INTERNATIONAL ISO
STANDARD 13606-2

Second edition
2019-06

Health informatics — Electronic
health record communication —

Part 2:
Archetype interchange specification

Informatique de santé —Communication du dossier de santé
informatisé —

Partie 2: Spécification'd'échange d'archétype

Reference number
ISO 13606-2:2019(E)

©1S0 2019

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

COPYRIGHT PROTECTED DOCUMENT

© 1S0 2019

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting
on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address
below or [SO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Fax: +41 22 749 09 47
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

ii © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Contents Page
FFOT@WOTMooccccceeeesse e85 5588585555555 iv
IIMETOUICEION. ..ot vi
1 S0P ... 1
2 Normative references
3 Terms and definitions
4' Abbl CV ;at;uua
5 COMFOTIMATICE. ...ttt e
6 Archetype representation reqUIrements................oeeon e Mo
6.1 LT3 1 T=) - OSSP
6.2 Archetype definition, description and publication information
6.3 Archetype node constraints
6.4 Data value constraints........
7 Archetype object model ... L e
7.1 PIEIACE ... oo s
7.1.1 Purpose
712 NOMENCIATUTE ..ooooooceeeiissssssesees sy S
7.2 IMOAEL OVEIVIBW ..o e
7.2.1 Package Structure...............a
7.2.2 Definition and utility classes
7.3 The archetype PACKAZE N e
75 700 S O 1= 4 (O SO OO
7.3.2 Archetype identification
7.3.3 Top-level meta-data... b s
7.3.4 Governance Meta-dEa. ...
7.3.5 Structural definition
7.3.6 Class descriptions......
7.3.7 Validity rules:Z........
7.4 Constraint model package.
7.4.1 Overview'.......
742 SEIMAITICSoooovovvceeecessseecssssesee s sssssssss s
7.4.3 SecONd order CONSTIAINTS. ...
7.4.4 _~AOM type substitutions
7.4.5~~ Class definitions..............cccocccersis
7.5 Therules package....
7.5.1 Overview....
7.5.2 Semantics
7.5.3 Class deSCIrIPLIONS . ..o
76 Terminology PACKAZE e e
761 Quervies
7.6.2 SEIMMAIITICS w.ooooooiooiieeeeie i
7.6.3 Class AeSCIIPLIONS ..o
7.7 TRIMIPIATES ...
Annex A (informative) Archetype Definition Language. ... 69
Annex B (informative) Example RePresSentation ... 70
BIDLEOZTAPIIY 71

© 1S0 2019 - All rights reserved iii

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The proceglures used to develop this document and those intended for its further maintenanee
described In the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed*for
different types of ISO documents should be noted. This document was drafted in accordance 'with
editorial ryles of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention i
patent righ
any patent
on the ISO

Any trade
constitute

For an ex]
expression
World Tra
.org/iso/fo

5 drawn to the possibility that some of the elements of this document may-be the subjec
ts. ISO shall not be held responsible for identifying any or all such paténtrights. Detail
rights identified during the development of the document will be in the Introduction ang
ist of patent declarations received (see www.iso.org/patents).

hame used in this document is information given for the convenience of users and does
an endorsement.

planation of the voluntary nature of standards, the.meaning of ISO specific terms
s related to conformity assessment, as well as information about ISO's adherence to
le Organization (WTQO) principles in the Technical Barriers to Trade (TBT) see www
reword.html.

This docun

This secoy
technically

— Introd
Replad
Additi
Renany
Expres
Introd
Re-eng

Remov

hent was prepared by Technical Committee [SO/TC 215, Health Informatics.

d edition cancels and replaces the.fibst edition (ISO 13606-2:2008), which has b
revised. The main changes compared-to the previous edition are as follows:

liction of new internal coding scheme, consisting of id-codes, at-codes and ac-codes.
e string archetype identifier-with multi-part, namespace identifier.

bn of explicit value-sets'replacing in-line value sets in the terms and definitions.
ing archetype ontology section to terminology.

sion of all external term bindings as URIs following IHTSDO format.

ineering of all primitive constrainer types, i.e. C_STRING, C_DATE etc.

liction of“tuple’ constraints for co-varying attributes within Quantity, Ordinal structureg.

are
the
the

t of
s of
| /or

not

And
the
.iso

een

inclusi

Alist of all

al-ofthe Arr‘hpfvpp Profile Qppr‘ifirnfinn

on of a path that enables specialised archetype redefinitions deep within a structure.

Addition of node-level annotations.
Structural simplification of archetype ontology section.
The name of the invariant section has been changed to rules, to better reflect its purpose.

A template is now just an archetype.

parts in the ISO 13606 series can be found on the ISO website.

© ISO 2019 - All rights rese

Full specialisation support: the addition of an attribute to the C_ATTRIBUTE class, allowing the

rved

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/foreword-supplementary-information.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.

© IS0 2019 - All rights reserved v

https://www.iso.org/members.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Introduction

This document is part of a five-part standard series, published jointly by CEN and ISO through the
Vienna Agreement. In this document dependency upon any of the other parts of this series is explicitly
stated where it applies.

Comprehensive, multi-enterprise and longitudinal electronic health records will often in practice be
achieved through the joining up of multiple clinical applications, databases (and increasingly devices)
that are each tailored to the needs of individual conditions, specialties or enterprises.

This requife

mapped td

representa
comprising

The approz
EHR, hasb

and from a single comprehenswe representatlon which is used to underpln interf:

ion has to be sufficiently generic and rich to represent any conceivable health-record d
partor all of an EHR (or a set of EHRs) being communicated.

ch adopted in the ISO 13606 standards series, underpinned by international research on|
pen to define a rigorous and generic Reference Model that is suitable forall kinds of data

ices
and messages within a distributed network (federation) of EHR systems and services. This\cominon

ata,

the
and

t of
and
e of

data strucfures within an EHR, and in which all labelling and context information is an integral pai
each constfuct. An EHR Extract (as defined in ISO 13606-1) will contain all of the names, structure
context required for it to be interpreted faithfully on receipt even if its organisation and the natur
the clinical content have not been “agreed” in advance.

ted
rhat
ted
HR

However, {]
sites, also

will be cor
consistentl
data that h

he wide-scale sharing of health records, and their meaningful analysis across distribt
requires that a consistent approach is used for the(clinical (semantic) data structures

hmunicated via the Reference Model, so that equiyvalent clinical information is represer
y. This is necessary in order for clinical applicatiéns and analysis tools safely to process I
ave come from heterogeneous sources.

0.1 Archdtypes

The challe
every cond
records ar
value sets,
change fre
widely ack

hge for EHR interoperability is therefore to devise a generalised approach to represen
eivable kind of health record datastructure in a consistent way. This needs to cater
sing from any profession, speciality or service, whilst recognising that the clinical data
templates etc. required by_different health care domains will be diverse, complex and
uently as clinical practice'and medical knowledge advance. This requirement is part of
howledged health inforfnatics challenge of semantic interoperability.

[ing
for
ets,
will
the

The appro
generic pr
which are [meta-data uséd/to define patterns for the specific characteristics of the clinical data
represent f{he requiremeénts of each particular profession, speciality or service.

ich adopted by thisS‘standard series distinguishes a Reference Model, used to represent{the
pperties of health-secord information, and Archetypes (conforming to an Archetype Modlel),
that

The Reference Meodel is specified as an Open Distributed Processing (ODP) Information Viewppi
model, repfesenting the global characteristics of health record components, how they are aggrega
and the context 1nformat10n requlred to meet ethlcal legal and provenance requlrements In the 13
standards SeTTe :

form the generic bulldlng blocks of the EHR. It reflects the stable characteristics of an electromc health
record, and would be embedded in a distributed (federated) EHR environment as specific messages or
interfaces (as specified in Part 5 of this standard series).

Archetypes are effectively pre-coordinated combinations of named RECORD_COMPONENT hierarchies
that are agreed within a community in order to ensure semantic interoperability, data consistency and
data quality.

For an EHR_EXTRACT, as defined in ISO 13606-1, an archetype specifies (and effectively constrains)
a particular hierarchy of RECORD_COMPONENT sub-classes, defining or constraining their names
and other relevant attribute values, optionality and multiplicity at any point in the hierarchy, the
datatypes and value ranges that ELEMENT data values can take, and might include other dependency
constraints. Archetype instances themselves conform to a formal model, known as an Archetype Model

vi © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

(which is a constraint model, also specified as an ODP Information Viewpoint Model). Although the
Archetype Model is stable, individual archetype instances can be revised or succeeded by others as
clinical practice evolves. Version control ensures that new revisions do not invalidate data created with
previous revisions.

Archetypes can be used within EHR systems to govern the EHR data committed to a repository.
However, for the purposes of this interoperability standard series, no assumption is made about the
use of archetypes within the EHR Provider system whenever this standard series is used for EHR
communication. It is assumed that the original EHR data, if not already archetyped, can be mapped to a
set of archetypes, if desired, when generating the EHR_EXTRACT.

hich any RECORD_COMPONENT within an EHR_EXTRACT conforms. The class| RECORD_
COMPONENT includes an attribute archetype_id to identify the archetype and node’to which that
RECORD_COMPONENT conforms.

Thl;eference model defined in ISO 13606-1 has a property that can be used to specify the archetype

Parf 3 of this standard series includes a set of Reference Archetypes: which@are base arch¢types that
are|likely to be specialised further before they are used. Those archetypes-are example instances of
thig Archetype Model.

The Archetype Model specified in this document was originally develeped by the openEHR Houndation,
which publishes its archetypes using Archetype Definition Language, conforming to this|Archetype
Modlel, referenced within Annex A. The Archetype Model has beeen the subject of collaboratiye updating
to ihcorporate the requirements and modelling inputs from the.Clinical Information Modeling Initiative
(CIMI). CIMI is in the process of submitting a modelling language (Archetype Modeling Langliage, AML)
to the Object Management Group. AML also aligns to this\Archetype Model.

0.2| Archetype datatypes
It should be noted that ISO 13606-1 and ISO 13606-2 use datatypes for different purposes.

Parf 1 defines datatypes to represent thesproperties of the Reference Model, as a profile of [[SO 21090,
in 3.3. It separately defines in Clause 7 the data types that can be the values of Element, alfo a subset
of IF0 21090. All these datatypes are\finally expressed in terms of the so-called “primitive’| datatypes
(Integer, Real, String, Boolean, Date/Fime/Datetime).

Parf 2 uses the same set of primitive datatypes to represent the properties of the Archetlype Object
| [primitive
ants of the

mplex and
bn defining
/E_OBJECT

5 . i s example,
the Value on a PHYSICAL QUANTITY shall be between 0.0 and 1000.0 and thelr unlts shall be UCUM
‘mm[Hg]’ code.

PHYSICAL_QUANTITY matches {
value matches {|0.0..<1000.0[}
units matches {

CODED_SIMPLE matches {

value matches {"mm[Hg]"}

© 1S0 2019 - All rights reserved vii

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

}

This example archetype, expressed in terms of the Archetype Object Model, would have the structure

shown in Table 1.

Table 1 — Example structure for representing physical quantity

Reference Model class, attribute or primitive
value

Archetype Model constraining class

PHYSICAL_[QUANTITY

C_COMPLEX_OBJECT

valug C_ATTRIBUTE
Real C_REAL
units C_ATTRIBUTE

CODED_SIMPLE

C_COMPLEX_OBJECT

value

C_ATTRIBUTE

String

G>STRING

Since the Archetype Object Model is also used to constrain other-reference models, as for example

the openEHR Reference Model, there will be a need to transform épenEHR archetypes to ISO 13
archetypeg, and vice versa. The openEHR Reference Model alse.1ises the same primitive datatypes,

H06
but

includes a fifferent set of complex datatypes, such as DV_ORDPINAL, or DV_TEXTY. When transfornping

an openEHR archetype constraint to an ISO 13606 archetype, it might be necessary to introducg
additional CLUSTER structure to represent the equivalentopenEHR sub-components as ELEMENTS|

For examplle, a representation of an openEHR DV_ORDINAL in ISO 13606 would have the struct

shown in Thble 2.

Table 2 — Example structurne for representing an ordinal data value

an

ure

openEHR

ISO 13606

DV_ORDINAL

CLUSTER matches { -- DV_.ORDINAL

parts matches {

symboll

ELEMENT matches { -- symbol

value matches {

DY_CODED_TEXT

CODED_VALUE matches {*}

}
}
value ELEMENT matches { -- value
value matches {
Integer INTEGER matches {*}

}

An example of how the LINK class defined in Part 1 of this standard series can be represented using the
Archetype Object Model defined in this document is given in Annex B.

1) Please see http://www.openehr.or:
the specification of this datatype.

viii

releases/RM /latest/docs/data_t

es/data_types.html# text packa

e for

© ISO 2019 - All rights reserved

http://www.openehr.org/releases/RM/latest/docs/data_types/data_types.html#_text_package
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

0.3

ISO 13606-2:2019(E)

Archetype repositories

The range of archetypes required within a shared EHR community will depend upon its range of clinical
activities. The total set needed on a national basis is presently unknown, but there might eventually be
several thousand archetypes globally. The ideal sources of knowledge for developing such archetype
definitions will be clinical guidelines, care pathways, scientific publications and other embodiments of
best practice. However, “de facto” sources of agreed clinical data structures might also include:

the data schemata (models) of existing clinical systems;

the lay-out of computer screen forms used by these systems for data entry and for the display of

Des

analyses periormed,
data-entry templates, pop-up lists and look-up tables used by these systems;
shared-care data sets, messages and reports used locally and nationally;

the structure of forms used for the documentation of clinical consultations or summa
paper records;

health information used in secondary data collections;
the pre-coordinated terms in terminology systems.

pite this list of de facto ways in which clinical data stricfures are currently represe

formats are very rarely interoperable without substantial costs. The use of standardised

pro
(go

The
dev|
bas
It is
cou
infa

vides an interoperable way of representing and sharingthese specifications, in support of
bd quality) health care record-keeping and the semantic interoperability of shared EHRs

involvement of national health services, academic organisations and professional bo
elopment of archetypes will enable this approach to contribute to the pursuit of quality
bd clinical practice. A key next challenge isto foster communities to build up libraries of ¢
beyond the scope of this document to-assert how this work should be advanced, but
htries so far it would appear that national eHealth programmes are beginning to organ

hea

rmatics-vendor teams to developrand operationalise sets of archetypes to meet the need
thcare domains. In the future regional or national public domain libraries of archetype

might be accessed via the Internet, and downloaded for local use within EHR systems. Such
alsq require processes to verify and certify the quality of shared archetypes, which are also
scope of this document but-are being taken forward by not for profit organisations such g
EHR Foundation (www.epenehr.org), the Clinical Information Modeling Initiative (CIMI, h

-0pd
Inn

0.4

Thi
arcl
the

ncimi.org) the EN1}3606 Association (http://www.en13606.org) and the European Iy
pvation throughyHealth Data (www.i-hd.eu).

Communieating archetypes

5 doecumient specifies, in Clause 6, the requirements for a comprehensive and inf
hetype representation and defines, in Clause 7, the ODP Information Viewpoint represe

ies within

hted, these
hrchetypes
consistent

dies in the
 evidence-
rchetypes.
in several
se clinical-
of specific
definitions
usage will
beyond the
s the open
Ltp: // www
stitute for

eroperable
ntation for

Archetype Object Model.

This document does not require that any particular model be adopted as the internal architecture
of archetype repositories, services or components used to author, store or deploy archetypes in
collaboration with EHR services. It does require that these archetypes are capable of being mapped
to the Archetype Object Model defined in this document in order to support EHR communication and
interoperability within an EHR-sharing community.

A more detailed overview of archetypes can be found here:

http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.html

© IS0 2019 - All rights reserved

ix

http://www.openehr.org
http://www.opencimi.org
http://www.opencimi.org
http://www.en13606.org
http://www.i-hd.eu
http://www.openehr.org/releases/AM/latest/docs/Overview/Overview.html
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

INTERNATIONAL STANDARD

ISO 13606-2:2019(E)

Health informatics — Electronic health record
communication —

Part 2:
Archetype interchange specification

1

Thi
of
cen

It d

Scope

5 document specifies a means for communicating part or all of the electronic health re
ne or more identified subjects of care between EHR systems, or between’EHR syst
fralised EHR data repository.

ap

proyide EHR data, or as the representation of EHR data within a distributed (federated) recq

ications or middleware components (such as decision support ceniponents) that need 4

cord (EHR)
ems and a

an also be used for EHR communication between an EHR systém or repository and clinical

0 access or
rd system.

This document will predominantly be used to support the direct\care given to identifiable indjividuals, or

to sppport population monitoring systems such as disease registries and public health surveil
of health records for other purposes such as teaching, clinicalaudit, administration and report
mamnagement, research and epidemiology, which often require anonymization or aggregation o

rec

Thi
bet
whi
con
and

2

Thd
con
und

ISO

ISO
and

rds, are not the focus of this standard series but sucH secondary uses might also find it use

5 document defines an Archetype Model to be used to represent Archetypes when comn
veen repositories, and between archetype'services. It defines an optional serialised repr
ch may be used as an exchange.format for communicating individual archety
munication might, for example, be between archetype libraries or between an archety
an EHR persistence or validationservice.

Normative references

following documents.are referred to in the text in such a way that some or all of th
Stitutes requirements’of this document. For dated references, only the edition cited 4
ated references,thelatest edition of the referenced document (including any amendmen

639-1, Codes for the representation of names of languages — Part 1: Alpha-2 code

8601, Data elements and interchange formats — Information interchange — Representat
times

lance. Uses
ng, service
f individual
ful.

municated
psentation,
rpes. Such
'pe service

Pir content
pplies. For
[s) applies.

on of dates

ISO

13606-1, Health informatics — Electronic health record communication — Part 1: Referend

e model

3

Terms and definitions

For the purposes of this document, the terms and definitions given in ISO 13606-1 and the following apply.

[SO and IEC maintain terminological databases for use in standardization at the following addresses:

[SO Online browsing platform: available at https://www.iso.org/obp

IEC Electropedia: available at http://www.electropedia.org/

© IS0 2019 - All rights reserved

https://www.iso.org/obp/ui
http://www.electropedia.org/
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

3.1

archetype repository

persistent

repository of archetype definitions, accessed by a client authoring tool or by a run-time

component within an electronic health record service

3.2
concept
unit of kno

[SOURCE: I

wledge created by a unique combination of characteristics

SO 1087-1:2000]

Note 1 to efifTy: Concepts are not necessarily bound to particular languages. They are, however, miluencefl by

the social o}

3.3
operation
template i

3.4
template
archetype

4 Abbr

For the pui

ADL
AOM
CIMI
EHR
ODP

OWL
RM

UML
XML

5 Confq

cultural background often leading to different categorizations.

hl template
which all references have been substituted by the corresponding structure

defining a particular document or message intended for specific usecases

pviations

poses of this document, the following abbreviations apply.
Archetype Definition Language
Archetype Object Model (synonym for Archetype Model)
Clinical Information Modelling Initiative
Electronic Health Record

Open Distributed Processing (ISO/IEC 10746 series, used for describing distributed
systems)

Ontology Web Language
Reference Modeleg. the ISO 13606 Part 1 Reference Model
Unified Medelling Language

Extensible Mark-up Language

rmance

The communication of an archetype that is used to constrain part of an EHR_EXTRACT shall conform
to the information model defined in Clause 7. Conformance to the functions defined for each class in
Clause 7, where specified, is optional. This document does not prescribe any particular representation

of archety
representa

pes to be used internally within an archetype repository, server or EHR system. The
tion of archetypes shall meet the requirements listed in Clause 6.

