INTERNATIONAL ISO
STANDARD 13209-2

First edition
2012-08-15

Road vehicles — Open Test sequence
eXchange format (OTX) —

Part 2:
Core data model specification and
requirements

Véhicules routiers —d=ormat public d'échange de séquence-tests
(OTX) —

Partie 2: Exigences et spécifications du modéle de données [central

e Reference number
= — ISO 13209-2:2012(E)

© SO 2012

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

COPYRIGHT PROTECTED DOCUMENT

© 1S0O 2012

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 ¢ CH-1211 Geneva 20
Tel. +41227490111

Fax +41 2274909 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

ii © ISO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Contents

(o] €21 Vo] o E PR
Ta N (e Te [UTe3 1T ¥ o U PP UP TP PPPPPPUPPN
1 Qr‘npp

2 NOIMALIVE FEFEIENCESeiiiiiiiiii ettt sbeee e s snreeeessnneeeesnen D oV
3 Terms, definitions and abbreviated termscccoiiiii e e
3.1 Terms and defiNitiONS ... s Dy
3.2 ADDIEVIAted tEIMIS ..ot eI e et
4 =0 ST =T 0 01=] o) £ SRS PURERRS @ PR
4.1 LCT=T o T - | PP PSP UOPPPUPRTP
4.2 Basic principles for requirements definitionccoom A
4.3 Clustering Of reqUIrEMENTS........ueiiii i S et e e e e e e
4.4 ReqQUITEMENT PriOFITIES oo (et e e e e et e e e e e e e e s anneees
4.5 General format and language ASPECESeeeivieiiiiimiiiiiieee e et
4.6 Test sequence development ProCess SUPPOIt ... ot
4.7 Language feature detailS ... e e e
4.8 BOUNUANES .ttt b e e e ettt e e s sttt e e e s sbb e e e s sbbeeeesnbbeeeesnbbeeeean
5 Introduction to modelling in UML and XSD ... @0 .ccccoueiieeee e e e ssivinee e e e e s snineee s
5.1 1= T = L= 1S o L= o] £ PSPPSR
5.2 (O P TS0 [To | o= 0 1 PSSR
5.3 Mapping to the XML Schema DefinitionNanguage (XSD)ccceevvvvciiiieeieeeiiiiiiiieeee e
6 OTX PrINCIPIES oo e e e
6.1 GENEIAl .o N e
6.2 DY [o] 1= L PP RTT TP
6.3 Imperative and structured programming paradigmcccooooiiiieiieeeeeiiiieee e
6.4 Graphical authoring of OTX SEQUENCEScoiii ittt e e
6.5 Specification/RealiSatioN CONCEPTciiiiiii ettt
6.6 Modular OTX extensign concept and OTX-based runtime architecture.........ccccccceenne
6.7 (070 T a1 (=>4l o0] 1 o] =T o]
6.8 V2= 1o L Y= R o o] T =Y o | SRR
6.9 Y Lo T - U Lo 017 o4 =Y o OSSR
7 OTX Corerdata model SPECIfICAtION ...cc.uiiiiiiii e e e
7.1 L= T =T | e PP
7.2 High=level overview of the OTX Core data modelccooveiieiiiiiiiiii e
7.3 DIOCUM EBINT FOOT .. bnbnn e
7.4 101 oTo] =T PP P PP PPPPPPPPPPPPP
7.5 (€1 Mo] k= 1o (=Tl F= 1= 1T o] o 1= T O TP PP OO P PP PPPPPPPPPPPPTIN
7.6 RV = U To 1182 (=T 4 U URT TP
7.7 SIONALUFIES .ttt oottt e e e e e oo a bttt e et e e e s e aa bbb eeeaae e e aanbbbeeeeaeeesanbbbaeaaaeeeaannes
7.8 ProCEAUIE SIGNALUIES....ccciiieeiieieee ettt e e e st e e e e e e st e e e e e e s s s nbaaeeeeeeesesnsrnnneeeeeeannnnes
7.9 Lo Tod=To LU T = PP PRP PRSP
4% O B T =1 g o e Y 1 .4 1=T o £ SRR
7.11 Parameter deCIaratioNSocuiii it
% A o Yo | o [=Tod F= 1= Ao] o PR SRPTRR
4% e T Lo o 1= PRSPPI
4 o] £ o] o L= ST PR OPTT PP
A5 TOIMS oo
T.16 UNIVEISAI LY POS ittt ettt e e e e e s a bt be e e e e e e e e s anbeeeeaeeeeaaannbbaeeaaaaeas

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Annex B (normative) Scope and memory allOCatiONuuiiiiiiiiiiiiiirece e e e e e e 166
Annex C (normative) Comprehensive checker rule liStingcccoiviiee i 168
Annex D (normative) EXteNSION MECHANISIMuviiiiiiii i e e e s e e e e e s s snan e e e e e e e e aans 178
Annex E (normative) Schema annotations for exception handlingcccccceeeieiiicc e 181
ANnnex F (NOrmative) XML SCREME@Sc.ccoiiiiiiiiiiiie et e et e e e e e s s s e e e e e e s st e e e e e e s s snnnrrneeeeeaennnns 182
27101100 =T o o 1Y/ SO 205

iv © ISO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through 1SO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and

non

Intefnational Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

governmental, In lalson with 150, alSO0 1ake palt In the WOrkK. 150 cCollaborates CIOSe€)

y with the

Intefnational Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The)
ado
Inte

Atte
righ

ISO
Eleg

ISO
eXc

main task of technical committees is to prepare International Standards. Draft\Internationa
rnational Standard requires approval by at least 75 % of the member bodies'casting a vote.

ntion is drawn to the possibility that some of the elements of this document may be the subje
s. ISO shall not be held responsible for identifying any or all such patent rights.

13209-2 was prepared by Technical Committee I1SO/TC22, Road vehicles, Subcomm
trical and electronic equipment.

hange format (OTX):
Part 1: General information and use cases
Part 2: Core data model specification and.requirements

Part 3: Standard extensions and requirements

Standards

bted by the technical committees are circulated to the member bodies for, voting. Publication as an

ct of patent

ittee SC 3,

13209 consists of the following parts, under the general title Road vehicles — Open Test sequence

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Introduction

Diagnostic test sequences are utilized whenever automotive components or functions with diagnostic abilities
are being diagnosed, tested, reprogrammed or initialised by off-board test equipment. Test sequences define
the succession of interactions between the user (i.e. workshop or assembly line staff), the diagnostic

application (the test equment) and the vehlcle communlcatlon mterface as well as any Calculatlons
decisions that t ' ‘ -
diagnostics|or similar test Iog|c

Today, thg automotive industry mainly relies on paper documentation and/or proprietary, “authd

and
ded

ring

environmments to document and to implement such test sequences for a specific test application. An author

who is setting up engineering, assembly line or service diagnostic test applications needs{to“implement

the

required tegt sequences manually, supported by non-uniform test sequence documentationy most likely uging

different authoring applications and formats for each specific test application. This redundant effort car
greatly redyced if processes and tools support the OTX concept.

ISO 13209 jproposes an open and standardized format for the human- and machine-readable descriptig
diagnostic fest sequences. The format supports the requirements of transferfing diagnostic test sequg
logic uniformly between electronic system suppliers, vehicle manufacturers and service dealerships/re
shops.

This part off ISO 13209 represents the requirements and technical, specification for the fundament of the (
format, namely the "OTX Core". The Core describes the basic.structure underlying every OTX document.
comprises (letailed data model definitions of all required control structures by which test sequence log
described, put also definitions of the outer, enveloping.document structure in which test sequence log
embedded.|To achieve extensibility the core also contains*well-defined extension points that allow a sepd
definition ofladditional OTX features — without the nee@to change the core data model.

ISO 132093 extends the Core by a set of additiohal features, using of the Core extension mechanism (w|
may also bg¢ applied for proprietary extensions)-

This part of|ISO 13209 is the most generic and stand-alone part of ISO 13209. In principle, it is also applic
in other ardas for any sequential logicydescription, even outside the automotive domain. Automotive-spe
features arg therefore contained solely in ISO 13209-3.

be

n of
nce
pair

DTX
his
C is
C is
rate

hich

able
cific

Vi © ISO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

INT

ERNATIONAL STANDARD ISO 13209-2:2012(E)

Road vehicles — Open Test sequence eXchange format (OTX) —

Part 2:
Core data model specification and requirements

1
This

The|
requ

The)
the
kind

Thu
and
loof
med
doc
whe

Scope
part of ISO 13209 defines the OTX Core requirements and data model specifications.

requirements are derived from the use cases described in ISO 13209-1. They are i
irements section which composes the first major part of this document!

data model specification aims at an exhaustive definition of all @TX Core features implements
Core requirements. Since OTX is designed for describing test sequences, which themselves

5, this part of ISO 13209 establishes rules for syntactical entities like parameterised procedurg

, branch or return, simple statements like assignment or procedure call as well as excepti
hanisms. Each of these syntactical entities is accompanied by semantic rules which determin
Iments are to be interpreted. The syntax rulés are provided by UML class diagrams and XM
reas the semantics are given by UML activity diagrams and prose definitions.

sted in the

bd to satisfy
represent a

of program, the Core data model follows the basic concepts.common to most programming lapguages.

kS, constant

variable declarations, data types, basic arithmetic, logi¢ and string operations, flow control staiements like

bn handling
e how OTX
| schemas,

With respect to documentation use cases, special attention is paid to defining a specificatiof/realisation

con
mad

The
spe

2

The)
refe
doc

Cept (which allows for "hybrid" test.sequences: human readable test sequences that are at the
hine-readable) and so called floating comments (which can refer to more than one node of the

Core data model does NO¥F define any statements, expressions or data types that are depe
Cific area of application:

Normative-feferences

following_referenced documents are indispensable for the application of this document,
rences;~only the edition cited applies. For undated references, the latest edition of the
iment{(including any amendments) applies.

same time
seqguence).

ndent on a

For dated
referenced

ISO

/TEC 10646:2011, Information technology — Universal Coded Character set (UCS)

ISO 13209-1, Road vehicles — Open Test sequence eXchange format (OTX) — Part 1. General information

and

use cases

ISO/IEC 19501:2005, Information technology — Open Distributed Processing — Unified Modeling Language
(UML) Version 1.4.2

ISO

22901 (all parts), Road vehicles — Open diagnostic data exchange (ODX)

IEEE 754:2008, IEEE Standard for Floating-Point Arithmetic

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

RFC 2045,

RFC 2046,

Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies

Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types

RFC 4122, A Universally Unique IDentifier (UUID) URN Namespace

W3C XSD:2004, W3C Recommendation: XML Schema (all parts)

W3C XML:2008, W3C Extensible Markup Language (XML) 1.0 (Fifth Edition)

W3C XMLNS:2009, W3C Recommendation: Namespaces in XML 1.0 (Third Edition)

W3C XMLB

W3C XLink

3 Term

3.1 Ternj

For the purposes of this document, the terms and definitions given in ISO 13209-1 and the following apply,

3.1.1
attribute
<UML>ap

3.1.2
attribute
<XSD/XML

3.1.3
after marke
part of the
installation

ASE:2009, W3C Recommendation: XML Base (Second Edition)

2010, W3C Recommendation: XML Linking Language (XLink) Version 1.1

5, definitions and abbreviated terms

s and definitions

operty of a UML class

> named property of an XSD complex type or-an XML element

t
automotive industry concerned with manufacturing, remanufacturing, distribution, retailing,

the sale of the automobile by the originalhequipment manufacturer (OEM) to the consumer

3.1.4

after sales
after sales
department
installation

3.1.5
constant
identifier of

department
of an automaetive OEM that is concerned with the distribution, retailing, servicing, repair
bf vehicles of that OEM

alagn-writable memory location

3.1.6
context

environmental circumstances which influence test sequence execution

NOTE

and

pf all vehicle parts, chemicals, tQols, equipment and accessories for light and heavy vehicles, after

and

OTX test sequences can be configured to behave differently according to different context situations.

Contextual information depends on factors such as the particular vehicle that is currently attached to the test application
(e.g. the current vehicle's model type, the engine type, etc.), on the test application settings (e.g. a setting controlling
whether the test sequence shall run in debug mode) or on other factors such as whether the test sequence is running in a
manufacturing or a service workshop environment, etc.

© I1SO 2012 — All rights reserved

http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://tools.ietf.org/html/rfc2046
http://www.w3.org/TR/xmlschema-0/
http://en.wikipedia.org/wiki/Manufacturing
http://en.wikipedia.org/wiki/Remanufacturing
http://en.wikipedia.org/wiki/Distribution_%28business%29
http://en.wikipedia.org/wiki/Retailing
http://en.wikipedia.org/wiki/Original_equipment_manufacturer
http://en.wikipedia.org/wiki/Distribution_%28business%29
http://en.wikipedia.org/wiki/Retailing
https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

3.1

ISO 13209-2:2012(E)

7

engineering

engineering department
department of an automotive OEM which is concerned with the design, development, integration and testing
of vehicles of that OEM

3.1

.8

expression
syntactical construct which describes a specific computation with a set of arguments and a single return value

3.1
ide

9

nmtification routine

method or software by which a diagnostic application identifies contextual information

3.1
ma
ma

JLO

:l:ufacturing
ufacturing department

depprtment of an automotive OEM which is concerned with the production and énd<of-line testing
of that OEM

3.1

J1

original equipment manufacturer

OE

M

autgmotive company that engineers, manufactures, sells and sepviees vehicles

3.1
oT

2

Core

mogt generic and stand-alone part of the overall OFX data model which describes the bas
undprlying every OTX document and comprises detailed data model definitions of all requ
struftures (loops, branches, ...) by which test sedquence logic is described, but also definitions g
enveloping document structure in which test sequence logic is embedded

of vehicles

c structure
red control
f the outer,

3.1.13

OTX Extension

OTX Standard Interface Definition

otxIFD

set pf OTX data type-, action-, term- and signature-definitions that are tailored for a specific area of application
and|that are defined aside ofthe OTX Core

NOTE OTX Extensigns) model the data types, actions, terms and signatures needed for communication through

dive[se interfaces. By _using these interfaces, calls can be performed to external systems whose internal be|

not

have to be known to the (client) OTX test sequence/runtime. The system-side interface (server-g

proprietary because(the adapter design pattern is applied.

3.1

L4

progeduresignature
desgription of the interface of an OTX procedure

3.1

haviour does
ide) can be

.15

reference
value which refers to data in memory

3.1

.16

session
instance of test sequence execution

3.1

17

term
value described by and computed from an expression

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

3.1.18

test sequence
test procedure defining a full test

NOTE

A test sequence is a procedure also, but not all procedures are test sequences. In an OTX document, the

procedure representing a test sequence shall be named "main". By using procedures, a test sequence may be split into
several procedure modules. An adequately assembled set of frequently needed procedures may serve as a library which
provides procedures that can be called from any other (client) procedure or test sequence.

3.1.19

test procedure

procedure
stand-along

3.1.20

validity
Boolean cq
ing/deactiva

NOTE H
Boolean exp

3.1.21
variable
identifier of

NOTE

parameters
addressed b
structures w

1

, parameterisable flow of OTX actions that can be called from other OTX procedures

ntext variable, global Boolean constant or a named Boolean expression used for act
ting parts of the OTX test sequences according to the current context situation

arts of OTX test sequences which are marked with a validity name shall be exécuted only if the assoc
ession is true according to the current context situation.

a writable memory location

he term "variable" is used as a collective term for document‘scope variables, local variables, non-con

hnd also items in non-constant lists or maps or other compound data structures. In OTX, these cal
giving the identifier of the variable or parameter, optiehally accompanied by a path into compound

ich allows the inner parts of variables or parameters td:be addressed.

eviated terms

plication Programming Interface

prface Definition (OTX extension)

a Runtime Environment

Operation Performed

ginal Equipment Manufacturer

en Test'sequence eXchange

ified"Modeling Language

vat-

ated

ptant
h be
data

3.2 Abbr
AP Ap
IFD Ing
JRE Ja
NOP Nd
OEM Or
OTX Of
UML un
XML

XSD

4

Extensible Markup Language

XML Schema Definition

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

4

4.1

ISO 13209-2:2012(E)

Requirements

General

Since OTX is merely a static data format and not a software application, it has to be kept in mind that all
following requirements are related to static format features and not to the behaviour of any OTX based
software product. As a matter of course, all such products are indirectly affected by the requirements given
here in so far that they shall be able to write, read or execute valid OTX documents according to the rules
given in this document. Aside from that, requirements towards any such product are not in the scope of this

spe

4.2

Basjc principles have been established as a guideline to define the OTX requirements:

4.3

Tab)

more requirements.

cification.

Basic principles for requirements definition

OTX requirements specify the conditions that the OTX data model and format shallsatisfy.

All stakeholders (System Suppliers, OEMs, Tool Suppliers), which offer diaghostic test pro
expected to implement and follow the requirements of this part of ISO 13209.

The content of OTX documents and the quality of the information is the responsibility of the ori
Clustering of requirements

e 1 provides an overview of the main categories of OTX.requirements. Each category may |

Table 1 — Main requirements clustering

edures are

ginator.

ave one or

|| Main title of requirement cluster Brief description
general format and language Requirements regarding the general aspects like the chosen programming
requirements paradigm, file format (XML), ...
2 || test sequence development Requirements about different stages in the test procedure authofing
process support process, outlining human-readable (documentation) vs. maching-readable
(execution) test procedures.
3 || language feature details Requirements concerning details like declarations, data types, ¢xpressions,
statements, etc.
4 || boundaries Features that should NOT be part of OTX
4.4] Requirement priorities
Each of the-following requirements carries a priority-attribute which can be set to SHALL or SHOULD.

SEIALL -

The requirement represents stakeholder-defined characteristics the absence of which will
deficiency that cannot be compensated by other means.

SHOULD:
If the requirement defined characteristic is not or not fully implemented in the data model,

result in a

it does not

result in a deficiency, because other features in the data model can be used to circumvent this.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

4.5 General format and language aspects

Core_RO1 -

Machine readable format

Priority: SHALL

Rationale: The focus of OTX is on the exchange of data between tools in the vehicle diagnostic process. To
leverage highest efficiency, the tools shall be able to operate automatically on OTX files (e.g. for importing and
exporting of OTX-relevant data)

Description: The OTX format has to be machine-readable to allow a tool to open an existing documen

t for

editing, che

Core_RO02 1
Priority: SH

Rationale:
diminished

cking, displaying or executing.

- Platform independence
{HALL

If OTX would bind to specific Hardware, Operating System or Applicatiopyits potential usages
And applicability of the standard is decreased.

Descriptiof: OTX shall not be dependent on any specific hardware or software platform. OTX shall no

bound to arj

Core_RO03 {
Priority: SH

Rationale:
semantics.

Descriptio
XML Sche
Core_RO04 -
Priority: SH
Rationale:

complex co
to Turing-cd

y particular hardware, operating system or application.

- Well-defined syntax and semantics

HALL

OTX shall be a machine-readable data format:This implies an unambiguously defined syntax
. All OTX elements have to be defined clearly (syntax + semantics). For the syntax defini
a shall be used. For the behavioutal/semantics specification, a prose description shall exist.

- Universal language

{ALL

Diagnostic applications can be seen as domain specific computer programs. These red

Mmputations and-no limits are known or foreseen today that allow OTX to be restricted with res
mpleteness:

Description: OXXrshall have the ability to solve any computable problem. (Turing-Completeness)

are

t be

and

ion,

uire
bect

NOTE1 L

edac\L saaguancas—can-(thaoraticalbh) ba transfarmad 1t OTX _and hack if tha laaacy csaauaenca format
g J -1 \ J7 1 g J -1

and

OTX are Turi

Core_RO05 —

ng-complete.

Minimal language

Priority: SHOULD

Rationale: Fulfilment of this requirement reduces the implementation effort necessary to integrate OTX into

tools and is

thus a very relevant market-driving factor for OTX.

Description: OTX should be defined with the minimal set of language elements necessary to reach Turing-
Completeness.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NOTE2 OTX should not be designed for comfort of expressing computational programs (as are programming
languages like Java, C++ or Delphi), but rather for effectiveness of transporting diagnostic application knowledge
unambiguously between different tools/parties in the diagnostic process.

Core_RO06 — Structured programming approach

Priority: SHALL

Rationale: Structured programming can be seen as a subset or sub discipline of procedural programming,
one of the major programming paradigms. It removes reliance on the GOTO statement for controlling the flow

of g program. UsSing GOTO statements in_programming often leads 10 a complex, tangled and |unreadable
control structure, which is clearly not desired in OTX.

Degcription: OTX shall follow the structured programming approach. Only flow contrel, 'statemgnts branch,
loog return, continue, break and throw may implicitly induce jumps. The behaviour of these jumps ghall be well
defiped in the prose semantic documentation of each of these statements. An explicit\GOTO statgment which
alloys to jump anywhere in the procedure shall not be supported
Corg_RO7 — Imperative structure

Prigrity: SHALL

Ratlonale: Test procedures are usually considered as a proecedure of commands that need to he executed
one| after one by a runtime system. Since the imperative, programming paradigm matches exagctly for this
congept, it is well suited for OTX.
Degcription: OTX shall only support program structures that can be translated by a compiler intg imperative
programming languages.
Corg_RO08 — Extensibility
Prigrity: SHALL
Ratlonale: The scope of diagnostic applications in the diagnostic process is wide. Engineering,| Production
and|After Sales applications interface numerous and diverse devices, server applications and modules, which

canpot be completely addfessed with the first release of the standard and which evolve over time.

Degcription: OTX shall be extendable to integrate means to access new technology employed within the
diagnostic process. It'shall be possible to integrate interfaces of various base technologies into OTK.

4.6| Test'sequence development process support

Corg 'R09 — Embed non-machine readable content

Priority: SHALL

Rationale: Use cases will occur where diagnostic applications shall be expressed in OTX but e.g. the
interfaces to all used devices are not available (e.g. how to communicate to a nut runner). In this case it would
be preferable to express the diagnostic application in OTX and express the non-standardized device access in
prose or in pseudo code. An OTX-compliant tool could then import such a file and mark the parts of the
diagnostic application that need to be replaced with executable content by a diagnostics engineer.

Description: OTX shall provide means to express parts of a diagnostic application in a non-machine readable

format. This non-machine readable content shall be clearly marked so that processes operating on OTX files
can identify it.

© 1SO 2012 — All rights reserved 7

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

Core_R10 -

2:2012(E)

High level test procedure

Priority: SHALL

Rationale: In a step-wise test procedure design process, it might become necessary to specify procedures in
prose-form only. Skeletal control structures might already be part if this high-level description, but the details
of implementation might not be known at design time (loop conditions, exact service names ...).

Description

. It shall be possible to describe test procedures at a high level.

Core_R11 { Exchange high level test procedure

Priority: SHALL

Rationale: |A test procedure specified in prose-form only shall nevertheless pose a valid OTX(dgcument, g

though it is pot executable.

Descriptiom

. It shall be possible to exchange a high-level test plan using a plain text.description.

Core_R12 + Exchange a fully functional test procedure

Priority: SHALL

Rationale: |A test procedure containing no prose-form, but only ‘implementation details shall neverthe

pose a valid

Description:

procedure.

OTX document, even though it is not easily human-réadable.

It shall be possible to mix high-level description and implementation details on the s

Core_R13 } Exchange an intermediate stage tést procedure

Priority: SHALL

Rationale: |A test procedure containjng-a mix of prose and fully implemented parts shall nevertheless po
valid OTX document.

Description:

procedure.

It shall be paossible to mix high-level description and implementation details on the s

Core_R14 { Floating~«comments

Priority: SHALL

ven

ess

ame

be a

ame

Rationale: Situations will occur where comments are needed that can be freely attached to parts of the flow of
commands in a test procedure. Such comments shall not be locally bound or contained within single
statements; they shall be defined aside from the flow and only point to parts of it. Comments are purely
informational nodes that shall not be relevant for execution of a test procedure.

Description: It shall be possible add floating comments to a test procedure that can refer to one or more
statements its flow or its sub-flows at any block depth.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

4.7

4.7.

Cor

ISO 13209-2:2012(E)

Language feature details
1 Declarations

e R15 - Declarations

Priority: SHALL

Description: OTX has to support the declaration of constants and variables as well as test procedure
parameters. A declaration shall contain a name, a data type, an optional initialisation value and an optional

description.

Corg_R16 — Initialisation

Prigrity: SHALL

Ratjonale: It shall be possible to set the initial value for an identifier to a value othér than the default.

Des

Cor
Prig
Rat
test
con
Des
(init
Cor
Prig
Rat
mea3

prog

Des

Cor

cription: OTX shall support the optional initialisation of declared identifiets:

e R17 — Constant declarations

rity: SHALL

onale: There will be cases when an OTX author wants to guarantee that the value of an ide
procedure can not be changed. Therefore the author needs to have a means to mark an id
stant. The value of a constant is not allowed to change during the lifetime of the constant.
cription: OTX shall support the declaration of constants. Constants shall be set with the
alisation is mandatory).

e R18 — Variable declaration

rity: SHALL

onale: In order to reffect the fact that an identifier can change its value during procedure €

edure executiof;)ew values can be assigned to it.

cription,/©TX shall support the declaration of variables.

P(R19 — Input parameter declarations

ntifier in the
entifier as a

declaration

xecution, a

ns for marking identifiers as variables is needed. The value of a variable is allowed to change during

Priority: SHALL

Rationale: When a test procedure is called, it will occur that information needs to be passed to the called
procedure.

Description: OTX shall support declaration of any number of input parameters that are passed to the test
procedure from the caller.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Core_R20 -

Output parameter declarations

Priority: SHALL

Rationale: When a test procedure is called, it will occur that information needs be retrieved from the called

procedure,

after it has executed.

Description: OTX shall support declaration of any number of output parameters. Output parameters shall be
assignable to variables in the calling test procedure.

Core_R21 -
Priority: SH

Rationale:
any modific

Descriptiofp: OTX should support declaration of any number of two-way parameters. Any declared two-

parameter i
can be assi

NOTE L

4.7.2 Datatypes

Core_R22 {
Priority: SH

Rationale:
typed. This

Description: OTX shall be a strong typed, static checked language.

Core_R23
Priority: SH

Rationale:
Since the t
string, an ir
the corresp

- Two-way parameter declarations

{OULD

There are situations when a variable reference shall be passed to a called test séguence, so
ptions will be visible to the caller also.

5 passed from the caller to the test procedure. Any changes of the value-of a two-way param

jned to variables of the caller test sequence.

his is the combination of input and output parameters.

- Strong typing

ALL

Imeans, the binding of a variable to a data type persists during the variables whole lifetime.

- Data types
HALL

[To maintain @/state during test procedure execution, information needs to be stored in mem
pe and the\Structure of the stored information needs to be known for a typed language (be
teger orravmap ...) declared parameters, it shall be possible to mark variables and constants
bnding;data type.

that

way
eter

In order to have the possibility to translate into various other languages, OTX shall be stijong

ory.
it a
with

Description

Core_R24 —

OTX shall support a well defined set of data types

Extension mechanism for data types

Priority: SHALL

Rationale: There will be situations when the predefined set of data types will not be sufficient. Therefore, OTX
shall be extensible by new data types.

Description: It shall be possible to extend the set of data types by new data types. This shall happen by a

well defined

10

extension mechanism.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

Cor

e R25 - Raw memory data type

Priority: SHALL

Description: OTX shall support a raw memory data type.

Cor

e _R26 - Integer data type

Priority: SHALL

Des

Cor

Prig

Des

Cor

Prig

Des

Cor

Prig

Des

Cor
Prig
Des

add
Rec

4.7.

ISO 13209-2:2012(E)

cription: OTX shall support an integer data type.

e R27 — Floating point data type

rity: SHALL

e R28 — String data type
rity: SHALL

cription: OTX shall support a String data type.

e R29 — Boolean data type
rity: SHALL

cription: OTX shall support a Boolean-data type.

e R30 — Container data type

rity: SHALL

B Expressions

Cor

cription: OTX shall support a floating point data type.

cription: OTX shallNsupport at least one container data type. It shall be possible to access, dynamically
and remove elements in the container. The elements in the container shall all be of the sam¢ data type.
ursive declaration shall be possible (e.g. Container of Containers of Integers).

24 = H
NOol = LAPNITOSIUTIS

Priority: SHALL

Description: OTX shall support expressions. At runtime, it shall be possible to evaluate such an expression in
a well defined way. After evaluation, it has exactly one return value of a defined data type and shall not have
any side-effects. This means, no data from the test procedure is allowed to be changed by evaluation of the

expression but the variable where the evaluated value will be assigned to.

NOTE 1

© I1SO 2012 — All rights reserved

In general, OTX expressions correspond to the term "function" in the mathematical sense.

11

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Core_R32 — Extension mechanism for expressions

Priority: SHALL

Description: It shall be possible to extend the set of expressions by new expression types. This shall happen
by a well defined extension mechanism.

Core_R33 — Literal expressions

Priority: SHALL

DescriptiorL: OTX shall support literal expressions defined for each simple data type and for collection types
(lists, maps|...). The literal shall represent the value of the literal expression directly.
Core_R34 { Dereferencing expressions

Priority: SHALL

Descriptiof: OTX shall support dereferencing expressions. They shall allow. reading data referenced by
parameter- | variable- or constant-names.
Core_R35 + Combined expressions: functions
Priority: SHALL

Rationale: Allow creation of higher level expressions (functions) that contain other expressions as argumgnts.
The evaluation shall happen recursively.

Description] OTX shall support a well defined set of functions.

NOTE 2 Most programming languages describe yery frequently used mostly mathematical functions by operatofs (+
for add(a,b), |* for multiply(a,b) ...) There shall be'no special treatment of operators in OTX; they shall rather be desciibed
like functiond. It is the task of OTX tools to shew 'them as operators, if needed.

Core_R36 { Basic function set
Priority: SHALL

Description: OTX shall’stipport the basic functions:

— mathermatical-addition, subtraction, multiplication, division, negation, modulo, power

— bitwise} conjunction, disjunction, negation

— relations: equality, greater than, less than
— logical: conjunction, disjunction, negation

— string: concatenation

12 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Core_R37 — Statements

Priority: SHALL

Rationale: Statements are needed to represent single commands or higher-level control structures in a
procedure. In order to achieve Turing-Completeness, a set of basic statements with different semantics has to
be part of OTX. Statements are made up out of distinct parts, e.g. in a loop statement, parts are a condition
which is a logic expression, and a sub-sequence of commands. A procedure call statement consists of other
parts, namely the called procedures name and a list of parameters.

Des

cription: OTX shall support statements.

Cor
Prig
Des
by 3
Cor
Prid
Rat
seq
nee

test

Des

Cor
Prig

Des

Cor
Prig

Des

e R38- Extension mechanism for statements

rity: SHALL

cription: It shall be possible to extend the set of statements by new statemient types. This s
well defined extension mechanism.

e R39 — Blocks of statements

rity: SHALL

onale: Situations will often occur that a sequence of statements needs to be grouped to
lence of grouped statements builds a block. There may also be blocks in blocks recursively.
Hed for defining the body of a loop, branch case, etc., but also for simply providing a better o

procedure.

cription: It shall be possible to define blocks of statements, recursively.

e R40 - Block statement
rity: SHALL

cription: It shall be possible that blocks of statements can be used as statements themselves.

e R41 — Assignmrent statement

rity: SHALL

hall happen

jether. The
Blocks are
erview in a

cription: OTX shall support an assignment statement for assigning expression values to varialples.

Core_R42 — Call procedure statement

Priority: SHALL

Description: OTX shall support a call statement for calling other OTX test procedures with a list of arguments
that correspond to the test procedure parameter list. The call shall be synchronous, i.e. the caller shall wait
until the called test procedure returns.

© I1SO 2012 — All rights reserved

13

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Core_R43 — Branch statement
Priority: SHALL

Description: OTX shall support a branch statement, which allows reacting to different conditions.

Core_R44 — Parallelisation statement

Priority: SHALL

Descriptiof: OTX shall support a parallelisation statement, which allows executing two or more blocks-a{ the
same time. [The sub-sequences shall be embedded within the parallelisation statement.
Core_RA45 1 Loop statement

Priority: SHALL

Description: OTX shall support a loop statement, which allows executing a block-repetitively, as long @s a
defined condition is met.
Core_RA46 1+ Continue statement
Priority: SHALL

Description: OTX shall support a continue statement. If uséd within a loop sub-sequence, this shall stop
block execdtion immediately and induce the next iteration. Outside of a loop, it shall have no meaning.
Core_RA47 1 Break statement

Priority: SHALL

Description: OTX shall support a break- statement. If used within a loop block, this shall force the sub-
sequence gxecution to stop immediately: The outer block shall then be continued at the statement right after
the broken loop. Outside of a loop,-it shall have no meaning.
Core_RA48 + Return statement

Priority: SHALL

Descriptiof: OTX+-shall support a return statement. This shall force the execution of the running [test
procedure tp stop immediately and pass control to the caller.

Core_R49 — Exception handler statement

Priority: SHALL

Rationale: When an exception occurs during test procedure execution, a means is needed to treat such an
exception so that execution may still be continued in a controlled manner. It should be possible to define
exception-monitored blocks in the procedure, and also to define blocks dedicated to handle a particular
exception type.

Description: OTX shall support a statement for exception handling. The statement shall allow reacting to
different exceptions in different ways.

14 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

Cor

ISO 13209

e R50 — Throw statement

Priority: SHALL

Rationale: Under certain circumstances it is necessary to throw exceptions intentionally.

-2:2012(E)

Description: There shall be a throw statement that allows throwing an exception of a particular type.

Cor

e_R51 - Validity information for statements

Prid
Rat
Des
prog
Invg
4.8
Cor
Prig

Des
geo

NOT

Cor
Prig
Rat

Des

Cor

Prig

rity: SHALL
onale: Enable/disable statements according to validity information.
cription: There shall be a well-defined means to add validity information to‘fany statem

lid statements are to be skipped at runtime.

Boundaries
e BO1 — No graphical procedure layout information
rity: SHALL

cription: It shall be possible to represent a procédure graphically without the need for
metric information in the exchange format.

e B02 — Performance
rity: SHALL
onale: OTX is solely a-data format.

cription: No requirements on OTX performance exist.

e B0O3 — Nowersioning & configuration management

rity; SHALL

Rat

ent in OTX

edures. The validity information defines under which predefined context conditions the statement is valid.

supporting

E Meta data may be used to transport suchyinformation. It is up to the tool where the information is stored, if
neeged.

onalae: The varsionina-and confiauration of OTX filas is a2 nracess-denendent asnect of usin
- g4 gtH-at a3 P H—aSPect

OTX. OTX

shal

| not define or prescribe a process.

Description: OTX shall not comprise data model aspects or techniques that relate to document versioning or
configuration management of OTX files.

© I1SO 2012 — All rights reserved

15

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Core_B04 - Licensing

Priority: SHALL

Rationale: OTX is solely a data format.

Description: OTX shall not be based on any technology that limits its application and distribution or

distribution of files that are OTX-compliant by legal restrictions or licensing cost.

Core_B05 — No explicit memory management

Priority: SHALL
Description: OTX shall not give the possibility to handle memory management, control garbageé|collectors or
other runtime system tasks which are out of the diagnostic scope.
Core_BO06 1 No exception handling for environment fail
Priority: SHALL

Description: OTX does not need to define exception handling for environment failure. If the runfime
environmernyt has problems, test sequence execution shall stop.
Core_BO07 1 No global variables

Priority: SHALL

Description: OTX shall not allow variables with global-scope.

Core_BO08 1 No string translation utilities
Priority: SHALL

Description: No string translation-utilities are required in the core language. The language is translafion-
agnostic.
Core_B09 1+ No unit locafization utilities

Priority: SHALL

Descriptiorr: NO unit localization utilities are available in the core language. The core language is Unit-
agnostic.

16 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

5 Introduction to modelling in UML and XSD

5.1 General aspects

The Unified Modeling Language (UML, [ISO/IEC 19501:2005]) is used to define the OTX data model formally
and unambiguously. It enhances readability by graphical data model diagrams. The ability to create different
views onto distinct aspects and parts of the overall OTX data model is a great advantage compared to model-
ling directly by using the XML Schema Definition Language (XSD, [W3C XSD:2004]). In combination with

stat

As

e-of-the-art UML-to- XSD generator technologies, using UML is a powerful modelling method.

ort introduction to UMI_is given in this section For the sake of brevity _only those aspects of |

ML that are

nee
larg

diad
of

gen

5.2

5.2.

By using UML class diagrams, a set of classes and the structural intérdependencies in between th

can

properties representing blueprints for instances of that class, and associations depicting distinct
bety

5.2.

The)

sim

obje

Ac
met
acc

CAl
XS

con
UM

Clag
clas

rela

Figu

fed for the understanding of the OTX data model are described at this point. This meanscth
set of available UML diagrams, only the use of class diagrams for OTX modelling~and

al

pecific XSD stereotypes which are needed for preparing the UML model précisely to
eration.

Class diagrams

1 General

be described graphically. There are two major means of description in class diagrams: G

veen the classes of the model, like e.g. inheritance or aggregation relations.

D

Class

central UML modelling element used for the @TX data model is the class. A class represe
lar objects. Generally, a class can be instantiated many times. Every instance of a class
ct.

ass can contain any number of pamed, typed attributes (defining the properties of these d
hods1) (defining the actions an, object can perform). A class may also have a so called
etion that indicates the specialtusage of the class for a particular problem domain.

JTION — in UML nomenglature, any kind of class-properties are called “attributes”,
there is the distinction between “attribute” and “element” properties. In orde
fusions, the term attribute” is henceforward to be understood as class attribute in the
| diagrams, while-in the XSD context it is to be perceived as an XSD type attribute.

ses can also\be abstract — this means they cannot be instantiated. In the OTX data mod
ses are dused to transport a common set of properties to child classes (cf. 5.2.3 about
ionships):

ht, from the
the activity

rams for specifying OTX behavioural aspects will be exemplified. Special attention will be”paid to the use

vards XSD

Dse classes
lasses with
relations in

nts a set of
s called an

bjects) and
stereotype-

whereas in
to avoid
context of

el, abstract
inheritance

re-1 shows the representation of a class and its attributes in UML notation. A class is symQ

olized by a

rect

ngie naving up 1o tnree Telds.

The top field contains the name of the class, e.g. Contact. For abstract classes, the class hame is italic.

The stereotype «XSDcomplexType» denotes that this class shall be mapped to a XSD com
the corresponding XML schema (stereotypes for the problem domain XSD).

The second field contains the attributes of the class, e.g. the string labelled contactld, an

plex type in

other string

labelled name and an integer labelled age. The type descriptor is denoted directly after the colon behind
the label. The stereotypes «XSDelement» and «XSDattribute» specify that name and age map to

1)

For the static OTX data model, methods are irrelevant and are not used.

© I1SO 2012 — All rights reserved

17

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

elements, whereas contactld maps to an attribute (in the XSD domain). Each attribute in the class also
carries cardinality information in square brackets, e.g. [0..1], [1--*], [2] etc. The cardinality defines
how many instances of the attribute may appear in an instance of the class. If there is no cardinality
shown, a default cardinality of [1] applies. Furthermore, a default value for the attribute may be
specified.

— There is no third field here — in others contexts it is used for methods which are irrelevant for the OTX
data model.

«XSDcomplexTY pe»
Contact

«XSDattribute»

+ contactld: xsd:string
«XSDelement»

+ name: xsd:string

+ age: xsd:integer[0..1]

Figure 1 — UML representation of a class

5.2.3 Inhgritance relationships
By using inheritance relationships, classes can inherit attributes from ather classes.

In Figure 2] a new class BusinessContact is derived from the,class Contact. This means that implicitly
the class BlisinessContact has all the same attributes as Contact plus those that are defined specifigally
for the new class BusinessContact, e.g. the string attribute company. Contact is called the parent or
super-classf BusinessContact is called the child or subsclass of the inheritance relationship. Because| the
sub-class ddds more detail to the super-class and is-thus more specific, inheritance relationships are dften
called “spegializations”.

«XSDcomplexTY pe»
Contact

«XSDattribute»
+ contactld: xsd:string

«XSDelement»
+ name: xsd:string
+ age: xsd:integer[0..1]

«XSDcomplexTy pe»
BusinessContact

«XSDelement»

X+ combany -sthina.
pany;—xsdstring

Figure 2 — UML representation of inheritance relationship

Inheritance relationships can be used to build inheritance trees of arbitrary depth. A class in such a tree inher-
its all attributes from those classes in the transitive closure of all ancestors (parents, grandparents, etc.) in the
inheritance tree.

NOTE Concerning the mapping to XSD, it has to be pointed out that XSD only supports single inheritance. As a

consequence, UML models containing classes with more than one direct super-class can not be mapped correctly. Apart
from that, mapping to XSD is straightforward.

18 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

UML diagrams usually show certain aspects or fractions of the overall data model. Therefore, diagrams exist
where a super-class of another class is not shown. To still reflect the fact that a class is a child of the hidden
super-class, a special notation form has been chosen in this document, as presented in Figure 3: An
additional property is shown to the upper right of the class BusinessContact, denoting its super-class
named Contact.

Contact

«XSDcomplexTy pe»
BusinessContact

«XSDelement»
+ company: xsd:string

Figure 3 — Alternative UML representation of inheritance relationship

5.2.4 Aggregation relationships

Besjdes the inheritance relationship, a pair of classes may also have an.dggregation? relationghip. Aggre-
gatipn relationships are used if an object of one class is contained in an object of another class.

An fqggregation relationship is drawn as a line with an unfilled diamond at the end of the containihg class. In
the [OTX data model, the relationship end at the contained class-always carries a so called role name. A role
can|be used to distinguish two objects of the same class when describing its use in the comptext of the
association. The role end also carries a cardinality information, e.g. "0..1", "1..*", "2" etc. The cardinality
defipes how many instances of the associated class may be contained in an instance of the class.

«XSDcomplexTy pe»
Contact
«XSDcomplexTy pe»
«XSDattribute» 1 Address
+ contactld: xsd:string homeAddress
«XSDelement» «XSDelement»
+ name: xsd:string 0.1+ sireet: string
+ _age: xsd:integer[0..1] workAddress | + city: string

Figure.4 — UML representation of aggregation relationship

Figdre 4 gives an example of two classes with aggregation relationships defined. A Contact may have two
addresses, that is; two objects of type Address: One of the addresses plays the role called homeAddress,
the pther plays workAddress. The cardinalities are 1 respectively "0. . 1". Simply spoken, this hag the follow-
ing gemantics; YA contact has exactly one home address and an optional work address".

5.3[“Mapping to the XML Schema Definition language (XSD)

5.3.1 General

The OTX target data model format is an XML Schema Definition (XSD). In this paragraph, a very short idea of
how the UML model is mapped onto XSD language features is given. It does not claim to be complete, but is
only a subsidiary that simplifies the comprehension of the OTX examples given throughout this document.

2) The special case of aggregation, namely composition, does not apply in the scope of XSD data model implementa-
tion. Composition means that an object may only be contained in exactly one other object. Since in instance XML docu-
ments, element snippets can be moved to different places in the document or even in between different XML documents,
there is no reason for this restriction. Therefore, only aggregation relationships are used in the OTX data model.

© 1SO 2012 — All rights reserved 19

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

The general rules for mapping are given in the following section; they are accompanied by a UML example
together with its corresponding XSD output and a valid XML document according to the XSD.

5.3.2 Mapping rules
The following mapping rules apply:
— A class is mapped onto an XSD complex type with XSD sequence content as a default content type (the

order of elements in a XSD sequence is significant (!)). In cases where the stereotype of the class is not
«XSDcomp lexType», analogous rules are applied and explained in the place needed.

— Attributes of a class are mapped onto attributes of the XSD complex type, if the <<XSDattribu|te»
stereotype is defined for the UML attribute. A cardinality of [1] will set the XSD attribute “progderty
use=""required"; a cardinality of [0..1] will result in use="optional™. If there is no leardinplity
given, the default, use=""optional™, applies.

— Attributes of a class are mapped onto sub elements of the XSD complex type, if'the’ «XSDelemenpt»
stereotype is defined. The cardinality of the attribute is mapped to the cardinality properties of|the
sub elgment (XSD element properties minOccurs, max0ccurs). As an example,/a cardinality of [1.[.*]
will regult in minOccurs="1" and maxOccurs="unbounded". If there ‘is“ho cardinality given,|the
default minOccurs=""1" and maxOccurs="1", applies.

— Classep connected to another class via an aggregation relationship are’mapped onto sub elements in the
corresponding XSD complex type of the containing class by theXfollowing rules: The role names at| the
aggregption (contained end) are mapped onto the sub element name property. The name of a contalned
class ig the type property of the corresponding sub elementThe cardinality of an aggregation (conta|ned
end) is|mapped to the cardinality of the sub element (XSD"element properties minOccurs, maxOccuygs).

— An inhg¢ritance relationship between a super-class.Super and a child class Child is mapped onto| the
XSD ¢gxtension base property of the XSD .complex type Child, e.g. base="'Super™. Muliple
inheritgnce (more than one super-class) cannet-be mapped correctly to XSD, because XSD allows single
inheritgnce only.

