an object node using archetype path notation.
Functions Signature Meaning

 use_target_occurrences:
Boolean
Post: Result = (occurrences =
Void)

True if target occurrences are to be used as the value of
occurrences in this object; by the time of runtime use, the
target occurrences value has to be set into this object.

Validity rules

The following validity rules applies to internal references.

—	 VUNT use_node reference model type validity: the reference model type mentioned in an C_
COMPLEX_OBJECT_PROXY node shall be the same as or a super-type (according to the reference model)
of the reference model type of the node referred to.

—	 VUNP use_node path validity: the path mentioned in a use_node statement shall refer to an object
node defined elsewhere in the same archetype or any of its specialisation parent archetypes, that
is not itself an internal reference node, and which carries a node identifier if one is needed at the
reference point.

The following validity rule applies to the redefinition of an internal reference in a specialised archetype.

—	 VSUNT use_node specialisation parent validity: a C_COMPLEX_OBJECT_PROXY node may be redefined in
a specialised archetype by another C_COMPLEX_OBJECT_PROXY (e.g. in order to redefine occurrences),
or by a C_COMPLEX_OBJECT structure that legally redefines the target C_COMPLEX_OBJECT node referred
to by the reference.

7.4.5.11	 C_PRIMITIVE_OBJECT class

Class C_PRIMITIVE_OBJECT (abstract)
Description Parent of types representing constraints on primitive types.

Inherit C_DEFINED_OBJECT
Attributes Signature Meaning

0..1 assumed_value: Any Value to be assumed if none sent in data.
0..1 is_enumerated_type_constraint:

Boolean
True if this object represents a constraint on an enu-
merated type from the reference model, where the
latter is assumed to be based on a primitive type,
generally Integer or String.

1..1 constraint: Any Constraint represented by this object; redefine in
descendants.

Functions Signature Meaning
 has_assumed_value: Boolean True if there is an assumed value.

﻿

© ISO 2019 – All rights reserved� 51

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

 constrained_typename: String Generate name of native type that is constrained
by this C_XXX type. For most types, it is the C_XXX
typename without the 'C_', i.e. XXX. E.g. C_INTEGER
→ Integer. For the date/time types the mapping is
different.

Validity rules

The validity rules for C_PRIMITIVE_OBJECTs are as follows.

—	 VOBAV object node assumed value validity: the value of an assumed value shall fall within the value
space defined by the constraint to which it is attached.

7.4.5.12	 C_BOOLEAN class

Class C_BOOLEAN
Description Constraint on instances of Boolean. Both attributes cannot be set to False, since this

would mean that the Boolean value being constrained cannot be True or False.
Inherit C_PRIMITIVE_OBJECT

Attributes Signature Meaning
0..1

(redefined)
constraint: List<Boolean> Boolean constraint - a list of Boolean values.

0..1
(redefined)

assumed_value: Boolean

1..1
(redefined)

default_value: Boolean

Functions Signature Meaning
(effected) prototype_value: Boolean

7.4.5.13	 C_STRING class

Class C_STRING
Description Constraint on instances of STRING.

Inherit C_PRIMITIVE_OBJECT
Attributes Signature Meaning

1..1
(redefined)

constraint: List<String> String constraint - a list of literal strings and / or regular
expression strings delimited by the ‘/’ character.

1..1
(redefined)

default_value: String

0..1
(redefined)

assumed_value: String

Functions Signature Meaning
(effected) prototype_value: String
(effected) valid_value (a_value:

String): Boolean
True if a_value is valid with respect to constraint expressed
in concrete instance of this type.

7.4.5.14	 C_ORDERED class

Class C_ORDERED (abstract)

﻿

52� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

Description Abstract parent of primitive constrainer classes based on ORDERED base types, i.e.
types like Integer, Real, and the Date/Time types. The model constraint is a List of
Intervals, which may include point Intervals, and acts as an efficient and formally
tractable representation of any number of point values and/or contiguous intervals of
an ordered value domain.
In its simplest form, the constraint accessor returns just a single point Interval<T> ob-
ject, representing a single value.
The next simplest form is a single proper Interval <T> (i.e. normal two-sided or half-
open interval). The most complex form is a list of any combination of point and proper
intervals.