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

6 Archetype representation requirements

6.1 General

This clause lists a set of formal requirements for an archetype representation. This provides the basis
on which the archetype model specified in 7.2 has been designed.

6.2 Archetype definition, description and publication information

6.24 The-definition-ofan archetyne shallinclude the following information

TIr P e oA e e Cthr e 1o o vy it 5 IO et O TtT

6.2{1.1 The globally-unique identifier of this archetype definition.

6.2]1.2 The identifier of the repository in which this archetype originated or is‘mow primarily held, or
of the authority responsible for maintaining it. This repository shall be the ofie-in which thg definitive
pubflication status of this archetype will be managed.

6.2{1.3 The concept that best defines the overall clinical scope\af instances conformjng to this
archetype as a whole, expressed as a coded term or as free text in a given natural language.

6.2]1.4 The health informatics domain to which this archetype applies (e.g. EHR). This shdll map to a
set pf reference models with which this archetype may be used.

6.2{1.5 The underlying reference model for which this'archetype was ideally fashioned.

NOTE An archetype can be capable of use with mere than one relevant reference model within a given health
informatics domain, but it is expected that the archetype will be optimised for one.

6.2{1.6 The natural language in whigh. this archetype was originally defined, represented by its
[SO[639-code. In the event of imprecise translations, this is the definitive language for intergretation of
thefarchetype.

6.212 The definition of an‘archetype may include the following information, if applicable.

6.2{2.1 The globally-unique identifier for the archetype of which this archetype is a specialfsation and
to which it shall alsaconform.

6.2)2.2 The glebally-unique identifier of the former archetype that this definition replaces, [if it not the
first version‘ofian archetype.

6.212:3 ™ The reason for defining this new version of a pre-existing archetype.

6.2.2.4 The identifier of the replacement for this archetype, if it has been superseded.

NOTE It is possible that this information can only be added by reference within a version-controlled
repository; how this is effected is not in scope for this document.

6.2.2.5 An archetype shall have one or more description sets, defining its usage and purpose. Multiple
versions of this information may be included, represented in different natural languages or to inform
different kinds of potential user.

© IS0 2019 - All rights reserved 3

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

6.2.3 An archetype description set shall include the following information.

6.2.3.1 The uniquely-identified person or organisation responsible for providing this description set.
This may include contact information for that person or organisation.

6.2.3.2 The uniquely-identified person or organisation responsible for defining the archetype
hierarchy itself. This may include contact information for that person or organisation.

6.2.3.3 The natural language in which this description set is provided, represented by its ISO 639-code.

6.2.3.4 A formal statement defining the scope and purpose of this archetype, expressed as a coded
term or as free text in a given natural language.

NOTE These criteria can be expressed as coded terms to improve queries for relevant archetypes from the
repository.

EXAMPLE The scope and purpose can specify:

1) the principal clinical specialty or kinds of user for which it is intended;

2) Alistof clinical terms (keywords): diagnoses, acts, drugs, findings etc.;
3) the kinfl of patient in whom it is intended to be used (age, gender, etc.);

4) the kinfl of demographic entities it is intended to represent.
6.2.4 An|archetype description set may include the following information, if applicable.

6.2.4.1 Aformal statement of the intended use of thistarchetype.

NOTE Ideally this can be a coded expression, altheugh a suitable terminology for this is not yet availabld.

6.2.4.2 A formal statement of situations in" which users might erroneously believe this archefype
should be used. This may also stipulate any kinds of Reference Model for which it is unsuitable.

6.2.4.3 A detailed explanation of the purpose of this archetype, including any features of particfilar
interest or[note. This may include, an indication of the persons for which this definition is intended|e.g.
for students. This informationmight be included explicitly, and/or by reference (e.g. via a URL).

6.2.4.4 A descriptionyreference or link to the published medical knowledge that has underpinned|the
definition ¢f this archétype.

6.2.4.5 Information about evidence that has informed its development, e.g. an existing specificatioh or
standard, gublished knowledge or clinical experience.

6.2.4.6 How the archetype may be used in quality healthcare delivery.
6.2.4.7 The care processes it has been designed to support.

6.2.4.8 Information about which organisations, professional bodies or government bodies have
endorsed the model, when this endorsement occurred, and under which criteria.

6.2.5 An archetype definition shall include a statement of its publication status.

6.2.5.1 An archetype definition may evolve through a series of publication states, for example an
approval process, without otherwise being changed. These successive states shall be retained as part of

4 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

the archetype, for audit purposes. However, the modification of the publication status of an archetype
shall not itself constitute a formal revision of the identifier by which the archetype is referenced within
an EHR_EXTRACT, since the constraint specification will not have been changed.

6.2.

6.2.

6 The publication status of an archetype shall specify the following information.

6.1 The publication status of this archetype, taken from the following list:

Test;

6.2

NOTI

composed.

6.2
assy
per

6.2

6.2
itse

6.2)6.6 The unique identifiex~of the person or organisation that is nominated, authori
acc¢pted responsibility for dreviewing the validity of the archetype and optionally for updati
appropriate.

6.216.7 A clear statéement of any copyright or licensing restrictions which apply to the
archetype.

6.216.8 The'copyright holder and/or governing authority.

Ill L‘lﬁVUlUplllUllL,
Release candidate;
Rejected;
Definitive;

Deprecated.

6.2 The date when this particular publication status applied

E The first instance of a publication status for this archetype will also be the date when|

brting this publication status. This identification might optionally include the organisation
fon represents.

6.4 The unique identifier of the body authorising this change in publication status.

6.5 The date when it is anticipated that the present publication status, and the archety
f, ought to be reviewed to confirinit remains valid.

it was first

6.3 The unique identifier of the person committing-this archetype to the repository and thereby

which that

pe content

sed or has
hg it, when

use of the

6.2

7-2Version management.

6.2.7.1 An archetype definition shall indicate the version of the constraints it specifies.

6.2.7.2 An archetype definition may indicate the person or organization responsible for that version.

6.2.7.3 An archetype definition may indicate the date on which the current version was created.

6.2.7.4 The archetype version identifiers or other properties may indicate the nature of changes made
from the previous version, and in particular if EHR instances communicated with the current and the
previous version are compatible with each other.

©IS

02019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

6.3 Archetype node constraints

6.3.1 General

An archetype definition shall include a specification of the hierarchical schema to which instances of
data (e.g. EHR data) shall conform. This schema defines the hierarchical organisation of a set of nodes,
the relationships between them, and constraints on the permitted values of attributes and data values.
These shall also conform to the underlying reference model(s) for which this definition is applicable.

6.3.2 Archetype node references

6.3.2.1 Any node in the archetype hierarchy might be defined explicitly or, by reference, be specified to
be part or yhole of a pre-existing archetype.

6.3.2.2 reference to a pre-existing archetype or archetype fragment may be explicit,by-specifying the
archetype 1dentifier, and optionally the identifier of the node of the archetype fragment.

6.3.2.3 Areference to an archetype fragment may be internal to (i.e. part of)} the'current archetype

6.3.2.4 An archetype node may be specified to be one of a set of possible archetypes, by defining an
explicit listlof candidates and/or by specifying a set of constraints on aniy,of the attributes of an archefype
definition.

6.3.2.5 In addition to specifying one or more archetype fragments by reference or constraint, it ghall
be possibl¢ to include an explanation of the rationale for:ihcorporating that specification at the gjven
point in the current archetype hierarchy.

6.3.3 Thp specification of an archetype nodec(if not by reference) shall include the following
informatign.

6.3.3.1 Aunique identifier of this archetype node. Either in itself or when combined with the globally-
unique identifier of this archetype definition, it shall be a globally unique reference to the node itself.

6.3.3.2 The class in the EHR instance hierarchy, mapping to the underlying reference model that [this
archetype ¢onstrains, that shall be'instantiated in order to conform to this archetype node.

6.3.3.3 The number of‘odcurrences, expressed as a range that may be instantiated corresponding to
this archetype node within an instance hierarchy.

6.3.3.4 (Qther eonstraints and rules may optionally be specified to govern the creation of instances
corresponding to this archetype node.

6.3.3.5 Constraint rules may be expressed as logical conditions, and may include reference to
environment parameters such as the current time or location or participants, or be related to the (pre-
existing) values other nodes in the instance hierarchy. Constraint rules may be used to represent the
relationship between EHR data and workflow or care pathway processes.

6.3.3.6 Constraint rules may be expressed as inclusion or exclusion criteria.

6.3.3.7 An archetype shall identify the formalism (including version) in which constraint rules are
expressed (e.g. ADL, OWL).

6 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

6.3.4 Binding archetype nodes to terms

6.3.4.1 Every node of an archetype schema hierarchy shall be associated with at least one term, which
most accurately expresses the intended concept to be represented by that node on instantiation in the
corresponding instance hierarchy. This term can usually be included or referenced within the instance.

6.3.4.2 Everynode of an archetype schema hierarchy may additionally be associated with a description
that elaborates on the meaning given by the term labelling that node.

6.3.4.3 Any node of an archetype may be mapped to any number of additional concepts, terms and
synpnyms from terminology systems, to support elther the interrogation ol the archetype repository or
of the corresponding instances.

6.314.4 Any concept mapping term or text shall specify the purpose that this mapping sdrves, using
one|of the following list of values:

— |Principal concept;
— | Term binding;
— [Synonym;

— |Language translation.

6.3/4.5 Any reference to a coded term shall include the)code, rubric, and identify the coding system
(indluding version) from which the code and rubric have been taken. In addition, it shall be [possible to
spefify the natural language in which this term was‘mapped, or in which a translation is expre¢ssed.

6.314.6 The meaning of every node in an.archetype should be defined through a binding to the
appjropriate concept identifier from an appropriate concept model.

6.314.7 The meaning of any specified.link between two or more nodes in an archetype may|be defined
thrgugh a binding to the appropriateconcept identifier from an appropriate concept model.

6.3/5 Attribute and assoeiation constraints

6.3]5.1 An archetypg€node may specify constraints on any attributes or associations that coifrespond to
the jattributes and associations of that node in the underlying reference model.

NOTE These ‘€onstraints can pre-determine or restrict some or all of the contextual informgtion that is
inclided withinthe corresponding instance, as represented within the reference model. Context information,

: - : the archetype
def1n1t10n (for example to constraln the sub]ect oflnformatlon to be a relatlve of the patlent and not the patient,
in an archetype for family history).

6.3.6 For any given reference model property it shall be possible to specify the following
information.

6.3.6.1 The name of the attribute or association, mapping to the underlying reference model for which
this archetype was ideally fashioned, to which this constraint applies.

6.3.6.2 For a given reference model, if an attribute or association corresponding to this aspect of
context is mandatory to be included within a valid EHR instance.

© IS0 2019 - All rights reserved 7

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

6.3.6.3 The number of instances (expressed as a range) corresponding to this aspect of context that
may be instantiated.

6.3.6.4

as an ordered or unordered list.

6.3.6.5

values (of leaf nodes or attributes) shall be unique.

If multiple instances are permitted, it shall be possible to specify if these are to be represented

If multiple instances are permitted, it shall be possible to specify if the corresponding data

6.3.6.6

6.3.6.7 I

more optidnal or mandatory LINKs, where the value of the role attribute is to be one of a specified s¢

codes, and
archetype 1

6.3.6.8 i
informatio

6.3.69 O
correspong

6.4 Dats

6.4.1 It s
Reference

6.4.2 Co
conforman

6.4.3 Ity

6.4.3.1 i
specify an

6.4.3.2 i
6.4.3.3 T

6.4.3.4 T

tstrains on a leaf node shall include*specifying a single datatype for instance valueg

nstraints may be cpn(‘iﬁ'nd for the data values of leaf nodes or leaf attributes

shall be possible to specify if instances conforming to an archetype shall include)on

where the target attribute should refer to an instance of a RECORD_COMPONENT based o
hat is one of a specified set of archetypes.

shall be possible to specify that the LINK shall have an external target where the ta
@ type should be included in a specified set of such types.

ing to a reference model attribute or association.
| value constraints

hall be possible to specify constraints and rules for the data values of leaf nodes in
Model hierarchy, or for any other attributes.of any archetype node.

e with the underlying reference maodel that this archetype constrains.
hall be possible to specify the following data value constraint information.

the data value is permitted to have a null value, and optionally to specify a reason (e.g
h11 flavour value).

the constraintorrule is an inclusion or exclusion criterion.
he formalism (including version) in which this constraint specification is represented.

heintended fixed (prescribed) value for conforming instances.

b Or
t of
1 an

llget

ther constraints and rules may optionally be specified to govern the creation of instamces

the

in

)

. to

p

6.4.3.5 The intended default value for conforming instances.

6.4.3.6 Alist of permitted candidate values for conforming instances (i.e. to be a subset of those values
legally permissible in the underlying reference model).

6.4.4 For quantity datatypes it shall be possible to specify:

a value range within which values for conforming instances shall lie;

max values);

the int

ended measurement units for conforming instances.

a range within which values are considered exceptional or critical (e.g. cut off points, ranges, min,

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

6.4.

6.4.

ISO 13606-2:2019(E)

5 For date and time datatypes it shall be possible to specify:
a value range within which values for conforming instances shall lie;

the intended measurement units for conforming instances.

6 For textual datatypes it shall be possible to specify:
a string pattern defining a range of possible values;

the intended coding scheme to be used for conforming instances;

6.4
env
exis

6.4
exa

a valid value domain, by referencing a list of individual concepts from a given termin
appropriate identification of the terminology referenced);

terminology system;

a valid value domain, by binding the coded data element to a predefined reference s
identified terminology system;

terminology value domains from different languages;

optionally to specify different terminology value domainsAof different documentation p

7 Constraint rules might be expressed as logicalieconditions, and may include rg

ting) values other nodes in the instance hierarchy:

8 The reference to a pre-existing value shall'specify that instance precisely and unambig
mple, it might be necessary to include a reference to:

the archetype identifier;

the archetype node identifier;

the attribute or associatien‘\name;

the occurrence in the.dnstance hierarchy, for example:
— first;

— most-recent;

— any;

—A Wordered by y (the nth element of a set of instances ordered on y);

logy (with

avalid value domain, by stating an intentional definition of the set of valid values/from an identified

et from an

urposes.

ference to

ronment parameters such as the current time or location or participants, or be related fo the (pre-

uously. For

Licl i 1
lllsllCDL VCllblC,
— lowest value;

— one or more instances within a (definable) recent time interval.

— theintendedrelationship between this specified instance value and the data value being constrained,

for example:
— the same value as;
— asubset or substring of;

— greater than, greater than or equal to, less than, less than or equal to;

© IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

if.

earlier than, later than, etc.;

.. then...;

shall not be the same as.

6.4.9 These relative constraints may be nested, and include logical or set operators in order to
represent compound rules.

7 Archetype object model

7.1 Preface

7.1.1 Purpose

This clause
object mod
archetypes
develop th

contains the normative description of archetype and template semantics-in the form o

el. The model presented here can be used as a basis for building software that repress
and templates, independent of their persistent representation. Equally, it can be use
e output side of parsers that process archetypes in a linguistic format.

7.1.2 Nomenclature

In this doc
including q
‘attributes

The word
‘archetype

iment, the term ‘attribute’ denotes any stored property.of a type defined in an object md
rimitive attributes and any kind of relationship suchras an association or aggregation. 3
are always referred to explicitly as ‘XML attributes.

f an
bnts
1 to

del,
(ML

archetype’ in a broad sense is also used to designate what are commonly understood t¢ be

5’ (specifications of clinical data groups / data constraints) and ‘templates’ (data sets bg

on archety]pes). Statements about ‘archetypes’ in this specification can be always understood to

apply to te

7.2 Mod

The model
software t
any seriali

7.2.1 Pa
The Archef

mplates, unless otherwise indicated.

el overview

described here is a pure object-oriented model that can be used with archetype parsers
hat manipulates archetypes’and templates in memory. It is typically the output of a parsg
sed form of archetypes,

ckage structure

ype Object:Model is defined as the package am.archetype, as illustrated in Figure 1.

sed
hlso

and
r of

10

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

package ClassDiagrams OM-packages])

P
Vi

definitions

aom

7

archetype

ISO 13606-2:2019(E)

[A

constraint_model primitive

7 7A

terminology rules

Figure 1 — Package Overview

7.2]2 Definition and utility classes

7.22.1 Overview

Var

ous definitional classes are used in the AOM. Some are defined in the aom.definitior
whille others come from the definitions package. These are illustrated in Figure 2 below.

package ClassDiagrams [|=m{BASE - base_types.definitionsy

_J
BKSIC DEFINITIONS
-CR: char [L@ \015'{readOnly}

«enumeration»
VALIDITY_KINLD

enumeration literald
mandatory
optional

prohibited

A
WCIIuI1IIT1rdativil

OPENEHR DEFINITIONS
+Local terminology id: String [1] = “local”

VERSION_STATUS

enumeration literals
alpha

beta
release_candidate
released

build

©IS

Figure 2 — Definition Package

02019 - All rights reserved

s package,

11

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

The enumeration type varLipiTy kinD is provided in order to define standard values representing
mandatory, optional, Or disallowed in any model. It is used in this model in classes such as c_pate, c_
TIME and ¢ DATE TIME. The VERSION STATUS enumeration type serves a similar function within various

AOM types

Other classes used from the base package include AUTHORED RESOURCE (resource package) and its
subordinate classes. These are shown in full within the packages that use them.

7.2.2.2 Class definitions

7.2.2.2.1 [VERSION_STATUS enumeration
Enumeration VERSION_STATUS
Descriptjon |Status of a versioned artefact, as one of a number of possible values: uncontrolled,
prerelease, release, build.
Attributes Signature Meaning
alpha Value representing a version which is ‘unstable), i.e. contains an
unknown size of change with respect to itschase version. Render¢d
with the build number as a string in the form “N.M.P-alpha.B” e.g
“2.0.1-alpha.154".
beta Value representing a version which(is “beta’, i.e. contains an un-
known but reducing size of change with respect to its base version.
Rendered with the build number'as a string in the form “N.M.P-bg-
ta.B” e.g. “2.0.1-beta.154".
release_candidate | Value representing a version which is ‘release candidate’, i.e. con-
tains only patch-level.¢hanges on the base version. Rendered as a
string as “N.M.P-rc.B*e.g. “2.0.1-rc.27".
released Value representing a version which is ‘released’, i.e. is the definitiye
base versionsRendered with the build number as a string in the
form “N.M:P*e.g. “2.0.1".
build Value representing a version which is a build of the current base
release. Rendered with the build number as a string in the form
“N.M.P+B” e.g. “2.0.1+33".
7.2.2.2.2 | VALIDITY_KIND enttmeration
Enumeration VALIDITY_KIND
Descriptjon |An eniimeration of three values that might commonly occur in constraint models.