— An abs}ract marked class is mapped to.a°XSD complex type with the property abstract=""true".
Throughout| the document some other stereotypes are used that have not been explained within this section.
These include the following:

— «XSDsequence», «xxSDchoice», «XSDal I», these are stereotypes for classes representing an XSD
sequer]ce, choice ar-all content-model separately or outside of a XSD complex type;

— «XSDspmpleType» to make a class represent a simple content type, e.g. classes derived from stfing,
integer| etcy;

— «XSDtopLevelElement», this makes a class represent a document root element (Only used once in
the OTX data model for the <otx> element definition itself.

20 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

5.3.3 Full mapping example

5.3.3.1 UML model example

-2:2012(E)

Consider the example UML data model "Directory" depicted in Figure 5. The example model is designed for
describing the structure of XML documents representing a contact-directory.

5.3.

The)

«XSDcomplexTy pe» < «XSDtopLevelElement»
Directory directory
contact| Q..*
«XSDcomplexTy pe»
Contact
«XSDcomplexTy pe»
«XSDattribute» 1 Address
+ contactld: xsd:string homeAddress d-stri
sd:strin,
«XSDelement» «XSDelement» 0.1 X 9
+ name: xsd:siring 0.1|+ street: xsd:string codatry | <XSDSmpleT/pe>
+ _age: xsd:integer[0..1] workAddress | + city: xsd:slring Country

«XSDcomplexTy pe»
BusinessContact

«XSDelement»
+ company: xsd:string

Figure 5 — Mapping example: "Directory” UML model

B.2 UML to XML translation
translation of the UML to XML happens like this:
The root of every such document must be the top-level element <directory>. Since the co

directory class is derived from Directory, an unbounded list of <contact> elements
below <directory>!

The <contact>elements are of Contact type, so each of them has an attribute contact
elements <name>, <age> (optional), <homeAddress> and <workAddress> (optional).

Simple-type elements like <name> (of xsd:string type) or <age> (of xsd:integer ty
scribed implicitly within the aggregating Contact class.

'responding
is allowed

Id and the

be) are de-

Fealures tidt are COImpiex eirseives, ke the <homeAddTessS (O AQAT ESS ype), adle tescribed ex-
plicitly by an own Address class, which is connected to Contact by an aggregation relation3)

The elements <homeAddress> and <workAddress> have simple string sub elements <street> and

<city> and also <country>.

3) This modelling approach is just a guideline, it is not mandatory — de facto, this could have been modelled alternatively
by adding «XSDelement» attributes "homeAddress" and "workAddress" directly to the class "Contact”". Both approaches
would lead to the same XSD/XML result (compare 5.2.2). However, modelling containment relations explicitly with drawn
aggregation relations creates a better overview — especially in larger UML diagrams.

© I1SO 2012 — All rights reserved

21

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— In UML, <country> is modelled in a special way: In fact, it is just a simple string and could have been
modelled as such, but here the alternative display of inheritance relationships shall be exemplified (cf.

Figure 3).

5.3.3.3 XSDresult

According to the mapping rules given above, an XSD model can be derived from the UML model, as shown in
the XSD source code below. With the resulting XSD, any XML document claiming to be a contact-directory

can be validated for directory schema compliance.

EXAMPLE

Schema "nlirnr‘fnnjl xsd' derived from-the "nirnr‘fnry" LML maodel

<?xml
<xsd:sd
xmIns
xmIns
elem

ersion="1.0" encoding="UTF-8"?>

hema targetNamespace="http://example.org/directory"
="http://example.org/directory"
:xsd="http://www.w3.0rg/2001/XMLSchema"
ntFormDefault="qualified">

<xsdijelement name="directory” type="Directory" />

<xsdjcomplexType name="Directory">
<xdd:sequence>

4xsd:element name="contact” type="Contact”™ minOccurs="0" maxOccurs="unboundéd="7>
</Wsd:sequence>

</xsd:complexType>

<xsdjcomplexType name="Contact'>

<xdd:sequence>
dxsd:element name=""name" type=""xsd:string” minOccurs="1" maxOccuts="1" />
dxsd:element name=""age™ type=""xsd:integer’” minOccurs="0" maxOceurs="1" />
qxsd:element name="homeAddress" type="Address"™ minOccurs="1" maxOccurs="1" />
qdxsd:element name="workAddress" type="Address' minOccurs="0" maxOccurs="1" />

</A{sd:sequence>

<xdd:attribute name="contactld" use="required” type="xsd stxing" />
</xsq:complexType>

<xsdjcomplexType name="Address">
<xdqd:sequence>
qxsd:element name="street" type="xsd:string"” manOccurs="1" maxOccurs="1" />
qxsd:element name="'city" type="xsd:string” minoccurs="1" maxOccurs="1" />
4xsd:element name="country” type="Country“ /minOccurs="0" maxOccurs="1" />
</X{sd:sequence>
</xsd:complexType>

<xsdjsimpleType name="Country">
<xdqd:restriction base="xsd:string% />
</xsq:simpleType>

<xsdjcomplexType name="BusinessEoptact'>

<xgd:complexContent>
qxsd:extension base="Contact'>
<xsd:sequence>

<xsd:element name3s“company" type="xsd:string” minOccurs="1" maxOccurs="1" />
</xsd:sequencex
4/xsd:extension>

</Xsd:complexContent>

</xsq:complexTypeX

</xsd:qchema>

Note that t
above are tontaired oroseoue 19| »,

y C A VWU auu Ul I

ecelements of the complex type Directory, Contact, BusinessContact and Address sh

pwn

U [JICT A U C Y

pes,

namely <xsd:choice> and <xsd:all>. In the UML diagrams, the to-be-generated content type is not
shown; the default used by the utilized schema generator is <xsd:sequence>. Only in cases where the other

content types apply, it will be pointed out especially in the specification.

22 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

5.3.3.4 XML instance document

An XML instance document according to the XSD is given below.

EXAMPLE

<?xml version="1.0" encoding="UTF-8"?>
<directory

xmIns="http://example.org/directory"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://example.org/directory directory.xsd">

<contact contactld=""contactl'>

-2:2012(E)

XML document "contacts.xml" showing some directory entries according to the "directory.xsd" schema.

Spe
con
ute.
nesg

The|
tob

6.1

oT
edit

The)
sen

<name>Antje Vanderdam</name>

<age>27</age>

<homeAddress>
<street>Waterkant 23</street>
<city>Rotterdam</city>
<country>Netherlands</country>

</homeAddress>

</contact>

<contact contactld="contact2" xsi:type="BusinessContact">
<name>Peter Piper</name>
<homeAddress>
<street>Broad St. 34</street>
<city>Springfield</city>
<country>USA</country>
</homeAddress>
<workAddress>
<street>Schema Ave 42</street>
<city>Validationtown</city>
</workAddress>
<company>0TX-Works</company>
</contact>
k/directory>

cial attention has to be paid to the xsi :type-attribute. This is needed in places where thg
plex type for an element can be one out of the'set of child types. The type chosen is stated b
Compare this to the example XML document above, where a Contact is cast to the child g
sContact.

OTX data model relies on the xsi..type attribute wherever prospective extensions to the dat
b expected, whose names are fiot-known at the time of core data model creation.
OTX principles

General

represents-a-high-level domain-specific language which is especially designed for graphical 1
ng.

syntax of the language is defined by the UML data model and the corresponding XML sq

underlying
y this attrib-
lass Busi -

A model are

otation and

hema. The

antics are defined by this document. The general principles followed by OTX are described here.

6.2

XML format

Using XML in combination with XSD enables OTX to benefit from the whole strength of the W3C XML
recommendation [W3C XML:2008], with its great number of off-the-shelf solutions, its world-wide acceptance

and

adoption. XML is the file format of choice also because:

XML is designed to represent hierarchically structured information, which applies especially for test

sequences.

© I1SO 2012 — All rights reserved

23

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

6.3

OTX follows

The basic XML rules for well-formedness eliminate the need for defining an own set of such basic
grammar rules specific for OTX.

Checking XML documents for well-formedness is a well-defined task for which a great many number of
solutions exist off-the-shelf. Thus, there is no need to implement well-formedness-checkers specifically
for OTX.

By modelling the detail correlations of the OTX grammar by using XSD, validity checking can be done by
off-the-shelf solutions.

The int
the-she
specifig

rpretation of OTX documents in authoring-, checker- and runtime-applications is assisted by off-
If XML parser frameworks; many of them are schema-driven. This avoids implementationg of
low-level OTX parsers.

Imperative and structured programming paradigm
the paradigm of imperative, structured programming:
Impergtive: OTX procedures define sequences of commands for the computerto perform.
ers,
in a
ges

Structlyired: There are no explicit jumps allowed in OTX. Instead, branches, loops, exception hand
return, [continue, break and throw statements as well as procedure calls define jumps implicitly and
controjled manner. Therefore, OTX also defines a block structure, as typically found in all langus
that follow the structured programming paradigm.

6.4 Gray

In contrast
editors, OT
error-prone
preferred fi
managing t
hand, the C
by source-g

floating conpments that can link to mare than one statement, just to mention a few.

6.5 Speg
The OTX fo

Specif

hical authoring of OTX sequences
to other programming languages where programs are usually edited in text-based source @
X aims at sequence editing using graphical.authoring tools. This keeps away the cumbersome
line-by-line source code editing work frem the sequence author, a fact that allows XML to be
e format for OTX — even though XML is often denounced to be too verbose. The complexit
ne OTX XML code shall happen in‘the background, hidden from the sequence author. On the o

ode edited languages, e.g-explicit specification and realisation compartments in statements

ification/Realisation concept
rmat offers explicit support for a three-stage development of test sequences.

cation“stage: A test sequence may be described at specification level only. This is helpfu

early s

executfble test sequence are known. The specification stage allows the development of test sequer
at a prose Tevel, which IS human readable, but not Tully executable — this means, the overall Ssequence

tagesfin the test sequence development process, when not all of the details for creating

ode
and
the
y of
ther

TX format supports features needed by graphical authoring tools, which are broadly disreganded

, or

for
an
ces

24

logic may already be there, but single steps in the sequence are filled by prose only, so a runtime
interpreter cannot make use out of it. However, starting from this stage, the test sequence can be
continuously broken down by the following stages.

Intermediate stage: OTX also allows intermediate stage test sequences, which occur while transforming
a specification stage test sequence towards a realisation stage sequence. Such an intermediate stage
test sequence may contain parts that are already fully executable, whereas other parts are still at
specification stage. The sequence author uses the human readable information from the specification
stage parts and implements those parts following the specification instructions by adding realisation
counterparts. At any step in this process, the sequence is validly saveable and exchangeable.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— Realisation stage: At this stage, there are no more specification-only parts in the sequence. The
sequence is then fully executable. Note that even at this stage, specification parts of the sequence may
still be contained, but not without their corresponding realisation. With other words, this coexistence
represents an “executable specification”.

6.6 Modular OTX extension concept and OTX-based runtime architecture

The OTX data model is structured into a language core and various functional extensions. It is important to
note that the OTX Core, as well as the extensions defined by this part of ISO 13209, does only provide
syntactical definitions for the elements of test sequences and a functional description of the expected
behpviour—The—mptementatiomoftheTuntime—betaviour—tset— s ot part of the—OTX—standard. This is
necgssary to allow for the needed freedom when implementing OTX runtime components to. fit $pecific use
cases. For example, it would be impractical for the OTX standard to define the specific implémentation of an
HM| library, as the requirements and backend frameworks for HMI functionality will. differ fof each test
envi{ronment.

Diagnostic Application

R
-
o

OTX Subsystem
(e.g. OTX-Interpreter, ...)

Y

OTX Core Processing

oTX
Documents

¢ ¢ ¢ ¢

OTX HMI OTX Environment OTX DiagCom Other Interface
Interface Adapter Interface Adapter Interface Adapter Adapters
A A A A
v Nl Y Y
HMI | | 0S API | | e.g. MCD 3D API | | Other
HMI OS API
Implementation Implementation e.g. MvCl Other
e.9..Keyboard, Mouse, e.g. system clock, file N e.g. extemal. measurement,
Screen ... system, ... Vehicle ECUs HIL, special app. Featyres, ...

Figure 6 — OTX-based runtime architecture

Figure 6 comiprises an overview of the standard extensions specified in [ISO 13209-3]. ThHe following
spegification-of the OTX Core data model touches the extensions only by defining extension interfaces which
serJe as hooks for the respective extensions. Otherwise, the Core is fully stand-alone.

Thisseparatiormrof O T X strocture(mtent)amd romtime mptermentatiorm(execution) wittatow for ©OTX to be used
as a test sequence exchange format that can be deployed throughout an entire organization, or even across
company boundaries. Figure 6 illustrates the architecture of an OTX runtime diagnostic application. The OTX
Subsystem that is part of the diagnostic application is interpreting OTX sequences which make use of OTX
core data model constructs, as well as of various extension interfaces (HMI, Environment-specifics, vehicle
communications and other proprietary functionality).

The actual runtime system implementation knows how to map e.g. an HMI extension action within an OTX
sequence to the GUI framework that is used by the diagnostic application. For example, an after-sales
application might map an OTX ‘ChoiceDialog’ construct to a Java Swing dialog entity that allows interaction
with the workshop mechanic. The same OTX sequence could also be executed on a manufacturing station,
where the diagnostic application implementation would map the ‘ChoiceDialog’ construct to a state machine
connected to manufacturing line measurement equipment instead of a GUI interface.

© 1SO 2012 — All rights reserved 25

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

6.7 Cont

-2:2012(E)

ext concept

Diagnostic test sequences require a technique for getting access to a diversity of contextual information. Such
information can be e.g. vehicle related, diagnostic application related, user related or application area related.
A few instances of contextual information are mentioned here:

or vers

type or other identification data concerning the physical and electronical vehicle configuration.

on or also diverse settings of the application

User rg

Applicg
make t

In general,
Concerning

lated: E.g. login name, idle time, user access rights, etc.

tion area related: e.g. information about the location where the test sequences are- applied
he difference e.g. between manufacturing, engineering or workshop appliance.

contextual information may be required by heterogeneous subsystems of aldiagnostic applical
OTX, only the provision of contextual information to the OTX subsystem iS\considered.

OTX does
OTX does
identify par
specifies h
require. It is
the specific

Figure 7 sh
document &
not specifie
mechanism
appropriate
implementi

for OTX authors to integrate context-dependent OTX documents into the application by adjusting the map

and adding

From the [
Contextual
sequence W
despite the
able to read
application.

0
}rot make any assumptions or rules about the method by which a“diagnostic application sh

t prescribe a set of context items which shall be supplied by every.conforming application. A

cular context items (such methods are henceforth called identification routines). Instead, OTX
bw context-dependent OTX documents shall declare the{pafticular context items which
the task of the diagnostic application to connect each context declaration of an OTX docume
identification routines yielding the respective context item:

ows a conceptional example of a mapping between context declarations defined by an (
nd identification routines of a diagnostic application. The implementation of the mapping itseg
d by this part of ISO 13209. Diagnostic applications are free to implement an appropriate map

Furthermore, the identification routines—can be implemented in any programming langu
for the respective diagnostic applications. Therefore it is also possible to use OTX again
g identification routines. Diagnostic:applications should also provide a mechanism which all

new identification routines.

erspective of an OTX test-sequence, contextual information is treated like static informa
information can not simply be set by an OTX test sequence — if this would be possible, a
ould be able to set e.g-the engine-type information of the currently diagnosed vehicle to "Die
fact that the concrete“vehicle is gasoline driven. Consequently, OTX test sequences shall onl

contextual infgrmation by indirectly utilising the identification routines provided by the diagndg

Vehicle related: E.g. data about the currently diagnosed vehicle's model, vendor, identification number,
engine-

Diagnostic application related: E.g. application version, name, used vehicle communication interface type

, to

ion.

Iso,
buld
only
hey
nt to

DTX
If is
hing
age

for
pWS
hing

ion.
test
sel”,

be
stic

26

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Identification routines OTX document containing

(application specific) context declarations o

String Vehicle.getVin() -_‘}_ VIN
(type:String, default:*)

String Vehicle.getModel() -—Q.- MODEL
(type:String, default:*)

String Vehicle.getSteering() -—.)-- STEERING
(type:String, default:“ LEFT")
Boolean Config.isManufacturing() }_ MANUFACTURING
(type:Boolean, default:false)
Boolean Config.isAftersales())__ SERVICE
{type:Boolean, default:true)
Boolean Config.isDebug())._ DEBUG MODE

(type:Boolean, default:false)

Figure 7 — Mapping context declarations to identification routines

The| OTX context concept has several advantages:

— |Transparency: Working with context data is almost similar té,working with global constants for OTX
authors.

— |Compatibility: Integrating OTX into existing diagnostic.applications does not require a change of the
original context identification/management strategy, of the application or the diagnostic session
management, etc.

— |Exchangeability: Since OTX documents declafé each context item they require explicitly and in a well-
defined place, using an OTX sequence originating from a foreign diagnostic application only [requires an
adjustment of the mapping between context declarations and identification routines (and possibly the
implementation of new identification ¢outines). In this way a context-dependent OTX docunpent can be
"docked" to heterogeneous diagnestic applications.

— | Cooperation: By agreeing upen~an OTX-file or a set of OTX-files declaring commonly used cpntext data,
two or more parties can improve their cooperation concerning OTX test sequence development.

— |Simulation: Various-context situations can be simulated by e.g. feeding simulated data to igentification
routines.

— |Aside from the-above topics, the context concept is crucial for the validities concept which is gescribed in
the following:

6.8| A/alidities concept

Based on the context concept described above, OTX offers the validities concept which allows for configuring
test sequences for varying runtime contexts. The behaviour of such a configured test sequence changes
according to the context it is running in. An OTX author can use this to configure and prepare generic purpose
test sequences for different scenarios. At runtime, the test sequence adapts its behaviour according to the
configuration.

To achieve this ability, an OTX author first needs to define validities: A validity is either a Boolean context
item, a Boolean constant or a compound logical expression (called validity term) which combines different
context items and/or global constants. The OTX author may use the declared validities for marking parts of his
test sequence to be valid only if a connected validity is true at runtime. An invalid part will not be executed at
runtime — like this, the author can activate and deactivate parts of the sequence in a context-driven manner.

© 1SO 2012 — All rights reserved 27

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

DEB.UG_MODE Yes
istrue?
No
WriteLogMessage
Valid for "DEBUG_MODE"
MODEL |is MODEL is
"VintageM¢del"?, No "ModemModel"? No WriteLogMessage
Yes Yes\b

Valid for *isModernModel"

ReadBatteryVoltage
(DiagnosticService)
Voltage ?\J/ Voltage
below 10 V ? below 10 V ?,
No Yes No Yes

Show Message Show Message Show Message Show Message
"Voltage OK" "Voltage Low" "Voltage OK" "Voltage Low" !

: [EnterBatteryVoltage j [ReadBatteryVoltage j Valid for "isVintageModel"w
' (Mechanic) (DiagnosticService) ' .

Figuré 8 — Validities concept, example of use

Consider the example test,seguence to the left of Figure 8. This sequence does not use validities. It is| de-
signed to d¢ the following:

a) If the d|agnosticfapplication's runtime system is in debug mode, it shall write a log message.

b) The battery. voltage of a vehicle shall be measured. According to the type of vehicle under test (a vinfage
model,|a-‘modern model or neither of these, e.g. a bicycle), this has to happen in different ways:

1) Vintage model: The voltage has to be measured and entered into the system manually.
2) Modern model: The voltage can be queried automatically (by using a diagnostic service).
3) Itis some other type of vehicle with no battery; nothing can be measured.

c) If the measured voltage is too low, a message "voltage low" shall be shown, otherwise "voltage OK".

28 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

2:2012(E)

The test sequence to the right of Figure 8 does (superficially) the same, but it uses validities in every place
where context-dependent decisions are taken:

a)

b)

The step "WriteLogMessage" is marked to be valid for "DEBUG_MODE" only. It will be inactive if the

Boolean value of the context item "DEBUG_MODE" is false.

The step for measuring the voltage comes in two different flavours: One is valid only for "isVintageModel",
the other only for "isModernModel". If none is valid, no action is specified (there is some other type of

vehicle). The validities "isVintageModel" and "isModernModel" are validity terms analyzing
value of the "MODEL" context item.

the current

c)

The
"isV|
con

The

Figu
iso

The|
con
seri

The voltage value is dynamic: It is neither predictable at authoring time nor depending on the
only known at runtime. It is not a configuration. That is why validities are not used here.

context items "MODEL" and "DEBUG_MODE", and the validity terms "iSModernN
ntageModel" can be defined e.g. in a central document and be reused by all QTX authors \
igure their test sequences towards the same context situations.

advantages of this approach are obvious:

A distinction is drawn between decisions based on static contextcdata (e.g. enumerations
context values known at authoring time) and dynamic data (which iS)computed at runtime).

Validity information controls the flow implicitly regarding context, not explicitly by normal dyna
conditions. This fact is also reflected in the more compactway of representation, the "pure" tes
logic becomes more apparent.

Sets of commonly used validities can be stored\separately, in a central place. This avo
redundancy, since authors can reuse preconfiguted validities for their test sequences. This alg
maintainability.

Filtering: OTX authoring system may_allow the author to configure certain context situ
simulated environment. This producés very compact views of test sequences for a given co
steps that are not valid).

Filtered test sequences may:be extracted and/or exported. This results in test sequenceg
tailored for a specific context.

Enables the signature ,concept which is described later in this document.

re 9 shows thetfiltering of test sequences according to simulated contexts. In the left context, d
N, the model is(ar vintage car. In the right context, debug mode is off, the model is a modern car

examplesis of course naive, it serves only for comprehension. In real world test sequences,
Cept, can be used for various purposes, for example to configure sequences for different \

context. It is

flodel" and

vho want to

bf expected

imic branch
t sequence

ds a lot of
50 improves

ations in a
htext (mask

which are

ebug mode

the validity
ehicle type
n areas like

bs, ECU variants, vehicle configuration codes, different operating systems, different applicatio

raBbair aaarleclhon v o

ina

Lok o valbbh ol +
e Pan WOTKSTTOP U AT aSSCTTTOTY MTCTCToT

Especially concerning graphical OTX authoring environments, the validity concept supports the compact and
at the same time flexible representation of test sequences.

© I1SO 2012 — All rights reserved

29

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

[WriteLogMessage j

EnterBatteryVoltage
(Mechanic)

Voltage
below 10V ?

ReadBatteryVoltage
(DiagnosticService)

E Voltage
' below 10V 2

No Yes

$how Message Show Message
"Voltage OK" "Voltage Low"

No Yes

Show Message Show_Message
"Voltage OK" "Voltage Low"

Figure 9 — Validities concept, filtering

6.9 Signjature concept
The OTX signature concept is designed to support dynamic linking:

The concept allows for defining prototype procedures called signatures. A signature is like a procedure| but
without programme content (implementation); it-consists only of a name, a set of parameter declarations and a
prose specffication. Procedures that implement a signature contain the same set of parameters like|the
signature apd they have to implement aprogramme that accomplishes the task that was specified in proge in
the signatufe. Hence, a signature défifies an interface which implementing procedures have to obey. If|this
precondition is met, implementing/procedures can be called indirectly via a signature — the caller only needs to
know the parameters and the specification of the signature, the caller does not need to know implementdtion
details whidgh are hidden in the-implementing procedures (in simple words: "l want you to accomplish this, but |
don't care How you accomplish it").

Signatures |are especially suited for cases where a task has to be carried out differently depending on| the
context, buf superficially it is still the same task. The variant in which the task is carried out is chgsen
dynamicallyf at«untime, when the context becomes known. At authoring time, this is left open. This allows
writing gengrie, test sequences that do not need to be changed as long as used interfaces (the cglled
signatures) domotthange:

The signature concept is closely linked to the validities concept (see above). Consider the example in
Figure 10. The generic procedure "Voltage_Test" needs to read the current battery voltage of a vehicle. In the
example, there are two kinds of vehicles: A vintage model where the voltage needs to be measured manually
by a mechanic and a modern model where the voltage can be read automatically by electronic test equipment.
Since the author of the generic procedure does not know how to actually measure the voltage in the different
cases, he leaves the work up to colleagues who implement the signature "ReadBatteryVoltage" that he
provides. The output are two procedures, "Manual_ReadVoltage" which works for the vintage model, and
"Auto_ReadVoltage" which works for the modern model. Both procedures obey to the signature, they do the
same job (returning the voltage) by different means.

30 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

Generic Procedure™Voltage_Test"

ISO 13209-

Start

Specification:
"Read the battery voltage from vehicle
under test. Return voltage by output

Call
ReadBatteryVoltage
(out:voltage)

2:2012(E)

i Voltage \k i ________________ -I _________________________ I

! below 10V ? i I

i No Yes i | LTI H

H \I/ \I/ i y call! o u, Ita e(out'V)i"

H Show Message Show Message | Choose valid — = :"""’M_M:Reeda g VI

' "Voltage OK" "Voltage Low" i implementaﬁV i implements “ReadBatteryVoltage" i

| | | i validfor "isVintageMadel* :

| i | e |

| i l @l Procedure "Auto_ReadVoltage(out:V)" |

i End ! ____>E implements ~‘ReadBatteryVoltage” i

i i i valid for ()-"isModernModel" !
Figure 10 — Signatures concept

At runtime, the procedure call is redirected dynamically to the implementing procedure which is valid with

respect to the current context (validities "isVintageModel" or "isMadernModel™).

The|advantage of this approach is that the generic procedure‘is stable; it does not have to be changed even if

ther is a new context situation to be considered (e.g. a new high voltage battery which requires a third variant

of Vi
this
con

Sing
unti
sign

pltage reading). This improves maintainability andlong-time availability of generic test seque
supports cases where test sequence modules aré developed by more than one party; th
Cept is a way to define clear and formal interfaces between these distributed parties.

e the signature concept is dynamic (the effective procedure that will be carried out is in generg
runtime), special arrangements in the-OTX runtime application are required. The indirec
ature to the actually called proceduie has to be resolved. For this task a mapping is needed W

looKing up a valid procedure implementing a given signature. Details on this topic are specifie

con

cerning the ProcedureCal 1_agtion.

nces. Also,
e signature

| not known
ion via the
hich allows
d in 7.14.5

7 |OTX Core data model specification

7.1 General

Thelfollowingrepresents the full data model specification of the OTX Core, data model version **1 |0.0".
For|each\®TX feature, syntax and semantic definitions are provided. The syntax definition will{specify the
exatt-XML structure of the feature, whereas the semantics definition specifies how the feature shall be
inte prnfnr‘l (h\J/ OTX runtime e\]lefnme or gr:\phir‘:\l QOTX :\llfhnring fnnlc)_

The specification aims at describing the data model in a hierarchical way, following the document structure
from top to bottom, starting at the <otx> root element. Commonly used features that appear in more than one
place in the structure are described in 7.16.

The OTX Core data model specification is accompanied by additional normative information given in the
annexes:

Annex A specifies the OTX data types.

Annex B specifies the runtime behaviour concerning scope and memory allocation of OTX co
variables

© I1SO 2012 — All rights reserved

nstants and

31

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Annex C contains a comprehensive listing of all checker rules. The rules are needed because some

constraints existing on OTX documents cannot be ensured by XSD validation alone. These constraints
need to be checked by additional checker applications.

Annex D provides an overview about the extensibility of the OTX Core data model. By the creation of

OTX extensions new features can be added to the format. Nevertheless there are well defined extension
rules which have to be adhered by every correct OTX extension.

Annex

Annex

E describes the special schema annotations for exceptions.

contains the XMl Schema definition for the OTX standard

7.2 High

Figure 11 3
attributes a
OTX docum

OTX docu
scope infor
list of proce]

Validities &
behaviour.

-level overview of the OTX Core data model

hows a high-level overview of the OTX Core data model. It only contains a~subset of ty
hd relationships of the overall model; nonetheless it reflects the idea of the gSsential structun
ents. Details are given in later clauses; this is a quick walk-through.

ents contain header information like the document name, meta-data ‘r)imports and other gl

dure signatures (for brevity, not all of these properties are shown.in'the diagram).

described i
well as a fl
linked to val

A procedurI

In a proced
diagram).
Each declaj
Semantical

The heart
executed s4
carried out
may thems
are compar

itself contains a procedure name, a specification and<a realisation section needed for the con
6.5. The realisation of the procedure contains parameter and local variable declaration block
w of nodes representing the procedure logic. Jt-may also contain a list of comments that ma
[ious places in the flow.

ire parameters declaration block, in-, eut- and inout-parameters can be declared (hot shown in

Fation (parameter, constant or variable) has a data type chosen from a list of OTX data ty
y, the declared identifiers are visible to all nodes in the procedure flow.

bf every procedure is represented by its flow element. It contains a list of nodes that shal
pquentially. There are different kinds of nodes: simple nodes representing single commands t
Action, Return, Continue, Break, Throw and TerminatelLanes) and compound nodes
plves embed flows(Group, Loop, Branch, Parallel, MutexGroup and Handler). OTX fl
Able to the block ¢oncept as used by other programming languages.

bes,
e of

bbal

ation like global declarations and validities followed by a list of so‘called OTX procedures and a

re named Boolean terms which can be used for configuring context-dependant procedure

Cept
5 as
be

the

ocal variables and constants are declared in the declarations block (not shown in the diagram).

Des.

be
b be
that
OWS

32

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

«XSDtopLevelElement»

ofx

NamedAndSpecified|

«XSDcomplexType»
Ootx

«XSDelement»

+ imports: Imports[0..1]

+ declarations: GlobalDeclarations [0..1
+ validities: Validities[0..1]

gnatures?O.A prooedures?O.J

ISO 13209-2:2012(E)

«XSDcomplexType» «XSDcomplexT ype»
Signatures Procedures
procedure? 1.*
NamedAndSpecified| realisation «XSDcomplexType»
«XSDcomplexT ype» ProcedureReallsation
Procedure 0.1
«XSDelement»
+ comments: Comments[0..1]
+ parameters ParameterDeclarations [0..1]
+ declarations: LocalDeclarations{0.:1]
+ throws: Throws[0..1]
flow?1
«X8Dchoice» ~ «XSBcomplexTyp...
Nodes . Flow >
action | 1 group | 1 loop| 1 branch | 1 parallel | 1 mutex | 1 handler | 1 0.1
Node | | ConpoundNode | | CompoundNode | | CompoundNode){ | CompoundNode | | CompoundNode | | CompoundNode T
0ice
«XSDcomp... «XSDcomp... «XSDcomp... «XSDconip.;. «XSDcomp... «XSDcomp... «XSDcomp... EndNodes
Action Group Loop Branch Parallel MutexGroup Handler
break | 1 continue | 1 throw | 1 retum (1 terminateLanes 1
EndNode EndNode EndNode EndNode EndNode
«XSDcomp... «XSDcomp... «XSDcomp... «XSDcomp... «XSDcomp...,
Break Continue Throw Return TerminateLanep
Figure 11 — High-level overview of the OTX Core data model
7.3] Document root
7.3.L Description
Thig element stands for the document root of OTX documents. It serves as the "entry point" for any OTX
parging application and constitutes a kind of envelope around the test sequence logic itself.

It mainly comprises header information for packaging, naming and versioning of an OTX document and about
the links to other OTX documents (import information). It is also the parent for all global entities defined in a

document, namely global constants, document variables, contexts, validities, signatures and procedures.

7.3.2 Syntax

Every OTX document starts with the document root element <otx> which is derived from the complex type
Otx. The syntax is shown in Figure 12.

© I1SO 2012 — All rights reserved

33

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

«XSDtopLevelElement»

oix

NamedAndSpecified
«XSDcomplexType»
Ootx
«XSDattribute»
+ package: PackageName «XSDcomplexType»
+ version: xsd:token AdminData
+ timestamp: xsd:dateTime
«XSDany»
«XSDelement» . .
+ adminData: AdminData [0..1] *+ XlinkAttributes
£ de | ds[0 1]
+ declarations GlobalDeclarations [0..1] xsd:string
+ validities: Validities[0..1] «XSDsmpleType»
PackageName
signatures |0..1 procedures?O.A
tags
«XSDcomplexType» «XSDcomplexType» derivation = restriction
Signatures Procedures pattern = [a-zA-Z][a-zA-Z0-9]*(\.[a-zA=Z][a-zA-Z0-9]*)*

Figure 12 — Data model view: OTX document root

7.3.3 Semantics

The Otx type is derived from NamedAndSpecified (see 7.16.4). It contains attributes concerning the ovgrall

document if general:

— id : ptxld [1] (derived from NamedAndSpecified, se€/7.16.4)
This represents the <otx> element's id. It shall be unigue among all other ids in a document. Plgase
refer tg 7.16.4 for details concerning ids in OTX documents.

— name [OtxName [1] (derived from NamedAndSpecified, see 7.16.4)

This atfribute shall contain the name of the:OTX document. The name must match the file name, which
simplifies finding an OTX document by hame. Among all the OTX documents defined within the same
packagde, the document name must be unique in order to avoid ambiguities. This is crucial for locdting
OTX dpcuments, e.g. when calling-a procedure defined in another OTX document (see 7.9 and 7.14.5).
Associated checker rules:

— Cdre_Chk001 — document name matches file name

— Cdre_Chk002 —package-wide uniqueness of document names

— packape : PackageName [1]
This atfributé shall represent the package which the OTX document belongs to.

The PdckageName type is a pattern-restriction of the xsd:string simple type. The value space of the
attribute is restricted by a regular expression which enforces a dotted notation of package names, e.g.
"*com.myCompany - myOtxDocuments™ (see 7.16.2 for the PackageName type).

Recommendations:

— OTX documents can be stored in a file system or in a database. If stored in a file system, certain
constraints on the organisation of files and folders allow a simple implementation to find OTX
documents easily. The same applies to the uniqueness of file names, which is ensured automatically
by the file system if the OTX-files reside within a folder dedicated to their common package. The
package name (in dotted notation) can simply be translated into a directory path or vice versa,
whereas the OTX document name can be translated directly to the file name. This practice is strongly

34 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

recommended. It is an analogy to the file system org[anisation of packages and classes
recommended by §7.2 of The Java™ Language Specification U

For the transport of larger OTX projects consisting out of numerous interlinked OTX-files and packa-
ges, the usage of the PDX archive format specified by [ISO 22901] is strongly recommended. In the
case of an MVCI/ODX based system, this allows transporting OTX data along with the ODX data
required by the OTX sequences.

Alternatively (if the latter recommendation is not applicable), the Java JAR file format is
recommended. It represents a simple and popular archiving method. It is — like PDX — based on the
ZIP_archive format. Therefore, both approaches PDX and JAR could even be combined in one

project file.

IMPORTANT — OTX documents are unambiguously identified with the combinatien o
name and their own name. This allows for having equal document nameés, in diff
packages and avoiding ambiguity.

IMPORTANT — Global entities (global constants, procedures, validities| €tc.) contained
document are unambiguously identified with the combination of package- and docun
and their name. This allows for having equal global names in different OTX files an
ambiguity.

xmIns[:prefix] : anyURI [0..1] (standard XML attribute)

The special purpose attribute xmIns is specified in [W3C{XMLNS:2009]. It defines the X
namespace to which an XML document complies to. The\information is used by XSD validatio
document compliance to corresponding schemag(s).

With regards to OTX, the attribute shall associate\the XSD namespace "http://iso.org/0
to the <otx> document root element, which:gan then be tested by validation for compliance
XSD.

f package-
erent OTX

in the OTX
hent-name,
d avoiding

ML schema

h for testing

TX/1.0.0"
to the OTX

NOTE The OTX data model versien:(1-0.0) to which this specification adheres is included|in the OTX
namespace URI "http://iso.org/0TX/71.0.0". For future versions of the standard the version number in the
URI will be adapted accordingly. With-this technique, the correct XSD version to be used for validatign of an OTX
document can be identified unambiguously.
If any OTX extension features are used in the document, the XSD namespaces of thg respective
extension schema shall be associated by using the xmIns attribute as well (extension hamaspaces are
defined by the schemas specified by ISO 13209-3).
If the xmimes'contentType attribute is used in <metaData> elements of an OTX dogument, the
namespaceshttp://www.w3.0rg/2005/05/xmImime™ shall be associated by xmIns alsq.
For making the the xsi :type and the xsi:schemalLocation attributes available in OTX documents,
the\!’XML Schema instance" namespace "http://www.w3.0rg/2001/XMLSchema-instahce" needs
to-be associated [W3C XSD:2004].
Overview of common XML namespace associations used for OTX:
— xmlIns="http://iso.org/0TX/1.0.0"
— xmlIns:diag="http://iso.org/0TX/1.0.0/DiagCom"
— xmIns:hmi="http://iso.org/0TX/1.0.0/HMI"
— xmlIns:myext=""(custom OTX extension namespace)"
— xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
— xmIns:xmime="http://www.w3.0rg/2005/05/xmImime""

© 1SO 2012 — All rights reserved 35

http://www.w3.org/2005/05/xmlmime
http://www.w3.org/2005/05/xmlmime
https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NOTE 1 The prefixes used as abbreviations for the lengthy namespace qualifiers can be chosen freely. Each prefix
provided must be unique in the scope of the document (this is enforced automatically by XSD validation).

— version : xsd:token [1]

This attribute shall contain the version of the OTX document (for supporting versioning systems).

NOTE 2 OTX does not prescribe any rules for versioning. It just defines a location where simple versioning
information can be put, if needed. For more complex versioning tasks, the meta-data elements can be used.

— timestamp : xsd:dateTime [1]

This aftribute shall contain the document creation timestamp. Further information regarding document
history|is also described by the <adminData> element, see below.

— <metapata> : MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)
This optional element shall contain meta information concerning the OTX document.as,-a whole. Fpr a
descrigtion of MetaData refer to 7.16.5.

— <specffication> : xsd:string [0..1] (derived from NamedAndSpecified, see 7.16.4)
The static string content of this optional element shall be used to describe the purpose of the QTX
document in simple prose.

— <admipData> : AdminData [0..1]

This optional element shall be used for linking to document history information via XLink attributes|, as

specifigd by [W3C XLink:2010]. The history information shall>be structured according to the ADMINDATA

elemerft as specified in [ISO 22901]. The linked information should be located in the top-level

<metapPata> element of the OTX document (see above); but it may also be stored externally.
— <impofts> : Imports [0..1]

Contaifs a list of <import> elements for importing external OTX documents (see 7.4).

— <declgarations> : GlobalDeclarations [0..1]

Element representing the global degclaration block. This is the place where global constants shall be
defined. Except for the global"scope, the semantics are equivalent to locally declared procedure
constants. The type is not further. Specified here, see 7.5 for details.

— <valigities> : Valadities [0..1]

A list of global scop€validity terms shall be defined here (see 7.6).

— <signgtures>: Signatures [0..1]

This optionaltelement shall contain a list of <signhature> elements. The complex type Signaturg is
specifiid in7.7.

— <procedures> : Procedures [0..1]

This optional element shall contain a list of <procedure> elements. The complex type Procedure is
specified in 7.9.

7.3.4 Example
The example below contains a skeletal OTX document. The example does not use the <adminData>,

<imports>, <metadata>, <validities>, <procedures> or <signhatures> elements, but it contains a
<specification> element. Examples for the missing elements are given in following sub clauses.

36 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)
EXAMPLE Sample of OTX-file "DocumentRootExample.otx"
<?xml version="1.0" encoding="UTF-8"?>
<otx xmlns="http://iso.org/0TX/1.0.0" id="1"
name=""DocumentRootExample™
package=""org.iso.otx.examples™
version="1_.0"
timestamp=""2010-03-18T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://iso.org/0TX/1.0.0 Core/otx.xsd" >
<specification>Example for showing the OTX document root structure</specification>
</otx>
NOTE The xsi :schemalocation attribute is only a local, in-document hint for XML parsers (valilators) which

maps each used XML namespace to an absolute or relative path (URL) where the corresponding XSD/fileS
XML parsers may use alternative techniques for resolving corresponding XSD files, e.g. an XML ca
XxsifschemalLocation attribute is optional and will therefore not appear in all further OTX examples.

are located.
alogue. The

Follpwing the recommendation for OTX packages given above, the full file system-path to the example file is

"[OTX Base Directory]/org/iso/otx/examples/DocumentRootExample votx". Here,
format for the package value allows a simple translation from logical namespace to physical log
OTX document. By contrast, in a data base the namespace and the document name can be used
keys to access the document.

7.4 Imports

7.4l Description
The|top-level <imports> section contains a list of <import> elements. They are used by an OT
to import global names defined in other OTX documents. Imported names are all visible procedure

and| validity-identifiers as well as all visible identifiers declared in the global declaration block. T
referenced from the importing document by using OtxL ink type attributes, as will be specified late

7.4.p Syntax

Figure 13 shows the syntax of the Ttmports type.

«XSDcomplexType»
Import

«XSDcomplexType» import

Imports 1. «XSDattribute»

+ package: PackageName
+ document: OtxName
+ prefix: OtxName

Figure 13 — Data model view: Imports

7.4.B -~ Semantics

the chosen
ation of the
as primary

K document
, Signature-
hey can be
r.

The <import> element has the following semantics:

— package : PackageName [1]

Contains the package which the imported document belongs to (see 7.16.2 for the PackageName type).

— document : OtxName [1]

Contains the document name of the document which shall be imported (see 7.16.3 for the OtxName

type).

© I1SO 2012 — All rights reserved

37

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— prefix : OtxName [1]

Defines a prefix which serves as an alias for the imported document. It shall be used in all places where
an imported name from the imported document is accessed. For accessing, the counterpart of OtxName
called OtxLink is used (see 7.16.3 for the OtxName and OtxLink types).

The prefix name can be chosen freely insofar it complies with the syntax enforced by OtxName. Another
restriction is that a prefix shall be unique among all other import prefixes defined in the same document
(this is enforced by an xsd: key restriction in the OTX schema).

Associated checker rules:

— Core_Chk003 — no dead import links
— Core_Chk004 — no unused imports

— Core_(Chk006 — match of imported document's data model version

7.4.4 Example

The example below shows an OTX document importing two other OTX documehts. The first imported
document rlamed *'Signatures' of package "org.iso.otx._examples" gets.the prefix "'sig". The other
document pamed "Validities" of the same package gets the prefix ""vak®. The use of the prefixgs is
shown in the procedure "‘test', which refers to a signature "'sig:mySignature'™ and to a valdity
"val :myValidity". Both identifiers ""mySignature’ and "myValLidity' have to be declared in|the
document iflentified by the respective prefixes (for the sake of brevity,"imported documents are not shpwn
here).

EXAMPLE Sample of OTX-file "ImportsExample.otx"

<?xml vefsion="1.0" encoding="UTF-8"?>

<otx xmlps="http://iso.org/0TX/1.0.0" id="2"
name=""|mportsExample™
packagg=""org.iso.otx.examples™
versiofp="1_.0"
timestgmp=""2010-11-11T14:40:10" >

<imporgs>
<imp¢rt package="org.iso.otx.examples™ document="Signatures" prefix="sig"/>
<imp¢rt package="org.iso.otx.examplgsi\ document="Validities" prefix="val"/>
</impofts>

<procedures>
<prog¢edure name="test" implements="sig:mySignature" validFor="val:myValidity" id="2-1">
<specification>A test precedure.</specification>
</pr¢cedure>
</proc¢dures>
</otx>

7.5 Glolhal degclarations

7.5.1 Deseription

The global declaration block is the place where global identifiers for constants, document scope variables and
context variables shall be declared. For each type of global declaration special rules apply as specified in the
following. Globally declared identifiers shall be visible for every procedure and validity term defined in the
same document, but they can also be imported by external documents for cross-document usage (see
<imports> element, 7.4).

The counterparts of the global declaration block are the local parameter declaration block used by signatures
and procedures (see 7.11) and the local declaration block used by procedures (see 7.12).

Concerning scope and memory allocation, special rules shall apply for global declarations. Please refer to
Annex B for further specifications.

38 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

7.5.

ISO 13209-2:2012(E)

2 Syntax

The global <declarations> block is enclosed top-level by the <otx> element (see 7.3.2). Figure 14 shows

the

7.5.

All g
and

arbi
with

syntax of the GlobalDeclarations type.

«XSDcomplexType»
GlobalDeclarations

«XSDelement»

+ constant: GlobalConstantDeclaration

+ variable: DocumentVariableDeclaration
context—ContextvarableDectaration

Declaration Declaration Declaration
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GlobalConstantDeclaration DocumentVariableDeclaration ContextVariableDeclaration

«XSDattribute» «XSDattribute» «XSDattributé»
+ visibility: Visibility [0..1] + visibility: Visibility [0..1] + visibility: Visibility [0..1]

Figure 14 — Data model view: GlobalDeclarations

B Semantics

f the three global declaration types have properties inherited from their common base type De

rary number of global constants, document variables and context variables (by utilizing <xs(
choice cardinality [1--*]):

<constant> : GlobalConstantDeclaration

Declares a global constant identifier.The value of a constant is fixed at declaration time — it is
to be changed.

— visibility : Visibility={PRIVATE|PACKAGE|PUBLIC} [O..1]
The attribute is a‘wvisibility modifier. The visibility levels are described by the V

enumeration (cf- 7.16.8), which allows the following attribute values:

same document. This means that the constant shall be invisible for other OTX docu
is‘the default.

same package like the local OTX document. This means that the constant shall be

OTX documents belonging to other packages.

claration

NamedAndSpecified. For the semantics of inherited properties see 7.16.7. Only the specific semantic
properties of each type of Declaration are describedhere. GlobalDeclarations allows for ¢

eclaring an
i:choice>

not allowed

sibility

— "PRIVATE"™: The constant shall be used only from procedures or validities defjned in the
ments. This

— "PACKAGE": The constant shall be used only from procedures or validities defjned in the

invisible for

— "PUBLIC": The constant can be used from anywhere.