Inherit C_PRIMITIVE_OBJECT
Attributes Signature Meaning

1..1
(redefined)

constraint: List<Interval>

7.4.5.15	 C_INTEGER class

Class C_INTEGER
Description Constraint on instances of Integer.

7.4.5.16	 C_REAL class

Class C_REAL
Description Constraint on instances of Real.

7.4.5.17	 C_TEMPORAL class

Class C_TEMPORAL (abstract)
Description Purpose Abstract parent of C_ORDERED types whose base type is an ISO date/time type.

Inherit C_ORDERED
Attributes Signature Meaning

1..1 pattern_constraint: String Optional alternative constraint in the form of a pattern
based on ISO8601. See descendants for details.

Functions Signature Meaning
 valid_pattern_constraint:

Boolean

7.4.5.18	 C_DATE class

Class C_DATE
Description ISO 8601-compatible constraint on instances of Date in the form either of a set of va-

lidity values, or else date ranges based on the C_ORDERED list constraint. There is no
validity flag for ‘year’, since it shall always be by definition mandatory in order to have
a sensible date at all. Syntax expressions of instances of this class include “YYYY-??-??”
(date with optional month and day).

Functions Signature Meaning
 month_validity: VALIDITY_KIND Validity of month in constrained date.
 day_validity: VALIDITY_KIND Validity of day in constrained date.
 timezone_validity: VALIDITY_KIND Validity of timezone in constrained date.

Invariant Pattern_validity: pattern /= Void implies valid_iso8601_date_constraint_pattern(pattern)

﻿

© ISO 2019 – All rights reserved� 53

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

7.4.5.19	 C_TIME class

Class C_TIME
Description ISO 8601-compatible constraint on instances of Time in the form either of a set of va-

lidity values, or else date ranges based on the C_ORDERED list constraint. There is no
validity flag for ‘hour’, since it shall always be by definition mandatory in order to have
a sensible time at all. Syntax expressions of instances of this class include “HH:??:xx”
(time with optional minutes and seconds not allowed).

Functions Signature Meaning
 minute_validity: VALIDITY_KIND Validity of minute in constrained time.
 second_validity: VALIDITY_KIND Validity of second in constrained time.
 millisecond_validity: VALIDITY_KIND Validity of millisecond in constrained time.
 timezone_validity: VALIDITY_KIND Validity of timezone in constrained date.

Invariant Pattern_validity: pattern /= Void implies valid_iso8601_time_constraint_pattern (pattern)

7.4.5.20	 C_DATE_TIME class

Class C_DATE_TIME
Description ISO 8601-compatible constraint on instances of Date_Time. There is no validity flag for

‘year’, since it shall always be by definition mandatory in order to have a sensible date/
time at all. Syntax expressions of instances of this class include “YYYY-MM-DDT??:??:??”
(date/time with optional time) and “YYYY​-MMDDTHH:​MM:​xx” (date/time, seconds not
allowed).

Functions Signature Meaning
 month_validity: VALIDITY_KIND Validity of month in constrained date.
 day_validity: VALIDITY_KIND Validity of day in constrained date.
 timezone_validity: VALIDITY_KIND Validity of timezone in constrained date.
 minute_validity: VALIDITY_KIND Validity of minute in constrained time.
 second_validity: VALIDITY_KIND Validity of second in constrained time.
 millisecond_validity: VALIDITY_KIND Validity of millisecond in constrained

time.
Invariant Pattern_validity: pattern /= Void implies valid_iso8601_date_time_constraint_pattern(pattern)

7.4.5.21	 C_DURATION class

Class C_DURATION
Description
Functions Signature Meaning

 years_allowed:: Boolean True if years are allowed in the constrained Duration.
 months_allowed:: Boolean True if months are allowed in the constrained Duration.
 weeks_allowed:: Boolean True if weeks are allowed in the constrained

Duration.
 days_allowed: Boolean True if days are allowed in the constrained Dura-

tion.
 hours_allowed: Boolean True if hours are allowed in the constrained

Duration.
 minutes_allowed: Boolean True if minutes are allowed in the constrained

Duration.