Useds the type of any attribute within this model, which expresses constraint on
some attribute in a class in a reference model. For example to indicate validity of

Date/Time fields.

Attributes Signature Meaning
mandatory Constant to indicate mandatory presence of something.
optional Constant to indicate optional presence of something.
prohibited Constant to indicate disallowed presence of something.

7.2.2.2.3 ADL_CODE_DEFINITIONS class

Class ADL_CODE_DEFINITIONS
Description |Definitions relating to the internal code system of archetypes.
Attributes Signature Meaning

12

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

1..1 Id_code_leader: string = "idg" String leader of ‘identifier’ codes, i.e. codes used
to identify archetype nodes.
1.1 Value_code_leader: string = "at" String leader of ‘value’ codes, i.e. codes used
to identify codes values, including value set
members.
1.1 Value_set_code_leader: String leader of ‘value set’ codes, i.e. codes used
String = "ac" to identify value sets.
1.1 Specialisation_separator: char = '.'|Character used to separate numeric parts of
codes belonging to different specialisation levels.
1.1 Code_regex_pattern: Regex used to define the legal numerik part of
String = "igl [1-9710-9]%) (\. (01 [1- |any archetype code. Corresponds/to-the simple
91 10=917)) pattern of dotted numbers, as ased in|typical
multi-level numbering schemgs.
1.1 Root_code_regex_pattern: Regex pattern of the rootid’code of aizl arche-
String = "~idl(\.1)*$" type. Corresponds togades of the form id1,
id1.1,1d1.1.1 etc..
1.1 Primitive_node_id: Code id used for-C_PRIMITIVE_OBJE(T nodes
String = "id9999" on creation.
7.3| The archetype package
7.3{1 Overview

The
Pac
aut
of A
dat
the

alomg with a ‘semantic identifier’ (ARCEETYPE.archetype id).

The
anc
defi
use
‘ovd
Ove
con

top-level model of archetypes and templates (allvariant forms) is illustrated in Figure 3:
kage. The model defines a standard structural representation of an archetype. !
nored as independent entities are instances(f the class auTHORED ARCHETYPE which is a

h, language information, annotations ahd' revision history for any resource. The latter cl
core structure of any kind of archetype, including definition, terminology, and optional

AUTHORED ARCHETYPE class.adds identifying attributes, flags and descriptive meta-data
bstor type for two further(specialisations - TEMPLATE and OPERATIONAL TEMPLATE. The TEM
nes the notion of a ‘templated’ archetype, i.e. an archetype containing fillers/referenceg
| archetype statements), typically designed to represent a data set. To enable this, it m
rlays’, private archi€types that specialise one or more of the referenced / filler archety
rlays are instances of the TEMPLATE OVERLAY class, have no meta-data of their own, but are
putationallyjust like any other archetype.

Archetype
Archetypes
lescendant

UTHORED RESOURCE and arcHETYPE. The former provides a standardised model of descriptive meta-

hss defines
rules part,

and is the
PLATE class
(e.g. ADL's
ay contain
bes it uses.
otherwise

©IS

02019 - All rights reserved

13

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

package ClassDiagrams [[AOM - archetypey

RESOURCE_DESCRIPTION

+original_author : Hash < String, String>[1]
+original_namespace : String [0..1]
+original_publisher : String [0..1]
+original_contributors : String [0..¥]
+lifecycle_state : TERMINOLOGY_CODE [1]
+custodian_namespace : String [0..1]
+custodian_organisation : String [0..1]
+copyright : String [0..1]

+licence : String [0..1]

+ip_acknow ledgements : Hash < String, String> [0..1]
+references : Hash < String, String > [0..1]
+resource_package_uri : String [0..1]

RESOURCE_DESCRIPTION_ITEM

+language : TERMINOLOGY_CODE [1]

+purpose : String [1]

+keywords : String [0..*]

+misuse : String [0..1]

+original_resource_uri : Hash < String, String > [0.1]
+other_details : Hash < String, String > [0..1]

i"“;'l C_COMPLEX_OBJECT |

les:ll RULE_STATEMENT |

N ARCHETYPE_TERMINOLOGY

+coversiofl_detalls : Hash < String, string > [0-1]
+other_defails : Hash < String, String > [0..1] TRANSLATION_DETAILS
+details : {as.h,<.\ RESOURCE_DESCRIPTION_ITEM, String > [0..1] Hlanguage : TERMINOLOGY_CODE [1]
+degcription | 0.1 +author : Hash < String, String > [1]
+accreditation : String [0..1]
+other_details : Hash < String, String > [0..1]
AUTHORED_RESOURCE +version_last_translated : String [0..1]
+origihal_language : TERMINOLOGY_CODE [1]
+is_coptrolled : Boolean [0..1]
+uid :[UUD [0..1]
+transfations : Hash < TRANSLATION_DETAILS, String > [0..1]
+eurrgnt_revision() : String [1] __ +annotations RESOURCE ANNOTA(@\IS
+langyages_available() : String [1..*] [
=~ 0.1 +documentation : Hash < Hash < Hash < Strm\sﬁ >, String > String > [1]
archetype l
+archetype_id DY
ARCHETYPE ARCHETYPE H@P‘(
+parent_archetype_id : String [0..1] 1 +namespace : String [0
+is_differential : Boolean [1] +rm_publisher : Strin;
+rm_package : Strin,
+concept_code() : String [1] +rm_class : Strl
+physical_paths() : String [1..*] +concept_| 1d Stri.
+logical_paths(lang : String [1]) : String [1..¥] +release, ver Strm [1]
+specialisation_depth() : integer [1] +version. H VERSION STATUS[1]
+is_specialised() : Boolean [1] - +bu1]d_®n String [1]
+ l@ﬂlc_ld[] : String
« tphysical_id() : String
. c‘&ersion_ido : String
SN\)+ma]'0r_version0 : String
(,‘ +minor_version() : String
. H +patch_version() : String
AUTHORED_ARCHETYPE ‘
+adl_vgrsion : String [0..1] Q\ J
+builduid : UUID [1] O +defini
+rm_rglease : String [1] C) 1
+is_gegerated : Boolean [1]
+other] meta_data : Hash < String, Strlné >H e +T
+termino ogy’l
TEMPLATE_OVERLAY
L b} OPERATIONAL_TEMPLATE
+termfnology.extracts : Hash < ARCHETYPE_TERMINOLOGY, String [0.1]
+compjonent_terminology(an id : String [1]) : ARCHETYPE TERMINOLOGY {query}

Figure 3 — Archetype Package

The operaTIONAL TEMPLATE class represents the fully flattened form of a template, i.e. with all fillers
and references substituted and overlays processed, to form what is in practical terms, a single custom-
made ‘operational’ artefact, ready for transformation to downstream artefacts. Because an operational
template includes one or more other archetype structures inline, it also includes their terminologies,
enabling it to be treated as a self-standing artefact.

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.3.2 Archetype identification

7.3.2.1 Human-Readable Identifier (HRID)

All archetype variants based on arcueTYPE have a human-readable, structured identifier defined by
the arcueTYPE HRID class. This identifier places the artefact in a multi-dimensional space based on a
namespace, its reference model class and its informational concept. This class defines an atomised
representation of the identifier, enabling variant forms to be used as needed. Its various parts can be
understood from Figure 4, which also shows the computed semantic _id and physical id forms.

major_ minor_ patch_
VETSION VETSIom —— velsion

org.eurorec:: ISO-EN13606-CQMPOSITION,medication_orderv.1.5.0, -,’fc. p 2

'

\
rm_class concept_id rélease_
version

namespace
rm_package

rm_publisher :
version

semantic_id: org.eurorec:: ISO-EN13606-COMPOSITION.medication_ordefm¥ status

Ruild_
ount

physical_id
(released): org.eurorec:: [SO-EN13606-COMPOSITION.medicatipfidorder.v.1.5.0
(release candidate): org.eurorec:: ISO-EN13606-COMPOSITION.mediegsion_order.v.1.5.0 - rc.22
(in development): org.eurorec:: [SO-EN13606-COMPOSITION,i}¢dication_order.v.1.5.1 - alpha

semantic_id

physical-i‘a‘
Figure 4 — Archetype HRID structure

For|specialised archetypes, the parent _archetype id is also required. This is a string refefence to an
archetype, and is normally the ‘interface’form of the id, i.e. down to the major version only. In some
cirqumstances, it is useful to include the'minor and patch version numbers as well.

An mportant aspect of identificationrelates to the rules governing when the HRID namespace changes
or is retained, with respect to when ‘moves’ or ‘forks’ occur. Its value is always the sam¢ as one of
the| original namespace and“\tustodian namespace properties inherited from AUTHORE[RESOURCE.
deskription (or both, in thé case where they are the same).

7.3{2.2 Machine identifiers

Tw¢ machine identifiers are defined for archetypes. The arcuETYPE.uid attribute defines|a machine
identifier equivalent to the human readable archetype id.semantic id, i.e. ARCHETYPE HRID up to its
major version/and changes whenever the latter does. It is defined as optional but to be practi¢ally useful
would need to be mandatory for all archetypes within a custodian organisation where thif identifier
wag in“use. It could in principle be synthesised at any time for a custodian that decided to in1plement it.

The ARCHETYPE.build uid attributeis also optional, and if used, is intended to provide a unique identifier
that corresponds to any change in version of the artefact. At a minimum, this means generating a new
UID for each change to:

— ARCHETYPE.archetype id.release version;
— ARCHETYPE.archetype id.build count;
— ARCHETYPE.description.lifecycle state.

For every change made to an archetype inside a controlled repository (for example, addition or update
of meta-data fields), this field should be updated with a new GUID value, generated in the normal way.

© IS0 2019 - All rights reserved 15

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.3.3 Top-level meta-data

7.3.3.1 ADL version
The version of the archetype formalism in which the current archetype is expressed. For reasons

of convenience, the version number is still taken from the ADL specification, but now refers to all
archetype-related specifications together, since they are always updated in a synchronised fashion.

7.3.3.2 Reference model release

The aArcHE the
archetype [is based in the archetype’s current version. This means rm release can change withbnew
versions of the archetype, where re-versioning includes upgrading the archetype to a later RM relepse.
However, such upgrading still has to obey the basic rule of archetype compatibility: lateraminor, patch
versions and builds cannot create data that is not valid with respect to the prior version;

This shoulfl be in the same semver.org 3-part form as the ARCHETYPE HRID.release)¥érsion proprty,
e.g. "1.0.2"| This property does not indicate conformance to any particular referénce model version(s)
other than|the named one, since most archetypes can easily conform to more than one. More mlnlﬁ:”l

archetypeg are likely to technically conform to more old and future releases than more complex
archetypeg.

7.3.3.3 (Generated flag

The ARCHETYPE.is generated flag is used to indicate that an archetype has been machine-genergted
from anotHer artefact, e.g. an older ADL version (say 1.4), or a non-archetype artefact. If true, it indicates
to tools thiat the current archetype can potentially be owerwritten, and that some other artefagt is
considered the primary source. If manual authoring occurs, this attribute should be set to false.

7.3.4 Governance meta-data

Various m¢ta-data elements are inherited frof'the AuTHORED RESOURCE class, and provide the natpiral
language description of the archetype, authoring and translation details, use, misuse, keywords anfl so
on. There gre three distinct parts of theumeta-data: governance, authorship, and descriptive details

7.3.4.1 (overnance meta-dataitems

Governance meta-data is visible primarily in the REsourcE DEscrIPTION class, inherited via AUTHOHED
RESOURCE, dnd consists of items relating to management and intellectual property status of the artefact.

The optionjal resourcepackage uri property enables the recording of a reference to a packagf of
archetypeg or otherrésources, to which this archetype is considered to below. It may be in the forin of
‘text <URLp".

V

Lifecycle_state

The description.lifecycle state is animportant property of an archetype, which is used to record its
state in a defined lifecycle.

Original_namespace and Original_publisher

These two optional properties indicate the original publishing organisation, and its namespace, i.e.
the original publishing environment where the artefact was first imported or created. The original
namespace property is normally the same value as archetype id.namespace, unless the artefact has been
forked into its current custodian, in which case archetype id.namespace will be the same as custodian
namespace.

Custodian_namespace and Custodian_organisation

16 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

These two optional properties state a formal namespace, and a human-readable organisation identifier
corresponding to the current custodian, i.e. maintainer and publisher of the artefact, if there is one.

Intellectual property items

There are three properties in the class that REsource DEscrRIPTION relate to intellectual property (IP).
Licence is a String field for recording of the licence (US: ‘license’) under which the artefact can be used.
The recommended format is

licence name <reliable URL to licence statement>

The c

for

7.3
Aut
Ori

Thd
whi

«

em
Con

The
con

firs
firs
firs
Lan

The
of 4
DET
list

opyright property records the copyright applying to the artefact, and is no

4.2 Authorship meta-data
horship meta-data consists of items such as author name, contributors, and translator in
ginal author

RESOURCE DESCRIPTION.original author property defines a simple‘list of name/valu
ch the original author can be documented. Typical key values‘nclude ‘name’, ‘orgai
hil’ and ‘date’.

tributors

fributor. The recommended format of the string is ofie-of:

I names last name,
I names last name, organisation <contributor email address>
 names last name, organisation <organisation email address>

guages and translation

organization

AUTHORED RESOURCE.original langudgeand TRANSLATION DETAILS classenable the origin
juthoring and information relating’to subsequent translations to be expressed. Tri
h11.S.author allows each translator to be represented in the same way as the original af
of name/values. The versionylast translated property is used to record a copy of the

id.physical_id for each language, when the translation was carried out. This enables mai

kno
Ver
Thi
tim
7.3
Var

'w when new translatiofs,are needed for some or all languages.
sion_last_translated

5 String property tecords the full version identifier (i.e. ARCHETYPE.archetype id.wersior
b of last translation, enabling tools to determine if and when translations might be out of

4.3 _Descriptive meta-data

rmally in the standard

formation.

P pairs via
hi[zs]ation’,

RESOURCE_DESCRIPTION.other contributors property.is a simple list of strings, one for each

hl language
\NSLATION
thor,i.e.a
hrchetype_
htainers to

id) at the
date.

RES

Purpose

olis ‘descriptive meta-data may be provided for an archetype in multiple translatiPns in the

The purpose item is a String property for recording the intended design concept of the artefact.

Use and misuse

The use and misuse properties enable specific uses and misuses to be documented. The latter normally
relate to common errors of use, or apparently reasonable but wrong assumptions about use.

Keywords

The xeywords property is a list of Strings designed to record search keywords for the artefact.

© IS0 2019 - All rights reserved

17

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Resources

original resource uri i i
The original _uri property is used to record one or more references to resources in each
particular language.

TBD: This property does not appear to have ever been used, and it might not be useful, since ‘resources’

are not typ

ically available for each language.

7.3.5 Structural definition

7.3.5.1 Ge

fazzal s ot o

The archet
oBJeCT. Th
constraint

The termin
to be natur

An archety
logic, whic
constrain

that ‘systo
They can
constraint

Lastly, ann

included a$

and is useq

model datg,

data needs
in the latte)

7.3.5.2 S

The model
‘archetype
Figure 5: S
form of ar
Mandatory

single attributes or objects (since this can be done with an,appropriate ¢ ATTRIBUTE 0
OBJECT), bjut are necessary for constraints referring to more than oné€\attribute, such as a constr,

faan . |
omon-structurar Parcts

ype definition is the main definitional part of an archetype and is an instance of a c_come1
s means that the root of the constraint structure of an archetype always takes tHe form
on a non-primitive object type.

ology section of an archetype is represented by its own classes, and is what@allows archety
al language- and terminology-neutral. It is described in detail in the Terminology Packag

h can be used to state constraints on multiple parts of an object.- They are not neede

ic pressure should be >= diastolic pressure’ in a blood préssure measurement archet}
lso be used to declare variables, including externalidata query results, and make ot
b dependent on a variable value, e.g. the gender of thé\record subject.

required. The annotations section is of particular relevance to archetypes and templ3
| to document individual nodes within an archetype or template, and/or nodes in referg
that might not be constrained in the_ anchetype, but whose specific use in the archety]
to be documented. In the former case; the annotations are keyed by an archetype path, w
I case, by a reference model path,

tructural variants

in Figure 3: Archetype,Package defines the structures of a number of variants of
idea. All concrete inStances are instances of one of the concrete descendants of ARCHET
burce Archetype Structure illustrates the typical object structure of a source archetype
thetype created‘by an authoring tool - represented by a DIFFERENTIAL ARCHETYPE insta
parts are shown in bold.

pe may include one or more rules. Rules are statements expressedin a subset of predi¢

EX
of a

pes
e.

ate
1 to
FC
hint
pe.
her

otations and revision history sections, inherited*from the AuTHORED RESOURCE class, cam be

tes,
nce
ped
hile

the
Y PE.
the
nce.

18

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Object Diagram InstanceDiagrams [AOM - source_archetype_structure])

: RESOURCE_DESCRIPTION

parent_resource

: AUTHORED ARCHETYPE
L | : TRANSLATION DETAILSl
adl_version = “2.0.6”
annotations =
definition = — :C COMPLEX OBJECT |

description =
is_differential = true
rm_release = “1.0.3”
rules =

terminology =
translations =

| : ARCHETYPE_TERMIN%&Y'
+ 7

| : RULE_STATEMENT |

| : RES@CE_ANNOTATIONS |

Figure 5 — Source archetype structure

ce archetypes can be specialised, in which case.théir definition structure is a partial ovg
flatjparent, or ‘top-level’, in which case the definitign'structure is complete. c ARCHETYPE ROO
may only occur representing direct references to,other archetypes - ‘external references’.

usef. The first is to generatebackwards compatible ADL 1.4 legacy archetypes (always in fla
secpnd is during the template flattening process, when the flat forms of all referenced arch
templates are ultimately combined into a single operational template.

Figiire 6: Source“template structure illustrates the structure of a source template, i.e. ir
TEMPLATE. A sQurce template is an archetype containing c ARCHETYPE ROOT objects repres
filldrs - eachureferring to an external archetype or template, or potentially an overlay archet

rlay on the
r instances

| ARCHETYPE
verlays are
references
nt.

nd has two
F form); the
ptypes and

)stances of
enting slot

ype.