Associated checker rules:
— Core_Chk051 - immutability of constants, input parameters and context variables

— Core_Chk009 — mandatory constant initialisation

© I1SO 2012 — All rights reserved

39

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

40

<variable> : DocumentVariableDeclaration

Declares a document variable which is only visible to procedures and validity terms defined within the
same document.

— visibility : Visibility={PRIVATE|PACKAGE|PUBLIC} [0..1]

The attribute is a visibility modifier. The visibility levels are described by the Visibility
enumeration (cf. 7.16.8). For document variables, the attribute value is fixed to ""PRIVATE". This
ensures that document variables are not visible to other OTX documents.

<context> : ContextVariableDeclaration

Declar(las a context variable. See 6.7 for further information about the OTX context concept.

— vilsibility : Visibility={PRIVATE|PACKAGE|PUBLIC} [O..1]

The attribute is a visibility modifier. The visibility levels are described by the)Visibilfity
enumeration (cf. 7.16.8), which allows the following attribute values:

—1| "PRIVATE": The context variable shall be used only from procedures or validities defined in the
same document. This means that the context variable shall be \invisible for other QTX
documents. This is the default.

—1| ""PACKAGE'': The context variable shall be used only from progedures or validities defined in the
same package as the local OTX document. This means{that the context variable shal| be
invisible for OTX documents belonging to other packages.

—| "PUBLIC": The context variable can be used from anywhere.

Associated checker rules:

— Cdgre_Chk051 — immutability of constants, input parameters and context variables

information which is defined by the surroundings, e.g. information about the currently diagnosed vehjcle,
the natne of the workshop where the diaghostic application is running in, the user name of the currgntly
logged|in user etc. Unlike normal variables; the value of context variables cannot be changed directly by
OTX aftions. In OTX procedures, cohtext variables shall — despite the name — be treated as constgnts.
Context variables can only be changed by identification routines of the test application, e.g. when another
vehicle|gets connected to the diagnostic application, an identification routine determines e.g. the model or
the vehicle identification number and makes this information available to the OTX runtime. QTX
procedpures can then read that information by using the context variable which stands for the respegtive
contex{ information.

Conte>;{variables play a special role in the OTX'data model. They represent a connection to contextual

OTX althors maydéfine default values for context variables (this shall be done by using the <infit>
elemert, see 7.46y7). For cases when the value of a context variable cannot be determined, the default
value jpplies instead. If no explicit default value is given, the implicit default value defined for|the

assigned data type applies. For data types for which no implicit value is specified, the context variable is
uniniti

lized — reading such a variable will produce an exception at runtime, as specified in 7.15.3.

OTX documents declaring context variables should be connected to corresponding identification routines
which return the current value of the contextual information in scope. Therefore, diagnostic applications
require a mapping between context variables and according identification routines. The mapping may be
kept in application specific places, but it may also be contained in meta-data compartments of an OTX
document (cf. 7.16.5).

Recommendations:

Concerning identification routines for gathering context information, there are no requirements or
assumptions made in this part of ISO 13209. The implementation of identification routines is application
specific. Only in the case that an identification routine is implemented in the form of an OTX procedure,
the following approach is recommended.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

2:2012(E)

For a context variable to identification routine mapping, the <metaData> element should be used,

containing two special purpose <data> elements:

<data key=""[Application 1d].OtxPackage'>[PackageName]</data>

The [Applicationld] should be a string identifying the specific diagnostic applicatio

n for which

the mapping applies. The string should be in dotted notation, providing as much uniqueness as
possible, e.g. ""com.myCompany .myApplication". The [PackageName] identifies the package

in which the OTX procedure which shall serve as identification routine is contained.

<data key=""[Application 1d].OtxProcedure'>[ProcedureName]</data>

7.5.

The|

The [ProcedureName] should be the name of the OTX procedure providing the i
routine.

<data key=""[Application 1d].OtxOutParameter'>[ParameterName}</datal

The [ParameterName] should be the name of the OTX procedure's out-Parameter wh
the context information.

By following this recommendation, the exchangeability of OTX documents can be amsg
diagnostic application using an OTX document created by another ‘application may add its ov
information to its specific identification routines without having te’ overwrite the mapping d
application.

1 Example

A global constant float named ""PI1", initialised by float value "3.14159265". Its visibility is
which means that the constant can be accessed by any other importing OTX document.

A Boolean document variable named* "dv". The visibility attribute is not given expl
document; nonetheless the variable is implicitly ""PRIVATE'. This setting is fixed for al
variables by the OTX schema,

A context variable ""VIN",(which is connected to an identification routine. The meta-data ass
context variable contains)a mapping to the identification routine — it is an OTX proced
"getVehicleldent' belonging to the package ""identification'. The out-Parameter *
the context value (the'vehicle identification number of the currently diagnosed vehicle).

A context variable ""HAS_SUNROOF''. There is no mapping to an identification routine given i
data. If there-is no external mapping also, the context variable is not connected to the "real wo
case the default value false will apply.

example below defines a global constant, a document variable as well as two context variables:

Hentification

>

ch contains

tliorated: A
vn mapping
f the other

""PUBLIC™

citly in the
document

gned to the
ure named
vin' yields

n the meta-
rid" — in this

© I1SO 2012 — All rights reserved

41

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE Sample of OTX-file "GlobalDeclarationsExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="3"
name=""GlobalDeclarationsExample"
package=""org.iso.otx.examples™
version="1_.0"
timestamp=""2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<declarations>
<constant name="PI" visibility="PUBLIC" id="3-d1">

<specification>This defines a global constant</specification>
<realisation>
<dataType xsi:type="Float"><init value="3.14159265"/></dataType>

</realisation>

</cofstant>

<varjable name="dv" id="3-d2">

<specification>A document-wide visible variable</specification>
<r¢alisation>

dataType xsi:type="Boolean"/>

</ryealisation>

</vafiable>

<congext name="VIN" visibility="PUBLIC" id="3-d3">

<specification>Holds the VIN of the currently diagnosed vehicle</specification>
<mg¢taData>

data key="com.myCompany.myApp.OtxPackage'>identification</data>

data key=""com.myCompany.myApp.OtxProcedure'>getVehicleldent</data>

data key=""com.myCompany.myApp.OtxOutParameter'>vin</data>

</nmetaData>

<rg¢alisation>

dataType xsi:type="String"/>

</yealisation>

</conftext>

<context name="HAS_SUNROOF" visibility="PUBLIC" id="3-d4">

<specification>True if diagnosed vehicle has a sunroof</specification>
<r¢alisation>

dataType xsi:type="Boolean"><init value="false'/></dataType>
</yealisation>

</coftext>
</declgrations>

7.6 Validity terms

7.6.1 Desgription

OTX documents may contain a-list of validity terms. This is required for the validities concept, see 6.

validity ternp is a uniquely named, reusable Boolean term which is defined at global level. Validity terms

primarily uged to configure~test sequence behaviour according to runtime context. In contrast to Boo
context varjables which¢gan be used as validity, too, validity terms allow describing compound Boo
expressiong which may\depend on more than just one Boolean value.

Validities can betaddressed cross-document; this allows defining a set of popular validities in a central ¢

document which.can be reused by other OTX documents via OtxL ink association.

B. A
are
ean
ean

DTX

Action nodes, Group nodes and Procedures can be connected to validity terms by the val idFor attribute
(see 7.14, 7.13.4.2 and 7.9.). At runtime, the Boolean term value of the referenced validity term is evaluated; it
determines whether an ActionReal isation, GroupRealisation or a Procedure is valid or not.

7.6.2 Syntax

Figure 15 shows the syntax of the Val idities type.

42

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NamedAndSpecified|
«XSDcomplexType» A~ validly «XSDcomplexType»
Validities 1.% Validity

«XSDattribute»

+ visibility: Visibility [0..1]
«XSDelement»

+ realisation: BooleanTemn [0..1]

Figure 15 — Data model view: Val idities

7.6.3 Semantics

The

properties of the Val idity type have the following semantics:

id : Otxld [1] (derived from NamedAndSpecified, see 7.16.4)
This represents the <validity> element's id. It shall be unique among all ether ids in g document.
Please refer to 7.16.4 for details concerning ids in OTX documents.

name : OtxName [1] (derived from NamedAndSpecified, see 7.16.4)

This attribute represents the name of the validity term. It must be wunique throughout all global scope
identifiers defined in the same OTX document. This constraintis verifiable through XML Schema
validation (by the <xsd:key> constraint ""UniqueGlobalNames' specified in the OTX schema, refer to
Annex F).

Actions, groups and procedures can be connected to validity terms by referring to the name (through the
val idFor attribute containing an OtxLink).
visibility : Visibility={PRIVATE|PACKAGE|PUBLIC} [0..1]

The attribute is a visibility modifier._\Fhe visibility levels are described by the Visibility
enumeration (cf. 7.16.8), which allows the following attribute values:

— "PRIVATE": The validity term shall"be accessible only by the same document. This megans that the

validity term shall be invisible/for'other OTX documents. This is the default.

— "PACKAGE"": The validity-térm shall be accessible only by OTX documents of the same pckage like
the local document. This means that the validity term shall be invisible for documents Qelonging to
other packages.

— "PUBLIC": Fhe-validity term shall be accessible by any other OTX document.

<metaData>: MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)

This optienal element is used for adding meta-data to a validity term. For details on the MetdqData type,
referiton/.16.5.

<specification> : xsd:string [0..1] (derived from NamedAndSpecified, see 7.116.4)

The static string content of this optional element shall be used to specify the purpose of the validity term
for human readers. The complement of <specification> is the element <realisation> (see
below).

Associated checker rules:

— Core_Chk007 — have specification if no realisation exists

<realisation> : BooleanTerm [0..1]

The BooleanTerm given by the <real isation> element represents the validity condition: The validity
term holds if and only if the term evaluation returns true with respect to the runtime context.

© 1SO 2012 — All rights reserved 43

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NOTE Validity term truth values should be evaluated on first use. Later uses of a validity term do not require re-
evaluation as long as no relevant context change occurred. In between context changes, validity term values may be
treated as runtime constants. Only in the case when a context changes, concerned validity terms should be re-evaluated
on next use.

7.6.4 Example

The example below defines two validities: They can be used to identify in which environment the runtime is
located, either in a repair workshop or at an assembly line. Of course, relevant context information must be
available for the OTX runtime system, namely via the LOCATION context variable.

EXAMPLE Sample of OTX-file "ValidityTermExample.otx"

<?xml vefsion="1.0" encoding="UTF-8"7?>

<otx xmlps="http://iso.org/0TX/1.0.0" id="4"
name=""YalidityTermExample"
packagg=""org.iso.otx.examples™
versionp="1_.0"
timestgamp=""2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<imporgs>
<imp@¢rt document=""contexts" package=""org.iso.otx.examples" prefix="context"/>
</impofts>

<valid{ties>
<valjdity name="Workshop" id="4-v1">
<specification>Valid if executed in a workshop environment</specification>
<r¢alisation xsi:type="IsEqual">
term xsi:type="StringValue” valueOf="context:LOCATION" />
term xsi:type="StringLiteral” value="DealershipWorkshop™ />
</yealisation>
</validity>

<valfdity name="Assembly" id="4-v2">
<specification>Valid if executed at an assembly line</specification>
<rgalisation xsi:type="IsEqual">
term xsi:type="StringValue" valueOf="context:LQOCATTON"/>
term xsi:type="StringLiteral” value="AssemblylLine" />
</yealisation>
</validity>
</validities>
</otx>

7.7 Signjatures

7.7.1 Desgription

OTX signafures support the)design by contract concept: Generally speaking, a signature4) represents an
interface dgscription to.another software module whose inner implementation details do not need to be knpwn
by the usef of thatimodule. As long as the user and the implementing software module(s) obey to|the
signature specificatior; the interoperability is guaranteed: The user has to fulfill all the prerequisites descr{bed
by the signature (e-g. by providing correct ProcedureCal l arguments defined by a ProcedureSignatyre,
see 7.8) anddhe’ software module implementing the signature is obligated to complete the function specified

by the signature-if-theprerequisitesare-fuifitted:

OTX allows different types of signatures. In the OTX Core data model there only one type of signature called
ProcedureSignature. OTX extensions may specify additional signatures for extension-specific purposes,
so for example the ScreenSignature of the HMI extension as specified in ISO 13209-3.

7.7.2 Syntax

Figure 16 shows the syntax of the Signatures type.

4) This is also called interface, prototype or header in other programming languages.

44 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

«XSDcomplexType»
Signatures

signature ? 1.*

NamedAndSpecified!

xsd:string
«enumeration»
Visibility

PACKAGE
PRIVATE
PUBLIC

«XSDcomplexType»
Signature

Intarf;

Ext

«XSDattribute»

X lexT
+ visbilty: Visbility [0..1] «XSDcomplexType»

SignatureRealisation

Figure 16 — Data model view: Signatures

2:2012(E)

7.7.

The

3 Semantics

properties of the Signature type have the following semantics:
id : Otxld [1] (derived from NamedAndSpecified, see 7.16.4)

This represents the <signature> element's id. It shall be unique amongrall-other ids in 3
Please refer to 7.16.4 for details concerning ids in OTX documents.

name : OtxName [1] (derived from NamedAndSpecified, see 7.16.4)

This attribute represents the name of the signature. It must be unique throughout all globa

<xsd:key> constraint ""UniqueGlobalNames™ specified in'the OTX schema, refer to Annex

visibility : Visibility={PRIVATE|PACKAGE[PUBLIC} [O..1]

The attribute is a visibility modifier. The visibility levels are described by the Visibility e
which allows the following attribute values:

"PRIVATE": The signature is visible_only within the same document. This means thd
signature from outside of the document is not allowed.

"PACKAGE'": The signature is.visible only within the same package. Using the sig
outside of the package is not'allowed. This is the default.

"PUBLIC': The signature\can be used from anywhere.

<metaData> : MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)

This optional element is used for adding meta-data to a signature. For details on the Mets
refer to 7.16.5.

<specifiCation> : xsd:string [0..1] (derived from NamedAndSpecified, see 7.]

The static”’string content of this optional element shall be used to specify the purpose of the s
thechuman reader. The complement of <specification> is the element <real isation> (

document.

Il identifiers

defined in the same OTX document. This constraint is verifiable*through XML Schema validgtion (by the

F).

nhumeration,

it using the

nature from

Data type,

6.4)

ignature for
see below).

© I1SO 2012 — All rights reserved

ASSOCated CITECRET TUtES:

Core_Chk007 — have specification if no realisation exists

<realisation> : SignatureRealisation [0..1]

SignatureRealisation is an abstract type. This means that for the <realisation> element, a
concrete child of SignatureReal isation shall be chosen by using the xsi:type attribute. In the
OTX Core, there is only one child available, namely ProcedureSignature (see 7.8). OTX extensions
may derive further child types, e.g. the ScreenSignature in the HMI extension (see ISO 13209-3). For
details about derived SignatureReal isation types refer to the respective specifications.

45

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.8 Procedure sighatures

7.8.1 Description

The ProcedureSignature type is required for the signature concept (see 6.9).

Where procedures declare a set of parameters, a set of local variables and constants and the procedure flow
containing the program logic, procedure signatures only declare a set of parameters. Procedures which

implement a specific procedure signature need to have the same set of parameters (see 7.9 on procedures).
Procedure signatures represent the "empty shell" of such procedures.

Signature-implementing procedures can be called indirectly via a procedure signature. This is describedin the
ProceduregCall action, see 7.14.5.

7.8.2 Synfax

Figure 17 shows the syntax of the ProcedureSignature type.

SignatureRealisation

«XSDcomplexType»
ProcedureSignature

«XSDelement»
+ parameters: ParameterDeclarations [0.1}
+ throws: Throws[0..1]

Figure 17 — Data model view: ProecedureSignatures

7.8.3 Semantics

ProcedurgSignature is a SignatureRealisation (7.7). Only the specific semantic properties of| the
ProcedurgSignature type are described here,

The properties of ProcedureSignatureshave the following semantics:

— <parapeters> : Parametens J0..1]
Parameters of the signature-shall be declared in this block (see 7.11).
— <throws> : Throws §0:.1]

Exceptlons shall bedeclared in this block. Each exception listed here may potentially be thrown by
signature-implementing procedures.

— <egxception> : Exception [1..*]

—

e.

Rdgpresents the exceptions. For each exception, the type shall be chosen by the xsi : type attriby

IMPORTANT — A signature without <real isation> represents a NOP (No Operation) at runtime.

7.8.4 Example

The first example below shows a couple of signatures in an OTX File. While the latter two signatures are only
in specification stage, the first one, GetlgnitionState, is in realisation stage. The procedure signature
describes procedures which return the state of the ignition of a vehicle. Since this is a signature, there is no
implementation; it is up to the signature-implementing procedures to define how exactly the ignition state shall
be computed.

46 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE 1 Sample of OTX-file "SignatureExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="5"
name="'SignatureExample"
package=""org.iso.otx.examples"
version="1.0"

SlO000 a0 90Ta 4. a0 a0

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<signatures>
<signature name="getlgnitionState” id="5-s1">
<specification>Returns the status of the ignition.</specification>
<realisation xsi:type="ProcedureSignature'>
<parameters>
<outParam name="'state" id="5-d1">
<specification>lgnition state result. true:ON | false:OFF</specification>
<realisation>
<dataType xsi:type=""Boolean" />
</realisation>
</outParam>
</parameters>
</realisation>
</signature>

<signature name="checkHeadlights" id="5-s2">
<specification>Tests the head lights for proper functioning.</specification>
</signature>

<signature name="retrieveVIN" id="5-s3">
<specification>Returns the vehicle Identification nUmber.</specification>
</signature>
</signatures>
K/otx>

EXAMPLE 2 Sample of OTX-file "ImplementingProcedureExample.otx"

?xml version="1.0" encoding="UTF-8"2>
otx xmIns="http://iso.org/0TX/1.0.0" id="6"
name=""ImplementingProcedureExample"
package="org.iso.otx.examplegs

version="1.0"

timestamp="2009-10-20T14:40;10"
xmIns:xsi="http://www M3, org/2001/XMLSchema-instance'>

<imports>
<import prefixZisjig"” package="org.iso.otx.examples" document="SignatureExample” />
<import prefixy'*val” package="org.iso.otx.examples"™ document="Validities" />
</imports>

<procedures¥

<Specification>Gets the state by using a diagnostic service</specification>
<realisation>
<parameters>
<outParam name="'state" id="6-d1">

‘Speelfleatlenhlgl";*; Be—atat Py-v-ri £3 teua-0ONN L £ 0 Ol /on, Eication
= = T = g

<procedure name="getlgsByDiagService"™ implements="sig:getlgnitionState” validFor="val:Workshop"

The second example below shows two signature-implementing procedures. The first gets the ignition via a
diagnostic service sent to the vehicle (valid for a workshop environment) whereas the other gets it by
measuring at the OBD connector (valid for an assembly line environment). Please refer also to the example
given in 7.14.5.4 (ProcedureCall).

id=""6-pl">

<realisation>
<dataType xsi:type=""Boolean" />
</realisation>
</outParam>
</parameters>
<flow>
<!-- The implementation goes here -->
</flow>
</realisation>
</procedure>

<procedure name="getlgsByObdConnector™ implements="sig:getlgnitionState” validFor="val:Assembly" 1d="6-p2">

<specification>Gets the state by measuring via OBD connector</specification>
</procedure>
</procedures>
</otx>

© I1SO 2012 — All rights reserved

47

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.9 Procedures

7.9.1 Description

A <procedure> element represents an executable unit in an OTX document. It can be used as the entry
point for OTX interpreters when a test sequence shall be executed, but it can also be the target of a procedure
call from another OTX procedure (see 7.14.5).

7.9.2 Syntax

Figure 18 shows the syntax of the Procedure type.

«XSDcomplexType»
Pracedures

procedure ? 1.

«gnur tion»

string

NamedAndSpecified

«XSDcomplexType»
Procedure

realisation

«XSDcomplexType»
ProcedureRealisation

Visibility

PACKAGE
PRIVATE
PUBLIC

«XSDattribute»

+ visbility: Visibility [0..1]
+ implements OtxLink[0..1]
+ validFor: OtxLink[0..1]

7.9.3 Semantics

Figure 18 — Data model view: Procedures

0.1

«XSDel

1ty

+ commentss Comments[0..1]

+ parameterss ParameterDeclarations [0..1]
+ declarations LocalDeclarations[0..1]

+ throws: Throws[0..1]

«XSDcomplexType»
Throws

«XSDelement»
+ exception: Exception [1.."]

ﬂow? 1

«XSDoompstT@(

Flow

The properties of the Procedure type have the following semantics:

— 1d :

This represents the <procedure> element's id. It shall be unique among all other ids in a docum

Dtx1d [1] (derived from NamedAndSpecified, see 7.16.4)

Please|refer to 7.16.4 for details cencérning ids in OTX documents.

— name

This aftribute represents-the name of the procedure. It must be unique throughout global identi
defined in the same ©TX document. This constraint is verifiable through XML Schema validation
<xsd:key> constraints’specified in the OTX schema, refer to Annex F).

IMPORTANT = Special semantic for main-procedures: If the name attribute of a procedure has
value Tmain’;'then this procedure shall be treated as a top-level procedure which represents
entry paint*for test sequence execution in an OTX application. Main-procedures shall always

othar OTYX taoct canauancanc alen Llea navrmal nerasndiirac

public Thaovecanhacallad hyy

r OtxName [1] (derived from NamedAndSpecified, see 7.16.4)

STy Cor T o T T T U IOy Ut e O T/ te ot ot Ut C T o ar S U ke T o o pro Tt OUT T o

Associated checker rules:

— Core_Chk008 — public main procedure

— wvisibility : Visibility={PRIVATE|PACKAGE|PUBLIC} [O..1]

ent.

iers
(by

the
the
be

The attribute is a visibility modifier. The visibility levels are described by the Visibility enumeration,
which allows the following attribute values:

— "PRIVATE": The procedure shall be visible only within the same document. This means that calling
the procedure from outside of the document is not allowed. This is the default.

48

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— "PACKAGE'": The procedure shall be visible only within the same package. Calling the procedure
from outside of the package is not allowed.

— "PUBLIC": The procedure shall be visible from any document in any package.

— implements : OtxLink [0..1]

This optional attribute supports the signature concept (see 6.9). It shall contain the qualified name of the
signature that a procedure implements.

Associated checker rules:

— Core_Chk053 — no dangling OtxLink associations
— Core_Chk026 — no duplicate validities for procedures implementing the same signature

— Core_Chk027 — procedure parameters match signature parameters

— |validFor : OtxLink [O..1]

This optional procedure attribute supports the signature concept which is based on the validifies concept
(see 6.9 and 6.8). It can be connected to a Boolean context variable,.a.global Boolean consgtant or to a
validity term (by OtxLink). At runtime, the truth value of the associated context variable, constant or the
validity term determines whether a procedure shall be executed (validity value is true) or hot (validity
value is Talse). This allows context-based disabling/enabling of procedures. Refer to the
ProcedureCall action described in 7.14.5.
Associated checker rules:

— Core_Chk053 - no dangling OtxLink associations

— Core_Chk013 - correct referencing of validities

— |<metaData> : MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)

This optional element is used for adding meta-data to a procedure (refer to the MetaData type, 7.16.5).

— |<specification> : xsd:string [0..1] (derived from NamedAndSpecified, see 7.16.4)

The static string content of/this optional element shall be used to specify the purpose of the pijocedure for
the human reader. The gcomplement of <specification> is the element <real isation> (5ee below).
Associated checker-rules:

— Core_Chk007- have specification if no realisation exists

— |<realisation> : ProcedureRealisation [0..1]

Specifies the procedure implementation parts. When a procedure enters realisation stage|in the test
sequence development process (after specification stage), this element shall be instantiatgd. Its type,
ProcedureRealisation, represents a wrapper for all elements needed for the| procedure
implementation:

— <comments> : Comments [0..1]

This optional element is a container for an arbitrary-length list of floating comments. They shall be
used for commenting parts of the procedure flow implementation for the human reader. For a
description of the Comment type, refer to 7.10.

— <parameters> : Parameters [0..1]
Parameters of the procedure shall be declared in this block (see 7.11).
— <declarations> : Declarations [0..1]

Local variables and constants of the procedure shall be declared in this block (see 7.12).

© 1SO 2012 — All rights reserved 49

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

<throws>

Throws [0..1]

Exceptions shall be declared here. Each exception listed may potentially be thrown by the procedure
under certain circumstances.

<Flow>

<exception> Exception [1..*]

Represents the exceptions. For each exception, the type is chosen by the xsi :type attribut

Flow [1]

e.

This block contains the procedure logic (see 7.16.9). The logic is represented by a sequence of

no,

ac—anch of \phioh haoc thvna _cnacifin camantine (onan 7 10D\

IMPORTAN
same appli

7.9.4 Exa

The examp
sequence (
same pach
"Signatur]
"val :Debu
package. B
These sub-

les procedure signatures without <realisation>.

C oy CatT o wiCT T oS ty P opP eSSt tiC o (ST T -I0)~

T — A procedure without <real isation> represents a NOP (No Operation) at runtime.

mple

e below shows two procedures defined in the same OTX document. The first is an entry point
hame=""main"). The other is a procedure that can be used only by procedure calls from within
age. It implements the signature "sig:writeMsg" which ¢ defined in the docun
es" in the package "org.iso.otx.examples". It can be executed only if the validity valu
gMode" is true. The validity term is defined in the document "Validities" in the s

blements are declared in the following clauses.

The

test
the
hent
e of
hme

bth procedures neither declare any parameters, variables orconstants, nor contain a program flow.

EXAMPLE Sample of OTX-file "ProcedureExample.otx"

<?xml vegsion="1.0" encoding="UTF-8"?>

<otx xmlps="http://iso.org/0TX/1.0.0" id="7"
name=""frocedureExample™
packagg=""org.iso.otx.examples"
versionp="1.0"
timestamp="2009-10-20T14:40:10"
xmins:xsi="http://www.w3.0rg/2001/XMLSERema-instance'>
<imporgs>

<impgrt prefix="sig" package="drgsiso.otx.examples"™ document="Signatures" />
<impgrt prefix="val" package="0rg.iso.otx.examples” document="Validities" />

</imports>
<procedqures> _ _ _ _ e o m o o e meeme_ -
1 <prog¢edure name="maip*=\va#sibility="PUBLIC" id="7-pl">
: <specification>This\Is an empty top-level procedure, a test sequence</specification>
1 <re¢alisation>
' flow/>
1 <re¢alisation>
| </prgcedure>
' <pro¢edufre name="‘writeDebugMsg" implements="sig:writeMsg"
i validkqr="val :DebugMode™ visib id="7-p2">
1 <specificati 3_signaty >
|\ <realisation>
! <flow/>
| <realisation>
</procedure> .
</procedures>

</otx>

50

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

7.10 Floating comments

7.10.1 Description

2:2012(E)

Procedures allow an optional <comments> element. It contains any number of <comment> elements which
can be linked to any number of nodes inside the procedure flow. Comments can link to sub-structures inside
of nodes and to other comment nodes also, as specified below. This feature supports graphical OTX editors
by allowing any graphically presentable OTX feature to be linked to comments. They are thought to help test
sequence authors to provide additional, human readable information during the test sequence development

process, especially for the specification and intermediate stage in test sequence development.

A single comment carries a text message for the human reader, and has a list of links pointing t6 |t}
in the procedure that the comment refers to.

7.10.2 Syntax

Figdre 19 shows the structure of the complex type Comment.

«XSDcomplexType»
Comments

oomment?1 g

«XSDcomplexType» Oﬁ «XSDcomplexType» xsd:string
CGomment 0.1 CommentLinks «XSDsimpleType»
OtxidRef
«XSDattribute» linkV 1.¢
+ id: Otxld
«XSDelement» «XSDcomplexType». tags
+ metaData: MetaData [0..1] CommentLink g:g\;:?gn[:zr:?og(\;\r\\\\l- e
+ text: xsd:srin = [a-: AN
g «XSDattribytey
+ targetld: OtxldRef

Figure 19 — Data model view: Comment

7.10.3 Semantics

Thel| properties of the Comment type have the following semantics:

— |id = Otxld [1]

This represents a <comment> element's id. It shall be unique among all other ids in a docun
refer to 7.16.4 for.details concerning ids in OTX documents.

— |<metaDataz).:” MetaData [0..1]

Used foradding meta-data to a comment. For details on the MetaData type, refer to 7.16.5.

— |<téxt> : xsd:string [1]

Thao commanttavithat chall ba clicnlavad o tha by pon o o daor
—oCcC T

PN an
T ICCorrTreT e et o ot sTor ISPy CoOtothCT oo T TeaucT

— <links> : Links [0..1]

Contains an arbitrary-length list of <l ink> elements.

— <link> : CommentLink [1..*]

Links the comment to a commented entity by its targetld attribute:

— targetld : OtxldRef [1]

e elements

ent. Please

The link between a comment and the commented entity is established with the targetlid
attribute of the comment link. The attribute value shall match the id of a commented entity.

© 1SO 2012 — All rights reserved 51

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Otherwise, a comment link might point to nowhere which is undesirable. XML validation enforces
that for each targetld value, there is an entity in the procedure with the corresponding id
value (using <xsd:keyref> constraints specified in the OTX schema, refer to Annex F).

The Otxl1dRef type is the counterpart of the Otx1d type. In analogy to Otxld, it is a pattern-
restriction of the xsd:string simple type. The value space of the attribute is restricted by the
regular expression "[a-zA-Z0-9\\\-_\]:_#/]+", which allows the basic letters, nhumbers

as well as a set of delimiters.

NOTE Entities to which a comment's <l ink> may point to are the flow nodes, branch case conditions, loop
conditions as well as comments themselves
7.10.4 Example
The example below shows two comments linked to different entities in the procedure. The first comment
points at the action node in the procedure flow and at the group in the loop node. The secondhcomment pagints
at the loop ¢onfiguration and to another comment.
EXAMPLE Sample of OTX-file "CommentExample.otx"
<?xml vefsion="1.0" encoding="UTF-8"?>
<otx xmlps="http://iso.org/0TX/1.0.0" id="8"
name=""¢(ommentExample™
packagg=""org.iso.otx.examples™
versiofp="1_.0"
timestamp="2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance” >
<procedures>
<prog¢edure name="main" visibility="PUBLIC" id="8-pl">
<specification>Demonstration of a commented procedure</specification>
<r¢alisation>
FCOMMeN S e S e
1 <comment id="cmtl'> .
' <text>This is a comment for two nodes in the \Mow</text> |
1 <links> '
' <link targetld="actionl" /> .
1 <link targetld="groupl™ /> :
' </links> i
] Sscomment> TN . ;
| <comment Tid="cmt27> " T T T T T T RT T TTTToTTT oo m o T mmm e |
: <text>This comment is linked_‘t@ another comment and a loop configuration</text>
1 <links>
' <link targetld="looplgenfig” /> X
1 <link targetld="cmtl'\ /> :
' </links>
1 </comment>)
B 9o iY==
flow>
<action id="actiofft" />
<loop id=""logpl"Vname="emptylLoop'>
<realisation>
<configUration id="looplconfig"” />
<flow>
<group id="groupl™ />
=action id="action2” />
</flow>
%/realisation>
Aoep
</flow>
</realisation>
</procedure>
</procedures>
</otx>
52 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.11 Parameter declarations

7.11.1 Description

The parameter declaration block allows for declaring in-, inout- and out-parameters of signatures and
procedures. This information is especially important for the ProcedureCal I action, as specified by 7.14.5.

7.11.2 Syntax

The declaration block <parameters> is located in the <real isation> element of procedures or signatures

o B } A7 o\ 20 ola 4l + £l D %+ n.] %+ £
Se r.1rarruar J} I_IHUIC U OTTUVWO UIT DyIILCl}\ Uurtuic mdrdilictTrI vtoridr aActvulilo LleC

«XSDcomplexType»
ParameterDeclarations

«XSDelement»

+ inParam: InParameterDeclaration

+ inoutParam: InOutParameterDeclaration
+ outParam: OutParameterDeclaration

Declaration Declaration Declaration
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
InParameterDeclaration InOutParameterDeclaration OutParameterDeclaration

Figure 20 — Data model view: ParameterDeclarations

7.11.3 Semantics

All |parameter declaration types have comman properties inherited from their common base types
Dedlaration and NamedAndSpecified. \For the semantics of inherited properties see 7.16.[7. Only the
spetific semantic properties of each type oflbeclaration are described here.

The| syntactical order of parameter-declarations is semantically irrelevant. Parameter identifiers have
pro¢edure wide scope. ParameterxDeclarations allows for declaring an arbitrary number of ip-, out- and
inoJt-parameters (by utilizing <xsd:choice> [1..*]):

— |<inParam> : InParameter

Declares an input-parameter of the signature or procedure. When calling a signature or procedure, an
input argument may be omitted if and only if there's an initial value defined for the parameter. This initial
value shall_agply in place of the missing argument. Input parameters shall be treated as congtants — the
value is pottallowed to change throughout procedure execution.

Associated checker rules:

—/ Core Chk051 — immutability of constants, input parameters and context variables

— Core_Chk030 - input- and in&output-argument omission

— <inoutParam> : InOutParameter

Declares an input/output parameter of the procedure. Arguments for in&output parameters shall be
passed by reference. This means that any change to the parameter value is visible to the caller also.
When calling a signature or procedure, an input/output argument may be omitted if and only if there's an
initial value defined for the parameter.

Associated checker rules:

— Core_Chk030 - input- and in&output-argument omission

© 1SO 2012 — All rights reserved 53

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

<outParam>

OutParameter

Declares an output parameter of the procedure. Output parameters shall be returned to the caller. The
caller may omit output parameters freely (e.g. in the case when there is no interest in one of the returned
values). If the procedure does never write a declared output parameter and there is no explicit initial value
defined for it, the output argument variable stays unchanged. If the procedure throws an exception the
output parameter stays unchanged. Otherwise the following rule shall apply: If the parameter has an
explicit initial value, or the procedure writes it, the value will be assigned to the corresponding output
argument variable.

Signature or Procedure parameter declarations carry a name attribute (derived from NamedAndSpecified,

see 7.16.4f:

parameter
constraints

Furthermor
OTX follow:
local identif
by any nod

discouraged. To avoid it, distinct names should be used for local and global declarations. Another solutid

tocatparameter dectarationm mames —shatt—be—umique—among—att—tocatdectaratiom—and—
Jeclaration names. This constraint is verifiable through XML schema validation (by <xsd:k
specified in the OTX schema, refer to Annex F).

b, parameter declarations with the same name like a global declaration shall be allowed. At
5 the concept of shadowing: If an identifier is used which is declared both locally and globally,
er shadows the global identifier. This means that the global identifier is invisible' and not use
e in the local procedure. Since this may lead to unwanted situations, identifier shadowin

pcal
ey>

his,
the
hble
g is
nis

making an PTX document import itself; this provides a prefix which can be used.for unambiguously refefring
to global declarations.
Associated [checker rules:
— Core_Chk052 — identifier shadowing
7.11.4 Example
The example given below shows a procedure ""ListltemMeanValue' with two parameter declarations:
— alListof Integer type input parameter named 1 istOfInt",
— aFlogt type output parameter named ""‘mean’*
EXAMPLE Sample of OTX-file "ParameterDeclarationsExample.otx"
<?xml vegsion="1.0" encoding="UTF-8"?>
<otx xmlfs="http://iso.org/0TX/1_.0.8:/id="9" version="1.0" timestamp="2009-10-20T14:40:10"
nam¢=""ParameterDeclarationgExafple” package="org.iso.otx.examples"
xmlfs:xsi="http://www.w3 Q}g72001/XMLSchema-instance'>
<procedures>
<prog¢edure name="ListltemMeanValue” visibility="PUBLIC" id="9-pl">
<specification>
emonstration Qf<parameter declarations. The procedure calculates the arithmetic average of the
nput list"s iktems ('list"” parameter) and returns the average value in output parameter 'mean"
</s$pecification>
<r¢alisation>
kparameters>_ _ _ _ _ _ _ _ _ _ e
I| <ipParfam name="listOfInt" id="9-d1"> \
: <specification>Input parameter: List of Integers</specification>
1 <realisation> '
| <datalype Xsi-type= List]
1 <itemType xsi:type="Integer"/> '
' </dataType>)
1 </realisation> X
_sAinParam> .. '
T ZoitParan name moant id- s T TTTTTTITT T s s :
\ <specification>0utput parameter: Mean value (Float)</specification>
: <realisation>)
| <dataType xsi:type="Float"/>
: </realisation> \
\ </outParam> ;
40 F= Ut 11 T=3 (=] =3
<flow/>
</realisation>
</procedure>
</procedures>
</otx>
54 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.12 Local declarations

7.12.1 Description

The local declaration block allows for declaring constants and variables which are visible only for the declaring
procedure.

7.12.2 Syntax

The local declaration block <declarations> is enclosed in the <procedure> element (see 7.9). Figure 21
showshe syntax of the Localbectarations ype. ...]

«XSDcomplexType»
LocalDeclarations

«XSDelement»
+ constant: ConstantDeclaration
+ variable: VariableDeclaration

Declaration Declaration
«XSDcomplexType» «XSDcomplexType»
ConstantDeclaration VariableDeclaration

Figure 21 — Data model view: LocalDeclarations

7.14.3 Semantics

All Ipcal constant and variable declarations have common properties inherited from their common base type
Deqglaration and NamedAndSpecified. See 7:16.7 for semantics of inherited properties. Only(the specific
semantic properties of each type of Declaration are described here. Only the specific semanti¢ properties
of epch type of Declaration are described.here.

Thel| syntactical order of variable and‘canstant declarations is semantically irrelevant. Constant gnd variable
identifiers have procedure wide seope. LocalDeclarations allows declaring an arbitrary numper of local
constants and variables (by utilizing <xsd:choice> [1..*]):
— |<constant> : Constant

Declares a constantidentifier for the procedure. The value of a constant is fixed at declaration time — it is
not allowed to Change throughout procedure execution.

Associated 'checker rules:

— €ore_Chk009 — mandatory constant initialisation

— |[<variable> : Variable

Declares a variable identifier for the procedure. The value of the variable is allowed to change throughout
procedure execution. If no initial value is given, the default initial value defined for its data type applies
(refer to 7.16.7.3).

Local constants and variables carry a name attribute (derived from NamedAndSpecified, see 7.16.4). Local
constant and variable declaration names shall be unique among all local declaration and local parameter
declaration names. This constraint is verifiable through XML schema validation (by <xsd:key> constraints
specified in the OTX schema, refer to Annex F).

Furthermore, local declarations with the same name like a global declaration shall be allowed. At this, OTX

follows the concept of shadowing: If an identifier is used which is declared both locally and globally in the
same OTX document, the local identifier shadows the global identifier. This means that the global identifier is

© 1SO 2012 — All rights reserved 55

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

invisible and not useable by any node in the local procedure. Since this may lead to unwanted situations,
identifier shadowing is discouraged. To avoid it, distinct names should be used for local and global
declarations. Another solution is making an OTX document import itself; this provides a prefix which can be
used for unambiguously referring to global declarations.

Associated checker rules:

— Core_Chk052 — identifier shadowing

7.12.4 Example

The example below shows the declaration of

— alocal [constant float named ""P1", initialised by float value "3.14159265"

— alocal jvariable named "v" which has no data type assigned to it yet.

EXAMPLE Sample of OTX-file "LocalDeclarationsExample.otx"

<?xml ersion="1.0" encoding="UTF-8"?>

<otx xnlns="http://iso.org/0TX/1.0.0" id="10"
name"'LocalDeclarationsExample™
packdge="org.iso.otx.examples"
versijon="1.0"
timeqtamp="2009-10-20T14:40:10"
xming:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<prodedures>

<prjocedure name="main" visibility="PUBLIC" id="10-pl">
qspecification>Demonstration of variable and constant deel@rations</specification>
qrealisation>
<declarations>
i~ <constant name="PI” id="10-d1"> ~ T T \\F oo ToTTTTTTTTTTTTTTT)
: <specification>A local constant float value</specification> :
1 <realisation>
X <dataType xsi:type="Float"> \
| <init value="3.14159265" /> :
' </dataType>
1 </realisation> :
\ </constant> K
1 <variable name="v" 1d=""10-62%"> 1
: <specification>A local_variable of yet unknown type</specification> :
L _Svardable> (0!
</declarations>
<flow />
4/realisation>

</drocedure>

</prdcedures>

</otx>

7.13 Nodé¢s

7.13.1 Oveprwew

OTX nodes represent the single steps in the program flow of a procedure. They appear in Flow-type
elements, see 7.16.9.

Nodes can be atomic or compound:

— Atomic nodes®) are single steps containing no further embedded flows. At runtime, atomic nodes should
be executed as one monolithic unit. The following node types are atomic: Return, Continue, Break,

5) OTX atomic nodes can be seen as the equivalent to one-line statements in line-based programming languages.

56 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

TerminateLanes, Throw. In general, Action nodes are also atomic, but there are exemptions
depending on the ActionReal isation type (e.g. the ProcedureCall action which is not atomic).

Compound nodes® are steps that embed one or more flow(s) recursively (Node types Group, Loop,
Branch, Parallel, MutexGroup and Handler). To execute these compound nodes, their inner flow(s)
shall be interpreted step by step as well.

In order to reflect the above distinction in the data model, the inheritance hierarchy of OTX nodes shown in
Figure 22 has been implemented: There is an abstract base type Node which contains all features common to
all nodes — refer to the Node specification in 7.13.2 for details. All compound nodes are derived from the
abstract type CompoundNode. All other nodes are in general atomic nodes (implicitly). Furthermore there is

an g
to th

7.13

7.13

This
deri

7.13

The

«XSDcomplexType»
Actlon

NamedAndSpecified

«XSDcomplexType»

Node

| | «XSDcomplexType»

CompoundNode

«XSDcomplexType»
Group

«XSDattribute»
+ disabled: xsd:boolean [0..1

.2 Node

ved nodes.

2.2 ~Syntax

«XSDcomplexType»
Loop

«XSDcomplexType»
Parallel

«XSDcomplexType»
Branch

«XSDcomplexType»
M

oup

«XSDcomplexType»
Handler

| «XSDcomplexType»

EndNode

«XSDcomplexType»
Throw

«XSDcomplexType»
Ci

«XSDcomplexType»
Return

«XSDcomplexType»
TerminateLanes

«XSDcomplexType»
Break

Figure 22 — Data model view: Node inheritance hierarchy

.2.1 Description

syntax of the abstract type Node is shown in Figure 22.

type serves as, the abstract base for all Node types. The properties of the type are thereforg

bstract sub-classification EndNode for nodes that can only be used at the end of a node segug¢nce — refer
e specification of all EndNode types in 7.13.5. The special role of the Action node is specifie

i in 7.13.3.

part for all

6) OTX compound nodes are the equivalent to control statements that stretch over more than one line in text-based pro-
gramming languages. Those statements usually enclose an inner block of statements which is often introduced by "{" and

closed by "}" brackets.

© I1SO 2012 — All rights reserved

57

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.2.3 Semantics

Node is based on NamedAndSpecified. The properties of the Node type have the following semantics:

— id : Otxld [1] (derived from NamedAndSpecified, see 7.16.4)

This represents a node's id. It shall be uniqgue among all other ids in a document. Please refer to 7.16.4
for details concerning ids in OTX documents.

— name

The at

: OtxName [0..1] (derived from NamedAndSpecified, see 7.16.4)

to

identifyl nodes easily by name on the surface of a graphical OTX editor. There are no constrg

concer

ning uniqueness of the name attribute values; nonetheless uniqueness is recommended;, but

enforcqgd.

Associated checker rules:

— Cdre_Chk010 — unique node names

— disab

led : xsd:boolean={false|true} [0..1]

By using this attribute a node can be switched-on and -off: A node withidisabled=""true' shal
ignored at runtime; otherwise it shall be executed normally?). If thelattribute is not set, the nod

enable

NOTE

AssocCi

I (defaultis disabled=""false").
The OTX XSD does not allow nodes after an EndNode no matter if it is disabled or enabled (cf. 7.16.9)

hted checker rules:

— Cqgre_Chk011 — no disabled nodes

— <metal

Data> : MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)

This optional element is used for adding meta,data to a node. For details on the MetaData type, refg

7.16.5.

— <spec

i Fication> : xsd:stringr[0..1] (derived from NamedAndSpecified, see 7.16.4)

The simnple xsd:string content of this optional element shall be used to specify the purpose of

node f
which i

br the human reader.(The complement of <specification> is the element <realisati
5 not specified for the-Node type, because it is specific for each distinct node type (see below).

Associated checkerqules:

— Cdgre_Chk0Q@7y~ have specification if no realisation exists

7.13.3 Acti

ints
not

be
e is

eI to

the
on>

|on fode

7.13.3.1 Description

IMPORTANT — Action nodes play a central role concerning the extensibility of the OTX data model.
The extension mechanism is described in Annex D.