﻿

54� © ISO 2019 – All rights reserved

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

﻿

ISO 13606-2:2019(E)

 seconds_allowed: Boolean True if seconds are allowed in the constrained
Duration.

 fractional_seconds_allowed:
Boolean

True if fractional seconds are allowed in the con-
strained Duration.

7.4.5.22	 C_TERMINOLOGY_CODE class

Class C_TERMINOLOGY_CODE
Description Constrainer type for instances of TERMINOLOGY_CODE. The constraint attribute can

contain: * a single at-code * a single ac-code, representing a value-set that is defined in
the archetype terminology
If there is an assumed value for the ac-code case above, the assumed_value attribute
contains a single at-code, which shall come from the list of at-codes defined as the inter-
nal value set for the ac-code.

Inherit C_PRIMITIVE_OBJECT
Attributes Signature Meaning

1..1
(redefined)

constraint: String Type of individual constraint - a single string that
can either be a local at-code, or a local ac-code
signifying a locally defined value set. If an ac-code,
assumed_value may contain an at-code from the
value set of the ac-code.

0..1
(redefined)

assumed_value: TERMINOLOGY_CODE

1..1
(redefined)

default_value: TERMINOLOGY_CODE

Functions Signature Meaning
 value_set_expanded:

List<String>
Effective set of at-code values corresponding to an
ac-code for a locally defined value set. Not defined
for ac-codes that have no local value set.

 value_set_substituted: List<Uri> For locally defined value sets within individual code
bindings: return the term URI(s) substituted from
bindings for local at-codes in value_set_expanded.

 value_set_resolved:
List<TERMINOLOGY_CODE>

For locally defined value sets within individual
code bindings: final set of external codes to which
value set is resolved.

(effected) valid_value (a_value: TERMINOLOGY_
CODE): Boolean

True if a_value is valid with respect to constraint
expressed in concrete instance of this type.

(effected) prototype_value: TERMINOLOGY_CODE A generated prototype value from this con-
straint object.

7.4.5.23	 C_SECOND_ORDER class

Class C_SECOND_ORDER (abstract)
Description Abstract parent of classes defining second order constraints.
Attributes Signature Meaning

0..1 members: List<ARCHETYPE_CONSTRAINT> Members of this second order constrainer.
Normally redefined in descendants.

Functions Signature Meaning

﻿

© ISO 2019 – All rights reserved� 55

STANDARDSISO.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O 13

60
6-2

:20
19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviations
	5 Conformance
	6 Archetype representation requirements
	6.1 General
	6.2 Archetype definition, description and publication information
	6.3 Archetype node constraints
	6.4 Data value constraints
	7 Archetype object model
	7.1 Preface
	7.1.1 Purpose
	7.1.2 Nomenclature
	7.2 Model overview
	7.2.1 Package structure
	7.2.2 Definition and utility classes
	7.3 The archetype package
	7.3.1 Overview
	7.3.2 Archetype identification
	7.3.3 Top-level meta-data
	7.3.4 Governance meta-data
	7.3.5 Structural definition
	7.3.6 Class descriptions
	7.3.7 Validity rules
	7.4 Constraint model package
	7.4.1 Overview
	7.4.2 Semantics
	7.4.3 Second order constraints
	7.4.4 AOM type substitutions
	7.4.5 Class definitions
	7.5 The rules package
	7.5.1 Overview
	7.5.2 Semantics
	7.5.3 Class descriptions
	7.6 Terminology package
	7.6.1 Overview
	7.6.2 Semantics
	7.6.3 Class descriptions
	7.7 Templates
	Annex A (informative) Archetype Definition Language
	Annex B (informative) Example Representation
	Bibliography