© IS0 2019 - All rights reserved

19

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Object Diagram InstanceDiagrams [AOM - source_template_structure])

di
d

: RESOURCE_DESCRIPTION
: TEMPLATE parent_resource

adl_version = “2.0.6” | q |
tation = +TRANSLATION_DETAIL : CLARCHETYPE_ROQT

escription = -~ LCCOMPLEX ORBJECT — *C_ARCHETYPE_ROOT |

is_differential = true
rm_release = “1.0.3”
terminology =

| :C_ARCHETYPE ROOT |
i
1

translations = [] N
TRESOHREFANNOTATIONS:
I] filler - references
_~overlay or archetype
—_—
—
-
_ —
TEMPLATE OVERLAY - : CCOMPLEX ORJECT |
— .
A i :C COMPLEX OBJECT |
if differential = true L {CCOMPLEX OBIECT |
prent_archetype_id = “XXX”
t$rminology = —— :ARCHETYPE_TERMINOLOGY
Figure 6 — Source template structure
Another arffchetype variant, also shown in Figure 6: Source template structure is the template ovel

i.e. an inst3
the definit

identifier, §
from the

archetype.
some objed

Figure 7: (
form of a

templates
root node g

nce of TEMPLATE OVERLAY. These are purely local components of templates, and include
on and terminology. The definition structure is@lways a specialised overlay on somet

id]_version, languages or description are required, as they are considered to be propag:
bwning root template. Accordingly, template overlays act like a simplified special
Template overlays can be thought of*as’being similar to ‘anonymous’ or ‘inner’ classe
t-oriented programming languages;

template. This is created by building the composition of referenced archetypes anc
ind/or template overlays/in‘their flattened form, to generate a single ‘giant’ archetype.
fthis archetype, along with every archetype/template root node within, is represented u

i

else, and mpay not contain any slot fillers or external referénces, i.e. no c_ARCHETYPE ROOT objects

lay,
nly
ing
No
ted
sed
S in

perational template structure illustrates the resulting operational template, or compjled

| /or
The
bing

a C_ARCHETYPE ROOT object. An{ dperational template also has a component_terminologies propg¢rty
containing|the ontologies frontrevery constituent archetype, template and overlay.
Class ARCHETYPE (abstract)

Descriptipn| The ARCEHETYPE class defines the core formal model of the root object of any archetype
or teniplate. It includes only basic identification information, and otherwise provides
the structural connections from the Archetype to its constituent parts, i.e. definition
(a C_.COMPLEX_OBJECT), terminology (ARCHEYTPE_TERMINOLOGY) and so on. It is the
pdalclit lebb Uf dn COIICTCLE Ly PCS Uf dl L}ll:'L_yl)l:'.

Attributes Signature Meaning

0.1 parent_archetype_id: string Archetype reference of the specialisation parent of
this archetype, if applicable. May take the form of
an archetype interface identifier, i.e. the identifier
up to the major version only, or can be deeper.

1.1 archetype_id: ARCHETYPE HRID Identifier of this archetype.

1.1 is_differential: Boolean Flag indicating whether this archetype is differen-
tial or flat in its contents. Top-level source arche-
types have this flag set to True.

1.1 definition: c_coMPLEX OBJECT Root node of the definition of this archetype.

20

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

1.1 terminology: ARCHETYPE The terminology of the archetype.
TERMINOLOGY
0.1 rules: List<RULE_STATEMENT> Rules relating to this archetype. Statements are
expressed in first order predicate logic, and usually
refer to at least two attributes.
Functions Signature Meaning
concept_code: string The concept code of the root object of the arche-
post-condition: Result.is_equal type, also standing for the concept of the archetype
(definition.node_id) as a whole.
physical_paths: Tist<string> Set of language-independent paths extraqted from
archetype. Paths obey Xpath-like synta¥’and are
formed from alternations of C_OBJECT.ndde_id and
C_ATTRIBUTE.rm_attribute_name Values.
logical_paths (lang: string): Set of language-dependent paths extracted from
List<String> archetype. Paths obey the same syntax a$ phys-
ical_paths, but with node_ids replaced by]|their
meanings from the ontplogy.
specialisation_depth: integer Specialisation depth-of this archetype; lafger than
post-condition: Result = terminolo- |0 if this archetype has a parent. Derived from ter-
gy.specialisation_depth minology.spéeialisation_depth.
is_specialised: Boolean True if this archetype is a specialisation ¢f another.
post-condition: Result implies par-
ent_archetype_hrid /= Void
Invariant |Invariant_concept_valid: terminologyhas_term_code (concept_code)
Invariant_specialisation_validity:is_specialised implies specialisation_depth > 0

Object Diagram InstanceDiagrams AoM»opcranonal,mmplatc,scrucmrc])

‘gOURCE DESCRIPTION

parent.

: OPERATIONAL TEMPLATE

adl_version = “2.0.6”
annotations =
component_terminologies =
definition =

description =

: C_COMPLEX OBJECT

: TRANSLATION_DETAILS!
is_differential = false

—| : CARCHETYPE ROOT
rm_release = “1.0.3” —————
rules = : C_ COMPLEX_OBJECT

terminology =
translations,= ARCHETYPE TERMINOLOGY
‘—' : ASSERTION

: RESOURCE_ANNOTATIONS

I : Hash < ARCHETYPE_TERMINOLOGY, String >

:C ARCHETYPE_ROOT

.C COMPLEX OBJECT |

Figure 7 — Operational template structure

More details of template development, representation and semantics are described in the next
subclause.

© IS0 2019 - All rights reserved 21

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.3.6 Class descriptions

7.3.6.1 AUTHORED_RESOURCE Class

Class AUTHORED_RESOURCE (abstract)
Description |Abstract idea of an online resource created by a human author.
Attributes Signature Meaning

1.1 original_language: TErRMINOLOGY CODE |Language in which this resource was initials
ly authored. Although there is no language
primacy of resources overall, the langtage of
original authoring is required to enSure natural
language translations can preserve quality.
Language is relevant in both the'description
and ontology sections.

0.1 is_controlled: Boolean True if this resource is under any kind of
change control (even file’copying), in which
case revision historyis created.

0.1 description: REsourRcE DEscrRIPTION |Description andlifecycle information of the
resource.

0.1 uid: vuip Unique identifier of the family of archetypes
having the’same interface identifier (same
majorversion).

0.1 annotations: RESOURCE ANNOTATIONS |Annotations on individual items within the

(%)

fesource, keyed by path. The inner table takg
the form of a Hash table of String values keydd

by String tags.
0.1 translations: Hash<TRANSLATION List of details for each natural translation m3de
DETAILS, String> of this resource, keyed by language. For each

translation listed here, there shall be corre-
sponding sections in all language-dependent
parts of the resource. The original_language
does not appear in this list.

Functions Sighature Meaning

current_révision: string Most recent revision in revision_history if
Post: Result = revision_history.most_ |is_controlled else (uncontrolled) .
recentaversion

languages_available: 1ist<string> |Total list of languages available in this re-
source, derived from original_language and
translations.

Invariant |Original_language_valid: code_set (Code_set_id_languages).has_code (original_lan-
guage.as_string)

Current_revision_valid: (current_revision /= Void and not is_controlled) implies cur-
rent_revision.is_equal (“(uncontrolled)”)

Translations_valid: translations /= Void implies (not translations.is_empty and not
translations.has (orginal_language.code_string))

Description_valid: translations /= Void implies (description.details.for_all (d | transla-
tions.has_key (d.language.code_string)))

Languages_available_valid: languages_available.has (original_language)

Revision_history_valid: is_controlled xor revision_history = Void

22 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

7.3.6.2 RESOURCE_DESCRIPTION class

ISO 13606-2:2019(E)

Class

RESOURCE_DESCRIPTION

Description

Defines the descriptive meta-data of a resource.

Attributes

Signature

Meaning

1.1

original_author: Hash<string, String>

Original author of this resource, with all
relevant details, including organisation.

0.1

original_namespace: string

Namespace of original author’s organisa-
tion, in reverse internet form, if applicable.

original_publisher: string

Plain text name of organisatian

nally published this artefaet, if any.

hat origi-

other_contributors: List<string>

Other contributors to the resouty
listed in "name <email>"form.

ce, each

lifecycle_state: TERMINOLOGY CODE

Lifecycle state of the’resource, t
including stategs'such as: initial,
opment, in_reyview, published, su
obsolete.

ypically
n_devel-
perseded,

parent_resource: AUTHORED RESOURCE =

Refererce to owning resource.

custodian_namespace: string

Namespace in reverse internet i
curyent custodian organisation.

l form, of

custodian_organisation: string

Plain text name of current custo
organisation.

dian

copyright: string

Optional copyright statement fo
source as a knowledge resource

' the re-

licence: string

Licence of current artefact, in fo
"short licence name <URL of lice|
"Apache 2.0 License <http://ww

'mat
hce>", e.g.
w.apache

.org/licenses/LICENSE-2.0.html

Vv

ip_acknowledgements: Hash<sString,
String>

List of acknowledgements of other IP

directly referenced in this arche
ically terminology codes, ontolo
Recommended keys are the wid
name or namespace for the IP sg
shown in the following example

ip_acknowledgements = < ["loin
<"This content from LOINC® is
© 1995 Regenstrief Institute, In
the LOINC Committee, and avail
no cost under the license at http
.org/terms-of-use">; ["snomedct

type, typ-
by ids etc.
bly known
urce, as

"] =
fopyright
C. and
hble at
//loinc
"] =

ne CNAOMDED CT AN o

4 £ £
GUIILCTIU ITT UIIT UINUTIVI LI GI'WYV'T

copyright

© 2007 IHTSDO <ihtsdo.org>">>

0.1

references: Hash<String, String>

List of references of material on which
this artefact is based, as a keyed list of
strings. The keys should be in a standard
citation format.

0.1

resource_package_uri: string

URI of package to which this resource
belongs.

© IS0 2019 - All rights reserved

23

http://www.apache.org/licenses/LICENSE-2.0.html%3E
http://www.apache.org/licenses/LICENSE-2.0.html%3E
http://loinc.org/terms-of-use
http://loinc.org/terms-of-use
https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

0.1 conversion_details: Hash<string, string> |Details related to conversion process that
generated this model from an original,

if relevant, as a list of name/value pairs.
Typical example with recommended tags:
conversion_details = < ["source_model"]
= <"CEM model xyz ["tool"] = <"ce-
mZ2adl v6.3.0"> ["time"] = <"2014-11-
03T09:05:00">>

0.1 other_details: Hash<string, String> Additional non language-sensitive resource
meta-data, as a list of name/value pairs.

0.1 details: Hash<RESOURCE DESCRIPTION Details of all parts of resource descripy
ITEM, String> tion that are natural language-dependepnt,
keyed by language code.

7.3.6.3 RESOURCE_DESCRIPTION_ITEM class

Class RESOURCE_DESCRIPTION_ITEM

Descriptipn |Language-specific detail of resource description. When a resouroe is translated for uge
in another language environment, each RESOURCE_DESCRIPTION_ITEM needs to be
copied and translated into the new language.

Attributes Signature Meaning
1.1 language: TERMINOL.OGY CODE The localised Janguage in which the items in this
description‘item are written.
1.1 purpose: string Purpose®©fthe resource.
0.1 keywords: List<string> Keywerds which characterise this resource, usefd
e.g.for indexing and searching.
0.1 use: string Description of the uses of the resource, i.e. contexts
in which it could be used.
0.1 misuse: String Description of any misuses of the resource, i.e.
contexts in which it should not be used.
0.1 original_resource_uri: URIs of original clinical document(s) or descriptjon
List<Hash<String, String>> of which resource is a formalisation, in the lan-
guage of this description item; keyed by meaning.
0.1 other_details: #ash<string, Additional language-sensitive resource metadatp,
String> as a list of name/value pairs.

7.3.6.4 RESOURCE:ANNOTATIONS class

Class RESOURCE_ANNOTATIONS

24 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Description

Object representing annotations on an archetype. These can be of various forms, with a
documentation form defined so far, which has a multi-level tabular structure [[[String
value, String key], path key], language key|. Example instance, showing the documenta-
tion structure.

documentation = <
["en"] = <
["/data[id2]"] = <

["ui"] = <"passthrough">

["/data[id2]/items[1d3]"] = <
["design note"] = <"this is a design note on Statement"

["requirements note"] = <"this is a requiremlents note of
Statement">

["medline ref"] = <"this is a medline fef on Statement"
>
>
>

Other sub-structures might have different keys, e.g. based on programming languages,
Ul toolKkits etc.

Attributes

Signature Meaning

1.1

documentation: Hash<Hash<Hash<8tring, String>, Documentary annotptions in a

String>, String> multi-level keyed stifucture.
7.3]6.5 TRANSLATION_DETAILS class
Class TRANSLATION_DETAILS
Depcription |Class providing details of a natural language translation.
Atributes Sighature Meaning
1.1 language{ TerMINOT.OGY cODE |Language of the translation.
1.1 authori#ash<string, string>|Translator name and other demographic detajls.
0.1 accreditation: string Accreditation of translator, usually a nationalltransla-
tor’s registration or association membership 1d.
0.1 other_details: Hash<string, |Any other meta-data.
String>
0..1 version_last_translated: Version of this resource last time it was trans|ated into

String the]qngnngp represented hy this TRANSLATION_DE-
TAILS object.
7.3.6.6 ARCHETYPE class
Class ARCHETYPE (abstract)

Description| The ARCHETYPE class defines the core formal model of the root object of any archetype
or template. It includes only basic identification information, and otherwise provides
the structural connections from the Archetype to its constituent parts, i.e. definition
(a C_COMPLEX_OBJECT), terminology (ARCHEYTPE_TERMINOLOGY) and so on. It is the
parent class of all concrete types of archetype.

Attributes Signature | Meaning

© IS0 2019 - All rights reserved

25

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

0.1 parent_archetype_id: string Archetype reference of the specialisation parent of
this archetype, if applicable. May take the form of
an archetype interface identifier, i.e. the identifier
up to the major version only, or can be deeper.

1.1 archetype_id: ARCHETYPE HRID Identifier of this archetype.

1.1 is_differential: Boolean Flag indicating whether this archetype is differen-
tial or flat in its contents. Top-level source arche-
types have this flag set to True.

1.1 definition: c coMPLEX OBJECT Root node of the definition of this archetype.

1.1 terminology: ARCHETYPE The terminology of the archetype.

TERMINOLOGY

0.1 rules: List<RULE_STATEMENT> Rules relating to this archetype. Statements-are
expressed in first order predicate logic; and usually
refer to at least two attributes.

Functions Signature Meaning
concept_code: string The concept code of the rootabject of the arche-
post-condition: Result.is_equal type, also standing for theconcept of the archetype
(definition.node_id) as a whole.
physical_paths: 1ist<string> Set of language-independent paths extracted from
archetype. Paths ebey Xpath-like syntax and are
formed from alternations of C_OBJECT.node_id and
C_ATTRIBUTE:m_attribute_name values.
logical_paths (lang: string): Set of language-dependent paths extracted from
List<String> archetype: Paths obey the same syntax as phys-
ical_paths, but with node_ids replaced by their
meéanings from the ontology.
specialisation_depth: integer Specialisation depth of this archetype; larger than
post-condition: Result = terminolo- [0 if this archetype has a parent. Derived from tef-
gy.specialisation_depth minology.specialisation_depth.
is_specialised: Boolean True if this archetype is a specialisation of another.
post-condition: Result implies par-
ent_archetype_hrid /£ Void
Invariant |Invariant_concept valid: terminology.has_term_code (concept_code)
Invariant_specialisation_validity: is_specialised implies specialisation_depth > 0
7.3.6.7 AUTHORED_ARCHETYPE class
Class AUTHORED_ARCHETYPE
Descriptipn [Root object of a standalone, authored archetype, including all meta-data, description
other identifiers and lifecycle.
Inherit ARCHETYPE, AUTHORED_RESOURCE
Attributes Signature Meaning

0.1 adl_version: string|ADL version ifarchetype was read in from an ADL sharable archetype.

1.1 build_uid: u1p Unique identifier of this archetype artefact instance. A new identi-
fier is assigned every time the content is changed by a tool. Used by
tools to distinguish different revisions and/or interim snapshots of
the same artefact.

1.1 rm_release: string|Semver.org compatible release of the most recent reference model
release on which the archetype in its current version is based. This
does not imply conformance only to this release, since an archetype
might be valid with respect to multiple releases of a reference model.

26

© ISO 2019 - All rights rese

rved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

1..1 is_generated:|If True, indicates that this artefact was machine-generated from
Boolean some other source, in which case, tools would expect to overwrite
this artefact on a new generation. Editing tools should set this
value to False when a user starts to manually edit an archetype.
1.1 other_meta_data:
Hash<String,
String>
Invariant |Invariant_adl_version_validity: valid_version_id (adl_version)

Invariant_rm_release: valid_version_id (rm_release)

7.3/6.8 ARCHETYPE_HRID class
Class ARCHETYPE_HRID
Depcription|Human_readable structured identifier (HRID) for an archetype or'template.
Attributes Signature Meaning

0.1 namespace: string Reverse domain name namespace‘identifier.

1.1 rm_publisher: string Name of the Reference Modélpublisher.

1.1 rm_package: string Name of the package in whose reachability graph t{he rm_
class class is found (there can be more than one pdssibility
in many reference models).

1.1 rm_class: string Name of the root:class of this archetype.

1.1 concept_id: string The short concept name of the archetype as used ip the mul-
ti-axial archétype_hrid.

1.1 release_version: string |The fulkhumeric version of this archetype consisting of 3
partsie.g. 1.8.2. The archetype_hrid feature includes only
the major version.

1.1 version_status: The status of the version, i.e. released, release_canflidate etc.

VERSTON STATUS
1.1 build_count: string The build count since last increment of any version part.
Fynctions Signature Meaning
semantic_idistring The ‘interface’ form of the HRID, i.e. down to the njajor
version.
physicalAd: string The ‘physical’ form of the HRID, i.e. with complete [version
information.
version_id: string Full version identifier string, based on release_verfion and
lifecycle, e.g. 1.8.2-rc.4.
major_version: string Major version of this archetype, extracted from releafe_version.
minor_version: string Minor version of this archetype, extracted from releafe_version.
patch_version: string Patch version of this archetype, extracted from release_ver-
sion. Equivalent to patch version in patch version in semver.
org system.
Invariant |Inv_rm_publisher _validity: not rm_publisher.is_empty

Inv_rm_package_validity: not rm_package.is_empty

Inv_class_name_validity: not rm_class.is_empty

Inv_concept_id_validity: not concept_id.is_empty

Inv_release_version_validity: valid_version (release_version)

© IS0 2019 - All rights reserved

27

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.3.6.9 TEMPLATE class

Class TEMPLATE

Description|Class representing source template, i.e. a kind of archetype that may include template
overlays, and may be restricted by tools to only defining mandations, prohibitions, and
restrictions on elements already defined in the flat parent.