An Action node is a simple node in a flow (cf. "single-line statement”). The runtime behaviour of an Action
node can be customized for different contexts by applying the validities concept (see 6.8). A context-specific
behaviour can be configured by choosing one out of a list of available ActionReal isations defined by the
OTX Core or any OTX extension. The comprehensive specification of all Core ActionRealisations can be

7) This is comparable to commenting out lines or blocks of source code in text-based programming languages.

58

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

found in 7.14. Action nodes are in general to be treated as atomic, but there are exemptions depending on
the ActionReal isation type. Exemptions are especially emphasized in the specification for the particular

type of ActionRealisation.
7.13.3.2 Syntax
Figure 23 shows the syntax of the Action node type.
Node L Extensioninterface
realisation
«XSDcomplexType» N «XSDcomplexType»
Acfion ActionRealisation
«XSDattribute»

7.13

Act
7.13

The

+ validFor: OtxLink[0..1]

Figure 23 — Data model view: Action

.3.3 Semantics

ion is a Node which is NamedAndSpecified. The semantics of'all derived properties are ¢
.2. Only the specific semantic properties of Action are described here.

properties of Action have the following semantics:

realisation : ActionRealisation [0..*]

This is the counterpart of the <specification>'element for an Action node.

IMPORTANT — As long as no <realisation> elements are set, an Action node has
semantics which means that it shall be“skipped during execution.

In an action node, multiple <reabisation> elements are allowed. At runtime, the valid

escribed in

no runtime

ity of each

<real isation> shall be evaluated one by one (in the order of appearance in the OTX docliment). The

first valid element found shall'\be executed.

The precise behaviour-ef.the finally executed <real isation> element is determined by the
Xsiztype attributei-Any complex type extending ActionRealisation can be inserted hg
types Procedure€all, Assignment or ListInsertltems, just to name a few.

The behavieur of all OTX Core ActionReal isations is described in 7.14.

— validFor : OtxLink [O0..1]

An ActionRealisation may be connected to a Boolean context variable, a globa

value of the
re, e.g. the

| Boolean

isation>

" " TH Py Vi) O\efmrgd it 1 : ") Bl I Y £
curistalit ur d valdity THiT (Uy ULALTTIR). AllAlyZITTY Uic varrurur attioulc Ul d rca

element in an Action node determines whether the <realisation> is valid or not. Here, the

following rules apply:

— If there is no val idFor attribute, the <real isation> is valid.

— If there is a validFor attribute, the Boolean context variable, constant or the validity term
referenced by the OtxLink shall be evaluated. The <realisation> is valid if and only if the

result is true.

© I1SO 2012 — All rights reserved

59

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Associated checker rules:
— Core_Chk012 — no unreachable realisations in Action and Group nodes
— Core_Chk053 — no dangling OtxLink associations

— Core_Chk013 - correct referencing of validities

Figure 24 shows a behavioural description of the Action node. The examples in 6.8 show the benefits of the
static validity concept which sets itself apart from the dynamic branch node, even if the behaviour shown in
Figure 24 resembles the branch node behaviour to a great extent.

enter
action
tion(s)
givgn
np

4 N\ [
enter 1st reallsation (enter 2nd reallsation enter Nth reallsation)
1st realisatio 2nd lisation Nth lisation
w |svay/\ No (] is vay/\ No \(w |svay/\ No
evaluate valldity /l evaluate validity /| evaluate validity
YesJ/ YesJ/ YesJ/

s . s skip action nodp
[execute 1st realisation execute 2nd realisation execute Nth realisation (execute nothing)

N AN [AN [J

legve
action

Figure 24-—Behavioural description: Action

7.13.3.4 Hxample

The examgle below shows~caentext variables and validity terms which are defined in a central document
named "Vdlidities.otx" andanother document named "ActionExample.otx" using the validity terms il an
Action nqde with multiple <realisation> elements. With this setup, the one-time defined cortext
variables and validity'terms can be reused by any other OTX document that imports this document.

"ActionExarmple: otx uses action realisations WhICh are defmed by the OTX extension schemas HMI,
DiagCom ahd J
definition attnbutes xmlns hmi, xmlns: dlag, xmlns Iog together with the respectlve fuIIy qualn‘led
namespace strings (cf. 7.3).

60 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE 1 Sample of OTX-file "Validities.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="11"
name="Validities"
package=""org.iso.otx.examples™
version="1_.0"
timestamp=""2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<specification>
Central validity term and context variable definition document,
use validity terms and context variables defined here.
</specification>

<declarations> _ __ ___
, <specification>

! Reflects the current debug setting: true: debugging is on. false: debugging is off.

' </specification>

! <realisation>

) <dataType xsi:type="Boolean">

! <init value="false" />
' </dataType>
! </realisation>
\ </context>

I <context name="MODEL"" id="11-d2">

: <specification>Reflects the currently diagnosed vehicle"s model</spéecification>
1 <realisation>

' <dataType xsi:type="String" />

1 </realisation>

\ </context>

</declarations>

<validities> _ _ ___ _ _ ____ NN ____
1 <validity name="isModernModel™ id="11-v1">

i <specification>Valid if context variable MODEL=="MogdgrriCar'</specification>

1 <realisation xsi:type="IsEqual">

' <term xsi:type="StringValue" valueOf="MODEL" />

! <term xsi:type="StringLiteral” value="Modern€ar"” />

| </realisation>

1 </validity>

[

| <validity name="isVintageModel" ¥d="11-w2i>

1 <specification>Valid if context vardabl& MODEL=="VintageCar'</specification>
| <realisation xsi:type="IsEqual'>

1 <term xsi:type="StringValue" yalueOf="MODEL"™ />

: <term xsi:type="StringLiteral’™ value="VintageCar" />

1 </realisation>

 </validid

</validities>

K/otx>

Smmm e — -

To pet access to the_dectarations in "Validities.otx", "ActionExample.otx" needs to import it By using an
<inmport> element. Allsvisible global scope identifiers of the imported document (here, these fare context
varigbles and validity terms) are then accessible by using the freely chosen prefix val.

The| first Action node in "ActionExample.otx" writes a log message if the Boolean contgxt variable
"DHBUG_M@DE™ is true. The <realisation> uses the WriteLog action realisation from the OTX
Envjronment extension.

The second Action node reads the baftery voltage. Whether the voltage is read by manual input or
automatically by a diagnostic service depends on the current vehicle-related context:

— If the context variable MODEL equals ""VintageModel", then the validity term "isVintageModel"
holds and the first <real isation> of the Action node is executed. The <realisation> uses the
InputDialog action realisation from the OTX HMI extension which allows the mechanic to input a
measured voltage value (details for InputDialog are not given here).

— If the context variable MODEL equals ""ModernModel"’, then the validity term *"isModernModel holds
and the second <realisation> of the Action node is executed. The <realisation> uses the
ExecuteDiagnosticService action realisation from the OTX DiagCom extension to read the voltage
automatically from the vehicle.

© 1SO 2012 — All rights reserved 61

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— If none of the validity terms hold, no action is performed.

EXAMPLE 2 Sample of OTX-file "ActionExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="12"
name=""ActionExample"
package="org.iso.otx.examples"
version="1.0"
timestamp=' 2009 10 20T14:40:10"

xmlns XSi=" http //www w3. org/ZOOl/XMLSChema—|nstance >

<;mp9[1s>

<procedures>
<prog¢edure name="main" visibility="PUBLIC" id="11-pl1">
<specification>Check battery voltage of vehicle</specification>
<rg¢alisation>
declarations>
<variable name="voltage” id="11-d1'>
<specification>Variable for the measured voltage</specification>
<realisation>
<dataType xsi:type="Float"/>
</realisation>
</variable>
/declarations>

[~ <action id="al’>
<specification>Write LogMessage (debug only)</specification=
<realisation validFor="val :DEBUG_MODE" xsi:type=""log:Wrdtekog" >
<!-- ActionRealisation details -->
</realisation>
</action>

<action ‘a2"">
<specification>Read battery voltage</specification>

<!-- For the vintage car: -->
<I-- This will ask the mechanic to enter \the measured voltage manually -->
<realisation validFor="val:isVintageCa¢* xsi:type="hmi:InputDialog">
<l-- ActionRealisation details -<x
</realisation>

<!-- For the modern car: -->
<!-- This will read the voltage by using a diagnostic service -->
<realisation validFor="vaf :ksModernCar" xsi:type="diag:ExecuteDiagService">
<I-- ActionRealisatiofi details -->
</realisation>
</act|on>

<branch id="b1">
<specification>Show OK/NOK message depending on voltage level read</specification>
<realisation>
<!-- brafigh~according to measured voltage value -->
</realisation>
</branchs
/flow>
</realisation>
</pr¢ceddres
</procgdures>
</otx>

7.13.4 Compound nodes

7.13.4.1 Overview

Nodes derived from the abstract CompoundNode type contain one or more nested Flow-type elements. The
set of all such nodes represents the control structures of OTX. The following subclauses specify each of the

CompoundNode subtypes shown in Figure 22.

NOTE The abstract and empty CompoundNode type itself needs no further specification because it serves for logical

data model structuring only.

62 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.13.4.2 Group node

7.13.4.2.1 Description

-2:2012(E)

The simplest of all compound nodes is the Group node. It can be used to wrap a sequence of nodes together.
Nodes contained in a Group form a higher-level unit that can be treated as one logical block by authors. This
makes sense especially for nodes that belong together logically; grouping allows the author to demonstrate

this

togetherness and to provide clarity through modular sequence design.

Like the Action node (see 7.13.3), the runtime behaviour of a Group node can be customized for different

con

imp
NOT
in of
agr

7.13

Figu

7.13

Gro

properties are described in 7.13.2. Only‘the specific properties of the Group type are described he

follg

exts by applying the validities concept (see 6.8). Context-specific behaviour can be co
ementing group flows for each anticipated context situation.

E In a graphical OTX authoring environment, groups can be used for folding and unfolding parts of

der to create views with different levels of detail; it can be used for refactoring tasks as well, €.g, making
up or extracting a procedure based on a group, etc.
4.2.2 Syntax
re 25 shows the syntax of the Group node type.
ConmpoundNode realisation Flow]
«XSDcomplexType» . «XSDcomplexType»
Group 0.. GroupReallsation

xXSDattribute»
+ validFor: OtxLink[0..1]

Figure 25 — Data'model view: Group

4.2.3 Semantics
up is a CompoundNode which is a‘\Node which is NamedAndSpecified. The semantics of
wing semantics:

<realisation> : GroeupRealisation [0..*]

This optional element,is the counterpart to the <specification> element described for the
container for,a'sequence of nodes which shall be executed one by one in the order of appeara

— valadFor : OtxLink [O0..1]

A~GroupReal isation may be connected to a Boolean context variable or a valid

nfigured by

a procedure
a loop out of

all derived
re, with the

Node type.

Since GroupRedl'sation is derived from the Flow type (cf. 7.16.9), the <real isation> ¢lement is a

nce.

ty term (by

OtxLink). Analyzing the validFor attribute of a <realisation> element in an

— If there is no val idFor attribute, the <real isation> is valid.

— If there is a val idFor attribute, the Boolean context variable, global Boolean con
validity term referenced by the OtxLink shall be evaluated. The <real isation> is
only if the result is true.

Associated checker rules:

— Core_Chk012 — no unreachable realisations in Action and Group nodes

— Core_Chk053 — no dangling OtxLink associations

© I1SO 2012 — All rights reserved

roup node

stant or the
valid if and

63

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— Core_Chk013 — correct referencing of validities

The context-specific behaviour of Group nodes with multiple <real isation> elements is analogous to
the Action node behaviour which is shown in Figure 24.

7.13.4.2.4 Example

The example below shows a procedure-flow level group (id=""groupl'’) with three nodes in it: An Action
node (id=""actionl"), an embedded Group node (id=""group2') and a Return node (id=""retl"). The
embedded group itself contains a single Action node (id=""action2"). In this example, Group nodes are
not context{o0ependent (Mo vatidFor atribute):

EXAMPLE Sample of OTX-file "GroupExample.otx"

<?xml vegsion="1.0" encoding="UTF-8"?>

<otx xmlps="http://iso.org/0TX/1.0.0" id="13"
name=""¢roupExample"
packagg¢=""org.iso.otx.examples"
versionp="1.0"
timestamp="2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<procedures>
<prog¢edure name="main" visibility="PUBLIC" id="13-pl">
<specification>Demonstration of nested flows</specification>
<rg¢alisation>
flow>
+Zgroup 1d="groupl'>" T T T T T T T T T T T TTTIT I T I I T T T T T T TN N
<specification>A group containing a group</specificatiof>
<realisation>
<action id="actionl"” />

1
' <specification>Inner group</specification>
y <realisation>
' <action id="action2" />
y </realisation>
' </group>

<return id="retlT /A>T T T T T T T T T T ORI TS

</realisation>

</group> ;

~

<action id="action3" />
/flow>
</ryealisation>
</pr¢cedure>
</proc¢dures>
</otx>

The exampje also demonstrates the use of the Flow type which occurs with two different names here: [The
<flow> elgdment of the procedure and the <real isation> elements of the groups.

7.13.4.3 LUoop node

7.13.4.3.1 |Description

For repetitive execution of a sequence of nodes, the Loop node shall be utilized. OTX supports several loop
configurations which are commonly called (do-)while-, for- and for-each-loop.

7.13.4.3.2 Syntax

Figure 26 shows the syntax of the Loop node. The syntax of the significant sub-element <configuration>
(which allows choosing and configuring different loop types) is depicted in Figure 27.

64 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

7.13
Loo
IMP
(Co
opt
Loo
loog

follg

The

ISO 13209-2:2012(E)

CompoundNode I Flow
realisation
«XSDcomplexType» ﬁ «XSDcomplexType»
Group " GroupRealisation
«XSDattribute»
+ validFor: OtxLink[0..1]
Figure 26 — Data model view: Loop
«XSDcomplexType»
LoopConfigurationHeader
realisation?O.A
«XSDcomplexType»
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
WhileLoop ForLoop ForEachLoop
«XSDattribute» «XSDelement» «XSBelement»
+ isPostTested: xsd:boolean [0..1] + counter: IntegerVariable + Jlocator: Variable
«XSDelement» + start: NumericTerm + ‘collection: CollectionTerm
+ test: BooleanTemm + end: NumericTerm

Figure 27 — Data model view: LoopConfigurationHeader

.4.3.3 Semantics

onal). This is enforced by(<xsd:key> constraints specified in the OTX schema.

wing sections.
top-level properties of the Loop type have the following semantics:

<real¥sation> : LoopRealisation [0..1]

In the <real isation> parts of a loop, a <configuration> and a <flow> are indispensable:

— <configuration> : LoopConfigurationHeader [1]

p is a CompoundNode which is a Node which is NamedAndSpecified. The semantics off all derived
properties are described in 7.13.2. Only the specific properties of the Loop type are described herg.

ORTANT — Continue and Break-nodes have a special meaning for loops, as specified|in 7.13.5.3
ntinue) and 7.13.5.4 (Break). Since these nodes specify their target by using the targé¢ted loop's

nanpe, the name attribute is mandatory for loops (unlike the base type NamedAndSpecified|where it is

p nodes have to be _configured in order to define the desired type of loop, (do-)while-, for- and for-each-
. For configuring, the-LoopConfigurationHeader type is used, which is described separately in the

This optional element is the counterpart to the <specification> element described for the|Node type.

Represents the loop header which defines the loop configuration type (plus the derived properties of

the Header base type, see 7.13.4.9).

— <realisation> : LoopConfigurationRealisation [1]

This element determines the loop configuration type of the Loop node.
LoopConfigurationRealisation is an abstract base type for the different

Since
loop

configuration types, the xsi:type attribute shall be used to choose the type of interest.

Semantics of the individual loop types are described below.

© I1SO 2012 — All rights reserved

65

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— <flow> : Flow [1]

This element is a container for a sequence of nodes which shall be executed one by one in the order
of appearance. For details about the Flow type, see 7.16.9.

Semantics of the Whi leLoop configuration

The (do-)while-loop is a generic loop with a test that controls repetition of the included flow. The test is a
boolean term. As long as the test condition holds, the loop flow is executed repeatedly. In OTX, it can be
configured whether the test shall be checked before (while-loop) or after the first flow execution (do-while-
loop).

The WhilglLoop configuration is derived from LoopConfigurationRealisation and has the felloying
semantic properties:
— isPostTested : xsd:boolean={false|true} [0..1]

This ogtional attribute controls whether the condition for the next loop shall be tested-prior to the next |oop
iteration start (the default) or after finishing the loop flow. Note that flows in post tésted loops will always
be exeguted at least once.

— <testp : BooleanTerm [0..1]
This contains the Boolean term that shall be evaluated prior to executing the loop flow. Syntax [and

semantics of terms like BooleanTerm are specified in 7.15.

Figure 28 illustrates the runtime behaviour of pre-tested while- and post-tested do-while- loops.

enter . enter
whiledoop w do-whiledoop
test

expression

is"true"

no
execute loop flow

yes
test
expression

execute loop flow is "true”

no

leave
do-while-oop

as leave
® while-loop,

Eigure 28 — Behavioural description: while- and do-while-loop

Semantics|ofthe ForLoop configuration

The OTX for-loop allows configuring a start and an end value (integer terms). When the loop starts, the start
value is assigned to the counter (an integer). Prior to each iteration, the counter value is compared to the end
value. If the counter value exceeds the end value, the loop exits, otherwise the iteration is carried out. After
each iteration — also after the final one — the counter is incremented by one. The counter value can be
accessed and be used for any kind of computation in the loop flow.

IMPORTANT — Since a counter is visible procedure-wide in OTX, it is accessible on the outside of the
loop as well.

66 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

IMPORTANT — When entering a for-loop, the old counter value will be overwritten implicitly by the
start value. After finishing the final iteration normally (not by break), the counter value will be
incremented one more time. This value is the exit value visible to the follower nodes of the loop node.

NOTE 1 By contrast to the for-each-loop behaviour which throws a ConcurrentModificationException if its
collection is changed during loop execution, it is valid to change a for-loop's counter value while the for-loop is active.

The ForLoop configuration is derived from LoopConfigurationRealisation and has the following
semantic properties:

— <counter> : IntegerVariable [1]

This element identifies an Integer variable that shall be used as the counter of the for-logp!

— |<start> : NumericTerm [1]
The value of the NumericTerm given by <start> shall be evaluated once when-entering th¢ for-loop. It
represents the start value which is assigned to the counter (see above). Float values shall bg truncated.
— |<end> : NumericTerm [1]

The value of the NumericTerm given by <end> shall be evaluated ‘ence when entering thg for-loop. It
represents the end value which is compared to the counter valué_prior to each iteration. Flloat values
shall be truncated.

See] the activity diagrams in Figure 29 for the runtime behaviour of for-loops.

enter
forloop

Cset counter to start vaIue)

counter
<=end

yes\b

execute loop flow

no

(increase counter by 1)
leave
a’g fordoop

Figure 29 — Behavioural description: for-loop

IMPORTANT — The counter variable shall be increased by 1 at the end of each loop iteration even if
terminated by a Continue node. Only in the case that a loop iteration is terminated by a Break node,
the counter variable shall NOT be increased before leaving the loop.

© 1SO 2012 — All rights reserved 67

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

Semantics

-2:2012(E)

of the ForEachLoop configuration

The OTX for-each-loop is configured by a collection (a list or a map) and a so called locator variable. The
collection is expressed by a list or map expression which shall be evaluated initially. The flow of the loop shall
be executed repeatedly for each item found in the collection. The current item of an iteration can be accessed
by using the locator variable which contains the index or key of the list or map item, respectively. Like this, the

current item

can be used for any kind of computation in the loop flow.

IMPORTANT — If the collection is a List, there is a defined order for the iterations: The loop starts
with the first List item (index 0), followed the second item and so on. By contrast, there is no

rder defined for Map

particular

IMPORTAN
loop as we

IMPORTAN
overwritter
locator var

IMPORTAN
they chang
each-loop’
collection

Concurrer

IMPORTAN
represent g

NOTE2
already be ¢
restore the o

The ForEa
semantic pn
<loca

This el
each-Id

<coll

The te
shall it

Associated

T — Since a locator variable is visible procedure-wide, it is accessible on the outside of

T — When entering a for-each-loop, the old value of the locator vatiable shall
implicitly by the index/key of the first item of the list/map. After leaving the loop,
able value of the final iteration will be visible to the follower nodes of theloop node.

T — Actions derived from ListModifier and MapModifier are collection modifiers. Si
e a collection's length (List case) or size (Map case), applying such modifications on a
5 collection during loop execution may cause serious_ineonsistencies (e.g. whe
item is accessed which does not exist anymore). Therefore OTX runtimes shall th
tModificationException when such modifications oCcur.

T — By contrast, changing the value of items of%\& for-each-loop's collection does
L concurrent modification and shall not cause a CencurrentModificationException.

Vhen catching a ConcurrentModificationException, the data in a for-each-loop's collection
prrupt (e.g. when a List item has been removed)> In this case, it is not possible for exception handlin
iginal collection.

chLoop configuration is derived fromLoopConfigurationReal isation and has the folloy
operties:

for> :© Variable [1]

ement points to an Integer or a String that shall be used as the locator variable of the
op.

pction>

ColtectionTerm [1]

m value expressed by <col lection> represents the List or Map over which the for-each-
rate.

checker rules:

hk014 — correct locator variable type in for-each-loop

the

be
the

nce
for-
n a

fow

not

may
gto

ving

for-

oop

Core_(

Throws:

Core_Chk056 — no modification of collection inside foreach-loops

ConcurrentModificationException

in case that the collection is modified while the loop is active. Modifications can be triggered by actions
inside of the loop or from the outside, e.g. by actions in a parallel lane.

68

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

See the activity diagram in Figure 30 for the runtime behaviour of for-each-loops.

enter
for-each-loop

(evaluate collection term)

another collection

no item is available

yes

ISO 13209-2:2012(E)

7.13.4.3.4 Example

set locator to index or key
of current item

execute loop flow

leave
a’g for-each-loop

Figure 30 — Behavioural description:€or-each-loop

The| examples below demonstrate a while-, for- and for-each-loop. Example 1 shows an endlesg while loop
(thelloop condition is always true). Example 2 shews a for-loop which counts from 1 to 10. In eafh iteration,
a dfalog is shown containing the current loop-iteration number. Example 3 shows a for-eachiloop which

itergtes over a list of values. The value of the,current iterations list item is shown in a dialog.

© I1SO 2012 — All rights reserved

69

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE 1 Sample of OTX-file "LoopExample.otx" — while-loop

<loop id="loopl"™ name="myWhilelLoop">
<specification>An endless while loop</specification>
<realisation>
<configuration id="looplconfig">
<specification>Always true loop condition</specification>
<realisation xsi:type="WhilelLoop">
<test xsi:type=""BooleanLiteral” value="true" />
</realisation>
</configuration>
<flow>
<action id="al" />
<action id="a2" />
</flow>
</realisation>
</loop>

EXAMPLE 2 Sample of OTX-file "LoopExample.otx" — for-loop

<loop idf"loop2"™ name="myForLoop">
<specification>Loop repeats an action 10 times</specification>
<realigation>
<configuration id="loop2config">
<specification>Start at 1, end at 10, counter variable is i</specification>
<rg¢alisation xsi:type="ForLoop">
counter xsi:type="IntegerVariable" name="i" />
start xsi:type="IntegerLiteral” value="1" />
end xsi:type="IntegerLiteral” value="10" />
</yealisation>
</cofpfiguration>
<floy>
<ag¢tion id="a3">
specification>Shows the iteration number i</specificatioh>
realisation xsi:type="hmi:ConfirmDialog"” messageType=¥NFO">
<hmi:message xsi:type="ToString” >
<term xsi:type="IntegerValue” valueOf="i"/>
</hmi :message>
/realisation>
</jction>
</Flow>
</real{sation>
</loop>

EXAMPLE 3 Sample of OTX-file "LoopExample.otx" — for-each-loop

<loop id{"loop3" name="myForEachLogp">
<specification>Loop iterateg ovetr all items of list L and shows them</specification>
<realigation>
<configuration id="logp3config" >
<sfecification>Colfection is L, locator variable is index</specification>
<rdalisation xsi{type="ForEachlLoop">
4locator xsi fkEype=""IntegerVariable” name="index" />
qcollection %si:type="ListValue” valueOf="L" />
</ealisation>
</corffiguration>
<floy>
<agtjon \id="a4">
4specification>Show the value of current List item by using the iterator</specification>
<regHsatiom XS Type=— i ComtiTmoa oy MesSSage Type=—ThNFo—=
<hmi:message xsi:type="StringValue"”
valueOf=""L">
<path>
<stepBylndex xsi:type="IntegerValue" valueOf="index" />
</path>
</hmi :message>
</realisation>
</action>
</flow>
</realisation>
</loop>

70 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.4.4 Branch node

7.13.4.4.1 Description

For conditional execution of flows, Branch nodes are used. With a Branch node, a series of one or more
condition/flow pairs can be defined. The conditions are evaluated one after the other, in the order of
appearance in the document. The flow of the first true condition found will be executed. If no condition holds,
an optional unconditional flow will be executed, if given. The Branch construct is commonly referred to as
"if..elseif..else"-statement.

7.13.4.4.2 Syntax

Figdure 31 shows the syntax of the Branch node type.

«XSDcomplexType»
ConditionalFlow

«XSDelement»
+ gondition: ConditionHeader
+.. flow: Flow

ConpoundNode realisation «XSDcomplexType»
«XSDcomplexType» BranchRealisati Header
Branch 0.1 «XSDcomplexType»
«XSDelement» ConditionHeader
+ if: ConditionalFlow
+ elseif: ConditionalFlow[0:.*] «XSDelement»
+ else: Flow[0..1] + realisation: BooleanTem [0..1

Figure 31 — Data model view: Branch

7.13.4.4.3 Semantics

Branch is a CompoundNode which is a Node which is NamedAndSpecified. The semantics of all derived
proﬂerties are described in 7.13.2. Only the specific semantic properties of Branch are described here.
— |<realisation> : BranchRealisation [0..1]

Contains one <if> element followed by an optional list of <elseif> elements and an optiohal <else>
element:

— <if> : ConditionalFlow [1]

This is the enly mandatory part of the Branch node. At runtime, its <condition> shall always be
the firstto be tested, prior to any <elseif> conditions. If the condition holds, its <Flow> shall be
executed. Otherwise, any trailing <elsei > or <else> elements shall be processed.

- <condition> : ConditionHeader [1]

ne e - ala a ne_elemen a2 Booleanlerm Wi a

= calisatic of the elementis-a-BooleanTe G he test td be carried
out prior to flow execution. For additional properties from the Header base type, see 7.13.4.9.

NOTE In graphical representation, the condition header should be shown by a "diamond" shape.

— <flow> : Flow [1]

The flow to be carried out when the condition holds.

— <elseif> : ConditionalFlow [O..*]

If there is more than one conditional flow to be defined, a list of <elseif> elements shall be used.

© 1SO 2012 — All rights reserved 71

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

At runtime, the <condition> of each <elseif> is tested one by one, after the <if> part has been
processed. The <flow> of the first <elseif> with a true condition shall be executed. Further

semantics are identical to the <i > element (see above).

<else> : Flow [0..1]

If none of the <iT> or <elseif> elements could be executed, the <else> flow shall apply. In cases

where no <else> exists, the whole <branch> node is skipped.

Figure 32 shows an activity diagram describing the runtime behaviour of a Branch.

' enter branch

4 . . N\ [.
if N (1st elseif Nth elseif
condition condition condition
is"true” is "true” is"true"
evaluate Tif" w no ~ evaluate 1st no ~ evaluate Nth no
conditi "elseif" condition "elseif" condition
yes yes yos
exgcute "if" flow execute 1st "elseif” flow execute Nth "elseif” flow execute "else” floy
\ 2N .
leave branch
Figure 32 — Behavioural description: Branch
7.13.4.4.4 |Example
The example below shows a simple\Branch node.
EXAMPLE Sample of OTXfile "BranchExample.otx"
<branch #d=""branchl'>
<specification>if-ekseif-else branch</specification>
<realigation>
<if>
<cqgnditiop~rd=""ifcond">
4specification>Unreachable flow (condition always false)</specification>
d4reabisation xsi:type="BooleanLiteral™ value="false" />
</(opditiocn
<flow>
<action id="al" />
</flow>
</if>
<elseif>
<condition id="elseiflcond">
<specification>unspecified elseif condition</specification>
</condition>
<flow>
<action id="a2" />
</flow>
</elseif>
<else>
<action id="a3" />
</else>
</realisation>
</branch>
72

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.4.5 Parallel node

7.13.4.5.1 Description

A parallel node consists of two or more flows (lanes) that shall be executed simultaneously and synchronouly.

7.13.4.5.2 Syntax

Figure 33 shows the syntax of the Paral lel node type.

CorpoundNode realisation «XSDcomplexType»
«XSDcomplexType» < ParalleIRealisation
Parallel 0..1

«XSDelement»
+ lane: Flow[2..¥]

Figure 33 — Data model view: Parallel

7.13.4.5.3 Semantics

Parallel is a CompoundNode which is a Node which is NamedAndSpecified. The semantics of all
derived properties are described in 7.13.2. Only the specific semantic properties of Parallel arg described
hereg.

— |<realisation> : ParallelRealisation [0..1}

Contains at least two <lane> elements. All given lanes shall be executed in parallel.

— <lane> : Flow [1..%*]

Every lane is a flow of nodes. See 7:16.9 for a detailed description of the Flow type.

Asspciated checker rules:

— |Core_Chk015 — correct nesting. of Parallel nodes

enter
parallel

execute 1st lane execute 2nd lane execute N-th lane

Figure 34 — Behavioural description: Parallel

© 1SO 2012 — All rights reserved 73

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Figure 34 shows an activity diagram describing the runtime behaviour of a Paral lel node. The lanes after
the fork shall be executed simultaneously. Since the Parallel node's normal runtime behaviour shall be
synchronized, a Paral lel node shall not complete until all of its lanes have completed.

CAUTION — The relative timing of node execution in different lanes is not determined — race
conditions may occur. For that reason one lane should not rely on the execution of any other lane in
the Parallel node. In order to gain thread safety, authors should use MutexGroup nodes (see
7.13.4.6).

There are several conditions which induce special completion rules for the Parallel node. The rules shall

be app“ed when a Returnnode a Terminatel anes node or an excention occurs-inthe lanes
T g

— TermiphatelLanes node:

This sgecial end node induces a special behaviour: If a TerminatelLanes node is executed)in one of the
lanes, all other lanes are signalled to complete prematurely.

IMPORTANT — On receiving a premature completion signal, all lanes shall complete immediately
after cpmpletion of the last atomic node, MutexGroup or finally block (if any). Atomic nodes|are
Actiofp nodes with an atomic ActionRealisation as well as the endynodes Return, Break,
Contipue, TerminateLanes and Throw. Since there is no completion timeout defined for atojmic
nodes] finally blocks or MutexGroup nodes, lane completion is delayed no matter how long|the
node fakes to complete. This avoids producing undefined statés and implies possibilities of
deadlgcks. An OTX author is responsible for avoiding deadlock situations.

— Returp node:

If a Refturn node is executed in one of the lanes, the lane shall complete, but the jump induced by| the
Returh node shall be delayed until all other lanes comgplete. After this, the Procedure completes.

— Throw pf an unhandled exception:

If a node in one of the lanes throws an exception which is not handled in that lane, the lane ghall
complgte, but the throw is delayed until all-other lanes have completed. After this, the exception is thrpwn
upwards. If more than one exception was-delayed, the first thrown exception shall be thrown upwards
and thg others shall be discarded.

Concerning|concurrency issues which might occur on multicore systems, the following rules apply:

— When there are two or mare_delayed exceptions which occurred simultaneously (same timestamp),|it is
not specified which exeeption will be thrown upwards. The behaviour depends on the specific QTX
runtime implementation,

— When [there isfa) 'delayed exception and a delayed return which occurred simultaneously (same
timestgmp), the behaviour is unspecified — it depends on the specific OTX runtime implementgtion
whethdr ar\exception is thrown upwards or the Procedure completes.

7.13.4.5.4 Example
The example below shows a simple parallel node with three lanes. The lanes contain branches, loops and

actions to be carried out in parallel. It also contains a TerminateLanes node (other nodes in the lanes are
not further specified for this example).

74 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE Sample of OTX-file "ParallelExample.otx"

<parallel id="parallell>
<specification>Demonstration of three parallel lanes</specification>
<realisation>
<lane>
<action id="al"/>
<branch id="b1'">
<realisation>
<if>
<condition id="blcl"/>
<flow>
<terminatelLanes id="tl1"/>
</flow>
</if>
</realisation>
</branch>
</lane>
<lane>
<action id="a2"/>
<loop id="11" name="MylLoop"/>
</lane>
<lane>
<action id="a3"/>
<action id="a4"/>
<action id="a5"/>
</lane>
</realisation>
K/parallel>

7.13.4.6 MutexGroup node

7.13.4.6.1 Description

Thel MutexGroup node is designed for resolving concurrency issues which might occur within the scope of
Paral lel nodes, as specified in 7.13.4.5. Syntactieally, the MutexGroup node has similarities tq the Group
nodp because it can be used to wrap a sequenceof nodes together, but beyond that it has specidl semantics
congerning parallel execution, as specified below.

>

7.13.4.6.2 Syntax

Figure 35 shows the syntax of the MutexGroup node type.

CompoundNode

«XSDcomplexType»
MutexGroup

«XSDelement»
+ realisation: Flow [0..1]

Figure 35 — Data model view: MutexGroup

7.13.4.6.3 Semantics

MutexGroup is a CompoundNode which is a Node which is NamedAndSpecified. The semantics of all
derived properties are described in 7.13.2. Only the specific properties of the MutexGroup type are described
here, with the following semantics:

— <realisation> : Flow [0..1]

This optional element is the counterpart to the <speciFfication> element described for the Node type.
It is a Flow of nodes (cf. 7.16.9) which shall be executed one by one in the order of appearance. The
whole Flow shall be thread safe as it is part of the MutexGroup.

© 1SO 2012 — All rights reserved 75

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

In multi-threaded environments, more than one process may try to access the same variable(s). This can
cause serious concurrency issues and has to be dealt with properly. Consider concurrency situation shown to

the left of Fi

gure 36:

enter
parallel

enter
parallel

fork fork

| | |
lane|1 \ (IaL‘ne 2 \ f lan¢ 1 \ f Ielne 2 \
Mutelxm MutexGroup \
\ / \ / It\alll\]l) \ / \ / fullb:)
\>100? >100?
funds=0 o funds =0 no
yes yes
spendMoney() spendMoney()
J \:j N\) \K::)
join join
exit exit
parallel parallel

In the abov|
sure money
parallel exe
before "sp
called, the
procedure @

In general,
By only allo
a time — oth

Figure 36 — Behavioural description: MutexGroup

b example, both lanes try to access the variable ""funds'. The condition in lane 2 aims to nj
cution this change might happen after the condition ""funds > 1007?" is checked in lane 2

alue is not greater than 100 anymore even though this value was checked. The condition fof
all is not valid and the procedure should-not be called.

barts of code where multiple threads’try to access the same variable(s) are called critical secti
wing one thread at a time to enter a critical section, access is effectively reduced to one threa
er threads have to wait for theirturn.

The OTX

access happens in a controlled-manner (as it is mutually exclusive). Since only one MutexGroup sha
executed af a time, variable acgcess in the critical sections becomes thread safe.

Entry to the|critical sectien shall be controlled by one internal, global object which is not specifically mentig
in OTX. The node closely resembles the synchronized block as specified by §14.19 of The Ja
Language $pecification M,

7.13.4.6.4 |Example

utexGroup node is shown to the right of Figure 36. It allows wrapping critical sections so

ake

is only spent if there are enough funds available. In lane 1, *"funds’ changes its value to (. In

but

endMoney ()" is executed. In this case the\result is unexpected. At the time the procedure is

the

bNS.
d at

that
| be

ned
aTM

The example below shows a specification-level OTX snippet which demonstrates the concurrency situation
discussed above (cf. Figure 36).

76

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

EXAMPLE Sample of OTX-file "MutexGroupExample.otx

ISO 13209-

<parallel id="pl">

<specification>Controlled concurrency</specification>
<realisation>

<lane> <I-- left lane -->
<mutex id=""m2">
<specification>Critical section</specification>
<realisation>
<action id="al">
<specification>funds = 0</specification>

7.13

7.13

The
If an

7.13
Figu

The

4/parallel>

<I-- Implementation goes here -->
</action>
</realisation>
</mutex>
</lane>
<lane> <!-- right lane -->

<mutex id=""m2">
<specification>Critical section</specification>
<realisation>
<branch id="b1">
<specification>Spend money if funds are greater 100</specification>
<realisation>
<if>
<condition id="blcl">
<specification>Condition: funds greater 100?</specification>
<I-- Implementation goes here -->
</condition>
<flow>
<action id="call1">
<specification>Call procedure “spendMoney’</spéciFication>
<I-- Implementation goes here -->
</action>
</flow>
</if>
</realisation>
</branch>
</realisation>
</mutex>
</lane>
</realisation>

.4.7 Handler node

.4.7.1 Description

Handler node is designhed for monitoring sections of a procedure for unexpected behaviour (4
exception was threwn in the monitored section, it can be treated by so called catch blocks.

A4.7.2 Syntax

re 37 shows the syntax of the complex type Handler.

2:2012(E)

pxceptions).

<real isation> element of Handler has a special design: In addition to the mandatory <t|ry> flow, it
forces=authors to implement

either a single but mandatory <final ly> flow or

a list of at least one <catch> flow followed by an optional <final ly> flow

Like this, it is guaranteed that there is at the least a <final ly> when no <catch> is given — but if there are
<catch> flows, <final ly> becomes optional.

© I1SO 2012 — All rights reserved

77

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

CompoundNode o «XSDcomplexType»
«XSDcomplexType» realisation HandlerRealisation
Handler 0.1
«XSDelement»
+ try: Flow
«XSDchoice» «XSDsequence»
Finally&CatchesOrOnlyFinally Finally&Catches
«XSDelement» C «XSDelement»
+ finally: Flow + catch: CatchingFlow [1..*]
+ finally: Flow [0..1]
Figure 37 — Data model view: Handler
7.13.4.7.3 |Semantics
Handler i3 a CompoundNode which is itself a Node which is NamedAndSpecified. The semantics O
derived properties are described in 7.13.2. Only specific semantic properties of Handler are described he

A <handle
treatment a

When an e
treating thg
execution,
normally). @
outer <han
either, the ¢
will always
thrown also

IMPORTAN
described
language,

Handler h

<real

This of
for the

r> node contains a so called <try> flow accompanied by a list afy<catch> flows for excef
hd/or a <fFinal ly> flow. The <handler> node monitors the <€xy> flow for exceptions:

ception is raised in the monitored <try> flow, it completes.abruptly. If there is a <catch> floy

kind of exception that was raised, control is passed-to that <catch> flow. After <cat]
node execution will resume right after the <handler> node (if the catch execution compl
therwise, if there is no <catch> for the exceptionraised, the exception is passed upwards t
Hler> that shall treat the exception, and so_on:If the exception is not treated by outer hand
xception is passed to the runtime system itself'(out of OTX scope). If there is a <final ly> flo
be executed at the end, disregarding if. there was any exception or not or if a catch flow
or not.

T — The full runtime behaviour of the <handler> node is even more complex t
bbove. Since the semantics ateequivalent to the semantics of the try statement in the J

bs the following properties:

i sation> HandlerRealisation [0..1]

tional element is the machine-readable counterpart to the <specification> element descr
Node typelt is a container for a <try> flow, <catch> flows and a <final ly> flow:

— <11ry> : Flow [1]

f all
re.

tion

V for
ch>
btes
b an
lers
W, it
has

han
ava

he specification given by-§14.20 of The Java™ Language Specification is indispensable
for full conpprehension of the <handler> node.

bed

Represents the flow that is monitored by the Handler. Potentially thrown exceptions may be treated

by

<catch>

<catch> flows. Any occurring exception in this flow will cause it to complete abruptly.

CatchingFlow [1..*]

When an exception is thrown in the <try> block, the <catch> flows of a Handler are analyzed
one by one in order of appearance in the OTX document. The first <catch> with a matching
exception type will be executed. If there is no matching <catch>, control is passed to the next outer
handler (after executing the <final ly> flow, if given). Refer to 7.13.4.8 for a detail description of
CatchingFlow.

78

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Associated checker rules:

— Core_Chk016 — no redundant exception catches

— <Ffinally> : Flow [0..1]

If existing, this flow will always be executed at the end of the <handler>. It will also be executed, if
there is no <catch> treating the type of exception, or if the <catch> flow also completed abruptly.

7.13.4.7.4 Example

The~examplebelow——shows-the Handlernode—th-its—<trv> flow—an-exception-is—thrown nvnlir\'tly which is
CrexarHpre—eioW—row tH et e —Hooe——it Y HOWT—atH—Ex PHOH—To—tHo ey

caught by a <catch> flow. Also refer to 7.13.5.5 for an overview of the Throw node type.

© 1SO 2012 — All rights reserved 79

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE Sample of OTX-file "HandlerExample.otx"

80

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="18"
name=""HandlerExample"
package=""org.iso.otx.examples™
version="1_.0"
timestamp=""2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmIns:hmi="http://iso.org/0TX/1.0.0/HMI"">

<procedures>
<procedure name="main" visibility="PUBLIC" id="18-pl1">
<realisation>
<declarations>

svariable name="userExc” id="18-di™>_ _ ______________________________________
<dataType xsi:type="UserException” />
</realisation>
</variable>
4/declarations>

4throws>
<exception xsi:type="UserException” />
4/throws>

\\

<specification>Handler with a finally and a catch</specification>
<realisation>
<try>
<throw i1d="throwl">
<specification>Throws an exception configured by the autfiox</specification>
<realisation xsi:type="UserExceptionCreate'>
<qualifier xsi:type="StringLiteral” value="MyManuadEXeeption” />
<text xsi:type="StringLiteral”
value="This is an exception thrown without reasen!" />
</realisation>
</throw>
</try>
<catch>
<exception id="excl">
<specification>Catch UserExceptions</specification>
<realisation>
<type xsi:type="UserException" />
<handle name="userExc" />
</realisation>
</exception>
<flow>
<action id="a3">
<specification>Show_the exception text</specification>
<realisation xsi:type="hmi:MessageDialog">
<hmi:message xsi:type="GetExceptionText">
<exception Xsi:type="ExceptionVariable" name="userExc" />
</hmi :message>
<hmi:messagelType xsi:type=""IntegerLiteral”
valuez¥1Y />
</realiSation>
</action>
</flow>
</catch>
<finally>
<action id="finalAction” />
</finally>
</realisation>

4/€kow>

</nealisation>

</handler> .

</procedure>
</procedures>
</otx>

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.4.8 CatchingFlow

7.13.4.8.1 Description

The CatchingFlow type bundles information about a to-be-caught Exception to a Flow that handles it.
The flow shall only be executed if there was an exception of the right type thrown in the enclosing exception
Handler, see above.

7.13.4.8.2 Syntax

Figyre-38-shews-thesyntaxot-the CatehingHlowtype
«XSDcomplexType» «XSDcomplexType»
CatchingFlow CatchRealisation
Header
«XSDelement» realisation| «XSDelements
+ exception: CatchHeader «XSDcomplexType» + type: (Exception
+ flow: Flow CatchHeader 0-11 4 handie! ExceptionVariabje [0..1]
Figure 38 — Data model view: CatchingFtow
7.13.4.8.3 Semantics
CatichingFlow has the following semantic properties:
— |<exception> : CatchHeader [1]
Represents the catch header which aggregates information about the exception <type> and the
<handle> to which a caught exceptiontshall be assigned to (plus the derived properties of the
Header base type, see 7.13.4.9).
— <type> : Exception [1]
Allows choosing one out of the' list of all Exception types (by using the xsi :type attribute). The
base type Exception may be chosen here as well: In this case, any kind of exception is caught by
the CatchingFlow.
The <Flow> of (the’ CatchingFlow shall only be executed if the type of the throwfn exception
matches (or is\asubtype of) the type given here.
If an <imiE&> sub-element ocurrs here, it shall be ignored (cf. UserException, 7.16.7.3.B)

Refer,to 7.16.7.3.8 for a definition of Core Exception types.

Associated checker rules:

— Core_CnKUS/ — No use or Init In catch header exception type detinition

<handle> : ExceptionVariable [0..1]

If the associated <flow> element needs to access the exception object itself, the optional

<handle> element allows assigning the object to an Exception type variable.

Associated checker rules:
— Core_Chk019 - type-safe exception catches

— Core_Chk053 — no dangling OtxLink associations

© I1SO 2012 — All rights reserved

81

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

— <flow> : Flow [1]

-2:2012(E)

The flow shall be carried out when the exception stated by the <exception> element has been caught
(see 7.16.9).

7.13.4.8.4

Example

Refer to the example given in 7.13.4.7.4.

7.13.4.9 Header type

7.13.4.9.1

The compd
information
catch bloch
displayed in

The abstrs
LoopConf

7.13.4.9.2

Figure 39 s

7.13.4.9.3

With respe

graphical snll:

carry a na
not make s¢

The proper

— 1d :

Semal

Description

und nodes Loop, Branch and Handler use the Header type as a container for-heagling
like loop conditions, the if- or else-if-case conditions in a branch or the exception)indication in
s of a handler. In graphical representations of OTX-sequences, this information should be

distinct graphical shapes, like e.g. a "diamond" for displaying conditions, etc.

ct Header type describes the common features used by all ofsits subtypes,

gurationHeader, ConditionHeader and CatchHeader.