Inherit |AUTHORED_ARCHETYPE
Attributes Signature Meaning

0.1 overlays: 1ist<TEMPLATE OVERLAY> |Overlay archetypes, i.e. partial archetypes that
include full definition and terminology, but logi-
cally derive all their meta-data from the owning

template.
Invariant |Inv_is_specialised: is_specialised
7.3.6.10 TEMPLATE_OVERLAY class
Class TEMPLATE_OVERLAY

Descriptipn|A concrete form of the bare ARCHETYPE class, used to represent overlays in a soufrce
template. Overlays have no meta-data of their own, and are iristead documented by tHeir
owning template.

Inherit| |ARCHETYPE
Inv_is_specialised: is_specialised

-+

Invarian

7.3.6.11 QPERATIONAL_TEMPLATE class

Class OPERATIONAL_TEMPLATE
Descriptipn |Root object of an operational template. An operational template is derived from a TEM-
PLATE definition and the ARCHETYPEs and/or TEMPLATE_OVERLAYs mentioned by
that template by a process of flattening, and potentially removal of unneeded languages
and terminologies.

An operational template is used for generating and validating canonical EHR data, anfd
also as a source artefact for generating other downstream technical artefacts, including
XML schemas, ARIsyand Ul form definitions.

Inherit{ |AUTHORED_AREHETYPE

Attributes Signature Meaning
0.1 component_terminologies: Hash<arcHETYPE |Compendium of flattened terminologies
TERMINOLOGY, String> of archetypes externally referenced

from this archetype, keyed by archetype
identifier. This will almost always be
present in a template.

0.1 terminology_extracts: Hash<ARCHETYPE Directory of term definitions as a
TERMINOLOGY, String> two-level table. The outer hash keys are
term codes, e.g. "at4", and the inner hash
key are term attribute names, e.g. "text",
"description” etc.

Functions Signature Meaning

component_terminology (an_id: string):
ARCHETYPE TERMINOLOGY

Invariant |Specialisation_validity: is_specialised

28 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.3.7 Validity rules

The following validity rules apply to all varieties of ARCHETYPE object.

VARAV: ADL version validity. The ad1_version top-level meta-data item, if provided, sha
consist of a valid 3-part version identifier.

1l exist and

VARRYV: RM release validity. The rm release top-level meta-data item shall exist and consist of a

valid 3-part version identifier.

VARCN: archetype concept vahdlty The node_id of the root ob]ect of the archetype shall be of the

1Ul 11T 1u1 \1 L]) VVllClC LllC llulllUCl Ul

defined in the terminology.

L LUllll)UllCllLb C(.iudlb LllC DPClellbclLlull uCl)Lll, d

VATDF: value code validity. Each value code (at-code) used in a term constraint in the
definition shall be defined in the term_definitions part of the terminology of the flatter
the current archetype.

VACDF: constraint code validity. Each value set code (ac-code) usedrn-a term consty
archetype definition shall be defined in the term_definitions part of the terminology of
archetype.

VATDA: value set assumed value code validity. Each value codé-{at-code) used as an assy
for a value set in a term constraint in the archetype definition shall exist in the value se
in the terminology for the identified value set.

VETDF: external term validity. Each external term used within the archetype definition
in the relevant terminology (subject to tool accessibility; codes for inaccessible terminolo
be flagged with a warning indicating that no verification was possible).

1d shall be

archetype
ed form of

aint in the
he current

med_value
[definition

shall exist
bies should

VOTM: terminology translations validity?’ Translations shall exist for term_definfitions and

constraint_definitions sections for all languages defined in the description / translation

VOKU: object key unique. Withinjany keyed list in an archetype, including the d
terminology, and annotations sections, each item shall have a unique key with respect to

S section.

escription,
ts siblings.

VARDT: archetype definitiontypename validity. The typename mentioned in the outer plock of the

archetype definition section'shall match the type mentioned in the first segment of the ar

chetype id.

VRANP: annotation path valid. Each path mentioned in an annotation within the annotations

section shall eithe¥be a valid archetype path, or a ‘reference model’ path, i.e. a path that
the root class ofthe archetype.

VRRLP: rul&path valid. Each path mentioned in a rule in the rules section shall be found
archetype,'or be an RM-valid extension of a path found within the archetype.

following validity rules apply to arRcHETYPE objects for which is over1ay = False.

is valid for

within the

specification for archetype identifiers.

VDEOL: original language specified. An original language section containing the meta-

original authoring language shall exist.

drms to the

data of the

— VARD: description specified. A description section containing the main meta-data of the archetype

shall exist.

The following rules apply to specialised archetypes.

— VASID: archetype specialisation parent identifier validity. The archetype identifier stated in the
specialise clause shall be the identifier of the immediate specialisation parent archetype.

© IS0 2019 - All rights reserved

29

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

— VALC: archetype language conformance. The languages defined in a specialised archetype shall be
the same as or a subset of those defined in the flat parent.

— VACSD: archetype concept specialisation depth. The specialisation depth of the concept code shall
be one greater than the specialisation depth of the parent archetype.

— VATCD: archetype code specialisation level validity. Each archetype term (‘at’ code) and constraint
code (‘ac’ code) used in the archetype definition part shall have a specialisation level no greater
than the specialisation level of the archetype.

7.4 Constraint model package

7.4.1 Ovlerview

Figure 8 and Figure 9 illustrate the object model of constraints used in an archetype definition. This
model is cpmpletely generic, and is designed to express the semantics of constraifits’on instarces
of classes which are themselves described in any orthodox object-oriented formalism, such as L.
Accordinglly, the major abstractions in this model correspond to major abstractions’in object-orierted
formalism$, including several variations of the notion of 'object’ and the notion ‘of)'attribute’. The nofion
of 'object’ rather than 'class’ or 'type' is used because archetypes are abouf-constraints on data [(i.e.
'instances'] or 'objects') rather than models, which are constructed from 'elasses". In this document)the
word 'attripute’ refers to any data property of a class, regardless of whether regarded as a 'relationsghip’
(i.e. associgttion, aggregation, or composition) or 'primitive’ (i.e. valu€).attribute in an object model.

packagf ClassDiagrams [[d&] AOM - constraint_model-top /]] T r——

+/parent: [0.1]
-soc_parent : C_SECOND_ORDER [0.1]

+is_prohibited() : Boolean

+has_path(a_path : String [1]) : Boolean

+path() : String +members - C_SECOND_ORDER

+c_conforms_to(other : ARCHETYPE_CONSTRAINT,) : Boolean |< + c_conforms_to(other : C_SECOND_ORDER [1]) : Boolean [1]
+c_congruent_to(other : ARCHETYPE_CONSTRAINTY) : Boolean + c_congruent_to(other : C_.SECOND_ORDER [1]) : Boolean [1]

+is_second_order_costrained() : Boolean

A

+is_root() : Boolean {query}
+is_leaf() : Boolean {query}
PIBLING_ORDER C_OBJECT CATTRIBUTE
+is bffore : Boolean [1] |+sibling ordey +m_type_name : String [1] { rm_attribute_name : String [1]
+siblihg node_id : String [1] [1 +occurrences : MULTIPLICITY_INTERVAL [o..i].ﬂh“ dren +existence : MULTIPLICITY_INTERVAL [0..1]
’ +node_id : String [1] TR of differential_path : String [0..1] +members
fe1=n0FBoolean +is_deprecated : Boolean [0..1] * +is_multiple : Boolean [1] <
+specialisation_depth() :integgr [1] {ordered} +any_allowed () : Boolean{query}

A\ +is_mandatory () : Boolean [1]{query}
+rm_attribute_path() : String{query}
+is_single () : Boolean{query}

[[| S P |
C_LOMPLEX_OBJECT_PROXY ARCHETYPE_SLOT . C_DEFINED_OBJECT +cardinalityd 0.1
+targe{ path : String [1] +includes : ASSERTIONy (0] +default_value : Any [0.1] CARDINALITY
I+se Hfrgst-oceurrences(Boolean] | *excludes: A 10N [0.] - +interval : MULTIPLICITY_INTERVAL [1]
+is_closed : Boolean 1] +valid_value(a_value : Any [1]) : Boolean [1] +is_ordered : Boolean [1]
+prototype_value() : Any +is_unique : Boolean [1]
+any,mmoolean +has_default_value() : Boolean
+is_bag () : Boolean
T +is_list () : Boolean
] +is_set () : Boolean

C_COMPLEX_OBJECT +attribute_tuples [
+any_allowed () : Boolean * C_ATTRIBUTE_TUPLE

C-PRIMITIVE_OBJECT C-ARCHETYPE_ROOT
kassumed_value : Any [0..1] +archetype_ref : String [1] +tuples | *

is_enumerated_type_constraint : Boolean [0.1] |
constraint : Any [1] Gmembers C_PRIMITIVE_TUPLE
1*

trhas_assumed_value() : Boolean
e s

Figure 8 — constraint_model package

The definition part of an archetype is an instance of ac_comMpLEX_0oBJECT and consists of alternate layers
of object and attribute constrainer nodes, each containing the next level of nodes. At the leaves are
primitive object constrainer nodes constraining primitive types such as string, Integer etc. There are
also nodes that represent internal references to other nodes, constraint reference nodes that refer to a
text constraint in the constraint binding part of the archetype terminology, and archetype constraint

30 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

nodes, which represent constraints on other archetypes allowed to appear at a given point. The full list
of concrete node types is as follows.

C_COMPLEX_ OBJECT : any interior node representing a constraint on instances of some non-primitive

type, e.g. OBSERVATION,

SECTION.

C_ATTRIBUTE : a node representing a constraint on an attribute (i.e. UML 'relationship’ or 'primitive
attribute') in an object type.

C_PRIMITIVE OBJECT :an node representing a constraint on a primitive (built-in) object type.

The
con
and
con
give

ARCHETYPE SLOT .

not the current one.

C ARCHETYPE ROOT

dao sl ot £, s 3 L dafs 2|
T COMTr o ODULCI_TROAT » d HOUCTTITat T CICT S tO—a prevIOousSTy aCTmCt C— COMTE O OUDoLCT

same archetype. The reference is made using a path.

constraints define which configurations of reference medel class instances are cor
form to the archetype. For example, certain configuratigns’of the classes paRTY , ADDRESS , CLUSTER
ELEMENT might be defined by a Person archetype as allowable structures for 'people with identity,

ode in the

a node whose statements define a constraint that deternmfines which other
archetypes can appear at that point in the current archetype. It can be thought oflike a k¢yhole, into
which few or many keys might fit, depending on how specific its shape is. kegically it hds the same
semantics as a C COMPLEX OBJECT , except that the constraints are expressed in another

archetype,

: stands for the root node of an archetype;.énables another archetype to be
referenced from the present one. Used in both archetypes and tenplates.

sidered to

+assumed_value : Boolean [0.1] {redefines assume_value}
+default_value : Boolean{redefines default_value}, | 0

+constraint : Interval [1.*[{redefines constraint} |

+prototype_value() : Boolean [1]{redefines pfototype. value} |

«bind» «bind»

C_STRING

| <T->Integer> | <T->Real>

+constraint : String [1..*] {redefines constraint}
+default_value :String {redefines defa\falue)

+assumed value String [0.1]{redefines assuimed value} | |

+prototype_value() : String [1](&m s prototype_value}

C_lNTEGER‘

‘ C_RIEAL |

+default_value : TERMINOLOGY_CODE({redefines default_value}

facts, and addresses'. Because the constraints allow-optionality, cardinality and other choices, a
n archetype usually corresponds to a set of simila¥configurations of objects.
package ClassDiagrams [[&] AOM - constraint_model-bottom U CPRIIIVE.OBJECT
+assumed.value yAny [0.1]
+is_enumeratéd=type_constraint : Boolean [0..1]
+constraint: Any [1]
+hds_dssumed_value() : Boolean
+eonstrained_typename() : String
T i ! ‘
C_BOOLEAN S a L . C,TERMINOLO.GY,C()DE
PN] s consirainy < eomumad vabie. SLRMINGLOGE CODB[ooi]rodefines assumed.vajue)

+value_set_substituted() : Uri [*]

+value_set_expanded() : String []

+value_set_resolved() : TERMINOLOGY_CODE[*]
+valid_value(a_value : TERMINOLOGY_CODE) : Boolean(redefines v{lid_value},
+prototype_value() : TERMINOLOGY_CODE(redefines prototype_valuf}

pattern /=Void implies valid_iso8601_date_constraint_pattern(pattern)}

+valid_value(a_value : StringJ: n{redefines valid_value} C_TEMPORAL
+pattern_constraint : String [1]
+valid_pattern_constraint() : Boolean
«bind» T T T «bind»
_ _ _ _ <T-IS08601DATE- | | | <T>1S08601_DURATION>
| wind | <bind» T
| __ <T>IS08601TIME> _ <T>IS08601_DATE_TIME> |
| |
1
C_DATE C_DATA_TIME C_DURATION

pattern /=Void implies valid_iso8601_date_time_constraint_pattern(pattern)};

+years_allow ed() : Boolean
the ol 40 Boal

FTOTT VAT] T VATTDTTY KTNDTIT
l+day_validity() : VALIDITY_KIND [1]
l+timezone_validity() : VALIDITY_KIND [1]

|
|
| Frmonth_validity () :
|
|

a It
+day_validity() : VALIDITY_KIND [1]

l+timezone_validity() : VALIDITY_KIND [1]
kminute_validity() : VALIDITY_KIND [1]
l+second_validity() : VALIDITY_KIND [1]

+weeks_allow ed() : Boolean
+days_allow ed() : Boolean [1]
+hours_allow ed() : Boolean
+minutes_allow ed() : Boolean
+seconds_allow ed() : Boolean

_validity() : VALIDITY_KIND [1]

+fractional_seconds_allow ed() : Boolean

C_TIME

{pattern /=Void implies valid_iso8601_time_constraint_pattern(pattern)};

+minute_validity() : VALIDITY_KIND [1]
+second_validity() : VALIDITY_KIND [1]
+millisecond_validity() : VALIDITY_KIND [1]
+timezone_validity() : VALIDITY_KIND [1]

Figure 9 — constraint_model.primitive package

© IS0 2019 - All rights reserved

31

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

The type-name nomenclature ¢ _xxx used here is intended to be read as "constraint on objects of type
xxxx ", i.e. a C_COMPLEX OBJECT is a "constraint on a complex object (defined by a complex reference
model type)". These type names are used below in the formal model.

7.4.2 Semantics

The effect of the model is to create archetype description structures that are a hierarchical alternation
of object and attribute constraints. The repeated object/attribute hierarchical structure of an archetype
provides the basis for using paths to reference any node in an archetype, e.g. /attributeA[objectldX]/
attribute[objectldY]. Archetype paths follow a syntax that is a directly convertible in and out of the
W3C Xpat

i
Dy IIVAA.

7.4.2.1 All node types

Path functions

the
ven

A small nu
current no
pathcanb

mber of properties are defined for all node types. The path feature computes the path to
de from the root of the archetype, while the has_path function indicates whether a g

e found in an archetype.
Conformapce functions

All node tlypes include two functions that formalise the notion .of‘conformance of a specialised

archetype
in a parent
same or ad

the speciallised archetype.

The c_conf
'other' nod
other node
to restrict

Any_allowed

The any a

Lo a parent archetype. Both functions take an argument which shall be a corresponding node
archetype, not necessarily the immediate parent. A 'cotresponding’ node is one found atjthe
ongruent path. A congruent path is one in which one’ar'more at-codes have been redefined in

the
the
eed
bnt.

orms_to function returns True if the node on;which it is called is a valid specialisation of]
e. The ¢_congruent to function returns Trué:if the node on which it is called is the same ag
with the possible exception of a redefined at-code. The latter might happen due to the n
he domain meaning of node to a meaning narrower than that of the same node in the pary{

| 1owed function defined on-some node types indicates that any value permitted by|the

reference
logical idez
substruct

the
her

nodel for the attribute or\type in question is allowed by the archetype; its use permits
of a completely "open"‘eonstraint to be simply expressed, avoiding the need for any furf
re.

7.4.2.2 Attribute nodés

Constraints on reference model attributes, including computed attributes (represented by functjons

with no arfguments.in most programming languages), are represented by instances of ¢ ATTRIBYTE .

The expregdsible ‘¢onstraints include:

— is mu pLoraflag that indicates whether the (i.e
container) RM attribute or a single-valued one;

existence: whether the corresponding instance (defined by the rm attribute name attribute)
shall exist;

child objects: representing allowable values of the object value(s) of the attribute.

In the case of single-valued attributes (such as Person.date_of_birth) the children represent one or more
alternative object constraints for the attribute value.

For multiply-valued attributes (such as person.contacts: List<Contact>), a cardinality constraint on
the container can be defined. The constraint on child objects is essentially the same except that more

32 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

than one of the alternatives can co-exist in the data. Figure 10: C_ATTRIBUTE variants illustrates the
two possibilities.

The appearance of both existence and cardinality constraints in ¢ ATTRIBUTE deserves some
explanation, especially as the meanings of these notions are often confused in object-oriented literature.
An existence constraint indicates whether an object will be found in a given attribute field, while a
cardinality constraint indicates what the valid membership of a container object is. cardinality is only
required for container objects such as .ist<T>, set<T> and so on, whereas existence is always possible.
If both are used, the meaning is as follows: the existence constraint says whether the container object
will be there (at all), while the cardinality constraint says how many items shall be in the container, and
whether it acts logically as a list, set or bag. Both existence and cardinality are optional in the model,
singe they are only needed to override the settings from the reference model.

4 5,, PARTY_IDENTITY idl|Nome da pessoa|
4 ~* name { .
T DV TEXT 158 C_ATTRIBUTE sisZmultiple =[False
b -!- DV—CODED TEXT id50 showing altermpative child objedts
267 - -

4 — details

4 % ADDRESS id1|Address|
P —* name
4 — details
4 %8 ITEM_TREE id2|items| C_ATTRIBUTE - is_multiple o True
3 T => collection of possible child|objects
4 T8 CLUSTER i ress lin&s|
4 B items

P @ ELEMENT id22|Buifding/complex sub-unit type—abbreviation|
P @ ELEMENT id23[Building/complex sub-unit number|
D @ ELEMENT_, id24|Address site name|
D @ ELEMENT, id25|Floor/level number|
b @ ELEMEMT id26|Floor/level type|
b @ BELEMENT id27|Lot number|
b @\ELEMENT id28|Street type code]

Figure 10 — C_ATTRIBUTE variants

7.412.3 Objectmode types
Node_id and‘Paths

The node’ id attribute in the class ¢ _oBJect, inherited by all subtypes, is of key importgnce in the
archetype constraint maodel It hastwo functions:

— itallowsarchetype objectconstraintnodes tobe individually identified, and in particular, guarantees
sibling node unique identification;

— it provides a code to which a human-understanding terminology definition can be attached, as well
as potentially a terminology binding.