Syntax

Semantics

nows the syntax of the Header type.

NamedAndSpecified|

«XSDcomplexType»
Header

«XSDcomplexType»
LoopConfigurationHeader

<<

«XSDcomplexType»
ConditlonHeader

«XSDcomplexType»
CatchHeader

Figure 39 —Data model view: Header

es of theabstract Header type have the following semantics:

txdd [1] (derived from NamedAndSpecified, see 7.16.4)

ics’are identical to the Node cnmnnfir‘c' see 7132

namely

Lt to graphical representation, headers play a similar role as nodes: They can be displayed by
apes, they can be specified or/and realised, floating comments may point to them and they may
e. The only difference to the abstract Node type is the missing disabled attribute, which does
bnse for headers.

— name : OtxName [0..1] (derived from NamedAndSpecified, see 7.16.4)

Semantics are identical to the Node semantics, see 7.13.2.

— <metaData> : MetaData [0..1] (derived from NamedAndSpecified, see 7.16.4)

Semantics are identical to the Node semantics, see 7.13.2.

— <specification> - xsd:string [0..1] (derived from NamedAndSpecified, see 7.16.4)

Semantics are identical to the Node semantics, see 7.13.2.

82

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.4.9.4 Example

Below is an example of two different uses of the Header type: As a specification stage loop condition (the
<configuration> element is of Header type) and as a branches if-case condition (the <condition>
element is of Header type).

EXAMPLE Sample of OTX-file "HeaderExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="19"
name=""HeaderExample"
package=""org iso ofx exapples™
version="1.0"
timestamp="2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<procedures>
<procedure name="main" visibility="PUBLIC" id="19-pl1">
<specification>Demonstration of a loop</specification>
<realisation>
<flow>

<loop i1d="loopl" name="myLoop">
<realisation> _______________________________________(_
I <configuration id="looplcondi™>
' <specification>unspecified loop condition</specification>
y </configuration>

</realisation>
</loop>

<branch id="b1">
<realisation>
i “<condition id="bicondi’> "~~~ T T T T T T T STTTTTTTTTTTTTTOT
: <specification>This is always truec/Specification>
1 <realisation xsi:type="BooleanLiteral™
]
|
]

value="true" />
</condition>

<else>
<action id="al" />
</else>
</realisation>
</branch>

</flow>
</realisation>
</procedure>
</procedures>
</otx>

7.13.5 End Nodes

7.13.5.1 _©verview

Regohsider 7.16.9 concerning the behaviour of flows. After flow processing has executed the lagt node of a
flow, coMrot 15 passed 10 The Next-n-row node 1 the outer fiow. I there 1S o more outer flow —1hiS is the case
when the end of the procedure level flow is reached — procedure execution ends.

This is the standard behaviour for implicit flow ends. By contrast, the explicit EndNode types described in the
following clauses enforce a different end-of-flow behaviour.

© I1SO 2012 — All rights reserved 83

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

2:2012(E)

7.13.5.2 Return node

7.13.5.2.1

Description

A Return node shall complete the execution of a procedure immediately. Control shall be passed back to the
caller. Return nodes are allowed at any nesting depth. Return is a controlled jump with a well-defined jump
target, namely the end of the procedure. Compare this to the structured programming paradigm in 6.3.

7.13.5.2.2 Syntax
Figure 40 shows the syntax of the Return node type
EndNode
«XSDcomplexType»
Return
Figure 40 — Data model view: Return

7.13.5.2.3 |Semantics

Return is|an EndNode which is a Node which is NamedAndSpecified. The semantics of all derjved

properties dre described in 7.13.2. Only the specific semantic properties{of' Return are described here.

IMPORTANT — For the Parallel node, special semantics apply when Return is executed in parallel

lanes. For fetails, see 7.13.4.5 which is indispensable for the¢¢comprehension of the correct behavjour

of Return |n Parallel.

The activity] diagram in Figure 41 clarifies the semantics\ It shows a procedure flow which consists out pf a

Branch angl another node labelled "last node in procédure”. The if-flow in the branch contains a node "n¢de"

followed byJa Return node. There is no default case.

— Without the explicit Return node, "last~node in procedure” would always be executed after brgnch
execution, since control would pass toithe next node in the outer procedure level flow, independent of the
truth vglue of the if-condition.

— With the explicit Return node) ‘procedure execution ends immediately and "last node in procedure” is
bypassed if the condition_is true.

A corresponding exampleg OTX document is given below.

This ability jof the Return node is helpful in situations where the procedure execution shall end prematyrely

because ceftain circumstances are met.

84 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

enter
? procedure flow

if-conditio
is"true"

/branch node

ISO 13209-2:2012(E)

————e—e— e ———

procedure last node in procedurej

r
I

|

I

| controlled \]/—
: jump out of

I

I

|

I

|

exit
procedure flow

Figure 41 — Behavioural description: Return

7.13.5.2.4 Example
EXAMPLE Sample of OTX-file "ReturnExample.otx"

?xml version="1.0" encoding="UTF-8"?>

otx xmIns="http://iso.org/0TX/1.0.0" id=""20™
name=""ReturnkExample"
package="org.iso.otx.examples"
version="1.0"
timestamp="2009-10-20T14:40:10"">

<procedures>
<procedure name="main" viSibrlity="PUBLIC" 1d="20-pl">
<realisation>
<flow>
<branch id="branghl”>
<specification>Branch with a return</specification>
<realisation>
<if>
<condition id="condl">
<specification>Cause for early procedure completion</specification>
</condition>
<flow>
,Saction_id="al"_/>
1 <return id="returnl®>
' <specification>Bypasses node "a2"</specification> '
1

|
1 </return>

</1t>
</realisation>
</branch>
<action id="a2">
<specification>Last node in procedure</specification>
</action>
</flow>
</realisation>
</procedure>
</procedures>
</otx>

© I1SO 2012 — All rights reserved

85

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.5.3 Continue node

7.13.5.3.1 Description

A Continue node completes execution of a Loop flow immediately and initiates the next iteration, after loop
condition evaluation. Continue shall be used only within Loop nodes, at any nesting depth. Continue is a
controlled jump with a well-defined jump target, namely the first node of the Loop flow. Compare this to the
structured programming paradigm explained in 6.3.

7.13.5.3.2 Syntax

Figure 42 shows the syntax of the Continue node type.

EndNode

«XSDcomplexType»
Continue

«XSDattribute»
+ target: OtxName

Figure 42 — Data model view: Continue

7.13.5.3.3 [Semantics

Continue fis an EndNode which is a Node which is NamedAndSpecified. The semantics of all derjved
properties dre described in 7.13.2. Only the specific semantic properties of Continue are described here.

Figure 43 shows the runtime behaviour of loops with nested Continue nodes. For the sake of brevity| the
condition test has been left out in the figure. The condition shall always be tested before the first node in the
loop flow will be executed.

loop name="OuterLoop"

Y\ LN first action in
| controlled outer loop
| jump to,outer

! loop'start

4 N\

loop name="InnerLoop"

firstactionin|— _ _ _ _ __
Inner loop controlled |
jump to inner!
loop start |

14k

continue continue

Target="OuterLoop"
S ~ - Y,

Figure 43 — Behavioural description: Continue

The properties of Continue have the following semantics:

— target : OtxName [0..1]

This attribute specifies which of the outer loops shall be continued. If the attribute is omitted, the default
target shall be the innermost loop. Otherwise, the value shall match the name attribute of the targeted
loop in the procedure. This is ensured by XML validation. However, XML validation cannot ensure that the

86 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

Continue node is in fact nested in the targeted loop. There is a checker rule defined for e
requirement.

Associated checker rules:

Core_Chk020 — correct nesting of Continue node

7.13.5.4 Break node

7.13.5.4.1 Description

-2:2012(E)

nsuring this

AB
"bro

Bre
this

7.13

Figu

7.13

Bre

reak node forces Loop execution to complete immediately. Control is passed to the next\no
ken" Loop node. Break shall be used only within Loop nodes, at any nesting depth.

ak is a controlled jump with a well-defined jump target, namely the next node after the Loo
to the structured programming paradigm explained in 6.3.

.5.4.2 Syntax

re 44 shows the syntax of the Break node type.

EndNode

«XSDcomplexType».
Break

«XSDattribute»
+ target: OtxName

Figure 44 —Data model view: Break

.5.4.3 Semantics

ak is an EndNode which_is~a Node which is NamedAndSpecified. The semantics of

properties are described in 7,43.2. Only the specific semantic properties of Break are described he

The

properties of Break have the following semantics:

target : OtxName [0..1]

This attribute- names the target Loop node which is forced to complete immediately. If the

attribute of the targeted loop in the procedure. This is ensured by XML validation. Hov
validation cannot ensure that the Break node is in fact nested in the targeted loop. There i

de after the

b. Compare

all derived
bre.

attribute is

omitted\the default target shall be the innermost loop. Otherwise, the value shall match the name

vever, XML
5 a checker

rule defined for ensurina this reguirement
~ -

Associated checker rules:

Core_Chk021 - correct nesting of Break node

Figure 45 shows the runtime behaviour of loops with nested Break nodes. For the sake of brevity the
condition test has been left out in the figure. The condition shall always be tested before the first node in the
loop flow will be executed.

© I1SO 2012 — All rights reserved

87

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)
d loop name="OuterLoop" N
4 loop name="InnerLoop" \
start
branohi

T .

: Ereak . break |

: _ target="OuterLoop!' Y, :

| \|1 controlled !

: jump out of |

B

: Inner loop

NG J

: controlled

| jump out of

:_oEtErlogp _______ > first action after

outer loop
Figure 45 — Behavioural description: Break

7.13.5.5 Throw Node
7.13.5.5.1 |Description
There are djfferent reasons for exceptions to occur:
Exceptions|can be thrown implicitly, e.g. by the execution of an Action node (see 7.13.3) or du
evaluation pf a Term (see 7.15). For any of such Actwon nodes and Term types, the potentially thr
exceptions pre defined in this part of 1ISO 13209.
E.g. the Dijvide term throws an ArithmeticException under well defined conditions. Here, it is not
author wholthrows the exception explicitly, but-it is the evaluation algorithm for Divide which is execute

the runtimg
reaction onf

By contrast
exception s
user define

7.13.5.5.2

Figure 46 s

system which throws the exception implicitly. The only task left for the author is to defir
o the potentially expected exception by using a <catch> in a Handler node (See 7.13.4.7).

the Throw node is a means to throw exceptions explicitly. The author can define exactly whe
hall be thrown and<he@may configure the exception by providing textual information describing
| exception.

Syntax

nows the syntax of the Throw node type.

ring
bwn

the
1 by
ea

h an
his

EndNode

88

«XSDcomplexType»
Throw

«XSDelement»
+ realisation: ExceptionTerm [0..1]

Figure 46 — Data model view: Throw

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.13.5.5.3 Semantics

Throw is derived from EndNode which is a Node which is NamedAndSpecified. The semantics of all
derived properties are described in 7.13.2. Only the specific semantic properties of Throw are described here.

The properties of Throw have the following semantics:

— realisation : ExceptionTerm [0..1]

Specifies an ExceptionTerm that returns the exception object that shall be thrown. This can be either
the value of an exception variable of any Exception type, or a newly created UserException.

Associated checker rules:
— Core_Chk017 — checked exceptions (1)
— Core_Chk018 — checked exceptions (2)

IMPORTANT — Special semantics apply when exceptions are thrown in Raprallel lanes. [For details
see| 7.13.4.5 which is indispensable for the comprehension of the c¢ofrect behaviour of Throw in

Panallel.

7.13.5.5.4 Example

An éxample is provided in the Hand ler specification, see 7.13.4.7.4.

7.13.5.6 TerminateLanes node

7.13.5.6.1 Description

Thel TerminateLanes end node is exclusively designed for deployment in Parallel node langs. It allows
abofting the execution of all lanes in a'Paral lel node without having to wait for them to complgte normally
(for [details about the Parallel node, See 7.13.4.5).

7.13.5.6.2 Syntax

Figure 47 shows the syntax.of the TerminatelLanes node type.

EndNode

«XSDcomplexType»
TerminateLanes

Figure 47 — Data model view: TerminatelLanes

7.13.5.6.3 Semantics

TerminatelLanes is derived from EndNode which is a Node which is NamedAndSpecified. The semantics
of all derived properties are described in 7.13.2. Only the specific semantic properties of TerminatelLanes

are described here.

When a TerminatelLanes node is executed in one of the lanes of a Parallel node, all other lanes are
signalled to complete prematurely.

© 1SO 2012 — All rights reserved 89

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

IMPORTANT — Additional semantics for TerminatelLanes are specified in 7.13.4.5. These are indis-
pensable for the comprehension of the correct behaviour of TerminateLanes in Parallel.

IMPORTANT — On receiving a premature completion signal, all lanes shall complete immediately after
completion of the last atomic node or finally block (if any). Atomic nodes are Action nodes with an
atomic ActionRealisation as well as the end nodes Return, Break, Continue, TerminatelLanes
and Throw. There is no completion timeout defined for atomic nodes, a lane has to wait no matter how

long the node takes to complete. This avoids producing undefined states.

Associated checker rules:

— Core_(

7.13.5.6.4

An examplg

7.14 Actid

7.14.1 Ove

Lhk022 — correct nesting of TerminateLanes node

Example

ns

rview

is provided in the Paral lel specification, see 7.13.4.5.

The following describes all ActionReal isation extensions defined in the OTX Core. Those are designed

for setting the behaviour of Action nodes, as specified in 7.13.3.

7.14.2 Synfax

The syntax of all ActionReal isation types is shown inthe overview of Figure 48.

90

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

+ newByteField: ByteFieldTemn
+ index: NumericTerm

+, otherByteField: ByteFieldTem
[1.7]

Node «XSDcomplexType» «XSDcomplexT ype»
«XSDcomplexType» 1 Asslignment InArgument
Actlon
«XSDelement» . «XSDattribute»
+ rewult: Variable inAlg | + param: OtxName
realisation | * + term: Tem 1| «XSDelement»
Extensioninterface + tem: Tem
«XSDcomplexType» S
ActionRealisation «XSDcomplexT ype»
7 «X?,Doon;plex":rylg;e»)) InOutArgument
«XSDattribute» rocedureta arguments) xspcompl... inoutArg :
+ validFor: OtxLink[0..1] — m Arguments 1| «XSDattribute»
«XSDattribute» 0.1 + param: ObxName
A + procedure: OtxLink <>
+ throwExceptionOnAmbiguousCall: xsd:boolean [0..1] «XSDelement»
+ varable: Variable
A
hd «XSDdomplexType»
1 OufArgument
SXSDattribute»
+ , param:| OtxName
«XSDelement»
+ variablg: Variable
«XSDoomplexType» «XSDcomplexType» «XSDcomplexType»
ShiftRight ShiftLeft Se|BIt
«XSDcomplexType» «XSDe.Ic.ament») «XSDe.Ie.ment» : «XE‘?DeIement»
ByteFleldModifler + postions: NumericTemm + positions: NumercTem + index: NumerlcTerm
— <“ + position: NumericTerm
+ value: BoolegnTerm
:Xszi:ir:r:-hB oFileldVariable «XSDcomplexType» «XSDcomplexType» b
yteField: Byt ReplaceSubBytsField AppendByteFisld
«XSDelement» «X§Delement»

«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ListConcatenate ListAppenditems ListClear
«XSDcomplexType» «XSDelement» «XSDelement»
ListModifier + otherList: ListFerm [1.."] + item: Temn [1..%]
1
<~
:Xslize'lT.T:\?::iable «XSDcomplexType» «XSDcomplexType»
= Listinsertitems ListRemoveltems
«XSDelement» «XSDelement»
+ index: NumericTerm + index: NumericTerm
+ item: Tem [1..*] + count: NumericTerm
«XSDcomplexType» «XSDcomplexType»
MapUnion MapClear
XSDelement»
«XSDcomplexType» « - 5
MapModifier: + otherMap: MapTerm [1..}]
<1
~J
:X?:I?rﬁ:t)\’/ariable «XSDcomplexType» «XSDcomplexType»
p: P MapPutitems MapRemov eltems

«XSDelement»
+ kay: Term [1..7]

«XSDelement»
+ item: Mapltem [1..*]

Figure 48 — OTX Core ActionReal isation extensions overview

7.14.3 General considerations

There are several basic considerations concerning all of the action realisation types:

IMPORTANT — The evaluation order of arguments of the actions is not always specified. Therefore, if
exceptions occur in more than one argument, the behaviour may differ for different OTX runtime
systems.

IMPORTANT — Actions modify the value of one or several variables. In order to guarantee that

variable values are always in a defined state, all arguments of an action and all preconditions shall be
checked before modifying a variable value.

© 1SO 2012 — All rights reserved 91

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.14.4 AssSi

-2:2012(E)

gnment

7.14.4.1 Description

The Assignment action assigns a value to a variable.

7.14.4.2 Syntax

The syntax of the ProcedureCal l action type is shown in Figure 48.

7.14.4.3

Assignment is an ActionReal isation. See 7.13.3 for details on the Action node type.

The properties of Assignment have the following semantics:

Descri
Varia

<term

Descrilpes the value which shall be evaluated out of the given term_at'funtime. The evaluation semar

of all O

Associated
Core_(

7.14.5 Pro

71451 0
This action
declared by
shall be pa
instead, the)

Procedure
document ¢
the visibility
Procedures

g

pu

7.14.5.2

femantics

<result> : Variable [1]

es the variable to which the resulting value of term evaluation shall be assigned (cf. 7.16.6 for
Dl e type).

> - Term [1]

[TX Core terms are described in 7.15.

checker rules:

hk023 — type-safe assignments

cedureCall

escription

calls another OTX procedurés{directly or indirectly via a signature). If there are input parame
the callee, the ProcedureCall action allows describing a list of corresponding arguments w
5sed to the callee at runtime. OTX procedures do not have one single dedicated return valy
y can define a set of-qutput parameters which can (but do not have to) be used by the caller.

alls can happen-in<document or cross-document; the latter means that a procedure defined in
an call anothefr-Signature or procedure defined in another, separate document. In the latter c
informatien(of the called signature or procedure has to be taken into account (cf. 7.7 and]
or signatures which are not visible to the caller shall not be callable.

yatax

the

tics

ters
nich
e —

one
nse,
7.9).

The syntax

of the ProcedureCall action type is shown in Figure 48.

7.14.5.3 Semantics

ProcedureCall is an ActionReal isation. See 7.13.3 for details on the Action node type.

IMPORTANT — ProcedureCall represents an exemption concerning the atomicity of Action nodes.
It is not atomic. If a ProcedureCall is executed in a Parallel lane and a TerminateLanes node is
executed in another lane, procedure execution shall be completed prematurely. The same rules as for

prematurel

92

y completed lanes apply, see 7.13.4.5 for details.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Since ProcedureCall is closely linked to the specification of the Procedure and Signature types and
their parameter declarations, compare the following to 7.9 and 7.11.

The properties of ProcedureCall have the following semantics:

— procedure : OtxLink [1]

Contains the fully qualified name of the called procedure or signature. For cross-document calls, a prefix
is needed which indicates the external document. The prefix shall be defined by a corresponding
<import> element in the <imports> section of the OTX document (see 7.4). For in-document calls, no
prefix is needed. See 7.16.3 for details of the OtxLink type.

IMPORTANT — The target of a ProcedureCall shall be visible to the caller. The infotmation given
by the visibility attribute of the called signature or procedure shall to be taken'iato account.

IMPORTANT — If the target of a ProcedureCall is a procedure, Or signatufe without
<realisation>, the call shall be a NOP. The same applies for the call ofrfa‘procedure which is not
valid with respect to the context. Given arguments of the ProcedureCall action|shall stay
unchanged.

Associated checker rules:

— Core_Chk053 — no dangling OtxLink associations

— Core_Chk028 — No Operation (NOP) ProcedureCall

— Core_Chk024 — correct target for ProcedureCall

— Core_Chk025 - procedure signature has at least‘one implementing procedure
— Core_Chk017 — checked exceptions (1)

— Core_Chk018 — checked exceptions (2)

— |throwExceptionOnAmbiguousCal¥~: xsd:boolean={false|true} [0..1]

For indirect calls (i.e. the call tatget is a signature), this attribute determines the behaviour when call
ambiguity occurs: If twe ".or more of the implementing procedures are |valid, an
AmbiguousCal IException:shall be thrown when throwExceptionOnAmbiguousCall="true"
(the default). Otherwise, the-first valid procedure in alphabetic order shall be executed (cf. Figure 49 and
the following).

— |<arguments> -Arguments [0..1]

This simple container element represents the list of arguments for a procedure call. The content-type of
Arguments»is <xsd:choice> [1..*] which allows an arbitrary-length list of <inArg>, <fjnoutArg>
and <outArg> elements.

Associated checker rules:

— Core_Chk029 — correct ProcedureCall arguments

Semantics of the argument types:

— <inArg> : InArgument

Describes an input argument. In the callee, input arguments shall be treated like constants — they
can not be written (like for constants, a static checker rule interdicts this). An input argument may be
omitted if and only if there's an explicit initial value defined for the corresponding parameter. This
initial value applies in place of the missing argument. The parameter for the argument is identified by
name; the value that shall be passed into that parameter is described by a term:

© 1SO 2012 — All rights reserved 93

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

94

— param - OtxName [1]
The name of the parameter which receives the argument value.
— <term> : Term [1]

The term describing the argument value.

NOTE 1 In graphical presentation of the procedure call, the initial value of an in-argument should be shown in
an accentuated way to the author. Like this, the author gets feedback about the omitted argument (maybe he did

not omit it on purpose).

» i Il L)) .
<InoutArg>———ThoutArgument

Dgscribes an input/output argument. Any changes made to the corresponding parametersin
callee shall be visible in the associated argument variable of the caller. An input/output) argun
may be omitted if and only if there's an explicit initial value defined for the corresponding, paramsg
In the called procedure, this initial value applies for the parameter in place of the missing argun
value.

The callee parameter for the callers argument is identified by name, the, callers argument
vafiable:

—| param - OtxName [1]
The name of the callee parameter which receives the argument.alue.
—| <variable> : Variable [1] (cf. 7.16.6)

Represents the variable which shall be used for the input/output parameter.

IMPORTANT — In parallel execution (Parallelthode), any changes made to an input/ou
argument or parameter will be visible in the caller and the callee at the same time: If the ca
chianges the value of the parameter, the néw value will be available on the outside, in
pdrallel lanes using the argument variable. Vice versa, if the argument variable valu
chianged in one of the parallel lanes; the change will be visible in the correspong
parameter of the callee.

NQTE 2 In graphical presentation«ofithe procedure call, the initial value of an inout -argument should be sH
in an accentuated way to the author." Like this, the author gets feedback about the omitted argument (mayb
did not omit it on purpose).

<outArg> : OutArgument

Dgscribes where thereturned value of an output parameter shall be assigned to. The caller may
oufput arguments-freely (e.g. in the case when there is no interest in one of the returned data).

The calleefparameter for the callers argument is identified by name, the callers argument
vafiable;

—1| param : OtxName [1]

the
hent
bter.
hent

S a

put
llee
the
S
ing

own
e he

bmit

S a

The name of the parameter whose returned value is of interest.
— <variable> : Variable [1] (cf. 7.16.6)

Describes the variable to which the returned parameter value shall be written.

IMPORTANT — The writing-back of the returned parameter value into the argument variable

shall not happen until termination of the called procedure.

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

Associated checker rules:

Core_Chk030 — input- and in&output-argument omission

Throws:

Inval idReferenceException
if one of the inout-arguments is invalid (e.g. an uninitialized variable)

AmbiguousCal IException

2:2012(E)

in case of indirect call via signature and throwExceptionOnAmbiguousCal l=""true"": if two or more

The)
diffd

The|

NOT
This

irplementing-procedures-are-valid-at-the-same-time{(cal-target-cannot-be-determined-unambi
OTX procedure call is closely linked to the signature concept (see 6.9). Therefore, the funtim
r depending if a procedure was directly called or if there's an indirection via a signature’(cf. Fig
two major cases to be considered are the following:

In the direct case, the called procedure will be executed after input argument evaluation and ¢
is valid with respect to the context. If the procedure is not valid, nothing is executed (NOP).

uously)

P semantics
Lire 49).

assing, if it

In the indirect case (the call target is a signature) a procedure’implementing the signature needs to be

identified. Since this is a dynamic process (the linking is don€ at runtime, not at authoring tim
runtime system is required to have a signature-to-procedure-mapping: For a given signaturg
mapping shall contain a list of all procedures implementing that signature. When a signature i
runtime system shall infer the procedure from the mapping. The runtime system shall or
procedures which are visible to the document defining the signature (see visibility

signatures and procedures, 7.7 and 7.9) and which-are valid with respect to the context (s
concept, 6.8). If there is more than one applicable procedure available for the signature and

throwExceptionOnAmbiguousCall is €rue an exception shall be thrown. Otherwis
applicable procedure (in ascending alphabetic order) shall be executed. The ordering shall bg
package-, document- and proceduré-name. If there is no implementing procedure, noth
executed; nonetheless, inout- andNout-arguments shall be set to init-values of the co
parameters, if init-values are provided in the signature. Otherwise, inout- and out-argu
unchanged.

E3 Itis recommended that"‘OTX runtime applications should log cases when ambiguous procedurg
supports later debugging:

e), an OTX
name, the
5 called, the
ly identify
attribute for
ee validities
he attribute
b the first
b done after
ing will be
responding
ments stay

b calls occur.

© I1SO 2012 — All rights reserved

95

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

enter
ProcedureCall
called entity isa
signature ora signature identify visible and valid
procedure? implementation procedure
for signature
procedure
applicable
d implementing
procecure no (NOP) procedure no
isvalid?
found?

yes\b yes\b

execute implementing
procedure

apply signature initial
parameter values to inout and
out arguments

Execute procedure

leave
ProcedureCall

Figure 49 — ProcedureCall Activity

7.14.5.4 Hxample
Examples 1 and 2 below show two ProcedureCall action-hodes:

— A call fo a procedure computeDelta which iscdescribed in the same document. Note the matching
parameter names in the call and in the procedure definition. Two input arguments, a literal integer 5 and a
integer| variable x are passed to parameters’ a and b. The output parameter delta is returned |into
variablg x of the caller.

— A call fo a procedure via a signature named modifyValue. The external document containing|the
signature is identified by the prefix sig. The names defined in the document are imported to the Ipcal
document by an <import> (element. Implementation procedures for the signature operate on a sipgle
input/ofitput argument x which is passed to the value parameter (no implementation procedures glven
here).

96 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE 1 Sample of OTX-file "ProcedureCallExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" name="ProcedureCallExample" package="org.iso.otx.examples™
version="1.0" timestamp="2009-10-20T14:40:10" id="20"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>
<imports>

<import prefi

<procedures>
<procedure name="main" visibility="PUBLIC" id="20-pl1">
<specification>Demonstration of variable, constant and parameter declarations</specification>
<realisation>
<declarations>
<variable name="x" id="20-d1" />
</declarations>

J<action id="calll">
<specification>Calls procedure located in same document</specification>
<realisation xsi:type="ProcedureCall™ procedure="computeDelta”>
<arguments>
<inArg param=""a'>
<term xsi:type="IntegerLiteral” value="5" />
</inArg>
<inArg param="b"">
<term xsi:type="IntegerValue” valueOf="x" />
</inArg>
<outArg param="delta'>
<variable xsi:type="IntegerVariable” name="d" />
</outArg>
</arguments>
</realisation>
</action>

1
: <specification>Calls procedure by an external siggature</specification>
i <realisation xsi:type="ProcedureCall"” procedurex‘sig:modifyvalue">

1 <arguments>

' <inoutArg param="value'>

1 <variable xsi:type="IntegerVariable \name="x" />

' </inoutArg>

1 </arguments>

| </realisation>

\ </action> ,

</realisation>
</procedure>
<procedure name="computeDelta” 1d="20=p2"">
<specification>Computes the difference between two values</specification>
<realisation>
<parameters>
<inParam name="a" id=20-d2" />
<inParam name="b"_id="20-d3" />
<outParam name="delta" 1d="20-d4" />
</parameters>
<flow />
</realisation>
</procedure>
</procedures>
/otx>

EXAMPLE 2 Sample of OTX-file "SignatureExample.otx"

?xhNyversion="1.0" encoding="UTF-8"?>
oexX)xmIns="http://iso.org/0TX/1.0.0" name="SignatureExample" package="org.iso.otx.examples"
verstom—-+=6 L;IIICDLG\III}J* OUJ- LU ZUT I - 50 - IO o= T

xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<signatures>
<signature name="modifyValue” id="21-s1">
<specification>Adds a number to parameter value</specification>
<realisation xsi:type="ProcedureSignature'>
<parameters>
<inoutParam name="value" 1d="21-d1">
<realisation>
<dataType xsi:type="Integer" />
</realisation>
</inoutParam>
</parameters>
</realisation>
</signature>
</signatures>
</otx>

© 1SO 2012 — All rights reserved 97

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.14.6 ByteFieldModifiers

7.14.6.1 Overview

ByteFieldModifier actions are designed for modifying bytefields. They shall only operate on ByteField

variables.

7.14.6.2 ShiftRight

7.146.2.1

Descrintiaon
HeSeHPHEH

Shifts a By

7.14.6.2.2

The syntax

7.14.6.2.3

ShiftRigh
Action no

reField right. Bits at the most significant positions will be stuffed by zero.

Syntax

of the ShifRight action type is shown in Figure 48.

Semantics

t is a ByteFieldModifier which is an ActionRealisation.See 7.13.3 for details on
e type.

The properties of ShifFtRight have the following semantics:

<byte
Identifi

<posi

Numbs

Throws:

OutOf
If the n

IMPORTAN

q

.

7.14.6.3

7.14.6.3.1

—ield> : ByteFieldvariable [1] (derived frot ByteFieldModifier)
bs a ByteField variable which shall be shifted right.

Lions> : NumericTerm [1]

r of positions to shift. Float values shall-be truncated.

BoundsException
Limer of positions to shift iS ahegative number.

T — The ShiftRightoperation shall have no effect on an empty ByteField.

hiftLeft

Description

Shifts a By

eEdeld left. Bits at the least significant positions will be stuffed by zero.

7.14.6.3.2

The syntax

7.14.6.3.3

Syntax

of the ShifLeft action type is shown in Figure 48.

Semantics

the

ShiftLeft is a ByteFieldModifier which is an ActionRealisation. See 7.13.3 for details on the
Action node type.

98

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

The

ISO 13209-2:2012(E)

properties of ShiftLeft have the following semantics:

<byteField> : ByteFieldVariable [1] (derived from ByteFieldModifier)
Identifies a ByteField variable which shall be shifted left.

<positions> : NumericTerm [1]

Number of positions to shift. Float values shall be truncated.

Throws:

IMP

7.14

7.14

Sety

7.14

The

7.14

Set
nod

The

OutOfBoundsException
If the numer of positions to shift is a negative number.

ORTANT — The ShiftLeft operation shall have no effect on an empty ByteField.

.6.4 SetBit

.6.4.1 Description

a bitin a ByteField.

.6.4.2 Syntax
syntax of the SetBit action type is shown in Figure 48.
.6.4.3 Semantics

Bitis a ByteFieldModifier which is an ActionRealisation. See 7.13.3 for details on
b type.

properties of SetBit have the following semantics:

<byteField> : ByteFiekdVariable [1] (derived from ByteFieldModifier)

Identifies a ByteField variable in which the bit shall be set.

<index> : Numer#cTerm [1]
A term identifying the byte of the ByteField in which in the bit shall be set. Float valu
truncated.

<position> : NumericTerm [1]

Acterm representing the bit position in the byte chosen by <index>. Float values shall be tru

he Action

es shall be

ncated.

<value> : BooleanTerm [1]

If the Boolean term given by <value> returns true the bit shall be set to 1, otherwise to 0.

Throws:

OutOfBoundsException
If the index is not within the range [0,n-1], where n is the size of the ByteField.

OutOfBoundsException
If the bit position not within the range [0, 7] of allowed bit positions.

© I1SO 2012 — All rights reserved

99

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.14.6.5 ReplaceSubByteField

7.14.6.5.1 Description

Replaces parts of a ByteField at a given position by overwriting it with another ByteField.
7.14.6.5.2 Syntax

The syntax of the ReplaceSubByteField action type is shown in Figure 48.

7.14.6.5.3 Semantics

ReplaceSybByteField is a ByteFieldModifier which is an ActionRealisation. See 7.13.3 for
details on the Action node type.

The properties of ReplaceSubByteField have the following semantics:

— <byteField> : ByteFieldvVariable [1] (derived from ByteFieldModifié€r)

Identifigs a ByteField variable in which part shall be replaced.

— <newByteField> : ByteFieldTerm [1]

Repregents the new ByteField which shall overwrite the original ByteField starting at <index>.

— <indek> : NumericTerm [1]

A numeric term representing the byte index in the original ByteField where the replacement shall start.
Float|values shall be truncated.

IMPORTANT — If the replacement exceeds the byte size of the original ByteField (size of origfinal
ByteField < index+size of new ByteField), then the original bytefield will be extended to |the
minimum gize necessary to hold the excess bytes:

Throws:

— OutOfBoundsException
If the ijdex is not within the range [0,n-1], where n is the size of the ByteField.

7.14.6.6 AppendByteField

7.14.6.6.1 [Description

Appends ByteFieldwalues to the end of another ByteField.

7.14.6.6.2 |Syntax

The syntax of the AppendByteField action type is shown in Figure 48.
7.14.6.6.3 Semantics

AppendByteField is a ByteFieldModifier which is an ActionRealisation. See 7.13.3 for details on
the Action node type.

The properties of AppendByteField have the following semantics:

— <byteField> : ByteFieldVariable [1] (derived from ByteFieldModifier)
Identifies a ByteField variable to which the other ByteField values shall be appended.

100 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

<otherByteField> : ByteFieldTerm [1..*]

Represents the ByteField values which shall be appended.

7.14.7 ListModifiers

7.14.7.1 Overview

ListModifier actions are designed for modifying lists. They shall only operate on List variables.

7.14

7.14

This

of the items of the other lists in the end. The lists shall be concatenated one after the other (in

app

7.14

The

7.14

Lis
Act]

The

AsS

.7.2 ListConcatenate

.7.2.1 Description
action concatenates lists. The modified list shall contain all original items in the front, plus sha

parance in the OTX document). The items shall be ordered like they were 0rdered in the origine

.7.2.2 Syntax

syntax of the ListConcatenate action type is shown in Figlre 48.

.7.2.3 Semantics

tConcatenate is a ListModifier which is an<ActionRealisation. See 7.13.3 for d¢g
ion node type.

properties of ListConcatenate have the-following semantics:

<list> : ListVariable [1] (defived from ListModifier)

Identifies a List to which shallew copies of the items of the other lists shall be appended.

<otherList> : ListFerm [1..*]

Shallow copies of the(items in the lists given by <otherList> elements shall be appended t
<list>. The lists.'shall be concatenated one after the other (in the order of appearance
document).

bciated checker rules:

Core_€hk031- type-safe ListConcatenate

llow copies
he order of
l lists.

tails on the

b the end of
in the OTX

7.14

o Ao [T\ Ll
BT I_IDI.I"\'JIJCIIUILCIIIQ

7.14.7.3.1 Description

App

ends one or more items to the end of a list.

7.14.7.3.2 Syntax

The

syntax of the ListAppendltems action type is shown in Figure 48.

© I1SO 2012 — All rights reserved

101

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.14.7.3.3

-2:2012(E)

Semantics

ListAppendltems is a ListModifier which is an ActionRealisation. See 7.13.3 for details on the
Action node type.

The properties of ListAppendltems have the following semantics:

Identifies

<list>

ListVariable [1] (derived from ListModifier)

List variable to which the items shall be appended.

<item

Each <
terms
in the @

Associated
Core_(

7.147.4 L

7.14.7.4.1
Inserts one
7.14.7.4.2

The syntax

7.14.7.4.3

ListlInsel
Action no

The properiies of ListInsertltems have the following semantics:

<list

Identifi

<inde

>

vhich shall be evaluated first before the resulting value will be appended. Items shall-be lappen

Term [1..*]

item> element given here shall be appended to the end of the <list>. Items are represente

rder of appearance in the OTX document.

checker rules:

hk032 — type-safe ListAppenditems

istinsertltems

Description

ore more items into a list at a defined position.

Syntax

of the Listlnstertltems action type is shown in Figure 48.

Semantics

tltems is a ListModifier,which is an ActionRealisation. See 7.13.3 for details on
e type.

>

Listvariable [1] (derived from ListModifier)

ps a List variable into which the items shall be inserted.

x> - NumericTerm [1]

Descri
index

e
tl)/alue 0. The items shall be inserted in front of the item that was originally located at the g

s’the position in the list where the items shall be inserted. The first item in a list shall have

H as
ded

the

the
ven

index. Float values shall be truncated.

<item> : Term [1..%*]

Each <item> element given here shall be inserted to the <list>. ltems are represented as terms which
shall be evaluated first before the resulting value will be inserted. Items shall be inserted in the order of

appear

Associated

102

ance in the OTX document.

checker rules:

Core_Chk033 — type-safe Listinsertltems

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Throws:

— OutOfBoundsException

If the index is not in the list (index<0 or index>length-1 of list).
7.14.7.5 ListRemoveltems
7.14.7.5.1 Description

Removes one or more items from a list at a defined position.

7.14.7.5.2 Syntax

The|syntax of the ListRemove ltems action type is shown in Figure 48.

7.14.7.5.3 Semantics

LigtRemoveltems is a ListModifier which is an ActionRealisation, See 7.13.3 for details on the
Actlion node type. The properties of ListRemoveltems have the followifig)semantics:

— |<list> : ListVariable [1] (derived from ListModiFfigr)

Identifies a List variable from which items shall be removed:

— |<index> : NumericTerm [1]

Describes the position where item removal starts.{The first item in a list shall have the index value 0.
Float values shall be truncated.

— |<count> : NumericTerm [1]

Describes the amount of items that shall be removed starting from the index. Float values shall be
truncated.

Throws:

— |OutOfBoundsExceptipn

If the index is not in the.list (index<0 or index>length-1 of list).
7.14.7.6 ListClear

7.14.7.6.1 Description

Removes\all items from a List.

7.14°76.2 Syntax
The syntax of the ListClear action type is shown in Figure 48.
7.14.7.6.3 Semantics

ListClear is a ListModifier which is an ActionRealisation. See 7.13.3 for details on the Action
node type. The properties of ListClear have the following semantics:

— <list> : ListVariable [1] (derived from ListModifier)

Identifies the List which shall be cleared.

© 1SO 2012 — All rights reserved 103

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.14.8 MapModifiers

7.14.8.1 Overview

MapModi fier actions are designed for modifying maps. They shall only operate on Map variables.

7.14.8.2 MapUnion

7.14.8.2.1

Description

Unites (mellges) maps. The modified map shall contain all original items, plus shallow copies of the jtem

the other m
7.14.8.2.2

The syntax

7.14.8.2.3

MapUnion
type.

ApS.
Syntax

of the MapUnion action type is shown in Figure 48.

Semantics

s a MapModifier which is an ActionReal isation. See 7.13:3for details on the Action n

The properties of MapUnion have the following semantics:

<map>

Identifi

<othe

: MapVariable [1] (derived from MapModifier)

bs a Map to which the other maps shall be merged:

r'Map> MapTerm [1..*]

Descrilpes the maps which shall be merged tothe <map>. To do so, all items of the maps given by

<othe

IMPORTAN
value is ov

Associated

Core_(

7.14.8.3

7.14.83.1

'Map> elements shall be shallow ¢opied to <map>.

T — If the modified map already contains the key of a put item, then the correspong
erwritten.

checker rules:

Lhk042 — type-safe-MapUnion

NMapPutltems

Description

s of

ode

the

ing

Puts one ore more map items into a map.

7.14.8.3.2

The syntax

7.14.8.3.3

Syntax

of the MapPutl tems action type is shown in Figure 48.

Semantics

MapPutltems is a MapModifier which is an ActionRealisation. See 7.13.3 for details on the Action

node type.

104

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

The properties of MapPutltems have the following semantics:

— <map> : MapVariable [1] (derived from MapModifier)

Identifies a Map variable that shall receive the new items.

— <item> : Mapltem [1..*]

Each <item> element given here shall be put into the <map>. The map items are represented as
key/value pairs:

— key>——SimpleTerm{ij

Describes the map item key by which the to-be-put item can be addressed later.

— <value> : Term [1]

Describes the map item value.

IMPORTANT — If the key of a put item already exists in the map, the new_item value shall overwrite the
original item value. This behaviour is similar to the Assignment action- (M1["'key'] :="valte").

Asspciated checker rules:

— |Core_Chk038 — type-safe MapPutltems

7.14.8.4 MapRemoveltems

7.14.8.4.1 Description

Removes a set of items from a map.

7.14.8.4.2 Syntax

The|syntax of the MapRemove I tems action type is shown in Figure 48.

7.14.8.4.3 Semantics

MapRemoveltems is aCMapModifier which is an ActionRealisation. See 7.13.3 for defails on the
Actjion node type.

The|properties of MapRemove I tems have the following semantics:

— |<map><> MapVariable [1] (derived from MapModifier)

Identifies a Map variable from which items shall be removed.

— <key> : Term [1..%*]

Each <key> element describes a key of a map item that shall be removed.
Associated checker rules:

— Core_Chk039 - type-safe MapRemoveltems

Throws:

— OutOfBoundsException
If a key does not exist in the map.

© 1SO 2012 — All rights reserved 105

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.14.8.5 MapClear

7.148.5.1

Description

Removes all items from a Map.

7.14.8.5.2

The syntax

Syntax

of the MapClear action type is shown in Figure 48.

7.14.85.3

MapClear
type. The p
— <map>

Identifi

7.15 Ternj

7.15.1 Ove

OTX terms
value of a t
data (e.g. a
when a vall
a procedurg

Semantics

s a MapModifier which is an ActionRealisation. See 7.13.3 for details on the Action rlode
operties of MapClear have the following semantics:
: MapVariable [1] (derived from MapModifier)

bs the Map which shall be cleared.

S

rview

represent syntactic expressions which can be evaluatedyin order to yield a value. The resulting
brm can be a simple value (e.g. an integer in the OTX I'nteger case) or a reference to complex
reference to a list in the OTX List case). Terms are'required in various places in the data mqdel,
e needs to be computed which is then e.g. assighed to a variable, used as an input parametey for
call, or used as the condition truth value in a;granch, etc.

«XSDcomplexTyp...
BooleanTerm

«XSDcomplexTyp...
StringTerm

| «XSDcomplexTyp...
SimpleTerm <]

«XSDcomplexTyp...

FloatTerm
| | «XSDcomplexTyp...
NumericTerm
«XSDcomplexTyp...
Extensioninterface, IntegerTerm
«XSDcomplexType»
Ie
srm <_ «XSDcomplexTyp|...

«XSDelemen
+ metaData

» ByteFleldTerm

MetaData [0..1]

«XSDcomplexTyp|...

106

ListTerm

«XSDcomplexTyp...
CollectionTerm <}

«XSDcomplexTyp...
MapTerm

«XSDcomplexTyp...
ExceptionTerm

Figure 50 — Data model view: Term hierarchy

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

2:2012(E)

As shown in Figure 50, every OTX term is categorized according to its return type. The OTX syntax prescribes
a term hierarchy; the leaf term categories (term to the right side of the hierarchy figure) correspond directly to

the OTX data types, e.g. every StringTerm will return a String value.

The higher level term categories bundle other term categories — e.g. all terms returning an Integer

(IntegerTerm) and terms returning a Float (FloatTerm) are in the category NumericTerm.

The higher

level categories are used in places where more then one data type is allowed, e.g. in a for-each-loop, the

collection over which the loop iterates may be a List or a Map, so the CollectionTerm is
bundles both MapTerm and ListTerm.

terms returning references.

NOTE In OTX applications, simple OTX data types may also be implemented as boxed types.if necesy
sequyence authors, this should be transparent.

Thefe are also concrete terms derived directly from a higher level category; this_is required for t
the returned data type is determined according to the term argument data types, e/g. the Add tern
NunericTerm because it returns an Integer value if all summand arguments are Integer, but
Float value if all summand arguments are Float, etc.

All ¢ategory term types shown in the figure are abstract types. The following clauses specify all t
ternps which are derived from the abstract terms, like the NumericTerm Add, the Bytel

ShifftLeft, etc.

IMP
be ¢

ORTANT — OTX terms never have side-effects — thissmeans that the arguments of a ter
hanged by term evaluation.

IMP
der

ORTANT — The abstract OTX Core terms @fe extensible. This means that OTX exten
ve new terms from any of the abstract term categories defined in the OTX Core (see Ann

to the way terms are modelled in OTXlthey are appearing in parsed form in OTX documents.
OTX terms do not have to be parsed anymore for computing the expression tree. As a co

does not have to define any operator precedence rules to disambiguate terms (this is only
uages with expression strings in combination with infix-notation).

Dus
that
oT

lang

e all terms are derived (froam the Term type, they may optionally contain a <metaData> ¢
Cified in 7.16.5).