The existence of node _ids in an archetype allows archetype paths to be created, which refer to each
node. Every node in the archetype needs a node id , but only node_ids for nodes under container
attributes shall have a terminology definition. For nodes under single-valued attributes, the terminology
definition is optional (and typically not supplied), since the meaning is given by the reference model
attribute definition.

Sibling ordering

© IS0 2019 - All rights reserved 33

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Within a specialised archetype, redefined or added object nodes may be defined under a container
attribute. Since specialised archetypes are in differential form, i.e. only redefined or added nodes are
expressed, not nodes inherited unchanged, the relative ordering of siblings can’t be stated simply by
the ordering of such items within the relevant list within the differential form of the archetype. An
explicit ordering indicator is required if indeed order is specific. The ¢ 0BJECT.sibling order attribute
provides this possibility. It can only be set on a c_osJsecT descendant within a multiply-valued attribute,
i.e. an instance of ¢ ATTRTIBUTE for which the cardinality is ordered.

Node deprecation

It is possible to mark an instance of any defined node type as deprecated, meaning that by preference it
should not|be used, and that there is an alternative solution for recording the same informationRples
or recommnjendations for how deprecation should be handled are outside the scope of the archetlype
proper, and should be provided by the governance framework under which the archetype is managed.

7.4.2.4 efined object nodes (C_DEFINED_OBJECT)

The c pEFfNED OBJECT subtype corresponds to the category of c oBJecTs that dre defined in an
archetype py value, i.e. by inline definition. Four properties characterize c_pEFINED 0OBJECTs as follgws.

Valid_value

The va1id [value function tests a reference model object for conformanée to the archetype. Itis designed
for recursiye implementation in which a call to the function at the top*of the archetype definition wquld
cause a cagcade of calls down the tree. This function is the key fungtion of an 'archetype-enabled keynel'
componen{ that can perform runtime data validation based on@warchetype definition.

Prototype value

This function is used to generate a reasonable default@alue of the reference object being constrained
by a given pode. This allows archetype-based software to build a 'prototype' object from an archetype
which can ferve as the initial version of the objectbeing constrained, assuming it is being created hew
by user activity (e.g. via a GUI application). Impfementation of this function will usually involve ude of
reflection libraries or similar.

Default_vglue

This attribfite allows a user-specifi€d,default value to be defined within an archetype. The default vd1ue
object shal] be of the same typeas-defined by the prototype value function, pass the valid value fest.
Where defined, the prototypetgalue function would return this value instead of a synthesised value

'Frozen' npdes

A node mdy be redefined into multiple child nodes in a specialised archetype. If the children|are
considered to exhaustively define the value space corresponding to the original node, the latter may be
'frozen’, m¢aning’no further children can be defined. This also has a runtime implication: a frozen njode
cannot have@ny instances, only its children can.

7.4.2.5 Reference objects

The types aRCHETYPE_ST.0T and C_COMPLEX_OBJECT PROXY are used to express, respectively, a 'slot’ where
further archetypes can be used to continue describing constraints; a reference to a part of the current
archetype that expresses exactly the same constraints needed at another point.

7.4.2.6 Complex objects (C_COMPLEX_OBJECT)

Along with ¢ ATTRIBUTE, ¢ _coMPLEX OBJECT is the key structuring type of the constraint model
package, and consists of attributes of type c_aTTrIBUTE, which are constraints on the attributes (i.e. any
property, including relationships) of the reference model type. Accordingly, each ¢ ATTRIBUTE records
the name of the constrained attribute (in rm attr name), the existence and cardinality expressed by

34 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

the constraint (depending on whether the attribute it constrains is a multiple or single relationship),
and the constraint on the object to which this ¢ ATTRTIBUTE refers via its children attribute (according
to its reference model) in the form of further ¢ oBJECTs .

7.4.2.7 Primitive types (C_PRIMITIVE_OBJECT descendants)

Constraints on primitive types are defined by the classes inheriting from c_PRIMITIVE OBJECT, i.e.C

STRING , C_INTEGER and so on. The primitive types are represented in such a way as to accommodate
both 'tuple' constraints and logically unary constraints, using a tuple array whose members are
each a prlmltlve constraint corresponding to each prlmltlve type Tuple constraints are second

ord
con

pa | bad lbal Ll L J 1 £l
1 LUllDLl CllllLD, ULotllTuTUu UTlIuvy, TIIAdUICU LU vcu_ylus LUllDLl cuu\.o LU T DLQLCU 111 LIIC Ulldl

Ktraint is the first member of a tuple array.

y case, the

The primitive constraint for each primitive type may itself be complex. Its type is given by the|type of the
conktraint accessor in each c_pr1MITIVE OBJECT descendant and is summarised in the/following table.

Primitive type |Primitive constrainer type Explanation

Bogplean List <Boolean> Can represent one or two Boxlean
values enabling the logical c¢nstraints
'true’, ‘false' and 'true or fals¢' to be
expressed.

Striing List <String> Alist of possible string valuef, which
may include regular expressipns,
which are delimited by '/' chgracters.

Terjminology_code|string - [acN] Or [atN]® A string containing either a sjngle at-
code or a single ac-code. In the latter
case, the constraint refers toleither a
locally defined value set or (yia a bind-
ing) an external value set.

Orfered types |List <Interval<T>X Can represent a single value {which is
a point interval), a list of valyes (list
of point intervals), a list of infervals,
which may be mixed proper and point
intervals.

Integer List <Ingerval<Integer>> As for Ordered type, with T 4 Tnteger

Real Ligt\sdInterval<Real>> As for Ordered type, with T 4 real

Temporal types |[fist <Interval<T-IS08601 TYPE>> As for ordered types, with T peing an

OR [SO8601-based type, with th¢ addition
string (ADL pattern) of a second type constraint - p pattern
based on ISO 8601 syntax.

Date List <Interval<ISO8601 DATE>> As for Temporal types with T| =

OR ISO8601 DATE
pattern
Time List <Interval<IS08601 TIME>> As for Temporal types with T =
OR IS08601 TIME
pattern
Date_time List <Interval<ISO8601 DATE TIME>> As for Temporal types with T =
OR IS08601 DATE TIME
pattern
Duration List <Interval<ISO8601 DURATION>> As for Temporal types with T =
OR IS08601 DURATION
pattern
Assumed _value
© IS0 2019 - All rights reserved 35

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

The assumed_value attribute is useful for archetypes containing any optional constraint. and provides
an ability to define a value that can be assumed for a data item for which no data is found at execution
time. If populated, it can contain a single at-code that shall be in the local value set referred to by the ac-
code in the constraint attribute.

For example, an archetype for the concept 'blood pressure measurement' might contain an optional
protocol section containing a data point for patient position, with choices 'lying’, 'sitting' and 'standing'.
Since the section is optional, data could be created according to the archetype which does not contain
the protocol section. However, a blood pressure cannot be taken without the patient in some position, so
clearly there is an implied value for patient position. Amongst clinicians, basic assumptions are nearly
always ma ings: i i iti be
"sitting" ifjnot otherwise stated; in the hospital setting, "lying" would be the normal assumptiomn [The
assumed_vlalue feature of archetypes allows such assumptions to be explicitly stated so that all users/
systems krjow what value to assume when optional items are not included in the data.

Note that the notion of assumed values is distinct from that of 'default values'. The lattérnotion is that
of a defaulf 'pre-filled' value that is provided (normally in a local context by a template)’for a data ifem
that is to b filled in by the user, but which is typically the same in many cases. Default values are thus
simply an ¢fficiency mechanism for users. As a result, default values do appearin data, while assuimed
values donlt.

7.4.2.8 Terminology constraints (C_TERMINOLOGY_CODE)

The c TErRpINOLOGY CODE type entails some complexity and merits further explanation. This is|the
only constrainer type whose constraint semantics are not self-centained, but located in the archetype
terminologdy and/or in external terminologies.

Ac TErMINoLOGY CODE instance inan archetype issimple:it€an only be one of the following constraints:

— asinglp ac-code, referring to either a value-set defitred in the archetype terminology or bound tp an
externfal value set or ref set;

— infthis case, an additional at-code may(be included as an assumed value; the at-code shall cpme
from the locally defined value set;

— asinglp at-code, representing a single possible value.

NOTE The second case in theory.can be done using an ac-code referring to a value set containing a sihgle
value, but there seems little value in)this extra verbiage, and little cost in providing the single-member valug set
short cut.

This class may be used to.constrain coded types such as ISO 13606-1 CODED_VALUE or CODED_SIMPLE
datatypes.

In additior}, a ¢ ERMINOLOGY CODE instance can reconstitute the internal value set via access to|the
archetype [terminology (this has to be set up within the implementation). If bindings are evalu
the externplform of a value set can potentially be obtained as well. The utility of this is to be able to
evaluate ar i ’ ’ i i

Terminology code resolution

When an archetype is deployed in the form of an operational template, the internally defined value sets,
and any bindings are processed in stages in order to obtain the final terminology codes from which the
user should choose. The ¢ TERMINOLOGY CODE class provides a number of functions to formalize this as
follows.

— value set expanded: List<String>:this function converts an ac-code to its corresponding set of
at-codes, as defined in the value sets section of the archetype.

— value set substituted: List<URI>: where bindings exist to the value set at-codes, this function
converts each code to its corresponding binding target, i.e. a URIL

36 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

— value set resolved: List<TERMINOLOGY cODE>: this function converts the list of URIs to final
terms, including with textual rubrics, i.e. a list of TERMINOLOGY CODEs.

These functions would normally be implemented as 'lambdas’ or 'agents’, in order to obtain access to
the target terminologies.

Since an archetype might not contain external terminology bindings for all (or even any) of its
terminological constraints, a 'resolved’ archetype will usually contain at-codes in its cADL definition.
These at-codes would be treated as real coded terms in any implementation that was creating data, and
as a consequence, archetype at-codes could occur in real data.

7.4{2.9 Constraints on enumeration types

Enymeration types in the reference model are assumed to have semantics expected in[f UML, and
mainstream programming languages, i.e. to be a distinct type based on a primitive typ¢, normally
Intgger or String. Each such type consists of a set of values from the domain of itsiinderlying|type, thus,
a sqt of Integer, String or other primitive values. Each of these values is asstmed to be najmed in the
manner of a symbolic constant. Although strictly speaking UML does not require an enumgrated type
to He based on an underlying primitive type, programming languages de, hence the assumption here
that values from the domain of such a type are involved.

A cqnstraint on an enumerated type therefore consists of an AOM instance of ac prIMITIVE descendant,
almostalwaysc TInTEGEROrc sTRING. Theflagis enumerated type constraint defined onc|pPRIMITIVE
ind{cates that a given c_pPRIMITIVE is a constrainer for an entmérated type.

Sing¢e c_prIMITIVEs don’t have type names in ADL, the tiype name is inferred by any parser ¢r compiler
too] that deserialises an archetype from ADL, and stéred in the rm type attribute inheritpd from c
oBJECT. An example is shown below in Figure 11 of atype enumeration.

4 T ITEM_TREE
4 items
4 @ ELEMENT test enum 1
i value
4 12 DV_PROPORTION
Znumerator: REAL [0.0.1.0; 0.0
37 is_integral: BOOLEAN False
— type: PROPORTION_KIND pk_unitary
4 @ ELEMENT test enum 2
4 value
4 1:2 DV_PROPORTION
—* numerator: REAL [0.0.1.0]; 0.0
is_integral: BOOLEAN False
— type: PROPORTION_KIND pk_percent, pk_fractjon

Figure 11 — Enumerated constraint

A parser that deserializes from an object dump format such as ODIN, JSON or XML will not need to do this.

The form of the constraint itself is simply a series of Integer, String or other primitive values, or an
equivalent range or ranges. In the above example, the ADL equivalent of the pk_percent, pk_fraction
constraint on a field of type prororTION KINDisin factjust \{2, 3}, and itis visualised by lookup to show
the relevant symbolic names.

© IS0 2019 - All rights reserved 37

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.4.3 Second order constraints

All of the constraint semantics described above can be considered 'first order' in the sense that they
define how specific object/attribute/object hierarchies are defined in the instance possibility space of
some part of a reference model.

Some constraints however do not fit directly within the object/attribute/object hierarchy scheme, and
are considered 'second order constraints' in the archetype formalism. The 'rule' constraints constitute
one such group. These constraints are defined in terms of first order predicate logic statements that can
refer to any number of constraint nodes within the main hierarchy. These are described in Figure 16:
Rules package.

Another type of second order constraint can be 'attached’ to the object/attribute/object hierarchly in
order to fyrther limit structural possibilities. Although these constraints could also theoretically be
expressed ps rules, they are supported by direct additions to the main constraint model since they|can
be easily and intuitively represented 'inline' in ADL and corresponding AOM structures!

7.4.3.1 uple constraints

Tuple consfraints are designed to account for the very common need to conStrdin the values of njore
than one RM class attribute together. This effectively treats the attributes in question as a tuple, and|the
correspondling object constraints are accordingly modelled as tuples. Additions to the main constrpint
model to syipport tuples are shown in Figure 12 below.

package ClassDiagrams [AOM - constraint_model-tupleﬂ

l+members
‘ ARCHETYPE_CONSTRAINT [* FJC_SECOND_ORDER |

children Hembers
C_OBJECT {ordered] C_ATTRIBUTE ; N C_ATTRIBUTE_TUPLE

AN +attributes | * *
{ondered} +attribute_tuples
+tuples |*

| C_DEFINED_OBJECT | C_PRIMITIVE_TUPLE
T T\
| N

C_PRIMITIVE_OBJECT %*members
1.%

=

| {
r C_COMPLEX_OBJECT

Figure 12 — Tuple constraint model

In this model, the type c ATTRIBUTE TUPLE groups the co-constrained c ATTRIBUTE's under a 'C_
coMPLEX OBJECT. Currently the concrete type is limited to being c prIMITIVE OBJECT, to reduce
complexity, and since this caters for the known examples of tuple constraints. In principle, any c_
DEFINED OBJECT would be allowed, and this might change in the future.

The tuple constraint type replaces all domain-specific constraint types defined in ADL/AOM 1.4,
including ¢ pv QUANTITY and ¢ DV ORDINAL.

These additions allow standard constraint structures (i.e. ¢ ATTRIBUTE / C_COMPLEX OBJECT / C_
PRIMITIVE OBJECT hierarchies) to be 'annotated’, while leaving the first order structure intact. The
following example shows an archetype instance structure in which a notional orbINAL type is constrained.
The logical requirement is to constrain an orpINAL to one of three instance possibilities, each of which
consists of a pair of values for the attributes value and symbol, of type Integer and TERMINOT.OGY CODE

38 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

respectively. Each of these three instance constraints should be understood as an alternative for the
single valued owning attribute, L.EMENT .value. Tuple constraints achieve the requirement to express
the constraints as pairs not just as allowable alternatives at the final leaf level, which would incorrectly
allowing any mixing of the Integer and code values, as illustrated in Figures 13 and 14.

: C INTEGER

Object Diagram InstanceDiagrams [AOM - ordinal,tuple,exampleﬂ

: C_ ATTRIBUTE

1 rm_attribute_name = “value” + C INTEGER
: C INTEGER | : C PRIMITIVE TUPLE
I members =]
: C_ COMPLEX OBJECT
attribute_tuples = L\ i ||
attributes =, C TERMINOLOGY CODE members = ’(\
constraint = “at10fabsent]” | [~
: C_% T !_/E TUPLE
ml <4
A ers =
AT :C_TERMINOLOGY_CODE (r\"’%’
]

n| Children=,,

1 i i constraint = “at12|regular|”
— rm_attribute_name = “symbol

: C_ TERMINOLOGY_CODE

constraint = “atlZIregular|'\"

: CATTRIBUTE_TUPLE

members =,

tuples =,,
Figure 13 — Tuple constraint example AOM instances
value matches { ORDINAL
ORDINAL [id4] matches { Ao _
[value, symbol]. matches { value = [at10 [abstent]] Pos sllble
[{0}, {[at10]}], rurftime
ADL source [{1}, 'pat11]}], daFa
}[{2}, {[at12] }] ORDINAL objpcts
} value = 0
} value = [at12 |abstent|]

Figure 14 — Tuple constraint example data

7.4{3.2 Assertions

Assprtions are also used in ARCHETYPE_SLOTs, in order to express the 'included’ and 'excluded' prchetypes
for thesslot. In this case, each assertion is an expression that refers to parts of other archefypes, such
as its identifier (e.g. 'include archetypes with short concept name matching xxxx '). Assertions are
modelled here as a generic expression tree of unary prefix and binary infix operators.

7.4.4 AOM type substitutions

Specialised archetypes can redefine the types of the AOM objects from parent archetypes. Not all type
substitutions are valid, so this section provides the rules for these substitutions.

The c_ouecT types defined in Figure 8: constraint_model Package are reproduced below in Figure 15,
with concrete types that may actually occur in archetypes shown in dark yellow / non-italic.

© IS0 2019 - All rights reserved 39

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

C_COMPLEX_| {0 e rumtice)
OBJECT

redefine into any redefine redefine into
internal reference redefinition into slot external reference

C_COMPLEX_ | |C_COMPLEX_ ARCHETYPE_SLOT C_ARCHETYPE_
OBJECT_PROXY OBJECT ROOT

slot closing slot filling

redefine external
reference

AR ARLIAVARTE R

Within a s
of the sam

informatiopn model sense), but in some cases might also be of different c_orJzcTtypes.

The rules fi

— Anodqg
constr

— ARCHET

— on
th

— an
— Ac ay

— A
my(

— A termiinal c_coMpLEX oBJECT pode containing no constraint other than RM type, node id

possib
AOM t)

The 'termi
purpose of

ARCHETYPE SLOT| [C_ARCHETYPE_ROOTEARCHETYPE
ROOT

Figure 15 — C_Object substitutions

e C_OBJECT type (we can think of this as a 'meta-type’, since the RM type is the 'type' in

br meta-type redefinition are as follows:

hints;
YPE ST.OT can be redefined by:

e or more c_ARCHETYPE RoOT nodes taken together, considered to define a 'filled' versio
e slot;

ARCHETYPE SLOT, in order to close the slot.
CHETYPE ROOT node can be redefined by:

_ARCHETYPE ROOT, where the archetype_ref of the redefining node is a specialisation of
entioned in the parent nodes

y occurrences (i.e. Having no substructure), can be redefined by a constraint of any of
pe.

hal ¢ coMPLEX“OBJECT ' can be understood as a placeholder node primarily defined for
stating meaning.

becialised archetype, nodes that redefine corresponding nodes in the parent are norm

ally
the

of each meta-type can be redefined by a node of the same. fnéeta-type, with narrowed / added

h of

that

and

her

the

40

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

7.4.5 Class definitions

7.4.5.1 ARCHETYPE_CONSTRAINT class

ISO 13606-2:2019(E)

Class ARCHETYPE_CONSTRAINT (abstract)
Description|Defines common constraints for any class in the reference model that has an archetype_
id property.
Attributes Signature Meaning
0.1 parent:
0.1 soc_parent: C_SECOND ORDER
Fynctions Signature Meaning

is_prohibited: Boolean

True if this node (and all itS-sub-nodes) i

a valid

archetype node for its type. This function should

be implemented by each subtype to perfq
mantic validation éfitself, and then call t
function in any subparts, and generate th
appropriately,

rm se-
he is_valid
e result

has_path (a_path: string): boolean

True if therelative path a_path exists at {

his node.

path: string

Path ofithis node relative to root of arche|

type.

c_conforms_to (other: ARCHETYPE
CONSTRAINT): Boolean

True'ifconstraints represented by this n¢de, ig-

norihg any sub-parts, are narrower or th
other. Typically used during validation of
ised archetype nodes.

b same as
special-

c_congruent_to (other: ARCHETYPE
CONSTRAINT): Boolean

True if constraints represented by this n
tain no further redefinitions with respec
node other, with the exception of node_id
tion in C_OBJECT nodes. Typically used td

de con-
L to the
redefini-
testifan

inherited node locally contains any constiraints.

is_second_order_constrained:
Boolean

is_root: B6olean

is_leaf: Beolean

7.4/5.2 C_ATTRIBUTE class
Class C_ATTRIBUTE
Depcription | Abstract model of constraint on any kind of attribute in a class model.
Inkerit—ARCHETYRE-CONSTRANT
Attributes Signature Meaning
1.1 rm_attribute_name: string Reference model attribute within the enclos-
ing type represented by a C_OBJECT.
0.1 existence: MULTIPLICITY INTERVAL Constraint settable on every attribute,

regardless of whether it is singular or of a
container type, which indicates whether its
target object exists or not (i.e. is mandatory
or not). Only set if it overrides the underly-
ing reference model or parent archetype in
the case of specialised archetypes.

© IS0 2019 - All rights reserved 41

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

0.1 children: 1ist<c oBJECT> Child C_OBJECT nodes. Each such node
represents a constraint on the type of this
attribute in its reference model. Multiples
occur both for multiple items in the case of
container attributes, and alternatives in the
case of singular attributes.

0.1 differential_path: string Path to the parent object of this attribute (i.e.
doesn’t include the name of this attribute).
Used only for attributes in differential form,
specialised archetypes. Enables only the
re-defined parts of a specialised archetypg¢ to
be expressed, at the path where they,oceur.

0.1 cardinality: CARDINALITY Cardinality constraint of attribute, if-a cop-
tainer attribute.

1.1 is_multiple: Boolean Flag indicating whether this'attribute con-
straint is on a container (i’e,multiply-val-
ued) attribute.

Functions Signature Meaning
any_allowed: Boolean
is_mandatory: Boolean
rm_attribute_path: string Path of this attribute with respect to ownfing
C_OBJECLT, including differential path whdre
applicable.
is_single: Boolean True'if this node logically represents a
single-valued attribute. Evaluated as not
is_multiple.
(effected) |c_congruent_to (other: ARCHETYPE True if constraints represented by this
CONSTRAINT): Boolean node contain no further redefinitions with
Post: Result = existence = Void:dnd is_sin- |respect to the node other, with the exceptjion
gle and other.is_single) or (isu.multiple and |of node_id redefnition in C_OBJECT nodes|
other.is_multiple and cardinality = Void |Typically used to test if an inherited node
locally contains any constraints.
(effected) |c_conforms_to (othert ARCHETYPE True if constraints represented by this node,
CONSTRAINT): Boofean ignoring any sub-parts, are narrower or the
Post: Result = e€xXistence_conforms_to same as other. Typically used during valida-
(other) and-isZsingle and other.is_single) |tion of specialised archetype nodes.
or else (isxmultiple and cardinality_con-
forms_to-(other)
Conformapce semantics
The follow]rdgfunctions formally define the conformance of an attribute node in a specialised archetlype

to the corresponding node in a parent archetype, where ‘corresponding” means a node found at the

same or a congruent path.

c_conforms to (other: like Current): Boolean
require
other /= Void
do
Result := existence conforms to (other) and
((is_single and other.is single) or else

(is multiple and cardinality conforms to

end
c_congruent to (other: like Current): Boolean
require
other /= Void
do
Result := existence =

42

Void and ((is_single and other.is single)

(other)))

or

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

(is multiple and other.is multiple and cardinality = Void))
end

existence conforms to (other: like Current): Boolean

require
other exists: other /= Void
do
if existence /= Void and other.existence /= Void then
Result := other.existence.contains (existence)
else
Result := True
end
end

cardinality conforms to (other: like Current): Boolean

Val
The

Thd

require
other exists: other /= Void
do
if cardinality /= Void and other.cardinality /= Void then
Result := other.cardinality.contains (cardinality)
else
Result := True
end
end

dity rules
validity rules are as follows.

VCARM: attribute name reference model validity: an attribute name introducing a
constraint block shall be defined in the underlying information model as an attribute
computed) of the type which introduces the enclosing-object block.

VCAEX: archetype attribute reference model existence conformance: the existence of a
if set, shall conform, i.e. be the same or narroweér; to the existence of the corresponding i
the underlying information model.

VCAM: archetype attribute reference medel multiplicity conformance: the multiplicity, i
an attribute is multiply- or single-valued, of an attribute shall conform to that of the cori
attribute in the underlying informdtion model.

VDIFV: archetype attribute differential path validity: an archetype may only have a
path if it is specialised.

following validity rule ‘applies to redefinition in a specialised archetype.

VDIFP: specialised’archetype attribute differential path validity: if an attribute const]
differential path;the path shall existin the flat parent, and also be valid with respectto th
model, i.e. imthe sense that it corresponds to a legal potential construction of objects.

VSANCE:)specialised archetype attribute node existence conformance: the exisft
redefified attribute node in a specialised archetype, if stated, shall conform to the exist
corresponding node in the flat parent archetype, by having an identical range, or a ra
¢ontained by the latter.

h attribute
(stored or

) attribute,
ittribute in

e. whether
‘esponding

Hifferential

raint has a

e reference

ence of a
ence of the
hge wholly

VSAM: specialised archetype attribute multiplicity conformance: the multiplicity, i.e. whether
an attribute is multiply- or single-valued, of a redefined attribute shall conform to that of the

corresponding attribute in the parent archetype.

The following validity rules apply to single-valued attributes, i.e. when ¢ ATTRIBUTE.is multiple is False.

— VACSO: single-valued attribute child object occurrences validity: the occurrences of a child object

of a single-valued attribute cannot have an upper limit greater than 1.

The following validity rules apply to container attributes, i.e. when C_ATTRIBUTE.is_multiple is True.

— VACMCU: cardinality/occurrences upper bound validity: where a cardinality with a finite upper

bound is stated on an attribute, for all immediate child objects for which an occurrences

© IS0 2019 - All rights reserved

constraint

43

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 1360

is stat

6-2:2019(E)

ed, the occurrences shall either have an open upper bound (i.e. n..*) which is interpreted as

the maximum value allowed within the cardinality, or else a finite upper bound which is < the
cardinality upper bound.

— VACMCO: cardinality/occurrences orphans: it shall be possible for at least one instance of one
optional child object (i.e. an object for which the occurrences lower bound is 0) and one instance of
every mandatory child object (i.e. object constraints for which the occurrences lower bound is >= 1)
to be included within the cardinality range.

— VCACA: archetypeattribute reference model cardinality conformance: the cardinality of an attribute

shall ¢

underlying information model.

The follow

onform, i.e. be the same or narrower, to the cardinality of the corresponding attribute in the

ng validity warnings apply to container attributes, i.e. when c_ATTRIBUTE.is multippelis True.

— WACMCL: cardinality/occurrences lower bound validity: where a cardinality with a finite ugper

bound

is stat¢d, the sum of occurrences lower bounds should be lower than the cardinality upper limit.

The follow

— VSAN
redefi

is stated on an attribute, for all immediate child objects for which an occurrérces constrpint

ng validity rule applies to cardinality redefinition in a specialised atchetype.

[C: specialised archetype attribute node cardinality conforrhance: the cardinality ¢f a
ed (multiply-valued) attribute node in a specialised archetype, if stated, shall conform to{the

cardinplity of the corresponding node in the flat parent archetype by either being identical, or bg¢ing

wholly| contained by the latter.

7.4.5.3 (ARDINALITY class

Class

CARDINALITY

Descripti

bn | Express constraints on the cardinality.of container objects which are the values of mpil-

tiply-valued attributes, including unigueness and ordering, providing the means to state
that a container acts like a logicallist, set or bag. The cardinality cannot contradict the
cardinality of the corresponding-attribute within the relevant reference model.

Attributes Signature Meaning
1.1 interval: MULTIPLICITYSENTERVAL The interval of this cardinality.
1.1 is_ordered: Booleatd True if the members of the container attribjute
to which this cardinality refers are orderecF.
1.1 is_unique: Booledn True if the members of the container attribjte
to which this cardinality refers are unique
Functions Signature Meaning
is_bdg)Boolean True if the semantics of this cardinality repredent

a bag,i.e. unordered, non-unique membership.

Is_list: Boolean True if the semantics of this cardinality regre-
sentalist ie ordered non-unique members hip.

is_set: Boolean True if the semantics of this cardinality represent
a bag, i.e. unordered, non-unique membership.

7.4.5.4 C_OBJECT class

Class

C_OBJECT (abstract)

Description|Abstract model of constraint on any kind of object node.

Inherit |ARCHETYPE_CONSTRAINT
Attributes Signature Meaning
1.1 rm_type_name: String Reference model type that this node corresponds to.
44 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

0.1 occurrences: MULTIPLICITY

INTERVAL

Occurrences of this object node in the data, under the
owning attribute. Upper limit can only be greater than
1 if owning attribute has a cardinality of more than 1.
Only set if it overrides the parent archetype in the case
of specialised archetypes, or else the occurrences in-
ferred from the underlying reference model existence
and/or cardinality of the containing attribute.

1.1 node_id: string

Semantic identifier of this node, used to distinguish
sibling nodes. All nodes shall have a node_id; for nodes
under a container C_ ATTRIBUTE, the id shall be an

id-code shall be defined in the archetype texfninolo-

gy. For valid structures, all node ids are-id-cddes. For
C_PRIMITIVE_OBJECTS, it will have the specipl value
Primitive_node_id.

0.1 is_deprecated: Boolean

True if this node and by implication all sub-npdes are
deprecated for use.

0.1 sibling_order: s1BLING ORDER

Optional indicator of order of this node with fespect

to another sibling. Only-meaningful in a specjalised
archetype for a C_OBJECT within a C_ATTRIBUTE with
is_multiple = True.

Functions Signature

Meaning

specialisation_depth: 1nteger

Level of specialisation of this archetype nodg, based
on its nodéyid. The value 0 corresponds to ngn-spe-
cialised;, T to first-level specialisation and so pn. The
levelis'the same as the number of .’ charactefs in the
node_id code. If node_id is not set, the return{value is
4, signifying that the specialisation level should be
determined from the nearest parent C_OBJE(T node
having a node_id.

Ocdurrences inferencing rules

Thd
on

notion of 'occurrences' does\not exist in an object model that might be used as the refergnce model
which archetypes are baSed, because it is a class model. However, archetypes make
about how many objects conforming to a specific object constraint node might exist, within

statements
h container

attifibute. In an operatiohal template, an occurrences constraint is required on all children df container
attifibutes. Most suchconstraints come from the source template(s) and archetypes, but in Jome cases,
there will be nodes-with no occurrences. In these cases, the occurrences constraint is inferrgd from the
refgrence modelkaceording to the following algorithm, where ¢ _object represents any objec node in an

archetype.

if

okt

courronco

o-obicct
=)

I}ﬂ

hot ¢_ebject.is root and c object.occurrences =
if{i¥ container attribute in rm (c_object.parent)
if rm parent attr.cardinality.upper unbounded then

Void then
then

*!\

else
c_object.set occurrences
end
else
c _object.set occurrences
end
end

(10.

.rm_parent attr.cardinality.upper|)

(rm parent attr.existence)

Occurrences is not really required on children of single-valued attributes, because the notional
occurrences is always the same as the existence constraint of the owning attribute in the flat parent

structure, or else the reference model.

Conformance semantics

© IS0 2019 - All rights reserved

45

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

The following functions formally define the conformance of an object node in a specialised archetype to
the corresponding node in a parent archetype, where 'corresponding’ means a node found at the same

or a congruent path.

c conforms to (other: like Current): Boolean
require
other /= Void

do
Result := node id conforms to (other) and
occurrences conforms to (other) and
(rm_type name.is equal (other.rm type name) or else
rm_types conformant (rm type name, other.rm type name))
end
c _congruenpt to (other: like Current): Boolean
-1+ True if this node makes no changes to 'other' (from a
-1 specialisation parent archetype) apart from possible
-1 change of node-id
requite
other /= Void
do
R¢sult := rm type name.is case insensitive equal (other.rm type mame) and
(occurrences = Void or else occurrences ~ other.occurrencgs) and
(sibling order = Void or else sibling order ~ other.sibling order) and
node reuse congruent (other)
end
rm_type c¢nforms to (other: like Current): Boolean
requife
other /= Void
do
R¢sult := rm type name.is equal (other.rm type ®ame) or
rm checker.is sub type of (rm type name, @fher.rm type name)
end
occurrencgs conforms to (other: like Current): Boqledn
requite
other exists: other /= Void
other is flat: other.occurrences /= Vepid
do
if occurrences /= Void and other oc€cturrences /= Void then
Result := other.occurrences“gontains (occurrences)
else
Result := True
end
end
node id c¢nforms to (other: likel Current): Boolean
requifte
other exists: othg¥’)/= Void
do
Rg¢sult := codes)conformant (node id, other.node id)
end
Validity ryles
The validitly rules-for all c oBJECTs are as follows.

— VCORMgbject constraint type name existence: a type name introducing an object constraint b

shall be defined in the underlying information model.

ock

— VCORMT object constraint type validity: a type name introducing an object constraint block shall
be the same as or conform to the type stated in the underlying information model of its owning

attribute.

— VCOCD objectconstraint definition validity: an object constraintblock consists of one of the following
(depending on subtype): an 'any' constraint; a reference; an inline definition of sub-constraints, or

nothing, in the case where occurrences is set to {0}.
— VCOID object node identifier validity: every object node shall have a node identifier.

— VCOSU object node identifier validity: every object node shall be unique within the archetype.

46 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

The following validity rules govern c_oBJecTs in specialised archetypes.

7.4

VSONT specialised archetype object node meta-type conformance: the meta-type of a redefined

object node (i.e. the AOM node type such as ¢ _compLEX OBJECT etc.) in a specialised arch

etype shall

be the same as that of the corresponding node in the flat parent, with the following exceptions: ac
coMPLEX OBJECT with no child attributes may be redefined by a node of any AOM type; a c_coMPLEX
OBJECT PROXY, may be redefined by a c_coMPLEX OBJECT; a ARCHTEYPE SLOT may be redefined by

C_ARCHETYPE ROOT (i.e. 'slot-filling'). See also validity rules VDSSID and VARXID.

VSONCT specialised archetype object node reference type conformance: the reference model type
of a redefined object node in a specialised archetype shall conform to the reference model type in

the corresponding node in the flat parent archetype by either being identical, or conferiping via an

inheritance relationship in the relevant reference model.

VSONIN specialised archetype new object node identifier validity: if an object ngdé in a
archetype is a new node with respect to the flat parent, and it carries a node identifier, th
shall be a 'new' node identifier, specalised at the level of the child archetype.

VSONIF specialised archetype object node identifier validity in flat siblings: the identi
not) of an object node in a specialised archetype shall be valid with/respect to any sik
nodes in the flattened parent (see VACMI).

VSONCO specialised archetype redefine object node occubrences validity: the occuri
redefined object node in a specialised archetype, if stated, shall conform to the occurre
corresponding node in the flat parent archetype by either being identical, or being wholly
by the latter.

VSONPT specialised archetype prohibited object’'node AOM type validity: the occur
redefined object node in a specialised archetypé, may only be prohibited (i.e. {0}) if th
node in the parent is of the same AOM type!

Epecialised
e identifier

Fication (or
ling object

rences of a
nces in the
r contained

rences of a
e matching

VSONPI specialised archetype prohibited object node AOM node id validity: a redefined ¢bject node

in a specialised archetype with occutrences matching {0} shall have exactly the same no
node in the flat parent being redefined.

VSONPO specialised archetype object node prohibited occurrences validity: the occur
new (i.e. having no correspending node in the parent flat) object node in a specialised a1
stated, may not be 'prohibited’, i.e. {0}, since prohibition only makes sense for an existin

VSSM specialised @rehetype sibling order validity: the sibling order node id code used
marker in a specialised archetype shall refer to a node found within the same containe
parent archetype.

5.5 SIBLING_ORDER class

e id as the

rences of a
'chetype, if
r node.

in a sibling
- in the flat

Class SIBLING_ORDER

DeSeription

Nafinactha ordarindicator that can hancad an A C ORIECT viathin o containad
e e StHHEe-Or e ettt oo oo Do Ty ret o oo et

attrib-

c-orotor

higher specialisation level.

attribute in a specialised archetype.

ute in a specialised archetype to indicate its order with respect to a sibling defined in a

Misuse: This type cannot be used on a C_OBJECT other than one within a container

Attributes

Signature Meaning

1.1 is_before: Boolean True if the order relationship is ‘before’, if False,

itis ‘after’.

1.1 sibling_node_id: string Node identifier of sibling before or after which

should come.

this node

Functions

Signature Meaning

© IS0 2019 - All rights reserved

47

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

is_after: Boolean True if the order relationship is ‘after’, computed as the
negation of is_before.

7.4.5.6 C_DEFINED_OBJECT class

Class C_DEFINED_OBJECT (abstract)

Description|Abstract parent type of C_OBJECT subtypes that are defined by value, i.e. whose defini-
tions are actually in the archetype rather than being by reference.

Inherit |C_OBJECT
Attributes Signature Meaning

0.1 is_frozen: Boolean True if this node is closed for further re-definition. Angy~chilfl
nodes defined as sib-lings are considered to exhaustively rep-
resent the possible value space of this original parent node.