Sing
spe

7.13.2 Literal termars

7.13.2.1 Desgription

The
sou

simplest types of terms are the literal terms. They are a notation for representing a fixed
ce.code of an OTX document.

used which

2_values from

ary. To OTX

erms where
N which is a
it returns a

he concrete
FieldTerm

m shall not

sions may
ex D).

This means
nsequence,
needed in

tlement (as

alue in the

All OTX Core data types (without the Exception type) provide a literal notation term. In the case of

simple data

types, a literal term returns the fixed value for simple data types at runtime. For complex data types, a

reference to the List or Map object constructed out of the literal is returned.

7.15.2.2 Syntax

Figure 51 shows the syntax of the literal term types.

© I1SO 2012 — All rights reserved

107

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

+ value: xsd:boolean

+ value: xsd:long

+ value: xsd:double

BooleanTerm IntegerTerm FloatTenm StringTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
BooleanLiteral IntegerLliteral FloatLiteral StringLiteral
«XSDattribute» «XSDattribute» «XSDattribute» «XSDattribute»

+ value: xsd:string

ByteFieldTerm| ListTerm MapTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ByteFieldLiteral ListLiteral MapLliteral
«X8Dattribute» «XSDelement» «XSDelement»

+ value: xsd:hexBinary + itemType: DataType

+ items: Listitems[0..1]

+ keyType: CountableType
+ valueType: DataType

7.15.2.3 S
7.15.2.3.1
BooleanL
Its propertig

value

This at
for xsd

7.15.2.3.2
IntegerL

Its propertig

ExceptionTerm| + items Mapltems[0..1]
«XSDcomplexT ype» <XSDcomplexType»
UserExceptionLiteral «XSDcomplexType» «XSDcomplexType» Mapitem
Listitems Mapltems
«XSDelement» «XSDel 1ty
+ qualifier: StringLiteral «XSDelement» «XSDelement» + key: SimpleTemm
+ text: StringlLiteral + item: Tem [1..%] + item: Mapltem [1..4] + value: Temrm

Figure 51 — Data model view: Literal terms

emantics

Boolean Literal

teral is a BooleanTerm. It returns the Boolean value of the literal.
s have the following semantics:

: xsd:boolean [1]

ribute contains a fixed Boolean value. Refer to JW3C XSD:2004] for an overview of allowed va
:boolean.

IntegerLiteral
teral is a IntegerTerm. It returns the Integer value of the literal.

s have the following semantics:

— value| - xsd:long [1]
This atfribute containsa)fixed integer value. Refer to [W3C XSD:2004] for an overview of allowed va
for xsq: long.

7.15.2.3.3 |Floatkiteral

FlO&tLit I a: ;b [} F:UatTCI LLLY :t aha“ Ictulll t:lc F:Uat VCI.:UC Uf thc :ltcna:

Its properties have the following semantics:

value

- Xsd:double [1]

ues

ues

This attribute contains a fixed Boolean value. Refer to [W3C XSD:2004] for an overview of allowed values
for xsd:double.

7.15.2.3.4

StringLiteral

StringLiteral is a StringTerm. It shall return the String value of the literal.

108

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Its properties have the following semantics:

7.15

value : xsd:string [1]

This attribute shall contain the fixed string value. Refer to [W3C XSD:2004] for an overview of allowed

values for xsd:string.

.2.3.5 ByteFieldLiteral

ByteFieldLiteral is a ByteFieldTerm. It shall return the ByteField value of the literal.

Its

LigtLiteral is a ListTerm. It shall return a new List created odt of the literal list items.

By Uising the ListLiteral term, a list of <item> elements.can be described which shall repreg

notg

integers etc. All literal items in a list shall be of the same datatype.

The

roperties have the following semantics:

value : xsd:hexBinary [1]

This attribute shall contain a fixed hexadecimal value or an empty ByteField. Refer to [W3(Q
for an overview of allowed values for xsd:-hexBinary.

.2.3.6 ListLiteral

tion of each list item. It is possible to describe nested.itém literal structures like e.g. a ma

ListLiteral properties have the following semantics:

<itemType> : DataType [1]

XSD:2004]

ent a literal
p of lists of

Specifies the data type of all items in‘the list, in a flat or recursive way (list of strings, list of floats, list of

lists of integers ...). For this definition,the DataType complex type itself is reused recursively,
the <items> element have to be of'the type stated here.
Associated checker rules:

— Core_Chk034 — ne,use of init in list item type definition

<items> : Listltems [0..1]
Wrapper element for the literal List items. If <items> is omitted, this shall represent the emg
— <itéem> : Term [1..%*]

Each <item> shall represent an item in the list literal. The item literals need to be of the ¢
type stated in the <itemType> element (see above).

All items in

ty list.

xact (deep)

Associated checker rules:
— Core_Chk036 — ListLiteral and ListCreate item types follow item type definition

— Core_Chk037 — ListLiteral items are literal terms

7.15.2.3.7 MaplLiteral

Map

Literal is aMapTerm. It shall return a new Map created out of the given literal Map items.

© I1SO 2012 — All rights reserved

109

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

A MapLiteral term contains a list of <item> elements which shall represent a literal notation of each
key/value pair of the map. It is possible to describe nested item literal structures like e.g. a map of lists of
integers etc.

The MapLiteral properties have the following semantics:

— <keyType> : CountableType [1]

Defines the data type for the keys of all key/value pairs in the map. The key type must be a simple,
countable type. All keys in the <items> element have to be of the type stated here.

Associated checker rules:

Core_C¢hk044 — no use of init in map key type definition

— <valugeType> : DataType [1]
Defineg the data type for all values of the key/value pairs in the map, flat or recursive-(map of stripgs,
map offlist of floats, map of maps of integers ...). For this definition, the DataType ‘complex type itself is
reused|recursively. All values in the <items> element have to be of the type stated here.
Associated checker rules:

— Cdre_Chk045 — no use of init in map value type definition

— <itemp> - Mapltems [O..1]
Wrapper element for the literal Map items. If <items> is omitted, this shall represent the empty map.
— <iftem> : Mapltem [1..%*]

Rgpresents key/value pair items in the map literalg
—| <key> : SimpleTerm [1]
The key literal of the map item literal:

—| <value> : Term [1]

The value literal of the mapitem literal.

Associated checker rules;
—| Core_Chk047 <MapLiteral and MapCreate key&value types follow key&value type definition
—| Core_Chk048< MapLiteral items are literal terms

—| Core_€hk043 — unique keys in MapLiteral

7.15.2.3.8 |UserExceptionLiteral

UserExceptionLiteral is an ExceptionTerm. The term shall be used for creating a customized
exception (aUserException). The most prominent uses of this term are the initialisation in
UserException declarations as well as the explicit Throw node which allows for the author to customize
and throw such an exception.

The properties of UserExceptionLiteral have the following semantics:

— <qualifier> : StringLiteral [1]

This string literal allows for the author to provide a short qualifier for the exception initialisation. A qualifier
shall be used to categorize an exception.

110 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— <text> : StringTerm [1]

This string literal allows for the author to provide a text which characterises the exception's reason.

7.15.2.4 Example

The two examples below show literal terms for all types. The terms are embedded in an Assignment action
node here — of course, they can appear in other places like loop conditions or procedure call arguments also.

Example 1 shows the simple data type literal terms, Example 2 the complex type literal terms.

EXAMPLE 1 Sample of OTX-file "TermExamples.otx" — simple type literal terms

action id="al">
<realisation xsi:type="Assignment'>
<result xsi:type=""BooleanVariable”™ name="b" />
<term xsi:type=""BooleanLiteral” value="true" />
</realisation>
k/action>

Faction i1d="a2">
<realisation xsi:type="Assignment'>
<result xsi:type="IntegerVariable™ name="i" />
<term xsi:type="IntegerLiteral” value="42" />
</realisation>
k/action>

Faction i1d="a3">
<realisation xsi:type="Assignment'>
<result xsi:type="FloatVariable” name="f" />
<term xsi:type="FloatLiteral” value="42.0815" />
</realisation>
/action>

action id="a4">
<realisation xsi:type="Assignment'>
<result xsi:type="StringVariable” name=%s{ />
<term xsi:type="StringLiteral” value="HelMo World!11" />
</realisation>
/action>

© 1SO 2012 — All rights reserved 111

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-

EXAMPLE 2

2:2012(E)

Sample of OTX-file "TermExamples.otx" — complex type literal terms

<action id="a5">
<realisation xsi:type="Assignment'>

<resu
<term

It xsi:type="ByteFieldVariable”™ name="bf" />
xsi:type="ByteFieldLiteral” value="002A" />

</realisation>

</action>

<action id="a6">
<realisation xsi:type="Assignment'>

<resu

It xsi:type="ListVariable"” name="myListOfInts"” />

<term xsi:type="ListLiteral">
<itemType xsi:type="Integer"/>
<items>
item xsi:type="IntegerLiteral" value="4" />
item xsi:type="IntegerLiteral"” value="2" />
item xsi:type="IntegerLiteral" value="1" />
</|tems>
</teym>
</real{sation>
</action
<action {d="a7'>
<realigation xsi:type="Assignment'>
<resylt xsi:type="MapVariable” name="myMapOfintegers" />
<ternp xsi:type="MapLiteral'>
<k¢yType xsi:type="String"/>
<valueType xsi:type="Integer'/>
<items>
item>
<key xsi:type="StringLiteral” value="stdNumber'/>
<value xsi:type="IntegerLiteral™ value="13209" />
/item>
item>
<key xsi:type="StringLiteral” value="stdDocumentParts'/>
<value xsi:type="IntegerLiteral” value="3" />
/item>
</|tems>
</teym>
</real{sation>
</action
7.15.3 Dergferencing terms
7.15.3.1 Description
Dereferencing terms are used for reading the value of variables or constants or values which are conta
inside of a gomplex structure like a list-or map.
Since the syntax and semantics_of all dereferencing terms are similar for all data types (only the data typq
the returned data differ), a general description applying to all types is provided hereby.
7.15.3.2 3Jyntax
Figure 52 shows the syntax of the dereferencing term types.

ned

s of

112

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

BooleanTenmn

«XSDcomplexType»
BooleanValue

IntegerTerm

«XSDcomplexType»
IntegerValue

FloatTermn

«XSDcomplexType»
FloatValue

StringTerm

«XSDcomplexType»
StringValue

«XSDattribute»
+ valueOf: OtxLink

«XSDelement»
+ path: Path [0..1]

«XSDattribute»
+ valueOf: OtxLink

«XSDelement»
+ path: Path [0..1]

«XSDattribute»
+ valueOf: OtxLink

«XSDelement»
+ path: Path [0..1]

«XSDattribute»
+ valueOf: OtxLink

«XSDelement»
+ path: Path [0..1]

valueOf: OtxLink

XSDelement»
path: Path [0..1]

+

+ A

+ valueOf: OtxLink

«XSDelement»
+ path: Path[0..1]

ByteField Tem| ListTerm MapTerm ExceptionTerm
//Yannmplanypn\\ //Yannm'r_\lany'r_\n\\ ”YQnr-nm:-_\lany'r_\n\\ 11YQnﬂnmp| vape»
ByteFieldValue ListValue MapValue ExceptionYalue
«XSDattribute» «XSDattribute» «XSDattribute» «XSDattiiuite»

+ valueOf: OtxLink

«XSDelement»
+ path: Path [0..1]

+ yvalueOf: OtfLink

«X8Delement»
+ ~path: Path [0..1]

Figure 52 — Data model view: Dereferencing tetms

7.13.3.3 Semantics

Thel| properties of all addressing terms have the following semantics;

— |valueOf : OtxLink [1]

Contains the name of the variable, constant or parameter where the value is stored. If the value of
interest resides deeper within a complex data structure like a List or Map, the <path> elemgnt shall be
utilized to address the data inside of the structure.

— |<path> : Path [0..1]

The element addresses parts of complex structures like List or Map. It is built out of a seri¢s of index-

and name-steps which allow navigate into the structure:
— <stepBylndex> : IntegerTerm [1]

This step of a <path>'shall be used for locations addressed by index. Items in a List and items in a
Map with Integerkeys shall be addressed in this way.

— <stepByName>“: StringTerm [1]
This step,of/a <path> shall be used for addressing locations by name. Items in a Map with String
keys shall be addressed in this way.

Asspciatedchecker rules:

— |CGare_Chk053 — no dangling OtxLink associations

— Core_Chk050 — type-safe variable and constant usage

Throws:

— OutOfBoundsException
Only if a <path> is set: The <path> points to a location which does not exist (like a list index exceeding

list length, or a map key which is not part of the map).

— InvalidReferenceException
For ExceptionValue only: If the variable value is not valid (This can happen since there is no implicit

initialisation for the Exception types).

© 1SO 2012 — All rights reserved 113

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NOTE

In a graphical OTX editor, variable value terms should be displayed in the common notation form used by all

major programming languages. E.g. for a BooleanValue term for a variable b, the display should simply show b; a

term with a <path> pointing to the item at index 1 in a list L of Booleans, L[1] should be displayed, etc.

7.15.3.4 Example
EXAMPLE Sample of OTX-file "TermExamples.otx" — dereferencing terms

<branch id="branchl1”>
<realisation>

<if>
<C

ndition id="branchlcondition’>

p

1 1
' | <path> '
\ <stepBylndex xsi:type="IntegerValue" valueOf="i1" /> !
' | </path> '
1 §/realisation> 1
B £ TATe T i o2 ’
<flow>
action id="al" />
</flow>
</if
</real{sation>
</branch
The example above shows a BooleanValue term which is used in a/Branch node condition. By
valueOT aftribute and the <path> element, the Boolean value at indeX "is read from myListofBoo
list of Boolgans). Note that the <stepBylndex> element in the <path> is a dereferencing term as

(IntegerV

7.15.4 Creation terms

7.15.4.1 [Description
There are cpses when a List, a Map or a UserException have to be created dynamically at runtime. S
literal termg cannot be used for that task (beCause the item literals are fix in the source code, not dynan
OTX providgs a set of creation terms.
7.15.4.2 Syntax
Figure 53 shows the syntax of-the’ creation term types.
MapTerm ExceptionTerm|
«XSDcomplexType» «XSDcomplexType»
MapCreate «XSDcomplexType» «XSDcomplexType» UserExceptionCreate
Mapltems Mapltem

specification>ls myListOfBool[i] true?</specification>

realisation xsi:type="BooleanValue™ valueOf="myListOfBool">

alue).

«XSDelement»

+ keyType: CountableType
+* valueType: DataType

+ items: Mapltems[0..1]

«XSDelement»
+ item: Mapltem [1..]

«XSDelement»
+ key: SimpleTerm
+ value: Tem

«XSDelement»
+ qualifier: StringTemm
+ text: StringTem

the
I (a
well

nce
hic),

«XSDcomplexType»
ListCreate

ListTemn

«XSDelement»
+ itemType: DataType
+ items: Listltems[0..1]

«XSDcomplexType»
Listitoms

«XSDelement»
+ item: Term [1..*]

Figure 53 — Data model view: Creation terms

Note that the types ListCreate and MapCreate are of <xsd:choice> [0..1] content-type. For the
ListCreateTerm, this means that authors can either use the <otherList> element or a list of <item>

114

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

elements, but not both. Also for the MapCreateTerm, either the <otherMap> element or a list of <item>
elements can be used, but not both.

7.15.4.3 Semantics

7.15.4.3.1 ListCreate

ListCreate is a ListTerm that allows for creating a new list which is created by appending a given set of
items to it (shallow copies). The ListCreateTerm returns the newly created list.

LigtCreate is of <xsd:choice> [0..1] content-type. The choices of ListCreate have |t
senlantics:

<itemType> : DataType [1]

lists of integers ...). For this definition, the DataType complex type itself is reused recursively
the <items> element have to be of the type stated here.

Associated checker rules:

— Core_Chk034 — no use of init in list item type definition

<items> : Listltems [0..1]
Wrapper element for the List items. If <items> is omitted, this shall represent the empty list
— <item> : Term [1..%*]

Each <item> shall represent an item in{the newly created list. The items need to be
(deep) type stated in the <itemType> element (see above).

Associated checker rules:

— Core_Chk036 — ListLiteral.and ListCreate item types follow item type definition

7.13.4.3.2 MapCreate

Map

key,

Map

value items to it (shallow copies). The MapCreateTerm returns the newly created list.

semjantics:

<keyFype> : CountableType [1]

ll\e following

Specifies the data type of all items in the list, in a flat or recursive way (list of strings, list of floats, list of

JAll items in

bf the exact

Create is a MapTerm)that allows for creating a new map which is created by putting a given set of

Create is afl.<xsd:choice> [0..1] content-type. The choices of MapCreate have the following

Defines the data type for the keys of all key/value pairs in the map. The key type must be a simple,

countable type. All Keys In the <1tems> element have 10 be of the type stated here.

Associated checker rules:

Core_Chk044 — no use of init in map key type definition

<valueType> : DataType [1]

Defines the data type for all values of the key/value pairs of the newly created map, flat or rec

ursive (map

of strings, map of list of floats, map of maps of integers ...). For this definition, the DataType complex
type itself is reused recursively. All values in the <items> element have to be of the type stated here.

© I1SO 2012 — All rights reserved

115

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Associated checker rules:

Core_Chk045 — no use of init in map value type definition

<items> : Mapltems [0..1]
Wrapper element for the Map items. If <items> is omitted, this shall represent the empty map.

<item> : Mapltem [1..*]

Represents key/value pair items of the newly created map.

1 AL el ST o 11
— T\Cy \JlllllJlClClll LJ.J

The key of the map item.
—| <value> : Term [1]

The value of the map item.

Asssociated checker rules:

Core_Chk047 — MapLiteral and MapCreate key&value types follow key&value type definition

Throws:
— OutOfBoundsException

If two dr more items in the literal have the same key.
7.15.4.3.3 |UserExceptionCreate
UserExceptionCreate is an ExceptionTerm which s used for creating a customized exception
(a UserExgeption). The most prominent use of this term is the explicit Throw node which allows for| the
author to qustomize and throw such an exception/JThe term returns a reference to the newly created
exception.
The properties of UserExceptionCreate have the following semantics:
— <qualffier> : StringTerm [1j]

Allows [for the author to provide .& short string qualifier for the customized exception. A qualifier may be

used td

<text

Allows

7.15.4.4 E

categorize an exception.

> - StringTerm [1]

for the authorto provide a text which characterises the reason for the exception.

xample

The example shows the creation of a List, a Map and a UserException.

The List is created out of to literal integers 10 and 20 and the value of i (known only at runtime). The Map
is created out of two literal key/value items. The UserException is created in a Throw node, with a qualifier
and a text defined by StringLiteral terms.

116 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

EXAMPLE

ISO 13209-2:2012(E)

Sample of OTX-file "TermExamples.otx" — creation terms

<action id="a8'">

<specification>Creates a list out of three items 10, 20,
<realisation xsi:type="Assignment'>

i </specification>

I<term xsi:type="ListCreate'>

, <itemType xsi:type="Integer"™ />

' <items>

: <item xsi:type="IntegerLiteral” value="10" />
1

1

1

]

<item xsi:type="IntegerLiteral” value="20" />
<item xsi:type="IntegerValue” valueOf="i" />
</items>
\</term>

Rt

7.15

7.15

Thig
dep

Sing
des

NOT
exis

/action>

action id="a9">
<specification>Creates a map with items "stdNumber'™:13209 and "stdDocumentParts":3 </specification
<realisation xsi:type="Assignment'>

(Eterm xsi:type="MapCreate'>

1 <keyType xsi:type="String" />

: <valueType xsi:type="Integer"” />

1 <items>

: <item>
1 <key xsi:type="StringLiteral” value="stdNumber"™ />
: <value xsi:type="IntegerLiteral” value="13209" />
]
]
|
|
1
1
1
1

</item>
<item>
<key xsi:type="StringLiteral” value="stdDocumentParts" />
<value xsi:type="IntegerLiteral” value="3" />
</item>
</items>
\</term>
</realisation> ~~~~ T T T TT T TTTTTT T T m T AN T T
/action>

throw id="tl">

<specification>Throws a customized exception</specification>
[<realisation xsi:type="UserExceptionCreate™>

' <qualifier xsi:type="StringLiteral” value="Djne Exception” />
y <text xsi:type="StringLiteral” value="Something” bad happened!"
' </realisation>)

.5 Conversion terms

.5.1 Description

category of terms is required to convert values of one data type to another data type. Since
ends on the data types and the conversion direction, special rules apply for each conversion te

e the syntaXand general semantics of all conversion terms are similar for all data types
Cription applying to all types is provided first, followed by the special rules for each data type co

E Since no use cases for converting to List, Map or Exception types were identified, no cony
for these types.

conversion
m type.

, a general
nversion.

ersion terms

7.15.5.2 Syntax

Figure 54 shows the syntax of the conversion term types.

BooleanTerm

«XSDcomplexTyp...
ToBoolean

IntegerTerm

«XSDcomplexTyp...
Tolnteger

FloatTerm

«XSDcomplexTyp...
ToFloat

StringTerm

«XSDcomplexTyp...
ToString

ByteFieldTerm)|

«XSDcomplexTyp...
ToByteField

«XSDelement»
+ tem: Tem

«XSDelement»
+ tem: Tem

«XSDelement»
+ term: Temm

«XSDelement»
+ tem: Tem

+ term: Temm

«XSDelement»

Figure 54 — Data model view: Conversion terms

© I1SO 2012 — All rights reserved

117

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.5.3 Semantics

Every conversion term describes the value that shall be converted with a <term> element:

— <term> : Term [1]

Represents the value that shall be converted to a value of a particular data type.

IMPORTANT — The conversion terms are only specified herein for Boolean, Integer, Float, String
and ByteField arguments. For all other Core OTX data types, the behaviour is unspecified (except for
the ToString conversion, see below). OTX applications may provide custom implementations of the
conversior] terms for other data types. If a conversion term is applied to data of a type for which no
implementftion exists, a runtime exception shall be thrown.

7.15.5.3.1 |ToBoolean

This term ghall return the Boolean counterpart of the argument term. The conversion ds\specified for| the
following dgta types (the behaviour for other OTX Core types is unspecified):

— Integgr Return false if O, otherwise true.

— Float Return false if 0.0, otherwise true.

— ByteFjeld Return false if empty, otherwise true.

— String Return true if the string value is ""true', ignoring.case, otherwise false.

— Boolean Return the copy of the value.

7.15.5.3.2 |Tolnteger

This term ghall return the Integer counterpart of*the argument term. The conversion is specified for|the
following dgta types (the behaviour for other types-isunspecified):

— Boolean Return 1 if the value is true; otherwise 0.

— Float Return the integer part\(the digits to the left of the decimal point — truncation).

— ByteFjeld Return the integer-value of the ByteField. For interpretation of the ByteField, little
endian byte order and n-bit two's complement shall be used, where n is the ByteFielld's
size multipled- by 8 (in other words: the total number of bits in the original ByteField).|For
finer control’ of the byte order used for conversions, see Decodelnteger term in

7.15.6.8.1.

— String Return the integer value of the string. The string shall constitute an integer literal| as
specified by §3.10.1 of The Java™ Language Specification, otherwise an exception is
thrown.

— IMPORTANT — The reference mplementation for this COnversion 15 the Java method

jJava.lang. Integer.valueOf(). There shall be no deviation from this implemen-
tation.

— Integer Return the copy of the value.

Throws:

— OutOfBoundsException
in the ByteField case only: if the ByteField is empty or its size is greater than 8 bytes (in that case,
the value space of xsd: long is exceeded, cf. Annex A).

118 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

TypeMismatchException
in the String case only: if the String does not constitute an integer value literal.

7.15.5.3.3 ToFloat

This term shall return the Float counterpart of the argument term. The conversion is specified for the

follo

wing data types (the behaviour for other OTX Core types is unspecified):

Boolean Return 1.0 if the value is true, otherwise 0.0.

Throws:

7.15

This
follg

Lad Rat £l + £ il Ha+]
IIILCHCI M\CTWTriT a mmuat \JUPy Ul uinc IIII.CyCI vamuc.

ByteField Return the float value of the ByteField (interpretation according to [IEEE\'/‘SK

precision (32-bit) or a double precision (64-bit) ByteField.

String Return the float value of the string. The string shall constitute a fleat literal, as
§3.10.2 of The Java™ Language Specification M otherwise an exception is throy

IMPORTANT — The reference implementation for this conversion is the Jg

implementation.

Float Return the copy of the value.

TypeMismatchException
in the String case only: if the String does not constitute a float value literal.

OutOfBoundsException
in the ByteField case only: if the ByteField's bit-size is neither 32 bit nor 64 bit (which me
value cannot be interpreted as single or double precision according to [IEEE 754:2008]).

.5.3.4 ToByteField

term shall return the ByteField counterpart of the argument term. The conversion is speg
wing data types (the behaviour for other types is unspecified):

Boolean Returf”0x01 if the value is true, otherwise 0x00.

Integer Return the smallest possible two's complement representation of the integer
Smallest possible number of bytes). Concerning byte order in the resulting Byte
endian shall be used. With this, e.g. 127 converts to 1-byte 01111111, (0x7

008]). The

result shall be stored in double precision, regardless of the argumént-being a single

tpecified by
vn.

va method

jJjava.lang.Float.valueOf(). There shall be5 no deviation from this

Ans that the

ified for the

(using the
Field, little
F), =127 to

10000001, (Ox81), whereas 6719 converts to 2-byte 00111111, 00011(

Float Return the 64-bit double precision encoded value according to [IEEE 754:2008].

String Return the UTF-8 encoded value.
ByteField Return the copy of the value.

7.15.5.3.5 ToString

10, (OX3F

¢ Size of the

This term shall return the String counterpart of the argument term. The conversion is specified for the
following data types (the behaviour for other OTX Core types is unspecified):

© I1SO 2012 — All rights reserved

119

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

— Boolean Return ""true" if the value is true, otherwise "false".

— Integer Return the value in decimal string representation.

— Float Return the value in decimal string representation. For an overview about string represen-
tations of floats see §3.10.2 of The Java™ Language Specification M,
IMPORTANT — The reference implementation for this conversion is the Java method
jJava.lang.Float.toString(). There shall be no deviation from its specification.

— String Return the copy of the value.

— ByteFjield Return the UTE-8 interpretation

IMPORTANT — ToString shall not cause a runtime exception (cf. 7.15.5.3). For this, the' ToStrfing

conversior| shall be custom implemented for all other OTX data types in a way approptiate for|the

specific data type8. A ToString conversion applied e.g. onto an arbitrary List of Intégers shqg

yield a re
serialized ¢
Throws:

OutOof
in the H

7.1554 E

The examp

converted t
this exampl

EXAMPLE

<action
<specif
<reali
<res
<ter

<tg

</
</te

</real
</action

7.15.6 Inte

7.15.6.1

sult similar to ""{4;12;13}". This allows for e.g. writing debug messages contair
omplex data during test sequence development.

BoundsException
yteField case only: if the value cannot be interpreted as string‘in UTF-8 format.

xample

e below shows a two-step conversion in an Assighment action: A float literal containing P
b an integer which is then converted to a string.-The string is assigned to a variable s will be "3

al

Sample of OTX-file "TermExamples.otx!l= conversion terms

d="al0"">
ication>Converts a float literal to, integer, then to string</specification>
ation xsi:type="Assignment'>
It xsi:type="StringVariable"/mMame="s" />
xsi:type="ToString">
rm xsi:type="Tolnteger'>
term xsi:type="FloatLiteral" value="3.1415926535897932384626433832795" />
erm>
m>
sation>

jer conversion terms

uld
ing

iis

escription

This category of terms allows converting between Integer and ByteField values. Compared to the generic
conversion terms Tolnteger(ByteField) and ToByteField(Integer) as described in 7.15.5, integer
conversion terms allow controlling the Bytefield size, encoding type for negative integers and byte order

which shall

be used for this special kind of conversions.

8) The conversion term ToString represents an analogy to the Java method java.lang.Object.toString()

which is designed to be overridden by new classes (see §4.3.2 of The Java™ Language Specification

120

[1])_

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.15.6.2 Syntax

Figure 55 shows the syntax of the integer conversion term types.

7.15

7.15

Dec
The|
Byt
inte
orig

IntegerTerm ByteFieldTerm|
«XSDcomplexType» «XSDcomplexType»
Decodelnteger Encodelnteger
«XSDattribute» «XSDattribute»
+ encodingType: EncodingType [0..1] + encodingType: EncodingType [0..1]
+ byteOrder: Endianness[0..1] + encodingSize: EncodingSizs [0..1]
«XSDelement» + byteOrder: Endianness[0..1]
+ bytes: ByteFieldTern «XSDelement»
+__integer. IntegerTemm

-2:2012(E)

xsd:string xsd:string xsd:string
«enumeration» «enumeration» «enumeration»
EncodingType EncodingSize Endianness
UNSIGNED 8-BIT LITTLE-ENDIAN
SIGNED-BINARY 16-BIT MIXED-ENDIAN
TWOS-COMPLEME| 32-BIT BIG-ENDIAN
64-BIT

Figure 55 — Data model view: Integer conversion_terms

.6.3 Semantics

.6.3.1 Decodelnteger

odelnteger is an IntegerTerm. It returns the decotled Integer value of the ByteFiel(
term provides control over the byte order which shallbe used for decoding as well as the W
eField shall be decoded regarding n-bit unsigned, n-bit signed binary or n-bit two's ¢
pretation, where n is the ByteField's size multiplied by 8 (in other words: the total number g
nal ByteField).

encodingType : EncodingType={UNSIGNED|SIGNED-BINARY | TWOS-COMPLEMENT}

Specifies how the bytes of the ByteField shall be interpreted (after respecting byte order!):

— UNSIGNED: The ByteField shall be interpreted as an unsigned integer value
interpretation, a ByteField of e.g. 11111110, is decoded as 254.

— SIGNED-BINARY-The most significant bit in the ByteField shall be interpreted as the s
rest as the binasy encoded absolute integer value. With this interpretation, a ByteFi
11111110,Gs)decoded as -126.

used-encoding called two's complement. With this interpretation, a ByteField of e.g. 11
décoded as -2.

| argument.
ay how the
omplement
f bits in the

[1]

With this

ign and the

eld of e.g.

— TWOS-COMPLEMENT (default): The ByteField shall be interpreted according to the most widely

111110, is

ByteOrder : Endianness={LITTE-ENDIAN|MIXED-ENDIAN|BIG-ENDIAN} [1]

Specifies the byte order which shall be respected prior to decoding the ByteField value
widely used byte order LITTLE-ENDIAN is the default.

<bytes> : ByteFieldTerm [1]

Represents the ByteField value which shall be converted to Integer.

© I1SO 2012 — All rights reserved

. The most

121

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Throws:

OutOfBoundsException

if the ByteField is empty or the value space of xsd:long is exceeded (cf. Annex A). This happens if
the ByteField's size is greater than 8 bytes, or when using UNSIGNED interpretation on an 8 byte

ByteField in which the most significant bit is 1.

7.15.6.3.2 Encodelnteger

Encodelnteger is a ByteFleIdTerm It returns a ByteFleId wh|ch contalns the encoded value of the

origi

inal Intege g WO-S—-COPIen

— TWOS-COMPLEMENT (default): The Integer shallsbe encoded according to the most widely U
encoding called two's complement. With this encading, an Integer value of e.g. 129 is encode
00000000, 10000001,, whereas a negative Integer value of e.g. -129 will be encodeg

11111111, 01111111,. Two bytes are required here, since the sign-bit reduces the value space}

encodfngSize : EncodingSize={8-BIT|16-BIT|32-BIT|64-BIT} [0..1]

Specifies how many bits shall be_ugsed for the encoding. This shall be used to restrict the size of
resulting ByteField which can-be-useful if e.g. only small integers are encoded, or e.g. if it is reqy
that regulting ByteFields always have the same specified size. However, if an encoded integer reqy
more bjts than specified bycthjs’attribute, an exception will be raised. Since the OTX Integer datatyy
64 bit, an encoding size 0f 64-BIT is the default value.

byteOfder : Endianness={LITTE-ENDIAN|MIXED-ENDIAN|BIG-ENDIAN} [O..1]

Specifies the byte/order which shall be used when writing the encoded Integer value into the resu
ByteFjeld{Fhe most widely used byte order LITTLE-ENDIAN is the default.

the
ger
be

ther
D1,,
the

sed
 as
as

the
ired
ires
eis

ting

<inteser = Infngannrnﬂl 1]

| B |

Represents the Integer value which shall be converted to ByteField.

Throws:

122

OutOfBoundsException

if the number of bits required for encoding the Integer value exceeds the number of bits specified by

the encodingSize attribute (overflow).

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.6.4 Example

— The example below shows two integer conversions: The Integer value -42 is encoded into the
ByteField named "bytes", using BIG-ENDIAN byte order and TWOS-COMPLEMENT encoding.
After execution of the Assignment action, "'bytes" will have a value of 11111111, 11010110,.

The second action converts the ByteField with value 10010101, (0x95) to Integer by using
LITTLE-ENDIAN, and UNSIGNED interpretation. After execution, "i" will have a value of 149.

EXAMPLE Sample of OTX-file "TermExamples.otx" — integer conversion terms

<specification>Converts a integer value to ByteField</specification>
<realisation xsi:type="Assignment” >
<result xsi:type="ByteFieldVariable” name="bytes"™ />
<term xsi:type="Encodelnteger” byteOrder="BIG-ENDIAN" encodingSize="16-BIT">
<integer xsi:type="IntegerLiteral” value="-42" />
</term>
</realisation>
4/action>

Jaction id="a2">
<specification>Converts a ByteField value to Integer</specification>
<realisation xsi:type="Assignment” >

<result xsi:type="IntegerVariable” name="i" />

<term xsi:type="Decodelnteger” encodingType="UNSIGNED">

<bytes xsi:type="ByteFieldLiteral”™ value="95" />

</term>
</realisation>
4/action>

7.13.7 Logic operations

7.13.7.1 Description
Thellogic operation terms provide the most basic-and widely used logical connectives for the Boolgan algebra,

nanjely conjunction (LogicAnd), disjunction(LogicOr), exclusive disjunction (LogicXor) and negation
(LogicNot).

7.13.7.2 Syntax

Figure 56 shows the syntax of-the logic operation term types.

BooleanTenm BooleanTerm BooleanTerm HooleanTemm

«XSDcomplexType»
LogicAnd

«XSDcomplexType»
LogicOr

«XSDcomplexType»
LogicXor

«XSDcomplex['ype»
LogicNot

XSDelement»
4 temm: BooléanTemn [2..*]

«XSDelement»
+ tem: BooleanTerm [2..*]

«XSDelement»

+

term: BooleanTemn [2..*]

«XSDelement»
+ term: BooleanTerm

Figure 56 — Data model view: Logic operations

7.15.7.3 Semantics

7.15.7.3.1 LogicAnd

LogicAnd is a BooleanTerm which represents the Boolean conjunction. Returns true if and only if the values
of all operands are true.

— <term> : BooleanTerm [2..%*]

Represents the list of BooleanTerm operands of the conjunction. Terms shall be evaluated in the order
of appearance in the OTX document.

© 1SO 2012 — All rights reserved 123

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

IMPORTANT — Since OTX terms do not have side-effects, the evaluation of LogicAnd operand terms
shall complete when the first false operand has been identified; LogicAnd returns false then
without evaluating the remaining operand terms. Note that one consequence of this is that exceptions
which might have occurred in the remaining operands are bypassed.

NOTE

In a graphical representation, LogicAnd should be represented by the operator symbols A or && (or just

and) in infix notation. This is the most common representation form used in mathematical notation and by many
programming languages.

7.15.7.3.2

LogicOr

LogicOr is
of the operg

<term

Repreg
appear

[«

J

NOTE 1
the first tru

A BooleanTerm which represents the Boolean disjunction. Returns true if and only if at least
nds is true.

>

BooleanTerm [2..*]

ents the list of BooleanTerm operands of the disjunction. Terms shall be evalyated in the ordg
pnce in the OTX document.

ince OTX terms do not have side-effects, the evaluation of LogicOr operand: terms should complete
e operand has been identified; LogicOr returns true then without evaluating\the remaining operand te

This may improve execution speed.

IMPORTAN
shall comyg
evaluating
might have

NOTE 2 I
infix notation

T — Since OTX terms do not have side-effects, the evaluation of LogicOr operand te
lete when the first true operand has been identified;\LogicOr returns true then with
the remaining operand terms. Note that one conseguence of this is that exceptions wh
occurred in the remaining operands are bypassed:

h graphical representation, LogicOr should be represented by the operator symbols V or || (or just 0

one

br of

hen
rms.

rms
out
ich

) in

ly if

the

infix

7.15.7.3.3 [LogicXor
LogicXor i$ a BooleanTerm which represerits the Boolean exclusive disjunction. Returns true if and or
one of the tyvo operands is true, but nothoth.
— <termp : BooleanTerm [Z2]
Repredents the two BooleanTerm operands of the exclusive disjunction. Terms shall be evaluated in
order of appearance in-the’OTX document.
NOTE Ih graphical.representation, LogicXor should be represented by the operator symbol ® (or just xor) in
notation.
7.15.7.3.4 |LogicNot
LogicNot is a BooleanTerm which represents the Boolean negation. Returns true if and only if the operand
is false.
— <term> : BooleanTerm [1]

Represents the BooleanTerm operand of the negation.

NOTE

124

In graphical representation, LogicNot should be represented by the operator symbol = or ! (or just not).

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.7.4 Example

The example below shows a branch condition with represents the logical implication a — b, which is expressed

by it

EXA

s logical equivalent not(a or b).

MPLE Sample of OTX-file "TermExamples.otx" — logic operation terms

<branch id="branch2">

<realisation>
<if>
<condition id="branch2condition'>
<specification>Does imlication "a->b" alias "not(a]|b)" hold?</specification>

7.15

7.15

The)
(1sH
(1sl

Whi
sim
dep

reatisation Xsi-type— togichot
<term xsi:type="LogicOr'">
<term xsi:type="BooleanValue" valueOf="a" />

<term xsi:type="BooleanValue" valueOf="b" />
</term>
</realisation>
</condition>
<flow>
<action id="all" />
</flow>
</if>
</realisation>
/branch>

.8 Relational operations

.8.1 Description

relational operation terms provide the most basic,and widely used comparators, nam
qgual), inequality (IsNotEqual), less-than (Iskess), greater-then (IsGreater), less-th
essOrEqual) and greater-then-or-equal (1sGreaterOrEqual).

e equality and inequality can be applied forall kinds of terms, the other comparators shall only
ple terms. Before such a simple term comparison can be performed, preparations have
bnding on the data type of the operands:

Float or Integer case: Ordinary comparison based on the numerical values of the op
preparatory steps to be takefy;

String case: Relations are based on the lexicographical order (also known as alphabetical g
String operands. Ordering shall happen according to the Unicode character set @

bly equality
en-or-equal

be used for
to be met

erands. No

rder) of the

— |Boolean case: The convention true is greater than false applies. All other relations are basefl on this.
IMPORTANT —>When an Integer value is compared to a Float value, automatic promation of the
Intleger shallbe performed. This means that the Integer is automatically cast to Float afd then the
valyes are-compared.

7.19.8:2 Syntax

Figure 57 shows the syntax of the relational operation term types.

© 1SO 2012 — All rights reserved 125

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

BooleanTerm

«XSDcomplexType»
IsEqual

BooleanTerm

«XSDcomplexType»
IsNotEqual

«XSDelement»
+ tem: Tem [2..%]

«XSDelement»
+ term: Term [2..%]

BooleanTerm

«XSDcomplexType»
IsLess

BooleanTermn

«XSDcomplexType»
IsGreater

BooleanTerm

«XSDcomplexType»
IsGreaterOrEqual

BooleanTerm

«XSDcomplexType»
IsLessOrEqual

«XSDelement»

«XSDelement»

«XSDelement»

«XSDelement»

+ left: Si

ot
ToreTemT

+ right: SfmpleTerm

lafha 1o
TeT —ormpreTemn

+ right: SimpleTerm

lafba LT
rern—otmpreTemny

+ right: SimpleTemm

labba LT
ren—otmpreTrem

+ right: SimpleTerm

Figure 57 — Data model view: Relational operations

7.15.8.3 Semantics
7.15.8.3.1 [IsEqual
IsEqual |s a BooleanTerm which tests for equality of two or morecoperands. For SimpleTerm
arguments,|true is returned if and only if the values of all terms are equal: For terms returning a refergnce
value (e.g. f reference to a List or Map), true is returned if and only,if,the references returned by all tgrms
are equal.
— <termp : Term [2..7*]
Repregents the operands which shall be tested for equality. Terms shall be evaluated in the ordgr of
appearpnce in the OTX document.
IMPORTANT — Since OTX terms do not have side’effects, the evaluation of Isequal operand tefms
shall comglete when the first unequal to others-operand has been identified; IsEqual returns fallse
then withgut evaluating the remaining operand terms. Note that one consequence of this is fhat
exceptiong which might have occurred in.the remaining operands are bypassed.
Associated [checker rules:
— Core_Qhk049 — uniform relatien operand type
NOTE Ih graphical representation, 1sequal should be represented by the operator symbol = or == (or just equals)
in infix notatipn.
7.15.8.3.2 |[IsNotEqual
IsNotEqual-ista BooleanTerm which tests for inequality of two or more operands. For SimpleTerm

e o ratirnad f and oy f st all Af thn valiae of thi taroae avn Aol oy tarioac vt eniy

argumentS, CIroOC IS retom e U T oo oTiTy ot ol o tic- Voot S~ o the o arc— e oo O (TS |\.,|.u||||||g a

reference, true is returned if and only if not all of the references returned by the terms are equal.

<term> :

Term [2..*]

Represents the operands which shall be tested for equality. Terms shall be evaluated in the order of

appear

ance in the OTX document.

IMPORTANT — Since OTX terms do not have side-effects, the evaluation of IsNotEqual operand
terms shall complete when the first unequal to others operand has been identified; IsNotEqual
returns true then without evaluating the remaining operand terms. Note that one consequence of this
is that exceptions which might have occurred in the remaining operands are bypassed.

126 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Associated checker rules:

— Core_Chk049 — uniform relation operand type

NOTE In graphical representation, 1sNotEqual should be represented by the operator symbol = or <> or # in infix
notation.

7.15.8.3.3 IsLess

IsLess is a BooleanTerm. Returns true if and only if the <left> value is less than the <right> value.

— |<left> : SimpleTerm [1]

Represents the value that has to be less than the <right> value.

— |<right> : SimpleTerm [1]

Represents the value that has to be greater than the <left> value.

Asspciated checker rules:

— | Core_Chk049 — uniform relation operand type

NOTE In graphical representation, 1sLess should be represented by the operator symbol < in infix notation.

7.13.8.3.4 IsGreater
IsGreater is a BooleanTerm. Returns true if and only«ifithe <left> value is greater than the <right> value.

— |<left> : SimpleTerm [1]

Represents the value that has to be greatér than the <right> value.

— |<right> : SimpleTerm [1]

Represents the value that has,to be less than the <left> value.

Asspciated checker rules:

— | Core_Chk049 — unifofm relation operand type
NOTE In graphicalrepresentation, 1sGreater should be represented by the operator symbol > in infix njotation.
7.13.8.3.5 IsGreaterOrEqual

IsGfeaterOrEqual is a BooleanTerm. Returns true if and only if the <left> value is greater or equal than
the gright> value.

— <left> : SimpleTerm [1]

Represents the value that has to be greater or equal than the <right> value.
— <right> : SimpleTerm [1]

Represents the value that has to be less or equal than the <left> value.
Associated checker rules:
— Core_Chk049 — uniform relation operand type

NOTE In graphical representation, IsGreaterOrEqual should be represented by the operator symbol > or >= in infix
notation.

© 1SO 2012 — All rights reserved 127

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.8.3.6

IsLessOrEqual

IsGreaterOrEqual is a BooleanTerm. Returns true if and only if the <left> value is greater or equal than
the <right> value.

<left> :

SimpleTerm [1]

Represents the value that has to be less or equal than the <right> value.

Represg

Associated

Core_(

NOTE In
notation.

7.15.8.4 E

The Branc
relations.

EXAMPLE

<branch
<reali
<if>
<c

</
<f

</
</if
</real
</branch

<right> :

SimpleTerm [1]

checker rules:

Lhk049 — uniform relation operand type

graphical representation, IsLessOrEqual should be represented by the operator symbol < or <=

xample

n [infix

N node in the example below contains a condition (F<10)&&(F=10) using IsLess and IsEqual

Sample of OTX-file "TermExamples.otx"

d="branch3">
ation>

ndition id="branchlcondition">
specification>ls T less than 10 AND f equals 10(%?</specification>
realisation xsi:type="LogicAnd">
<term xsi:type="IslLess">
<left xsi:type="FloatValue" valueOf="f{ />
<right xsi:type="IntegerLiteral” value=™10" />
</term>
<term xsi:type="IsEqual’>
<term xsi:type="FloatValue" valueOf="f" />
<term xsi:type="IntegerLiterak’ value="10" />
</term>
/realisation>
ondition>
ow>
throw id="tl">
<realisation xsi:type=)'UserExceptionCreate'>
<qualifier xsizy€ype="StringLiteral” value="Strange Problem" />

<text xsi:types'‘StringLiteral™ value="Something went terribly wrong!"™ />

</realisation>
/throw>
lTow>

sation>

7.15.9 Mathematical operations

7.15.9.1 Description

The mathematical operation terms provide the most basic mathematical operators, namely addition (Add),
subtraction (Subtract), multiplication (Multiply), division (Divide), abs (Absolutevalue), modulo (Modulo),
negation (Negate) and rounding (Round).