0.1 default_value: any Default value set in a template, and present ip.an operationgl
template. Generally limited to leaf and near-leaf nodes.
Functions Signature Meaning
valid_value (a_value:|True if a_value is valid with respect to.¢onstraint expressed in
Any): Boolean concrete instance of this type.

prototype_value: any |Generate a prototype value frem this constraint object.

has_default_value:|True if there is an assumed<value.
Boolean

7.4.5.7 (_COMPLEX_OBJECT class

Class C_COMPLEX_OBJECT
Descriptipn|Constraint on complex objects, i.e. any object that consists of other object constraintd.
Inheritf |C_DEFINED_OBJECT

Attributes Signature Meaning
0.1 attributes: List<C ATTRIBUTE> List of constraints on attributes of the refer
ence model type represented by this object.
0.1 attribute_tuples: 1{st<c aTrTrIBUTE |List of attribute tuple constraints under thij
TUPLE> object constraint, if any.
Functions Signature Meaning
any_allowed: Boolean True if any value (i.e. instance) of the referepce
model type would be allowed. Redefined in
descendants.
Validity Rules

The Va]idit}) rulnc Fnr allNalaly iphinl fatsEaantalil ALre AC ‘FI\]](\‘AYC

— VCATU attribute uniqueness: sibling attributes occurring within an object node shall be uniquely
named with respect to each other, in the same way as for class definitions in an object reference model.

7.4.5.8 C_ARCHETYPE_ROOT class

Class C_ARCHETYPE_ROOT

48 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Description

tifier rather than the normal internal node code (i.e. id-code). Used in two situ

archetype or template. This supports re-use. The second use is within a templ
itis used as a slot-filler.

ence, the node_id is set to a specialised version of the node_id of the node bein
ised, allowing matching to occur during flattening.

A specialisation of C_COMPLEX_OBJECT whose node_id attribute is an archetype iden-

The first is to represent an ‘external reference’ to an archetype from within another

For a new external reference, the node_id is set in the normal way, i.e. with a new code
at the specialisation level of the archetype. For a slot-filler or a redefined external refer-

ations.

ate, where

g special-

T attuses Wit Source archetypes and tempiates, te ciitdren attribute 15V

In an operational template, the node_id is converted to the archetype_ref,.and

ture contains the result of flattening any template overlay structure ard the underlying

pid.

the struc-

flat archetype.
Inherit |C_COMPLEX_OBJECT
Attributes Signature Meaning
1.1 archetype_ref: string|Reference to archetype is being used+o fill a slot or red¢fine an

external reference. Typically an {interface’ archetype id|i.e. iden-
tifier with partial version information.

Valjdity rules

The following validity rules apply to c_ARCHETYPE ROOT objects.

— | VARXS external reference conforms to slot: the archetype reference shall conform to thg archetype

slot constraint of the flat parent and be of a reference model type from the same referen¢e model as

Th

the current archetype.

VARXNC external reference node identifier validity: if the reference object is a redefiniti
a slot node, or another external reference node, the node_id of the object shall conform ta
same or a child of) the node_id of the"corresponding parent node.

redefinition of another external reference node, the archetype_ref of the object shall m
archetype that has as anf@ncestor the archetype matched by the archetype reference m
the corresponding parent node.

VARXTYV externalréference type validity: the reference model type of the reference objec
identifier shallbeidentical, or conform to the type of the slot, if there is one, in the parent
or else to the'reference model type of the attribute in the flat parent under which th
object appears in the child archetype.

VARXRexternal reference refers to resolvable artefact: the archetype reference shall
artefact that can be found in the current repository.

bn of either
(i.e. be the

VARXAV external reference.node archetype reference validity: if the reference ¢bject is a

atch a real
bntioned in

archetype
archetype,
e reference

refer to an

parent archetype:

fottowing vatidity Tulesapply to @ T ARCHETYPE _ROOT that Speciatises @ ARCHETYPE_SLOT in the

— VARKXID external reference slot filling id validity: an external reference node defined as a filler for
a slot in the parent archetype shall have a node id that is a specialisation of that of the slot.

7.4.5.9 ARCHETYPE_SLOT class

Class ARCHETYPE_SLOT
Description|Constraint describing a slot' where another archetype can occur.
Inherit |C_OBJECT
Attributes Signature Meaning

© IS0 2019 - All rights reserved

49

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

0.1 includes: List of constraints defining other archetypes that could be
List<ASSERTION> included at this point.

0.1 excludes: List of constraints defining other archetypes that cannot be
List<ASSERTION> included at this point.

1.1 is_closed: Boolean True if this slot specification in this artefact is closed to fur-
ther filling either in further specialisations or at runtime. De-
fault value False, i.e. unless explicitly set, a slot remains open.

Functions Signature Meaning

any_allowed: Boo1ean |True if no constraints stated, and slot is not closed.

Validity ryles

The validi

rules for ARCHETYPE

SLOTs are as follows.

— VDFAI archetype identifier validity in definition. Any archetype identifier mentioned inf an
archetlype slot in the definition section shall conform to the specification for archetype identiffiers
in this|document.

— VDSIVlarchetype slot 'include’ constraint validity. The 'include’ constraintinan archetype slot shall

confor

— VDSE

shall cpnform to the slot constraint validity rules.

The slot copstraint validity rules are as follows.

if includg¢s not empty and = any then

not (¢xcludes empty or /= any) ==> VDSEV Errox
elseif in¢ludes not empty and /= any then

not (g¢xcludes empty or = any) ==> VDSEV Error
elseif exq¢ludes not empty and = any then

not (Includes empty or /= any) ==> VDSIVWError
elseif ex¢ludes not empty and /= any then

not (jncludes empty or = any) ==> ¥DSIV Error
end

to the slot constraint validity rules.

archetype slot 'exclude' constraint validity. The 'exclude~¢onstraint in an archetype [slot

The followling validity rules apply to_ArcHETYPE sroTs defined as the specialisation of a slot in|the
parent archetype.

— VDSSIP slot redefinition child- node id: a slot node in a specialised archetype that redefines a(slot

— VDSS

matched from the'same library by the parent slot definition.

node il];the flat parent shallyhave an identical node id.

specialised archetype slot definition match validity. The set of archetypes matched frgm a
library of archetypes by a specialised archetype slot definition shall be a proper subset of the set

— VDSSRH spedialised archetype slot definition parent validity. The flat parent of the specialisation of

an archetype slot shall be not be closed (is_closed = False).

— VDSSC specialised archetype slot definition closed validity. In the specialisation of an archetype
slot, either the slot can be specified to be closed (is_closed = True) or the slot can be narrowed, but
not both.

7.4.5.10 C_COMPLEX_OBJECT_PROXY class

Class

C_COMPLEX_OBJECT_PROXY

50

© ISO 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Description |A constraint defined by proxy, using a reference to an object constraint defined else-
where in the same archetype. Note that since this object refers to another node, there
are two objects with available occurrences values. The local occurrences value on a
COJMPLEX_OBJECT_PROXY should always be used; when setting this from a serialised
form, if no occurrences is mentioned, the target occurrences should be used (not the
standard default of {1..1}); otherwise the locally specified occurrences should be used
as normal. When serialising out, if the occurrences is the same as that of the target, it
can be left out.
Inherit |C_OBJECT
Attributes Qign ature Mnnning
1.1 target_path: string Reference to an object node using archetypepath notation.
Fynctions Signature Meaning
use_target_occurrences: True if target occurrences are to be used as thevalue of
Boolean occurrences in this object; by the tifne of runtime use, the
Post: Result = (occurrences = |target occurrences value has te e set into thisfobject.
Void)

Valjdity rules

The following validity rules applies to internal references.

— |VUNT use_node reference model type validity: the reference model type mentioned in an c_

COMPLEX OBJECT PROxY node shall be the same as or a super-type (according to the reference model)
of the reference model type of the node referred to.

— |VUNP use_node path validity: the path mentioned in a use_node statement shall refer tp an object

node defined elsewhere in the same archetype or any of its specialisation parent archegtypes, that
is not itself an internal reference node, and“vhich carries a node identifier if one is ne¢ded at the
reference point.

The following validity rule applies to the Fedefinition of an internal reference in a specialised|archetype.

— |VSUNT use_node specialisation parentvalidity:ac coMpLEx OBJECT pPROXYnode maybergedefinedin

7.4/5.11 C_PRIMITIVEZOBJECT class

a specialised archetype by.ahother c comprLEX OBJECT PROXY (e.g.in order to redefine ocfurrences),
orbyac covprreEx oBJEcTstructure thatlegally redefinesthetargetc comprex oBJECT nofle referred
to by the reference.

Class C_PRIMITIVE_OBJECT (abstract)
Depcription |Parent of types representing constraints on primitive types.
Inherit: |C_DEFINED_OBJECT
Attributes Signature Meaning
0.1 assumed_value: any Value to be assumed if none sent in data.
0.1 is_enumerated_type_constraint:| True if this object represents a constraint on an enu-
Boolean merated type from the reference model, where the
latter is assumed to be based on a primitive type,
generally Integer or String.
1.1 constraint: any Constraint represented by this object; redefine in
descendants.
Functions Signature Meaning
has_assumed_value: Boolean True if there is an assumed value.

© IS0 2019 - All rights reserved 51

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

constrained_typename: string |Generate name of native type that is constrained
by this C_XXX type. For most types, it is the C_XXX
typename without the 'C_', i.e. XXX. E.g. C_LINTEGER
— Integer. For the date/time types the mapping is
different.

Validity rules
The validity rules for c_ prRIMITIVE OBJECTs are as follows.

— VOBAV object node assumed value validity: the value of an assumed value shall fall within the value
space glefined by the constraint to which it is attached.

7.4.5.12 (_BOOLEAN class

Class C_BOOLEAN

Descriptipn|Constraint on instances of Boolean. Both attributes cannot be set to False, since this
would mean that the Boolean value being constrained cannot be True or False.

Inherit| |C_PRIMITIVE_OBJECT

Attributes Signature Meaning
0.1 constraint: List<Boolean> Boolean constrdint - a list of Boolean valueg.
(redefined)
0.1 assumed_value: Boolean
(redefined)
1.1 default_value: Boolean
(redefined)
Functions Signature Meaning
(effected) |prototype_value: Boolean

7.4.5.13 (_STRING class

Class C_STRING
Descriptipn|Constraint on instarces of STRING.
Inherit| |C_PRIMITIVE_OBJECT

Attributes Signature Meaning
1.1 constraint:rist<String> String constraint - a list of literal strings and / or regular
(redefined) expression strings delimited by the /' character.
1.1 default_value: string
(redefined)
0.1 assumed_value: string
(redefined)
Functions Signature Meaning
(effected) |prototype_value: string
(effected) |valid_value (a_value: Trueifa_value is valid with respect to constraint expressed
String): Boolean in concrete instance of this type.

7.4.5.14 C_ORDERED class

Class | C_ORDERED (abstract)

52 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

Description

Abstract parent of primitive constrainer classes based on ORDERED base types, i.e.
types like Integer, Real, and the Date/Time types. The model constraint is a List of
Intervals, which may include point Intervals, and acts as an efficient and formally
tractable representation of any number of point values and/or contiguous intervals of
an ordered value domain.

In its simplest form, the constraint accessor returns just a single point Interval<T> ob-
ject, representing a single value.

The next simplest form is a single proper Interval <T> (i.e. normal two-sided or half-
open interval). The most complex form is a list of any combination of point and proper

ftervats:

Inherit |C_PRIMITIVE_OBJECT
Attributes Signature Meanfing
1.1 constraint: List<Interval>
(rgdefined)

7.4]5.15 C_INTEGER class

Class C_INTEGER
Depcription |Constraint on instances of Integer.
7.4]5.16 C_REAL class

Class C_REAL
Depcription | Constraint on instances of Real.

7.4|5.17 C_TEMPORAL class

Class C_TEMPORAL (abstract)
Defcription | Purpose Abstract parent of C_ORDERED types whose base type is an ISO date/time type.
Inherit |C_ORDERED
Attributes Signature Meaning
1.1 pattern_constraint: string |Optional alternative constraint in the form of a pattern
based on ISO8601. See descendants for details.
Functions Signature Meaning

valid_pattern_constraint:
Boolean

7.4/5.18 YC_DATE class

Class

C_DATE

Description

[SO 8601-compatible constraint on instances of Date in the form either of a set of va-
lidity values, or else date ranges based on the C_ORDERED list constraint. There is no
validity flag for ‘year’, since it shall always be by definition mandatory in order to have
a sensible date at all. Syntax expressions of instances of this class include “YYYY-7?-7?"
(date with optional month and day).

Functions

Signature Meaning

month_validity: vALIDITY KIND Validity of month in constrained date.

day_validity: vALIDITY KIND Validity of day in constrained date.

timezone_validity: vALIDITY KIND Validity of timezone in constrained date.

Invariant

Pattern_validity: pattern /= Void implies valid_iso8601_date_constraint_pattern(pattern)

© IS0 2019 - All rights reserved 53

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

7.4.5.19 C_TIME class

Class C_TIME

Description |ISO 8601-compatible constraint on instances of Time in the form either of a set of va-
lidity values, or else date ranges based on the C_ORDERED list constraint. There is no
validity flag for ‘hour’, since it shall always be by definition mandatory in order to have
a sensible time at all. Syntax expressions of instances of this class include “HH:??7:xx”
(time with optional minutes and seconds not allowed).

Functions Signature Meaning
3 i 1 dis 1 oli i £ 2 i 2 i 2 A R
IITIIULC |V alluu._y . ALTDULL liﬁ\ll\lu \4 auuu._y Ul TIIITITULT 11T CUILIS I a1licyu lee.
second_validity: vALIDITY KIND Validity of second in constrained\tinje.
millisecond_validity: varn1p1TY XIND Validity of millisecond in constrained time.
timezone_validity: vALIDITY KIND Validity of timezone in constrained date.
Invariant |Pattern_validity: pattern /= Void implies valid_iso8601_time_constraintcpattern (pattdrn)

7.4.5.20 (_DATE_TIME class

Class C_DATE_TIME

Descriptipn|ISO 8601-compatible constraint on instances of Date_Timi€. There is no validity flag for
‘yvear’, since it shall always be by definition mandatoryin’order to have a sensible datg/
time at all. Syntax expressions of instances of this ¢lass include “YYYY-MM-DDT??:7?2:p?”
(date/time with optional time) and “YYYY-MMDDTHH:MM:xx” (date/time, seconds n¢t

allowed).

Functions Signature Meaning
month_validity: var1p1TY KIND Validity of month in constrained date.
day_validity: vALTDITY KIND Validity of day in constrained date
timezone_validity: vaLIpITY XIND Validity of timezone in constrained dgte.
minute_validity: vAL1DITY KIND Validity of minute in constrained timme.
second_validity: vALTIDITY KIND Validity of second in constrained tijne.
millisecond_validity; vALIpITY KIND Validity of millisecond in constraiped

time.

Invariant |Pattern_validity:pattern /=Void implies valid_iso8601_date_time_constraint_pattern(pattdrn)

7.4.5.21 (_DURATION class

Class C_DURATION
Descriptipn
Functions Signature Meaning

years_allowed:: Boolean TTue 1f years are allowed In the constrained Duration.

months_allowed:: Boolean True if months are allowed in the constrained Duration.

weeks_allowed:: Boolean True if weeks are allowed in the constrained
Duration.

days_allowed: Boolean True if days are allowed in the constrained Dura-
tion.

hours_allowed: Boolean True if hours are allowed in the constrained
Duration.

minutes_allowed: Boolean True if minutes are allowed in the constrained
Duration.

54 © IS0 2019 - All rights reserved

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

ISO 13606-2:2019(E)

seconds_allowed: Boolean

Duration.

True if seconds are allowed in the constrained

fractional_seconds_allowed:
Boolean

True if fractional seconds are allowed in
strained Duration.

the con-

7.4.5.22 C_TERMINOLOGY_CODE class

Class C_TERMINOLOGY_CODE
Description |Constrainer type for instances of TERMINOLOGY_CODE. The constraint attribute can
contain: ~ a single at-code ™ a single ac-code, representing a value-set that 1s défined in
the archetype terminology
If there is an assumed value for the ac-code case above, the assumed_value attribute
contains a single at-code, which shall come from the list of at-codes defined as|the inter-
nal value set for the ac-code.
Inherit |C_PRIMITIVE_OBJECT
Attributes Signature Meaning
1.1 constraint: string Type of individual 'eonstraint - a single stfing that
(rgdefined) can either be a]dcal at-code, or a local ac{code
signifying a locally defined value set. If ah ac-code,
assumed _value may contain an at-code fijom the
value setof the ac-code.
0.1 assumed_value: TERMINOLOGY CODE
(rgdefined)
1.1 default_value: TERMINOLOGY CODE
(regdefined)

Fynctions Signature Meaning
value_set_expanded: Effective set of at-code values correspondling to an
List<String> ac-code for a locally defined value set. Ndt defined

for ac-codes that have no local value set.
value_set_substituted: n.ist<uri> |Forlocally defined value sets within indiidual code
bindings: return the term URI(s) substituted from
bindings for local at-codes in value_set_expanded.
value_set.resolved: For locally defined value sets within indiyidual
List<IERMINOLOGY_CODE> code bindings: final set of external codes|to which
value set is resolved.

(efffected) |valid_value (a_value: TerMINOLOGY |True if a_value is valid with respect to copstraint
CODE): Boolean expressed in concrete instance of this type.

(efffected] |prototype_value: TErRMINOLOGY CODE|A generated prototype value from this fon-

straint object.

7.4.5.23 C_SECOND_ORDER class

Class

C_SECOND_ORDER (abstract)

Description

Abstract parent of classes defining second order constraints.

Attributes

Signature

Meaning

0.1

nﬂenﬂbers:LiSt<ARCHETYPE_CONSTRAINT>

Normally redefined in descendants.

Members of this second order constrainer.

Functions

Signature

Meaning

© IS0 2019 - All rights reserved

55

https://standardsiso.com/api/?name=7cf5726bf8ed120daeb3f55695862139

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	4 Abbreviations
	5 Conformance
	6 Archetype representation requirements
	6.1 General
	6.2 Archetype definition, description and publication information
	6.3 Archetype node constraints
	6.4 Data value constraints
	7 Archetype object model
	7.1 Preface
	7.1.1 Purpose
	7.1.2 Nomenclature
	7.2 Model overview
	7.2.1 Package structure
	7.2.2 Definition and utility classes
	7.3 The archetype package
	7.3.1 Overview
	7.3.2 Archetype identification
	7.3.3 Top-level meta-data
	7.3.4 Governance meta-data
	7.3.5 Structural definition
	7.3.6 Class descriptions
	7.3.7 Validity rules
	7.4 Constraint model package
	7.4.1 Overview
	7.4.2 Semantics
	7.4.3 Second order constraints
	7.4.4 AOM type substitutions
	7.4.5 Class definitions
	7.5 The rules package
	7.5.1 Overview
	7.5.2 Semantics
	7.5.3 Class descriptions
	7.6 Terminology package
	7.6.1 Overview
	7.6.2 Semantics
	7.6.3 Class descriptions
	7.7 Templates
	Annex A (informative) Archetype Definition Language
	Annex B (informative) Example Representation
	Bibliography