128

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.9.2 Syntax

Figure 58 shows the syntax of the mathematical operation term types.

NumericTerm NumericTerm NumericTerm NumericTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
Add Subtract Multiply Divide
«XSDelement» «XSDelement» «XSDelement» «XSDelement»
+ numeral: NumericTerm [2..*]| [+ numeral: NumericTemrm + numeral: NumericTemm [2..*]| | + numeral: NumericTerm
+ subtrahend: NumericTerm + divisor. NumericTerm
NumericTerm IntegerTerm NumericTerm NumericTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
AbsoluteValue Round Negate Modulo
4XSDelement» «XSDelement» «XSDelement» «X$Defement»
4 numeral: NumericTerm + numeral: NumericTerm + numeral: NumericTerm +(_numeral: NumericTerm
+ ,divisor. NumericTerm

Figure 58 — Data model view: Mathematical operations

7.13.9.3 Semantics
7.13.9.3.1 General

Thel OTX Integer and Float data types have restricted value spaces, as specified in Annex A. Therefore
the mathematical operations described in the following“nay cause overflows or underflows. More| specifically
an gverflow or underflow situation occurs when thesmathematically correct result of an operation is outside of
the value space of Integer or Float. OTX dogs not define exceptions for those situations. Overflows and
underflows shall be handled in analogy to(the specifications given by 84.2 of The Java™ Language
Spekification ™.

7.13.9.3.2 Add

Add is a NumericTerm which returns the sum of all its operands.

— |<numeral> : NumericTerm [2..%*]

The numeric ©Opefands (= summands) of the addition. Terms shall be evaluated in the order of
appearancedn-the OTX document.

IMPORTANT. -~ The actual return data type of the Add term depends on the data types of the
operandsf one of the operands is Float, all Integer operands are automatically promoted to Float
prigrto, the operation and the returned value is Float. Otherwise, the returned value is Integer.

NOTE In graphical representation, Add should be represented in infix notation by the operator symbol +.

7.15.9.3.3 Subtract

Subtract is a NumericTerm which returns the numerical difference between the operands.

— <numeral> : NumericTerm [1]

A numeric term which represents the minuend value.

© 1SO 2012 — All rights reserved 129

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

<subtrahend>

-2:2012(E)

NumericTerm [1]

A numeric term which represents the subtrahend value.

IMPORTANT — The actual return data type of the Subtract term depends on the data types of the
operands: If one of the operands is Float, all Integer operands are automatically promoted to Float
prior to the operation and the returned value is Float. Otherwise, the returned value is Integer.

NOTE

In graphical representation, Subtract should be represented in infix notation by the operator symbol -.

7.15.9.3.4
Multiply

<nume

The nlimeric term which represents the factor values. Terms shall be evaluated” in the orde

appear

IMPORTAN
operands:
prior to the

NOTE
notation.

In

7.15.9.3.5

Divide is @ NumericTerm which returns the quotient.of two operands.

Multiply

s a NumericTerm which returns the product of the operands.

ral> NumericTerm [2..%*]

ance in the OTX document.

T — The actual return data type of the Multiply term depends©h the data types of
f one of the operands is Float, all Integer operands are automatically promoted to Fl
operation and then the returned value is Float. Otherwisegthe returned value is Integ

graphical representation, Multiply should be represented by ‘the operator symbol -, x or * in

Divide

ral> :

NumericTerm [1]

ric term which represents the dividend value.

50> NumericTerm [1]

ric term which represents-the divisor value.

neticException
Hividend an@divisor are Integer and the divisor value is zero.

T — {he result of Divide is computed in two different ways, depending on the data ty

ands: 'If both dividend and divisor are Integer, then the fraction (quotient) is truncated
result is returned If dividend or divisor are Eloat then a Eloat fraction is returned

r of

the
pat

infix

pes
and

— <nume
A numg
— <divi
A numg
Throws:
— Arith
If both
IMPORTAN
of the oper
an Intege
NOTE
7.15.9.3.6

In graphical representation, Divide should be represented in infix notation by the operator symbol /.

Modulo

Modulo is a NumericTerm which returns the remainder of a division. If the dividend value is positive, the
returned remainder will be positive. If the dividend value is negative, the returned remainder will be negative.

<nume

ral> NumericTerm [1]

A numeric term which represents the dividend value.

130

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

<divisor> : NumericTerm [1]

A numeric term which represents the divisor value.

Throws:

ArithmeticException
If both dividend and divisor are Integer and the divisor value is zero.

-2:2012(E)

IMPORTANT — The result of Modullo is computed in two different ways, depending on the data types

NOT

mod).

7.15

Absg

IMP)
the
is |

NOT
e.g.

7.15

Rou

7.15

Ned

tient (cf. IEEE 754:2008).

E In graphical representation, Modulo should be represented in infix notation by the~0Operator sym

.9.3.7 AbsoluteValue
oluteValue is a NumericTerm which returns the value of the operand without regard to its s

<numeral> : NumericTerm [1]

The numeric term whose absolute value shall be returned.
ORTANT — The actual return data type of the AbsoluteValue term depends on the d
hteger.

E In graphical representation, AbsoluteVaklue should be represented by enclosing the operator in

lal.
.9.3.8 Round
nd is a NumericTerm which returns the rounded integer value of the operand.

<numeral> : NumericTerm [1]

The numeric termthat shall be rounded to the nearest integer towards plus infinity.

.9.3.9 Negate

ate is;a-:Numer icTerm which returns the value of the operand with inverted sign.

the returned remainder is Integer. If

, the Java
ncates the
rounds the

bol % (or just

gn.

ata type of

operand: If the operand is Float, then the returned value is Float. Otherwise, the returned value

| 1 symbols,

snumeral> - NumericTerm [1]

The numeric term that shall be negated.

7.15.9.4 Example

The

example below shows mathematical terms in a Branch condition E-m*c?==0.

© I1SO 2012 — All rights reserved

131

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE Sample of OTX-file "TermExamples.otx"

<branch id="branch4">
<realisation>
<if>
<condition id="branchlcondition”>
<specification>ls E-m*c"2==07?</specification>
<realisation xsi:type="IsEqual'>
<term xsi:type="Subtract'>
<numeral xsi:type="FloatValue" valueOf="E" />
<subtrahend xsi:type="Multiply">
<numeral xsi:type="FloatValue" valueOf="m" />
<numeral xsi:type="FloatValue" valueOf="constants:c" />
<numeral xsi:type="FloatValue"” valueOf="constants:c" />
</subtrahend>
</term>
<term xsi:type="IntegerLiteral” value="0" />
/realisation>
</¢ondition>
<flow>
action id="al">
<specification>Einstein was right!!!</specification>
/action>
</flow>
</if
</real{sation>
</branch

7.15.10 ByfeField operations

7.15.10.1 Description
For operating on ByteField data, there is a set of special operations defined in the OTX Core. These ard the

bitwise logi¢al operations BitwiseAnd, BitwiseOr, BitwiseXor and BitwiseNot which are similar td the
Boolean logic operations, and other ByteField related operations ByteFieldGetSize and GetBit.

7.15.10.2 Syntax

Figure 59 shows the syntax of the ByteField operation term types.

ByteFieldTerm| ByteFieldTerm| ByteFieldTerm| ByteFieldTerm|
«XSDcomplexType» «XSDBcomplexType» «XSDcomplexType» «XSDcomplexType»
BitwiseAnd BitwiseOr BitwiseNot BitwiseXor

«XSDelement» «XSDelement» «XSDelement» «XSDelement»
+ byteField: ByteFieldTemm [2]| |+~ byteField: ByteFieldTerm [2]| | + byteField: ByteFieldTem + byteField: ByteFieldTerm [2]
IntegerTerm ByteFieldTerm| BooleanTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ByteFieldGetSize, SubByteField GetBit
«XSDelement» «XSDelement» «XSDelement»
+ byteField./ByteFieldTerm + byteField: ByteFieldTerm + byteField: ByteFieldTem
+ index: NumericTerm + index: NumericTerm
+ count: NumericTerm + podtion: NumericTerm

Figure 59 — Data model view: ByteField operations

7.15.10.3 Semantics
7.15.10.3.1 BitwiseAnd

BitwiseAnd is a ByteFieldTerm which operates on individual bits of ByteField values. It returns the
bitwise conjunction of the two ByteField operands.

— <byteField> : ByteFieldTerm [2]

The two ByteField operands of the conjunction. Terms shall be evaluated in the order of appearance in
the OTX document.

132 © 1SO 2012 - All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

IMPORTANT — If an operand is shorter than the other, it is promoted to the length of the other by
bit stuffing (0-bits) from the left prior to executing the bitwise operation. The length of the returned
ByteField is the length of the longer one.

NOTE

7.15.10.3.2 BitwiseOr

In graphical representation, BitwiseAnd should be represented in infix notation by the operator symbol &.

BitwiseOr is a ByteFieldTerm which operates on individual bits of ByteField values. It returns the
bitwise disjunction of the two ByteField operands.

IMP
bit 3
Byt

NOT

7.15

Bit
bitw

IMP
bit 3
Byt

NOT

7.15

Bit
bitw

<byteField> : ByteFieldTerm [2]

The two ByteField operands of the disjunction. Terms shall be evaluated in the order,of ap
the OTX document.

ORTANT — If an operand is shorter than the other, it is promoted to the-length of th
tuffing (0-bits) from the left prior to executing the bitwise operation\T'he length of th
eFieldis the length of the longer one.

E In graphical representation, BitwiseOr should be represented in infix‘notation by the operator sy

.10.3.3 BitwiseXor

wiseXor is a ByteFieldTerm which operates on individual bits of ByteField values. It
ise exclusive disjunction of the two ByteField operands.

<byteField> : ByteFieldTerm [2]

The two ByteField operands of the exclusive disjunction. Terms shall be evaluated in t
appearance in the OTX document.

ORTANT — If an operand is shorter than the other, it is promoted to the length of th
tuffing (0-bits) from the left prior to executing the bitwise operation. The length of th
eFieldis the length of thedonger one.

E In graphical representation, BitwiseOr should be represented in infix notation by the operator sy

.10.3.4 BitwiseNot

wiseNot is.a . ByteFieldTerm which operates on individual bits of a ByteField value. It
ise negation'(the inverse) of the ByteField operand.

<byteField> : ByteFieldTerm [1]

pearance in

e other by
e returned

bol |.

returns the

he order of

e other by
e returned

bol /.

returns the

Thao Pyt
TTIC DOy ©

-
D

nnnnnn dthat chall Iha o,
L v

a
CUropCTarotaT St TTve

b4

NOTE In graphical representation, LogicNot should be represented by the operator symbol ~.

7.15.10.3.5 ByteFieldGetSize

ByteFieldGetSize is an IntegerTerm which returns the number of bytes that the ByteField operand
contains.

<byteField> : ByteFieldTerm [1]

The ByteField operand whose size shall be returned.

© I1SO 2012 — All rights reserved

133

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.10.3.6

SubByteField

SubByteField is a ByteFieldTerm which reads a given number of bytes from a ByteField starting at a
given byte index. The read bytes are returned as a ByteField value.

— <byteField> : ByteFieldTerm [1]
The ByteField from which the sub-bytefield shall be read.

— <index> : NumericTerm [1]

Ul

The by

— <coun
The tof]
shall bg

Throws:

— OutOf
If the in

— OutOf
If indeX

7.15.10.3.7

GetBit is
otherwise it
— <byte

The By

— <inde

The by

— <posi
The bit

Throws:

— OutOf
If the in

— OutOf

H | £ il £ . o £ il lJavdafiala it la. Pl | 4= l la
C IMMIUTA UT UTNIT TIT ol UyLC Ul U1 oSouuy UyLCIICIU W T 1CTAU. TTIUAt vAaliutTo olld

t> - NumericTerm [1]

e returned. Float values shall be truncated.

BoundsException
dex is not within the range [0,n-1], where n is the size of the ByteFie

BoundsException
+count > size of the ByteField.

GetBit

returns false.

Field> : ByteFieldTerm [1]
teField in which the bit shall be logKed up.

k> - NumericTerm [1]

tion> - Numerickerm [1]

BoundsException
dex.is’not within the range [0,n-17], where n is the size of the ByteFie

BouhdsException

+ P |
o uuricaitcu.

al number of bytes to be read starting from <index>. If <count> equals 0, an empty|Bytefi

Id.

a BooleanTerm which returns true if the bit, at'the given byte index and bit position i

e index of the byte in which the bit of interest resides. Float values shall be truncated.

position of the bitwithin the identified byte. Float values shall be truncated.

1d.

eld

U7
=

If the bit position not within the range [0, 7] of allowed bit positions.

7.15.11 List-related terms

7.15.11.1 Description

List related terms operate on lists; OTX provides a term to identify the length of a list (ListGetLength) and
a query for the existence of a value in a list (ListContainsValue).

134

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.11.2 Syntax

Figure 60 shows the syntax of the List related term types.

IntegerTerm BooleanTerm ListTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ListGetLength ListContainsValue ListCopy
«XSDelement» «XSDelement» «XSDelement»
+ list: ListTerm + list: ListTerm + otherList: ListTerm
+ value: Tem

Figure 60 — Data model view: List related terms

7.19.11.3 Semantics
7.13.11.3.1 ListGetLength
LigtGetLength is an IntegerTerm that returns the number of items contained in a List.

— |<list> : ListTerm [1]

The List whose length shall be computed.

7.18.11.3.2 ListContainsValue

LigtContainsValue is a BooleanTerm that returhs true if and only if the given value is contained in the
Ligt.

— |<list> : ListTerm [1]

The List which shall be checkedfar'the <value> to exist.

— |<value> : Term [1]

The value whose existence’in the List shall be tested. If the <value> represents a referenge, then it is
tested whether the reference is part of the List or not.

7.19.11.3.3 ListCaopy
LigtCopy issa)ListTerm that returns a List which contains shallow copies of all items of another List.

— |<otherList> : ListTerm [1]

e tTstwhich shattbetopied:

7.15.12 Map-related terms

7.15.12.1 Description

Similar to the List related terms, OTX provides terms which operate on Map values. There is a term to
identify the size of a map (MapGetSize), query terms for testing the existence of a key or a value in a map
(MapContainskKey and MapContainsValue) and a term for extracting a list of keys out of a map
(MapGetKeyList).

© 1SO 2012 — All rights reserved 135

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.12.2 Syntax

Figure 61 shows the syntax of the Map related term types.

ListTerm ListTemm| MapTem
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
MapGetKeyList MapGetValueList MapCopy
«XSDelement» «XSDelement» «XSDelement»
+ map: MapTem + map: MapTem + otherMap: MapTem
BooleanTerm BooleanTerm IntegerTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
MapContainsKey MapContainsValue MapGetSize
«XSDelement» «XSDelement» «XSDelement»
+ map: MapTerm + map: MapTem + map: MapTerm
+ key: SimpleTem + value: Tem

Figure 61 — Data model view: Map related terms

7.15.12.3 §emantics
7.15.12.3.1|MapContainsKey
MapContainsKey is a BooleanTerm that returns true if and“only if the given key is contained in the Malp.

— <map>| : MapTerm [1]

The Map which shall be checked for the <key=>(to“exist in one of the Map items.

— <key>| : SimpleTerm [1]

The kel whose existence in the Mapsshall be tested.

Associated [checker rules:

— Core_(Chk040 — type-safe MapContainsKey

7.15.12.3.2|MapContainsValue

MapContainsValue is a BooleanTerm that returns true if and only if the given value is contained in| the
Map.

— <map> : MapTerm [1]

The Map which shall be checked for the <value> to exist in one of the Map items.

— <value> : Term [1]

The value whose existence in the Map shall be tested. If the <value> represents a reference, then it is
tested whether the reference is part of the Map or not.

Associated checker rules:

— Core_Chk041 — type-safe MapContainsValue

136 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.12.3.3 MapGetSize

Map

GetSize is an IntegerTerm that returns the number of items contained in a Map.

<map> : MapTerm [1]

The Map whose size shall be computed.

7.15.12.3.4 MapGetKeyList

MapGetKeylListis a ListTerm that returns a new L ist which shall contain the keys of a given Map. In the

spe

7.15

Map
of a

7.15

Map

7.15

7.15

For
Get

7.15

Cial case when the Map is empty, the returned List shall also be empty.

<map> : MapTerm [1]

The Map whose keys shall be extracted into a List.

.12.3.5 MapGetValuelList

given Map. In the special case when the Map is empty, the returned List shall also be empty.

<map> : MapTerm [1]

The Map whose values shall be extracted into a List.

.12.3.6 MapCopy

<otherMap> : MapTerm [1]
The Map which shall be copied.

.13 Exception-related térms

.13.1 Description

ExceptioenQualifier, GetExceptionText and GetStackTrace are provided.

.132\Syntax

Figure62strows thesymtax of the Exceptionm Tetatet termT types:

StringTerm StringTerm StringTerm ListTerm
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GetExceptionOriginatorNode GetExceptionText GetExceptionQualifier GetStackTrace

«X8Delement» «XSDelement» «XSDelement» «XSDelement»
+ exception: ExceptionTerm + exception: ExceptionTerm + exception: ExceptionTerm + exception: ExceptionTerm

Figure 62 — Data model view: Exception related terms

© I1SO 2012 — All rights reserved

Copy is a MapTerm that returns a Map which contains shallow copies of all items of another Mgp.

GetValuelList is a ListTerm that returns a new List which shall contain shallow copies of the values

treating exceptions in a catch block of a handler, the getter terms GetExceptionOriginatorNode,

137

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.13.3 Semantics

7.15.13.3.1

GetExceptionOriginatorNode

GetExceptionOriginatorNode is a StringTerm which returns the id of the node that caused the
exception (cf. 7.13.2).

<exception> : ExceptionTerm [1]

Represents the exception.

7.15.13.3.2
GetExcept

<exce

Repreg

IMPORTAN
explicit ex
represental

7.15.13.3.3
GetExcept

<exce

Repres
7.15.13.3.4

GetExcept
given exce
zeroth elen
sequence.
contain the

"myCompar

<exce

Repreg

7.15.14 Val

GetExceptionQualifier
rionQualifier is a StringTerm which returns the exception qualifier (cf. A.3.5).

btion> - ExceptionTerm [1]

ents the exception.

T — Exception qualifiers are only defined for explicit exceptions\(in OTX Core, the (
Ception is UserException). Therefore, GetExceptionQualifie¥r shall return the st

fion of the exception's data type when it is applied on implicit exceptions.
GetExceptionText

[ionText is a StringTerm which returns the exception.text (cf. A.3.5).

btion> - ExceptionTerm [1]

ents the exception.

GetStackTrace

fionStack is a ListTerm (List-of-String) which shall return the procedure call stack f

tion. The call stack shall be determined when the exception is created, not when it is thrown.
ent of the list shall represent‘the top of the stack, which is the last procedure invocation in
['ypically, this is the point at"which the exception was created and thrown. The returned list §
fully qualified names of the invoked procedures, e.g. {"'myCompany.otx. myProcedur
y.otx.main"}.

btion> : ExceptionTerm [1]

ents the excéption.

dity concept related terms

nly
Fing

br a
The
the
hall

7.15.14.1

escription

The only validity concept related term IsValid allows testing a validity for its truth value with respect to the
current context.

138

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.15.14.2 Syntax

Figure 63 shows the syntax of the validity related term types.

«XSDcomplexType»
Contact

«XSDattribute»
+ contactld: xsd:string

«XSDelement»
+ name: xsd:string

+ _age:—xsdiintegerf0-1]

Figure 63 — Data model view: Validity concept related terms

7.18.14.3 Semantics

IsMalid is a BooleanTerm which returns true if and only if the validity term-referenced by PtxLink is
true with respect to the current context (cf. 6.8). This term shall be used if two or more validity tefms shall be
pullgd together by e.g. LogicAnd, LogicOr or LogicXor, etc. The term«shall also be applicable {o Boolean
conjext variables or global Boolean constants (in this case, the IsVakid term is semantically ejuivalent to
the BooleanValue term).

— |validity : OtxLink [1]

The validity term (or Boolean context variable) that shall*be tested.
Associated checker rules:

— Core_Chk053 — no dangling OtxLink-associations

— Core_Chk013 — correct refereneing of validities

7.13.14.4 Example

The| example below shows the definition of a validity called ""DieseldrivenConvertible' which is valid if
and| only if validities "*Convertible’™ and "‘Dieseldriven' are both valid (the latter validifies are not
further specified for this example).

© 1SO 2012 — All rights reserved 139

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

EXAMPLE Sample of OTX-file "ValidityTermCombinationExample.otx"

<?xml version="1.0" encoding="UTF-8"?>

<otx xmlns="http://iso.org/0TX/1.0.0" id="23"
name="ValidityTermCombinationExample™
package=""org.iso.otx.examples™
version="1_.0"
timestamp=""2009-10-20T14:40:10"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'>

<validities>
<validity name="Convertible™ id="23-v1">
<specification>True if vehicle under test is a convertible</specification>
<!-- Validity term goes here -->
</validity>

<valfdity name="Dieseldriven” id="23-v2">
<specification>True if vehicle under test is a Diesel</specification>
<11- Validity term goes here -->
</validity>
<valfdity name="DieseldrivenConvertible™ id="23-v3">
<rgalisation xsi:type="LogicAnd">
term xsi:type="IsValid” validity="Convertible" />
term xsi:type="IsValid"” validity="Dieseldriven” />
</yealisation>
</validity>
</validities>
</otx>

7.16 Universal types

7.16.1 Ovdrview
In 7.16 are|described auxiliary types, elements or attributes that are used by various types in the OTX g¢ata

model. Singe they cannot be associated to one specific featlre of the model only, they are described in|this
comprehensive section.

7.16.2 PackageName

7.16.2.1 Description

The PackapeName type prescribes the-syntax for package naming. It is used by the package attribute of the
<otx> rootlelement (see 7.3) and the'<¥mport> element (see 7.4).

7.16.2.2 Yyntax

Figure 64 shows the syntax-of the PackageName type.

xsd:string

«XSDsimpleType»
PackageName

tags
derivation = restriction
pattem = [a-zA-Z][a-zA-Z0-9]*(\.[a-zA-Z][a-zA-Z0-9]*)*

Figure 64 — Data model view: PackageName
7.16.2.3 Semantics

The simple type PackageName is derived from xsd:string. The type restricts the value space of
xsd:string by the regular expression "'[a-zA-Z][a-zA-Z0-9]1*(\.[a-zA-Z][a-zA-Z0-9]*)*".

140 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

As a consequence, a PackageName is segmented into one or more alphanumeric chunks which are
separated from each other by a dot (**.""). Each chunk has to start with a letter; all following characters have
to be alphanumeric. This guarantees and enforces a uniform naming scheme for package names to which
OTX authors shall obey.

Valid uses of this naming scheme allow identifiers like e.g. "com.MyCompany.OtxSequences5" or
"My50txSequences'’, whereas invalid uses are e.g. ""com._MyCompany.0TX", ""mesSéquencesTest",
""9thPackage" or just the empty string.

7.16.3 OtxName and OtxLink

7.14.3.1 Description

The| two interrelated simple types OtxName and OtxLink are described here. In various places|of the OTX
data model, OtxName is used for naming entities like signatures, procedures or validities’as well as global and
locql declarations. Its counterpart OtxLink is used for referring to these named entities (document-internally
or gross-documents). Both OtxName and OtxLink represent restrictions on the_syntax of such [names and
references, as described below.

7.14.3.2 Syntax

Figyre 65 shows the syntax of the OtxName and OtxLink types.

xsd:string xsf:string
«XSDsimpleType» «XSDsimpleType»
OtxName OtxLink
tags tags
derivation = restriction derivation = restriction
pattem = _*[a-zA-Z][a-zA-Z0-9_T* pattem = (_*[a-zA-Z][a-zA-Z0-9_1*:)?_*[a-zA-Z][a-zA-Z(3-9_]*

Figure 65 —<Data model view: OtxName and OtxLink

7.14.3.3 Semantics

7.14.3.3.1 OtxName

The| simple type OtxName is derived from xsd:string. The type restricts the value space of xgd:string
by g regular expression pattern **_*[a-zA-Z][a-zA-Z0-9_T]*".

As & consequence, an OtxName has to start with a letter (optionally preceded by any number of|underscore
chafacters)rall following characters have to be alphanumeric. This guarantees and enforces a unifprm naming
schéme to which OTX authors shall obey.

Valid uses of this naming scheme allow identifiers like e.g. "MyProcedure™, *'__ validityl0", "PI" or

"' y2" whereas invalid uses are e.g. ""'9x"’, " or just the empty string.

7.16.3.3.2 OtxLink

The simple type OtxLink is derived from xsd:string. The type restricts the value space of xsd:string
by a regular expression pattern "(_*[a-zA-Z][a-zA-Z0-9_1*:)?_*[a-zA-Z][a-zA-Z0-9_]*".

According to the pattern, the OtxLink syntax allows two ways of referring to a named entity, depending on

whether the target entity is defined in the same document, or whether it is defined in an external document
(which was imported to the local document as specified in 7.4). In the first case the syntax equals the

© 1SO 2012 — All rights reserved 141

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

OtxName syntax. In the latter case the syntax equals "OtxName:OtxName': Here the first part shall be the
name of the prefix assigned to the particular OTX document where the target entity is defined, the second part
(after the colon) is the entity name itself.

Valid uses of this naming scheme allow document-internal references like e.g. ""MyProcedure' or "'x", but
also cross-document references to entities defined in external documents like e.g. ""'sig:-mySignature5" or
""constants:PI".

Associated checker rules:

— Core_Chk053 — no dangling OtxLink associations

— Core_(¢hk005 — no use of undefined import prefixes

7.16.4 NamedAndSpecified

7.16.4.1 Description

The abstrag¢t type NamedAndSpecified is used by every type that shall be identifiable, nameable, carry a
specificatiop text and/or supply meta-data. Types using this are e.g. all Node types; variable, constant Jand
parameter declarations, the Procedure and Signature types or the Otx root type itself.

7.16.4.2 Syntax

Figure 66 shows the syntax of the NamedAndSpecified type.

«XSDcomplexType»
NamedAndSpecified xsd:string
«XSDattribute» “XSDS‘;";::TVP‘”
+ id: Otxid
+ name: OtxName [0..1]
«XSDelement» tags
+ specification: xsd:string [0..1] derivation = restriction
+ metaData: MetaData [041] pattem = [a-zA-Z0-9\W\\\|:_#/]+

Figure 66 — Datamodel view: NamedAndSpecified

7.16.4.3 Semantics

The abstragt type NamedAndSpeciTied has the following semantic properties:

— id - ptxid [1]

The attribute value represents the unique identifier of a NamedAndSpecified element. It shall be unjque
among| all other ids in the same OTX document. This constraint is verifiable through XML schéma
validatipn(by'<xsd: key> constraints specified in the OTX schema, refer to Annex F). The Otxld type is
a pattefn-restriction of the xsd:string simple type. The value space of the attribute is restricted by the
regular expression "[a-zA-Z0-9\\\-_\]:_#/]+", which allows the basic letters, numbers as well as
a set of delimiters.

The id attribute is useful concerning versioning, differencing or concurrent editing of OTX documents. It
facilitates traceability of changes that occurred in between different versions of an OTX document
because an element can still be identified even after having been moved or changed thoroughly.
Concerning id value allocation, OTX authoring applications shall provide the following:

— When a new NamedAndSpecified element is created, the application shall generate and assign a
unique id-value to the element's id attribute.

142 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

-2:2012(E)

— After creation, applications shall not alter id values anymore. An id shall stay with its element as an

inherent part as long as the element exists — it shall not be changed even if the element
the contents of the element are changed.

is moved or

— For each copy of an element, a new unique id value shall be generated and assigned to the copy.

— The allocation and handling of id values should happen automatically in the background. No user
action should be required (manual creation of unique ids is an awkward task; beyond that this is not

acceptable concerning useability). Id values should not be shown to the user and, most
they shall not be editable by the user.

importantly,

NOTE Certainly users can bypass these rules by editing OTX-documents directly (e.g. with a simple text editor).

Therefore, these rules only make sense as long as the user works within an OTX authoring app
provided, optimal process stability concerning change traceability is ensured.

Recommendation:

The standard requires ids to be unique only within the scope of their local OTX-document.

larger scales, e.g. uniqueness among a full set of OTX documents, projects,-company wide
or even universal uniqueness. To achieve this, it is beneficial to use Uniyversally Unique Identi
for the i1d attribute, as specified by [RFC 4122].

name : OtxName [O0..1]

Represents the OTX name of a NamedAndSpecified element.
IMPORTANT — Since some NamedAndSpecified types require the name attribute whilg
not, there are special rules defined for those_types who require it. The rules are e
<xsd:key> restrictions in the OTX Schema, compare Annex F.

<specification> : xsd:string [0..4J]

This allows adding a descriptive specification to the NamedAndSpeci fied element.

<metaData> : MetaData [0.-1]

ication. This

Fven better

process stability concerning change traceability can be gained when guaramteeing id unigueness on

unigueness
iers (UUID)

e others do
nforced by

e 7.16.5.).

Procedure
2 additional,

removable

If meta-data is added to a NamedAndSpecified element, the <metaData> shall be used (s§
7.14.5 MetaData
7.14.5.1 Description
The| complex type‘MetaData is used by several types in the OTX data model, e.g. by the Otx, |
and|Node typesy which contain a <metaData> element. The MetaData type allows tools to storg
maiply toolspecific data.
IMPORTANT — By definition, any meta-data in an OTX document shall be ignorable or even
at ary-Hmre-withottehangirgthe-orgiraHegic-eftheprocedures—contatred:

7.16.5.2 Syntax

Figure 67 shows the syntax of the MetaData type.

There are no syntactical constraints on the meta-data itself (however, there are semantic constraints).
Syntactically, each <data> element in a <metaData> element can consist of

a simple string (since Data is a mixed type),

© I1SO 2012 — All rights reserved

143

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

<xsd:any> wildcard element in the OTX schema) or

document (see [W3C XLink:2010]).

an embedded XML document valid to an arbitrary XML schema (see AnyContent which is an

XLink attributes which allow pointing to meta-data sources which may be contained in an external

The validation setting processContents="1ax" is set for the <xsd:any> wildcard, which is used for
arbitrary XML style meta-data. This setting means that XML content will not be taken into account by
validators unless the corresponding XML schema for the XML content is given (e.g. by
xml :schemalLocation attribute).

7.16.5.3 §
Since the ¢
understood
in a way tha

A <metaD4g
describes tk

— key :

This attribute contains a key used by applications to identify a specific meta-data item. All key na

have t(
schem

— Xmime

This of
by app
must 4
(MIME
Extens

«XSDcomplexType» ~ data| xsSDcomplexType» ~ «XSDany»
MetaData 0* Data 0.1 AnyContent
«XSDattribute»
+ key: xsd:string «X8DattributeGro..«
+ =>: contentType [0.1] - «groupref» specialAtirs
«XSDgny» _ base:"xmlbase
+ XLinkAttributes lang®xml:lang

A+ + +

space: xml:space
id: xml:id

Figure 67 — Data model view: MetaData

emantics

ontained meta-data is potentially tool-specific and n@n-standardized, it is not guaranteed tdg
by every OTX conform application. This is why the*data must not be used by any OTX applicg
t the behaviour of the procedure logic is changed:

ta> element is merely a container for anqarbitrary-length list of <data> elements. The follo
e meaning of the corresponding Data.type:

xsd:Name [1]

be unique within the scope)of the surrounding <metadata> element. This is ensured by
h validation (by <xsd:key> constraints specified in the OTX schema, refer to Annex F.

fcontentType & xsd:string [0..1]
tional attributeyistuised to describe the content type of the meta-data. This information can be U
e formatted' according to the rules given in RFC 2045, Multipurpose Internet Mail Extens

Part ‘One: Format of Internet Message Bodies and RFC 2046, Multipurpose Internet
ons‘(MIME) Part Two: Media Types.

the

be
tion

ving

mes
ML

sed

ications e.g:»to start a viewer which can handle this kind of content, etc. The content type sfring

ons
Mail

— xml:specialAttrs (xml:base, xml:lang, xml:space, xml:id [all optional])

This attribute group is referenced by the Data complex type; it is externally defined by the "xml:"
namespace http://www.w3.0rg/XML/1998/namespace, standardized by the W3C. For OTX meta-data,
these attributes can optionally be used to specify some further properties of the data, e.g. defining the
language of the contents, how spaces should be treated, etc. For detailed information about the use of

the attr

ibutes, refer to the following W3C recommendations:

— [W3C XMLNS:2009]: General information about the xml : namespace.

— [W3C XML:2008]: Attributes xml = lang and xml = space.

— [W3C XMLBASE:2009]: Attribute xml -base.

144

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

XLinkAttributes

The optional XLink attributes as specified by [W3C XLink:2010] allow pointing to a URI of an external
resource which contains the actual meta-data. It is also possible to point to particular places inside of the
external resource.

Recommendation:

If the XLink attributes are set, any other content between the <data> and </data> markup may be
used as an alternative when the external resource cannot be accessed; otherwise it may be ignored.

Mixed Content (Text or any XML data)

7.16

The
eler

EXA

The
doc
whi

XHT
XHT

The content of <data> elements has no semantic defined by the OTX standard.)Semantics are
application specific and need to be defined separately.

.5.4 Example

example below shows different uses of <data> elements in the <metaData> section of|the <otx>
hent.

MPLE Sample of OTX-file "MetaDataExample.otx"

?xml version="1.0" encoding="UTF-8"?>
otx xmIns="http://iso.org/0TX/1.0.0" id="24"
name=""MetaDataExample"

package="org.iso.otx.examples"

version="1.0"

timestamp="2009-10-20T14:40:10"
xmIns:xmime="http://www.w3.0rg/2005/05/xmImime"
xmIns:xlink=" http://www.w3.0rg/1999/xlink"
xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instahee'>

<metaData>
<data key="k1" xlink:href="__/images/imagel. jpeg” xmime:contentType="image/jpeg"” />
<data key="k2" xmime:contentType="application/xhtml+xml">
<html xmIns="http://www.w3.0rg/1999/xhrtml" xml:lang="en” lang="en">
<head><title>XHTML document</title></head>

<body>
<p>This is an example of meta-data, structured after XML rules</p>
</body>
</html>
</data>
<data key="k3" xml:lang="ef-GB" xml:space="preserve>Some simple meta information</data>
<data key="k4"><I[CDAIA[MOre meta <data>]]></data>
</metaData>
/otx>
first use (key="k1") is an xlink to an external document, there is a hint for the content fype of this

iment (xmdMe :contentType=""image/jpeg"’). The second (key="k2'") is an example fo[meta-data
h has XML form, in this case it is a XHTML document. Since there is no schema location gjven for the
ML, Content in this example, validation will succeed even if the data were no valid (but well formed)
[ML. “The third use (key="k3") shows meta-data that is represented by static string content. The last use

sho

ostnata data contaimad in an nnarend CNOATA cactinn
T o>c

~
Voo o toto CoOT o e O i o T o fgar oc o ooy r 7y ot

7.16.6 Variable Access

7.16.6.1 Description

The

variable access types represent the counterpart of the dereferencing terms (see 7.15.3) which are used to

read the actual value stored in a variable or constant. By contrast, variable access types are used by OTX
nodes and actions when the variable container itself is of primary interest, not the value stored in it. This is the
case e.g. in an Assignment action: The calculated value given by the <term> will be assigned to the
variable identified by <result> (cf. 7.14.4). Another example is the Loop (for-loop configuration) node with

© 1SO 2012 — All rights reserved 145

http://www.w3.org/2005/05/xmlmime
http://www.w3.org/2005/05/xmlmime
https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

its <counter> element, which identifies the Integer variable which shall contain the current iteration
number at runtime (cf. 7.13.4.3). In all of these cases, the current value of the variable is not relevant.

Since all Variable subtypes have uniform syntax and semantics, a general description applying to all types
is provided hereby.

7.16.6.2 Syntax

Figure 68 shows the syntax of the Variable types.

Extensioninterface
«XSDcomplexType» «XSDcomplexType»
Variable Path
«XSDattribute» «XSDelement»
+ name: OtxLink + stepByName: StringTem
«XSDelement» + stepBylndex: NumericTerm
+ path: Path [0..1]

i

[[[|
«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
BooleanVarlable IntegerVarlable FloatVarlable StringVarlable

«XSDcomplexType» «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
ByteFieldVariable Listvariable MapVariable ExceptionVariable

Figure 68 — Data model view: Variable types

7.16.6.3 Semantics

The properties of all Variable types have the following semantics:

— name [OtxLink [1]

Contaifs the OtxLink to the variable which is of interest. For getting access to data which res|des
deeper| within a complex data structure.like a List or Map, the <path> element shall be utilized which
points {o the data inside of the structure.

— <pathp : Path [0..1]

The el¢ment addresses patts 0f complex structures like List or Map. It is built out of a series of ingex-
and name-steps which allow navigate into the structure (by utilizing <xsd:choice> [1._.*]):

— <gtepBylndex>~: NumericTerm [1]

This step of\a)<path> shall be used for locations addressed by index. Items in a List and items|in a

MI with-lnteger keys shall be in this way. Float values shall be truncated.

— <gtepByName> : StringTerm [1]

This step of a <path> shall be used for addressing locations by name. Items in a Map with String
keys shall be addressed in this way.

The OTX data model does not allow any Variable subtype to refer to immutable data (constants).
Associated checker rules:

— Core_Chk053 — no dangling OtxLink associations
— Core_Chk050 — type-safe variable and constant usage

— Core_Chk051 — immutability of constants, input parameters and context variables

146 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

Throws:

— OutOfBoundsException

Only if there is a <path>: If the <path> points to a location which has not been allocated (like a list index
exceeding list length, or a map key which is not part of the map).

NOTE In a graphical OTX editor, variable types should be displayed in the common notation form used by all major
programming languages. E.g. for a BooleanVariable type for a variable b, the display should simply show b; for a
BooleanVariable with a <path> pointing to index i in a list L of Booleans, L[1] should be displayed, etc.

7.16.6.4 Example

Thelexample below shows an IntegerVariable term which is used as the in an Assignmeni|action. The
nanme attribute identifies the integer variable i. The value assigned to i is the value of afother| variable j,
whig¢h is dereferenced by using the IntegerValue term (see 7.15.3).

EXAMPLE 1 Sample of OTX-file "VariableAccessExample.otx"

Faction i1d="al">
<specification>Assignment i:=j</specification>

<term xsi:type="IntegerValue”™ valueOf="j" />
</realisation>
k/action>

Corsider the other example in the OTX snippet below. TheAssigment action addresses the target of the
resylt by using the name attribute with a <path>. The target resides in the complex structure L|(a List of
Map), more specifically at L[1,"keyl'"]. The Assigrment also uses the valueOf attripute in the
IntiegerValue term for reading the constant namedc.

EXAMPLE 2 Sample of OTX-file "VariableAccessExample.otx"

declarations>

<specification>A list of maps of/{sEring:integer} items</specification>
</variable>

/declarations>

flow>
<action id="al">
<specification>Assign ‘the value of c to L[1, "keyl"]</specification>
i<result xsi:type=IntegerVariable” name="1">" "~~~ ~~ "7
: <path>
1 <stepBylndex xsi:type="IntegerLiteral” value="1" />
: <stepByName xsi:type="StringLiteral™ value="keyl" />
1 </path>
result> oo
<termuxsi:type=""IntegerValue" valueOf="c" />
</realisation>
</dction>
L/ Flow>

7.16.7 Declarations

7.16.7.1 Overview

Test sequences need a facility for storing data that represents the state of the program during execution. In
OTX, data is stored in global constants, document variables, context variables, procedure parameters, local
constants and local variables. These are declared in the global declaration block, the parameter declaration
blocks or local declaration blocks, as shown in the overview given by Figure 69.

© 1SO 2012 — All rights reserved 147

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

+ variable: DocumentVariableDeclaration
+ context: ContextVariableDeclaration

+ visibility: Visibility [0..1]

«XSDcomplexType» Declaration| Declaration Declaration
GlobalDeclarations «XSDcomplexType» «XSDcomplexType» «XSDcomplexType»
GlobalConstantDeclaration DocumentVariableDeclaration ContextVariableDeclaration
«XSDelement»
+ constant: GlobalConstantDeclaration «XSDattribute» «XSDattribute» «XSDattribute»

+ visibility: Visibility [0..1]

+ visibility: Visibility [0..1]

«XSDcomplexType»
ParameterDeclarations

Declaration|

«XSDcomplexType»

«XSDelement»
+ inParam: InParameterDeclaration
+ inoutParam: InOutParameterDeclaration

InParameterDeclaration

Declaration|

«XSDcomplexType»
InOutParameterDeclaration

Declaration|

«XSDcomplexType»
OutParameterDeclaration

+ outParam: [OutParameterDeclaration
«XSDcomplexType» Declaration Declaration
LocalDeclarations «XSDcomplexType» «XSDcomplexType»

«XSDelementy)
+ constant: CpnstantDeclaration
+ variable: VariableDeclaration

ConstantDeclaration

VariableDeclaration

Figure 69 — Data model view: Declarations

NOTE The XSD complex types GlobalDeclarations, ParametersDeclafations and LocalDeclarations
are of <xsdijchoice> [1..*] content-type, which is not explicitly shown in the figure above.

Since it myst be possible for nodes in the procedure flow to refer «te'the data, every declaration carrigs a

globally/locglly unique identifier. To every identifier, an OTX data type may be assigned. The declaration [and
the data tyge assignment are specified in the following.

7.16.7.2 Declaration

7.16.7.2.1 |Description

The Declaration type is used for declarations in the global, local and parameter declaration blocks. [The
visibility of declared identifiers depends an ‘the location of the declaration and of the visibility modifier {see
7.16.8).

7.16.7.2.2 |Syntax

Generally spoken, every declaration is composed of a name (the identifier) and a data type. Compare tq| the

Declarat

«XSDeomplexType»
Declaration

NamedAndSpecified

on type in Figure 70, which is the base for all parameter, constant and variable declaration types.

realisation
0.1 |

«XSDcomplexType»
DeclarationRealisation 1

dataType

Extensioninterface

«XSDcomplexType»
DataType

7.16.7.2.3 Semantics

Figure 70 — Data model view: Declaration

Declarations shall be processed before procedure execution. Memory needs to be reserved for the data,
according to the data type. The properties of the abstract Declaration type have the following semantics:

id : Otxld [1] (derived from NamedAndSpecified, see 7.16.4)

This represents a declaration's id. It shall be unique among all other ids in a document. Please refer to
7.16.4 for details concerning ids in OTX documents.

148

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

7.16

For
ider
An
Figu
con

Not

ISO 13209

name : OtxName [1] (derived from NamedAndSpecified, see 7.16.4)

-2:2012(E)

The value of the attribute represents the human readable identifier for the data. For global declarations,
the name must be unique among all global identifiers of the same document. For local declarations, it
must be unique among all declaration identifiers in the procedure. These constraints are verifiable
through XML schema validation (by <xsd:key> constraints specified in the OTX schema, refer to

Annex F).

<specification> : xsd:string [0..1] (derived from NamedAndSpecified, see 7.

16.4)

The static string content of this element shall be used to specify the purpose of the declaration for the

I : I I , £i I I 1 :
Associated checker rules:

— Core_Chk007 — have specification if no realisation exists

<realisation> : DeclarationRealisation [0..1]

For declarations at specification stage, having a name for the declaration.is sufficient. Fo
stage, the declaration needs a data type assignment. The optional <reablisation> elemen
exactly this task — it contains a <dataType> sub element:

— <dataType> : DataType [1]
This element represents the data type for the declared data. It can be chosen out 0
available OTX data types; these are derived from the)abstract DataType complex type. S

about data type assignment.

The runtime characteristics of all data typesirequired by the OTX Core are fully specified i

.7.3 Datatype assignment

each OTX data type, there are different rules concerning the declaration and especially the ini
tifier values.

pverview about the possible.data types that can be assigned to an identifier at declaration tim¢
re 71. This subclause_defines the syntax of data type assignment. A definition of the OTX
Cerning internal data.type structure and value space of each data type is provided by Annex A.

e that there is assub-categorisation into SimpleType, ComplexType, CountableType and E

CountableType is the base for all data types that can be used as keys in maps (see below).

Exception is the base type for all special exception types (cf. 7.13.4.7 on the Hand ler node)).

below).

realisation
is used for

f the list of
ee 7.16.7.3

N Annex A.

ialisation of

P is given in
data types

Kception:

SimpleType and ComplexType are abstract types; they basically serve the clarity of the data model.

© I1SO 2012 — All rights reserved

149

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

NamedAndSpecified|

«XSDcomplexType»
Declaration

_| «XSDcomplexT... :]
SimpleType

«XSDcomplexType»

realisation?ﬂ.ﬂ

«XSDcomplexType»
DeclarationRealisation

dataType Y 1

Extensioninterface

«XSDcomplexType»
DataType

Boolean

«XSDcomplexType»

Float

«XSDcomplexType»

«XSDcomplexT...
CountableType

Integer

«XSDcomplexType»
String

«XSDcomplexType»

ByteField

«XSDcomplexType»

«XSDcomplexT...
ComplexType :]

Map

«XSDcomplexType»

«XSDcomplexTy...
Exception

2

<+

List

«XSDcomplexType»
OutOfBoundsException

- «XSDcomplexType»
TypeMIsmatchException

«XSDcomplexTy...
UserException

- «XSDcomplexType»
ArithmeticException

Figure 71 — Overview: Data type hierarchy in declaration blocks

| «XSDcomplexType»
InvalidReferenceException

- «XSDcomplexType»
AmbiguousCallException

L~ «XSDcomplexType»
C rentModificati ti

Since there|are differences for each data type assignment concerning initialisation, the following sub sectfons
provide detgiled specifications.

7.16.7.3.1

7.16.7.3.1.1

This XSD cpmplex type is designed for declaring and optionally initialising Boolean identifiers.

7.16.7.3.1.7 Syntax

Figure 72 shows the syntax of the Boolean data type declaration.

Boolean Declaration

Description

150

SmpieType BoofeanTenm
«XSDcomplexType» «XSDcomplexType»
Boolean BooleanLiteral
«XSDelement» «XSDattribute»

+ init: BooleanLiteral [0..1] +

value: xsd:boolean

Figure 72 — Declaration and Initialisation of a Boolean

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.1.3 Semantics

Assigns the Boolean data type to an identifier in a declaration. For the definition of the OTX Boolean data
type, refer to Annex A.

— <init> : BooleanLiteral [0..1]

— This optional element stands for the initialisation of the identifier at declaration time. Initialisation is done
by a hard-coded Boolean literal (true, false) in the OTX document.

— value : xsd:boolean [1]

This attribute contains the Boolean value. Refer to [W3C XSD:2004] for an overview| of allowed
values for xsd:-boolean.

IMPORTANT — If the Boolean declaration is not explicitly initialized (omitted <inhit> element), the
default value False shall apply implicitly.

7.14.7.3.2 Float Declaration

7.14.7.3.2.1 Description

Thig XSD complex type is designed for declaring and optionally initializing Float identifiers.

7.14.7.3.2.2 Syntax

Figyre 73 shows the syntax of the Float data type deelaration.

Simple Type FloatTerm
«XSDcomplexTypge» «XSDcomplexType»
Float FloatLiteral
«XSDelement» «XSDattribute»
+ init: FloatLiteral [0..1] + value: xsd:double

Figure 73 — Declaration and Initialisation of a Float

7.14.7.3.2.3 Semantics

Ass|gns the Float data type to an identifier in a declaration. For the definition of the OTX Float data type,
plegse refer to Anhex A.

— |<inkt> : FloatLiteral [0..1]

This optional element stands for the initialisation of the identifier at declaration time. Initialisafion is done

(172N W aVa Yo YIAN-HGY) O Nl +
VU.1lJdco JTITUIiCc Ur A UULUITITTIL.

lo, 1] P PR =l | Lk 1L
Uy aliala=tuucu ™udt meTar(t.y.

— value : xsd:double [1]

This attribute contains the Float value. See [W3C XSD:2004] for an overview of allowed values for
xsd:double.

IMPORTANT — If the Float declaration is not explicitly initialized (omitted <init> element), the
default value 0.0 shall apply implicitly.

© 1SO 2012 — All rights reserved 151

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.3

Integer Declaration

7.16.7.3.3.1 Description

This XSD complex type is designed for declaring and optionally initializing Integer identifiers.

7.16.7.3.3.2 Syntax

Figure 74 shows the syntax of the Integer data type declaration.

7.16.7.3.3.3

Assigns thg
type, pleass

— <init
This of
by a hg

— va

Th
for

IMPORTAN
default val

7.16.7.3.4

7.16.7.3.4.1

This XSD ¢

CountableType IntegerTerm
«XSDcomplexType» «XSDcomplexType»
Integer IntegerLiteral
«XSDelement» «XSDattribute»
+ init: Integerliteral [0..1] + value: xsd:long

Figure 74 — Declaration and Initialisation of an Integer.

Semantics

Integer data type to an identifier in a declaration. For the definition of the OTX Integer
refer to Annex A.

> - IntegerLiteral [0..1]

tional element stands for the initialisation of the identifier at declaration time. Initialisation is d
rd-coded Integer literal (e.g. "42") in the OTX decument.

lue : xsd:long [1]

is attribute contains the integer value.Refer to [W3C XSD:2004] for an overview of allowed va
xsd:long.

T — If the Integer declaration is not explicitly initialized (omitted <init> element),
e O shall apply implicitly.
String Declaration

Description

bmplexitype is designed for declaring and optionally initializing String identifiers.

7.16.7.3.4.2

Hata

one

ues

the

Syntax

Figure 75 shows the syntax of the String data type declaration.

152

CountableType StringTerm
«XSDcomplexType» «XSDcomplexType»
String StringLiteral
«XSDelement» «XSDattribute»
+ init: StringLiteral [0..1] + value: xsd:string

Figure 75 — Declaration and Initialisation of a String

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.4.3 Semantics

Assigns the String data type to an identifier in a declaration. For the definition of the OTX String data type,
refer to Annex A.

<init> : StringLiteral [0..1]

This optional element stands for the initialisation of the identifier at declaration time. Initialisation is done

by a hard-coded String literal (e.g. "Hello World!") in the OTX document.

— value : xsd:string [1]

IMP

empty string default value

7.16
7.16
This

7.146

Figu

7.16

AsS
datd

This attribute contains the String value. Refer to [W3C XSD:2004] for an overview of alld
for xsd:string.

ORTANT — If the String declaration is not explicitly initialized (omitted <imit> ele
"' shall apply implicitly.

.7.3.5 ByteField Declaration
.7.35.1 Description
XSD complex type is designed for declaring and optionally initializing ByteField identifiers.
.7.3.5.2 Syntax
re 76 shows the syntax of the ByteField data type'declaration.
ConplexType ByteFieldTerm|
«XSDcomplexType» «XSDcomplexType»
ByteField ByteFieldLiteral
«XSDelemerit» «XSDattribute»
+ init: ByteFieldLiteral [0..1] + value: xsd:hexBinary

Figure 76 — Declaration and initialisation of a ByteField

.7.3.5.3 Semantics

gns the ByteFteld data type to an identifier in a declaration. For the definition of the OTX
type, referto"Annex A.

<init> : ByteFieldLiteral [0..1]

wed values

ment), the

ByteField

This optional element stands for the initialisation of the identifier at declaration time. Initialisa

ion is done

by a hexadecimal literal (e.g. "2AFB") in the OTX document.

— value : xsd:hexBinary [1]

This attribute contains the ByteField value. Refer to [W3C XSD:2004] for an overview of allowed

values for xsd:-hexBinary.

IMPORTANT — If the ByteField declaration is not explicitly initialized (omitted <init> element), the
default shall be an empty ByteField.

© I1SO 2012 — All rights reserved

153

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.16.7.3.6

7.16.7.3.6.1

-2:2012(E)

List Declaration

Description

This XSD complex type is designed for declaring and optionally initializing list identifiers.

7.16.7.3.6.2

Syntax

Figure 77 shows the syntax of the L ist data type declaration.

COMPIBXTYPS trsrTomm)

«XSDcomplexType»
List

«XSDcomplexType»
ListLiteral

«XSDelement»
+ itemType: DataType
+ init: ListLiteral [0..1]

«XSDelement»
+ itemType: DataType
+ items: Listltems[0..1]

«XSDcomplexType»
Listitems

«XSDelement»
+ item: Term [1..%]

Figure 77 — Declaration and Initialisation of a List

7.16.7.3.6.3 Semantics

This assignp the List data type to an identifier in a declaration. For the definition of the OTX List data type,

refer to Annex A.

— <itemfype> : DataType [1]
Defineg the data type of all items in the list, in a flat or recursive way (list of strings, list of floats, list of [ists
of integers ...). For this definition, the DataType complexdype itself is reused recursively. All items [that
are ocqurring in the initialisation (<init> element) have:to be of the type stated here.
Associgated checker rules:

— Cdgre_Chk034 — no use of init in list item type definition

— <initp : ListLiteral [0..1]

This ogtional element stands for thesinitialisation of the identifier at declaration time. Initialisation is done
by using a recursive mechanism:'E.g. a list of lists of integers is initialised by using list literals for gach
list-typg¢ item again, and so on. Cempare to notations "{1, 4, 2}" or "{'Hello’, 'World', '!'}" or even "{{2, 3}| {4,
5, 6}}" ised by some programming languages.

For details on the Listhiteral term type, refer to 7.15.2.3.6.

Associated checkerfrules:

— Cdre_ChkQ35 — ListLiteral item type matches list declaration item type

IMPORTANT-=- If the List declaration is not explicitly initialized (omitted <init> element), an enpty
list shall be created and assigned to the List identifier.

7.16.7.3.7 Map Declaration

7.16.7.3.7.1 Description

This XSD complex type is designed for declaring and optionally initializing Map identifiers.

154 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.7.2 Syntax

Figure 78 shows the syntax of the Map data type declaration.

ConplexType MapTem
«XSDcomplexType» «XSDcomplexType»
Map MaplLiteral «XSDcomplexType» «XSDcomplexType»
Mapltems Mapltem
«XSDelement» «XSDelement»
+ keyType: CountableType + keyType: CountableType «XSDelement» «XSDelement»
+ valueType: DataType + valueType: DataType + item: Mapltem [1..] + key: SimpleTerm
+ init: MapLiteral [0..1] + items: Mapltems[0..1] + value: Tem
Cicaure 7 1 itiali 1
=gt f 3—9@%&@—%&“@943—54&9—

7.14.7.3.7.3 Semantics

Thig assigns the Map data type to an identifier in a declaration. For the definition of-the OTX Map data type,
refef to Annex A.
— |<keyType> : CountableType [1]

Defines the data type for the keys of all key/value pairs in the declared map. The key typg must be a
simple, countable type. All keys that are occurring in the initialisation*(<init> element) have [to be of the

type stated here.
Associated checker rules:

— Core_Chk044 — no use of init in map key type definition

— |<valueType> : DataType [1]

Defines the data type for all values of the keéy/value pairs in the map, flat or recursive (map of strings,
map of list of floats, map of maps of integers ...). For this definition, the DataType complex fype itself is
reused recursively. All values that are occurring in the initialisation (<init> element) have 1o be of the
type stated here.

Associated checker rules:

— Core_Chk045 — no use of init in map value type definition

— |<init> : MapLiteral [O0..1]
This optional element stands for the initialisation of the identifier at declaration time. Initialisafion is done
by using a rectirsive mechanism: E.g. a map of maps of integers is initialised by using map literals for the
value of eachikey/value pair in the map, and so on.

For details on the MapLiteral term type, refer to 7.15.2.3.7.

Associated checker rules:

— Core_Chk035 — ListLiteral item type matches list declaration item type

IMPORTANT — If the Map declaration is not explicitly initialized (omitted <init> element), an empty
map shall be created and assigned to the Map identifier.

© 1SO 2012 — All rights reserved 155

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.8 Exception Declaration

7.16.7.3.8.1 Description
This XSD complex type is designed for declaring Exception identifiers. In OTX, there are two types of

exceptions — the implicit and the explicit exceptions, as specified by Annex A. Only explicit exceptions (i.e.
UserException) are initializable at declaration time, as explained below.

7.16.7.3.8.2 Syntax

Figure 79 s[TOWS e Synmtax of exeption data Iype dectarations.

ConplexType | «XSDcomplexType»
«XSDcomplexType» <— OutOfBoundsException
Exception

«XSDcomplexType»
TypeMismatchException

|| «XSDcomplexType»

ArithmeticException

«XSDcomplexType» || «XSDcomplexType»
UserException InvalldReferenceException

«XSDelement»

+ init: UserExceptionLiteral [0..1] - «XSDcomplexType»

AmbiguousCallException

| | «XSDcomplexType»
ConcurrentModificationException

Figure 79 — Declaration and Initialisation of a Map

7.16.7.3.8.3 Semantics
Explicit ex¢eptions
The only explicit exception data type is the UsgrException type. It has the following semantic properties

— <initp : UserExceptionLiteral* [0..1]

This optional element stands forthe initialisation of the UserException at declaration time. Initialisgtion
is dond by a UserExceptionbiteral (cf. 7.15.2.3.8):

— <qualifier> : StringLiteral [1]

This string literal allows for the author to provide a short qualifier for the exception initialisation. A

— <text>\T StringLiteral [1]

IMPORTANT — If the UserException declaration is not explicitly initialized (omitted <init> element),
the exception value shall stay undefined. If such an undefined exception is accessed at a later point in
atest sequence, an InvalidReferenceException will be thrown (cf. 7.15.3).

156 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

Imp

ISO 13209-

licit exceptions

2:2012(E)

The different types of implicit exceptions have no special properties concerning declaration and initialisation.
Therefore, only a brief overview about the different implicit exception types is given here. Exception variables
can be declared in order to use them as handles for caught exceptions (see Handler node in 7.13.4.7. and

Cat

chingFlowin 7.13.4.8).

OutOfBoundsException

If memory shall be accessed illegally (e.g. if an index for accessing a list item is greater than the length of
the list, or if a key is not contained in a map, etc.), this exception is thrown. It is also thrown in cases

IMP
initi
valy

[alized at déclaration time (no <init> element). Since OTX does not define an implicit i

WNere an overilow occUrs, e.g. when an integer value exceeds the 1imit of the Integer value sp
an Add operation.
TypeMismatchException

This is thrown if e.g. a string value shall be assigned to an integer without correcttype convers

ArithmeticException

For the arithmetic terms, there are situations where this exception iscthrewn. Examples for
Divide or the Modulo term.

InvalidReferenceException

Thrown if an invalid value is used, e.g. if a variable's valué shall be accessed, but no valu
assigned to the variable before. This applies to data types'which might have no reasonable d¢
Since all data types the OTX Core but the Exception ‘types are initialized (explicitly or im
applies only for the Exception types themselves.;OTX extensions allowing other implicitly
data types shall also specify this type of exception for relevant actions or terms.

AmbiguousCal IException

ce through

ion, etc.

this are the

e has been
efault value.
licitly), this
Lininitialized

Thrown if during an indirect procedure_call (i.e. a call through a signature) two or more inpjplementing

procedures are valid at the same time-(i.e. the call is ambiguous).

ConcurrentModificationException

This exception occurs whenp the collection value of a for-each-loop is modified during loog
Such madifications can happen from the outside (e.g. from other parallel lanes) or in the lo
actions derived from ‘ListModifier or MapModifier count as a collection modification. |
this may cause serious inconsistencies which can be handled by catching this exception.

ORTANT —<Fheé base Exception type and the implicit exception types can not b¢

be

ccessed to which no exception value has been assigned before. A value can be assi
impFicit exception variable by catching a thrown exception.

e for exceptions also, an InvalidReferenceException is thrown whenever an exce

execution.
bp itself. All
h any case,

2 explicitly
htialisation
ption shall
jned to an

Refer to Annex A for further information on OTX Core exception types.

© I1SO 2012 — All rights reserved

157

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.7.3.9 Comprehensive Example

EXAMPLE Sample of OTX-file "DataTypeAssignmentExample.otx"

<declarations>
<variable name="bool" 1d="26-d1">
<specification>A simple Boolean</specification>
<realisation><dataType xsi:type=""Boolean"><init value="true" /></dataType></realisation>
</variable>
<variable name="i" 1d="26-d2">
<specification>A simple Integer</specification>
<realisation><dataType xsi:type="Integer'><init value="42" /></dataType></realisation>
</variable>

<variable name="T1" i1d="26-d3">
<spe¢ification>A simple Float</specification>
<realisation><dataType xsi:type="Float"><init value="0.234" /></dataType></realisation>
</varigble>
<varialple name="b" i1d="26-d4">
<speg¢ification>A simple Bytefield</specification>
<realisation><dataType xsi:type="ByteField"><init value="01CB2AC6" /></dataType></realisation>
</varigble>
<varialple name="s" id="26-d5">
<speg¢ification>A simple String</specification>
<realisation><dataType xsi:type="String"><init value="Hello World!" /></dataType></realisation>
</varigble>
<varialple name="myList"” 1d="26-d6"">
<speg¢ification>A List of 2 Integers: {4, 2}</specification>
<realisation>
<dataType xsi:type="List'>
itemType xsi:type="Integer"™ />
init>
<itemType xsi:type="Integer"” />
<items>
<item xsi:type="IntegerLiteral” value="4" />
<item xsi:type="IntegerLiteral” value="2" />
</items>
/init>
</dJataType>
</reglisation>
</varigble>
<variaple name="myMap" id="26-d7'">
<speg¢ification>Map of Lists of Integers: {"k1":{1\2}," "k2":{3} }</specification>
<realisation>
<djtaType xsi:type="Map">
fkeyType xsi:type="String” />
fvalueType xsi:type="List"><itemType xsh:type="Integer"” /></valueType>
init>
<keyType xsi:type="String” />
<valueType xsi:type="List"><itemType xsi:type="Integer"” /></valueType>
<items>
<item>
<key xsi:type="StringlLiteral” value="k1" />
<value xsi:type=“ListLiteral’>
<itemType xsi type="Integer" />
<items>
<item xSixtype="IntegerLiteral” value="1" />
<item xs¥:type="IntegerLiteral” value="2" />
</items=
</value>
</iten>
<item>
<key xsi:type="StringLiteral” value="k2" />
<value xsi:type="ListLiteral">
<itemType xsi:type="Integer" />
<items>
<item xsi:type="IntegerLiteral” value="3" />
</items>
</value>
</item>
</items>
</init>
</dataType>
</realisation>
</variable>

<variable name="e
<realisation>
<dataType xsi:type="ArithmeticException” />
</realisation>
</variable>
</declarations>

1d=""26-d8"">

158 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

7.16.8 Visibility

7.16.8.1 Description

In OTX, global elements such as procedures, signatures, global constants, context variables, document
variables or validity terms are marked by a visibility attribute. Its value determines whether other
documents may use the marked entity or not (e.g. call a procedure, use a validity term or read a global
constant, etc.). There are three visibility levels which are specified in the following.

7.16.8.2 Syntax

The

7.14
The

and
xsd

7.146

7.16

The

syntax of the Visibi lity enumeration is shown in Figure 80.

string

«enumeration»
Visibility

PACKAGE
PRIVATE
PUBLIC

Figure 80 — The Visibility enumeration

.8.3 Semantics

visibi lity attribute of procedures, signatures, global constants, context variables, docume
validity terms is of type Visibility. The typedis-an enumeration restriction on the vall
:string. The allowed values "PRIVATE", ""PAGKAGE" and ""PUBLIC" induce the following §

"PRIVATE": The associated entity shall be accessible only by the same document. This me
entity shall be invisible for all other OT X documents.

"PACKAGE": The associated entity shall be accessible only by OTX documents belon
same package like the local” document. This means that the entity shall be invisi
OTX documents belonging,to:ether packages.

"PUBLIC": The constantis accessible by any other OTX document.

.9 Flow

.9.1 Description

Frow® type is a container for a sequence of OTX nodes which represents a section of prq

nt variables
e space of
emantics:

Ans that the

jing to the
ble for all

gram logic.

Nod

es_enclosed by Flow-type elements have to be executed one by one, in the order of their g

ppearance.

Furthermore, compound nodes such as Group, Loop, Branch etc. use Flow-type elements recursively. This
constitutes the structured programming characteristic of OTX (cf. 6.3).

9) The OTX term "flow" is an equivalent to the term "block” commonly used in programming which is usually expressed
by "{" and "}" brackets enclosing a sequence of statements.

© I1SO 2012 — All rights reserved

159

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209

7.16.9.2 S

-2:2012(E)

yntax

Figure 81 shows the syntax of the Flow type.

«XSDchoice»
Nodes

¢

«XSDcomplexTyp...
Flow

action | 1

1 1 branch | 1 1 mutex | 1 handler| 1

group loop parallel 0..1

Nodk

«XSDcomp...
Action

ConpoundNode
«XSDcomp...

CompoundNode ConmpoundNode

«XSDcomp...

CompoundNode
«XSDcomp...

CompoundNode | | CompoundNode

«XSDcomp...
Handler

«XSDcomp... «XSDcomp...

Group Loop Branch Parallel MutexGroup

The type H
optionally fq

g

]

7.16.9.3

When cont
appearance
such a nest

Figure 82 s

NOTE B
needed becd
non-existing
special end-q

The diagran

mind that e¢ch nodeshown in the diagrams may be simple or compound again.

The right-s
executed i

break | 1 continue | 1 throw | 1 retum ‘[“IterminateLanes| 1

10

EndNode EndNode EndNode EndNode EndN|

«XSDcomp...
Break

«XSDcomp...
Return

«XSDcomp...
Continue

«XSDcomp...

Throw TerminateLa

bde

«XSDcomgy...
nhes

Figure 81 — Data model view: Flow

low dictates a special order of nodes: Any number 6f“normal nodes (XSDchoice Nodes
llowed by one end node (XSDchoice EndNodes).

emantics

ol is passed to a flow, the contained *nedes shall be executed one by one, in the orde
. Compound nodes (see 7.13.4) may-contain one or many nested flows — after the executio
ed flow in a compound node, contrelNs passed back to the next node in the nesting flow.

nows a behavioural descriptiaon\ef the Flow type.

Fven if shown in the activity'diagram, there is no explicit Start node type in the OTX data model. This is
use the first node in a flow has the role to be the first node executed, implicitly. The same applies fo
explicit End node type-=)the last node in the flow marks the end of flow execution, also implicitly. Onl
f-flow behaviour, there-are explicit EndNode types (Continue, Break, Throw and Return, refer to 7.1

N to the left.shows a simple flow. Nodes 1 through N shall be executed in top-down order. Kee

de diagram shows a stand-alone flow, nested within an outer flow. After "Node 1" has b
the ‘outer flow, control is passed to "Node 2", the nested flow, which is executed recursi

) is

r of
n of

not
the
for
3.5).

pin

een
ely:

"Node 2.1"

EndNode, control is passed back to the outer flow, where the successive "Node 3" is executed.

160

I £ P P T B~ WP~ T) - 1 1 " ’ o ’ . s
S UIC TITSL, TONMUWEU Uy INUUE Z.£2 -, WITILIT TS UIC 1ast TTOUT 1T e SEYUCETICLE. oSl UIETE 15 T1U t:)xp|ICIt

© I1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

start outer flow

=z
é%é.

7.16

The

An
Log

EXA

start flow
Nested Flow Node 2
Node 1
start nested flow
\l/
'
(Node 2.1)
Node 2 \|/
C Node 2.2)
Node N
end nested flow
end flow

C5 m

end outer flow

@<

Figure 82 — Behavieural descriptions: Flow

.9.4 Example
example below shows a procedure level Flow with three nodes in it:

A\ction node (id=""actionl’),.a Loop node (id="loopl"™) and a Return node (id=""r|
p contains a single Action-nede (id=""action2").

MPLE Sample of OFX-file "FlowExample.otx"

?xml version="1.0"{_eftfeoding=""UTF-8"?>

otx xmIns="httpz7Ars0.0rg/0TX/1.0.0" id=""27"
name=""FlowExampie""
package=""orgMso.otx.examples"
version="1_0"
timestanp="2009-10-20T14:40:10" >

<procedures>
<procedure name="main" visibility="PUBLIC" id="27-pl">
<specification>Demonstration of nested flows</specification>

etl'). The

realisation

<action id="actionl" />
<loop id="loopl" name="MyLoop">
<specification>Loop with nested flow</specification>
<realisation>
<configuration id="looplconfig"” />
<flow>
<action id="action2" />
</flow>
</realisation>
</loop>
1 <return id="retl" />

</procedure>
</procedures>

</otx>

© I1SO 2012 — All rights reserved

161

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

ISO 13209-2:2012(E)

A.1 Over

Annex A
(normative)

OTX data types

view

The OTX C
This annex
cannot prov

In the OTX
they appea

Otherwise t
data types.
specifies e
(syntactical
syntactically

integer, what its range of values is, that it can take a negative value etc.

NOTE N
prescribed b

IMPORTAN
See [W3C

A.2 Simy

A.2.1 Gen

Simple data
data types.

A.2.2 Bod

OTX Boold
in the value

OTX adhergs to the'W3C definition of the xsd:boolean data type.

pre defines a fixed set of data types which shall be supported by every OTX compliant applical
describes the semantic features that the mere syntax description of the UML or XSD data~m
ide.

e.g. as return types for terms; this allows a basic type safety ensured by XML validation.

he technical OTX data model does not provide any hint about the exact ¢haracteristics of the (¢
Since the technical data model specifies the syntax of OTX documents;snot the semantics, it
g. how an identifier is marked to be an Integer by just stating the data type-name "Inte

y), or the data model allows in which term an integer is allowed as argument (also
) — however, there is no hint about the very integer charactetistics, what makes an intege

lew data types can be added to OTX by designing extension schemas. The data type extension mechan
the OTX Core are specified in Annex D.

SD:2004].

le data types

eral

types are scalars which store*one single value. They can be used as building blocks for com

lean

an values have’a value space of {"true", "false", "1", "0"}. Even though "1" and "0" are conta
space, treating Boolean values like numeric values directly is not allowed by OTX10),

ion.
bdel

data model, data types appear only concerning the syntax of declaring identifiers-in’declaratior, or

DTX
bnly
ger"
bnly
Fan

SMS

T — Concerning OTX data types, OTX adheres closely to the W3C definition of data types.

plex

ned

A.2.3 Inte

ger

The OTX Integer data type shall correspond to the term "integer" in a purely mathematical sense. For this
reason itis not allowed to use overflow mechanisms or Byte manipulation actions on Integers.

Since OTX adheres to the W3C definition of the xsd: long data type, the value space is nonetheless
restricted; it ranges from -9223372036854775808 (-2°°) to 9223372036854775807 (2°*-1). This corresponds
to 64-bit two's complement memory representation of the integer.

10) This is unlike some other languages like C, where Boolean values are treated as numeric values, e.g. "true" == 1,
"false" == 0. Random arithmetic operations can then be applied to Boolean values, which shall not be possible in OTX
because it endangers type safety.

162 © 1SO 2012 — All rights reserved

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

A.2

ISO 13209

.4 Float

Floating point numbers are used to store non integer numeric values.

-2:2012(E)

OTX adheres to the W3C definition of the xsd:double data type, which corresponds to the IEEE double-
precision 64-bit floating point type in [IEEE 754:2008]. The basic value space of xsd:double consists of the
values m x 2°, where m is an integer whose absolute value is less than 2°% and eis an integer between -1075

and

970, inclusive.

IMPORTANT — There are additional special values of xsd:double (0, -0, INF, -INF and NaN). OTX

apf ications must be ahle to handle these too
A.2l5 String
A $tring stores an arbitrary number of characters. Every character in an OTX -String sh

corn

for further information regarding character sets.

oT

A.3

A.3
Con

The)
comn
arbi

A.3

An
valu

The
a by

psponding UCS/Unicode code point, which is an integer. See UCS [ISO/IEC 10646:2011] or U

adheres to the W3C definition of the xsd:string data type.

Complex data types

1 General
plex data types are composed using simple data types’and other complex types.
OTX Core specifies two container data types List and Map which can store a set of items of

plex type. Furthermore, there is the complex ByteField data type which is used to store
rary size.

2 ByteField

DTX ByteField is an arbitraryrlength sequence of bytes. Each byte is an unsigned eight bit
e space ranging from 0x00(to)OxFF (0 to 255).

bytes in a ByteField of byte size n shall be ordered from left to right, where the leftmost byt
te index of 0 and the-rightmost byte shall have a byte index of n-1, as demonstrated in Table 4

Table A.1 — Byte order in a ByteField

Byte index Byte O

0x87

Byte 1
OX7F

Byte 2
0x02

Byte n-1

Value OxFF

all have a
hicode @ or

simple and
raw data of

alue with a

b shall have
\.1.

The bits in each byte of the ByteField are ordered from the least significant bit (LSB) to the most significant
bit (MSB), see Table A.2.

Table A.2 — Bit positions of a byte in a ByteField

Bit position

Bit 7 (MSB) Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bi

10 (LSB)

Value 128 64 32 16 8 4

1

OTX ByteField values can be used to store raw data in memory representation which is used in the ECU.
There is no assertion made for any interpretation of that raw data; a ByteField can therefore describe any

kind

of data, from simple integer data up to encoded text etc.

© I1SO 2012 — All rights reserved

163

https://standardsiso.com/api/?name=a0b344480a43d7c2fa8758bbba0806ad

	Contents

	Foreword

	Introduction
	1 Scope
	2 Normative references
	3 Terms, definitions and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Requirements
	4.1 General
	4.2 Basic principles for requirements definition
	4.3 Clustering of requirements
	4.4 Requirement priorities
	4.5 General format and language aspects
	4.6 Test sequence development process support
	4.7 Language feature details
	4.7.1 Declarations
	4.7.2 Data types
	4.7.3 Expressions

	4.8 Boundaries

	5 Introduction to modelling in UML and XSD
	5.1 General aspects
	5.2 Class diagrams
	5.2.1 General
	5.2.2 Class
	5.2.3 Inheritance relationships
	5.2.4 Aggregation relationships

	5.3 Mapping to the XML Schema Definition language (XSD)
	5.3.1 General
	5.3.2 Mapping rules
	5.3.3 Full mapping example
	5.3.3.1 UML model example
	5.3.3.2 UML to XML translation
	5.3.3.3 XSD result
	5.3.3.4 XML instance document

	6 OTX principles
	6.1 General
	6.2 XML format
	6.3 Imperative and structured programming paradigm
	6.4 Graphical authoring of OTX sequences
	6.5 Specification/Realisation concept
	6.6 Modular OTX extension concept and OTX-based runtime architecture
	6.7 Context concept
	6.8 Validities concept
	6.9 Signature concept

	7 OTX Core data model specification
	7.1 General
	7.2 High-level overview of the OTX Core data model
	7.3 Document root
	7.3.1 Description
	7.3.2 Syntax
	7.3.3 Semantics
	7.3.4 Example

	7.4 Imports
	7.4.1 Description
	7.4.2 Syntax
	7.4.3 Semantics
	7.4.4 Example

	7.5 Global declarations
	7.5.1 Description
	7.5.2 Syntax
	7.5.3 Semantics
	7.5.4 Example

	7.6 Validity terms
	7.6.1 Description
	7.6.2 Syntax
	7.6.3 Semantics
	7.6.4 Example

	7.7 Signatures
	7.7.1 Description
	7.7.2 Syntax
	7.7.3 Semantics

	7.8 Procedure signatures
	7.8.1 Description
	7.8.2 Syntax
	7.8.3 Semantics
	7.8.4 Example

	7.9 Procedures
	7.9.1 Description
	7.9.2 Syntax
	7.9.3 Semantics
	7.9.4 Example

	7.10 Floating comments
	7.10.1 Description
	7.10.2 Syntax
	7.10.3 Semantics
	7.10.4 Example

	7.11 Parameter declarations
	7.11.1 Description
	7.11.2 Syntax
	7.11.3 Semantics
	7.11.4 Example

	7.12 Local declarations
	7.12.1 Description
	7.12.2 Syntax
	7.12.3 Semantics
	7.12.4 Example

	7.13 Nodes
	7.13.1 Overview
	7.13.2 Node
	7.13.2.1 Description
	7.13.2.2 Syntax
	7.13.2.3 Semantics

	7.13.3 Action node
	7.13.3.1 Description
	7.13.3.2 Syntax
	7.13.3.3 Semantics
	7.13.3.4 Example

	7.13.4 Compound nodes
	7.13.4.1 Overview
	7.13.4.2 Group node
	7.13.4.2.1 Description
	7.13.4.2.2 Syntax
	7.13.4.2.3 Semantics
	7.13.4.2.4 Example

	7.13.4.3 Loop node
	7.13.4.3.1 Description
	7.13.4.3.2 Syntax
	7.13.4.3.3 Semantics
	7.13.4.3.4 Example

	7.13.4.4 Branch node
	7.13.4.4.1 Description
	7.13.4.4.2 Syntax
	7.13.4.4.3 Semantics
	7.13.4.4.4 Example

	7.13.4.5 Parallel node
	7.13.4.5.1 Description
	7.13.4.5.2 Syntax
	7.13.4.5.3 Semantics
	7.13.4.5.4 Example

	7.13.4.6 MutexGroup node
	7.13.4.6.1 Description
	7.13.4.6.2 Syntax
	7.13.4.6.3 Semantics
	7.13.4.6.4 Example

	7.13.4.7 Handler node
	7.13.4.7.1 Description
	7.13.4.7.2 Syntax
	7.13.4.7.3 Semantics
	7.13.4.7.4 Example

	7.13.4.8 CatchingFlow
	7.13.4.8.1 Description
	7.13.4.8.2 Syntax
	7.13.4.8.3 Semantics
	7.13.4.8.4 Example

	7.13.4.9 Header type
	7.13.4.9.1 Description
	7.13.4.9.2 Syntax
	7.13.4.9.3 Semantics
	7.13.4.9.4 Example

	7.13.5 End Nodes
	7.13.5.1 Overview
	7.13.5.2 Return node
	7.13.5.2.1 Description
	7.13.5.2.2 Syntax
	7.13.5.2.3 Semantics
	7.13.5.2.4 Example

	7.13.5.3 Continue node
	7.13.5.3.1 Description
	7.13.5.3.2 Syntax
	7.13.5.3.3 Semantics

	7.13.5.4 Break node
	7.13.5.4.1 Description
	7.13.5.4.2 Syntax
	7.13.5.4.3 Semantics

	7.13.5.5 Throw Node
	7.13.5.5.1 Description
	7.13.5.5.2 Syntax
	7.13.5.5.3 Semantics
	7.13.5.5.4 Example

	7.13.5.6 TerminateLanes node
	7.13.5.6.1 Description
	7.13.5.6.2 Syntax
	7.13.5.6.3 Semantics
	7.13.5.6.4 Example

	7.14 Actions
	7.14.1 Overview
	7.14.2 Syntax
	7.14.3 General considerations
	7.14.4 Assignment
	7.14.4.1 Description
	7.14.4.2 Syntax
	7.14.4.3 Semantics

	7.14.5 ProcedureCall
	7.14.5.1 Description
	7.14.5.2 Syntax
	7.14.5.3 Semantics
	7.14.5.4 Example

	7.14.6 ByteFieldModifiers
	7.14.6.1 Overview
	7.14.6.2 ShiftRight
	7.14.6.2.1 Description
	7.14.6.2.2 Syntax
	7.14.6.2.3 Semantics

	7.14.6.3 ShiftLeft
	7.14.6.3.1 Description
	7.14.6.3.2 Syntax
	7.14.6.3.3 Semantics

	7.14.6.4 SetBit
	7.14.6.4.1 Description
	7.14.6.4.2 Syntax
	7.14.6.4.3 Semantics

	7.14.6.5 ReplaceSubByteField
	7.14.6.5.1 Description
	7.14.6.5.2 Syntax
	7.14.6.5.3 Semantics

	7.14.6.6 AppendByteField
	7.14.6.6.1 Description
	7.14.6.6.2 Syntax
	7.14.6.6.3 Semantics

	7.14.7 ListModifiers
	7.14.7.1 Overview
	7.14.7.2 ListConcatenate
	7.14.7.2.1 Description
	7.14.7.2.2 Syntax
	7.14.7.2.3 Semantics

	7.14.7.3 ListAppendItems
	7.14.7.3.1 Description
	7.14.7.3.2 Syntax
	7.14.7.3.3 Semantics

	7.14.7.4 ListInsertItems
	7.14.7.4.1 Description
	7.14.7.4.2 Syntax
	7.14.7.4.3 Semantics

	7.14.7.5 ListRemoveItems
	7.14.7.5.1 Description
	7.14.7.5.2 Syntax
	7.14.7.5.3 Semantics

	7.14.7.6 ListClear
	7.14.7.6.1 Description
	7.14.7.6.2 Syntax
	7.14.7.6.3 Semantics

	7.14.8 MapModifiers
	7.14.8.1 Overview
	7.14.8.2 MapUnion
	7.14.8.2.1 Description
	7.14.8.2.2 Syntax
	7.14.8.2.3 Semantics

	7.14.8.3 MapPutItems
	7.14.8.3.1 Description
	7.14.8.3.2 Syntax
	7.14.8.3.3 Semantics

	7.14.8.4 MapRemoveItems
	7.14.8.4.1 Description
	7.14.8.4.2 Syntax
	7.14.8.4.3 Semantics

	7.14.8.5 MapClear
	7.14.8.5.1 Description
	7.14.8.5.2 Syntax
	7.14.8.5.3 Semantics

	7.15 Terms
	7.15.1 Overview
	7.15.2 Literal terms
	7.15.2.1 Description
	7.15.2.2 Syntax
	7.15.2.3 Semantics
	7.15.2.3.1 Boolean Literal
	7.15.2.3.2 IntegerLiteral
	7.15.2.3.3 FloatLiteral
	7.15.2.3.4 StringLiteral
	7.15.2.3.5 ByteFieldLiteral
	7.15.2.3.6 ListLiteral
	7.15.2.3.7 MapLiteral
	7.15.2.3.8 UserExceptionLiteral

	7.15.2.4 Example

	7.15.3 Dereferencing terms
	7.15.3.1 Description
	7.15.3.2 Syntax
	7.15.3.3 Semantics
	7.15.3.4 Example

	7.15.4 Creation terms
	7.15.4.1 Description
	7.15.4.2 Syntax
	7.15.4.3 Semantics
	7.15.4.3.1 ListCreate
	7.15.4.3.2 MapCreate
	7.15.4.3.3 UserExceptionCreate

	7.15.4.4 Example

	7.15.5 Conversion terms
	7.15.5.1 Description
	7.15.5.2 Syntax
	7.15.5.3 Semantics
	7.15.5.3.1 ToBoolean
	7.15.5.3.2 ToInteger
	7.15.5.3.3 ToFloat
	7.15.5.3.4 ToByteField
	7.15.5.3.5 ToString

	7.15.5.4 Example

	7.15.6 Integer conversion terms
	7.15.6.1 Description
	7.15.6.2 Syntax
	7.15.6.3 Semantics
	7.15.6.3.1 DecodeInteger
	7.15.6.3.2 EncodeInteger

	7.15.6.4 Example

	7.15.7 Logic operations
	7.15.7.1 Description
	7.15.7.2 Syntax
	7.15.7.3 Semantics
	7.15.7.3.1 LogicAnd
	7.15.7.3.2 LogicOr
	7.15.7.3.3 LogicXor
	7.15.7.3.4 LogicNot

	7.15.7.4 Example

	7.15.8 Relational operations
	7.15.8.1 Description
	7.15.8.2 Syntax
	7.15.8.3 Semantics
	7.15.8.3.1 IsEqual
	7.15.8.3.2 IsNotEqual
	7.15.8.3.3 IsLess
	7.15.8.3.4 IsGreater
	7.15.8.3.5 IsGreaterOrEqual
	7.15.8.3.6 IsLessOrEqual

	7.15.8.4 Example

	7.15.9 Mathematical operations
	7.15.9.1 Description
	7.15.9.2 Syntax
	7.15.9.3 Semantics
	7.15.9.3.1 General
	7.15.9.3.2 Add
	7.15.9.3.3 Subtract
	7.15.9.3.4 Multiply
	7.15.9.3.5 Divide
	7.15.9.3.6 Modulo
	7.15.9.3.7 AbsoluteValue
	7.15.9.3.8 Round
	7.15.9.3.9 Negate

	7.15.9.4 Example

	7.15.10 ByteField operations
	7.15.10.1 Description
	7.15.10.2 Syntax
	7.15.10.3 Semantics
	7.15.10.3.1 BitwiseAnd
	7.15.10.3.2 BitwiseOr
	7.15.10.3.3 BitwiseXor
	7.15.10.3.4 BitwiseNot
	7.15.10.3.5 ByteFieldGetSize
	7.15.10.3.6 SubByteField
	7.15.10.3.7 GetBit

	7.15.11 List-related terms
	7.15.11.1 Description
	7.15.11.2 Syntax
	7.15.11.3 Semantics
	7.15.11.3.1 ListGetLength
	7.15.11.3.2 ListContainsValue
	7.15.11.3.3 ListCopy

	7.15.12 Map-related terms
	7.15.12.1 Description
	7.15.12.2 Syntax
	7.15.12.3 Semantics
	7.15.12.3.1 MapContainsKey
	7.15.12.3.2 MapContainsValue
	7.15.12.3.3 MapGetSize
	7.15.12.3.4 MapGetKeyList
	7.15.12.3.5 MapGetValueList
	7.15.12.3.6 MapCopy

	7.15.13 Exception-related terms
	7.15.13.1 Description
	7.15.13.2 Syntax
	7.15.13.3 Semantics
	7.15.13.3.1 GetExceptionOriginatorNode
	7.15.13.3.2 GetExceptionQualifier
	7.15.13.3.3 GetExceptionText
	7.15.13.3.4 GetStackTrace

	7.15.14 Validity concept related terms
	7.15.14.1 Description
	7.15.14.2 Syntax
	7.15.14.3 Semantics
	7.15.14.4 Example

	7.16 Universal types
	7.16.1 Overview
	7.16.2 PackageName
	7.16.2.1 Description
	7.16.2.2 Syntax
	7.16.2.3 Semantics

	7.16.3 OtxName and OtxLink
	7.16.3.1 Description
	7.16.3.2 Syntax
	7.16.3.3 Semantics
	7.16.3.3.1 OtxName
	7.16.3.3.2 OtxLink

	7.16.4 NamedAndSpecified
	7.16.4.1 Description
	7.16.4.2 Syntax
	7.16.4.3 Semantics

	7.16.5 MetaData
	7.16.5.1 Description
	7.16.5.2 Syntax
	7.16.5.3 Semantics
	7.16.5.4 Example

	7.16.6 Variable Access
	7.16.6.1 Description
	7.16.6.2 Syntax
	7.16.6.3 Semantics
	7.16.6.4 Example

	7.16.7 Declarations
	7.16.7.1 Overview
	7.16.7.2 Declaration
	7.16.7.2.1 Description
	7.16.7.2.2 Syntax
	7.16.7.2.3 Semantics

	7.16.7.3 Data type assignment
	7.16.7.3.1 Boolean Declaration
	7.16.7.3.1.1 Description
	7.16.7.3.1.2 Syntax
	7.16.7.3.1.3 Semantics

	7.16.7.3.2 Float Declaration
	7.16.7.3.2.1 Description
	7.16.7.3.2.2 Syntax
	7.16.7.3.2.3 Semantics

	7.16.7.3.3 Integer Declaration
	7.16.7.3.3.1 Description
	7.16.7.3.3.2 Syntax
	7.16.7.3.3.3 Semantics

	7.16.7.3.4 String Declaration
	7.16.7.3.4.1 Description
	7.16.7.3.4.2 Syntax
	7.16.7.3.4.3 Semantics

	7.16.7.3.5 ByteField Declaration
	7.16.7.3.5.1 Description
	7.16.7.3.5.2 Syntax
	7.16.7.3.5.3 Semantics

	7.16.7.3.6 List Declaration
	7.16.7.3.6.1 Description
	7.16.7.3.6.2 Syntax
	7.16.7.3.6.3 Semantics

	7.16.7.3.7 Map Declaration
	7.16.7.3.7.1 Description
	7.16.7.3.7.2 Syntax
	7.16.7.3.7.3 Semantics

	7.16.7.3.8 Exception Declaration
	7.16.7.3.8.1 Description
	7.16.7.3.8.2 Syntax
	7.16.7.3.8.3 Semantics

	7.16.7.3.9 Comprehensive Example

	7.16.8 Visibility
	7.16.8.1 Description
	7.16.8.2 Syntax
	7.16.8.3 Semantics

	7.16.9 Flow
	7.16.9.1 Description
	7.16.9.2 Syntax
	7.16.9.3 Semantics
	7.16.9.4 Example

	Annex A (normative) OTX data types

	A.1 Overview

	A.2 Simple data types

	A.2.1 General

	A.2.2 Boolean

	A.2.3 Integer

	A.2.4 Float

	A.2.5 String

	A.3 Complex data types

	A.3.1 General

	A.3.2 ByteField

	A.3.3 List

	A.3.4 Map

	A.3.5 Exception

	A.4 Nesting of data type domains

	Annex B (normative) Scope and memory allocation

	B.1 Overview

	B.2 Global identifiers

	B.2.1 Global constants

	B.2.2 Document variables

	B.2.3 Context variables

	B.3 Local identifiers

	B.3.1 Procedure parameters

	B.3.2 Local constants

	B.3.3 Local variables

	Annex C (normative) Comprehensive checker rule listing

	C.1 Overview

	C.2 Listing

	Annex D (normative) Extension mechanism

	D.1 Overview

	D.2 Adding new data type declarations, variables and terms

	D.3 Adding new actions

	D.4
Reusing OTX Core data model features within actions and terms
	D.5 XSD of the example extension

	Annex E (normative) Schema annotations for exception handling

	E.1 Overview

	E.2 Example

	Annex F (normative) XML Schemas

	F.1 Access to ISO 13209-2 OTX XML schema definition file

	F.2 OTX Core Schema (Core/otx.xsd)

	F.3 OTX AppInfo Schema (Auxiliaries/otxAppInfo.xsd)

	Bibliography

