TECHNICAL ISO/IEC

REPORT

TR

10176

Fourth edition
2003-04-15

Information technology — Guidelines for
the preparation of programming language

standards

Technologies de l'information ' Lignes directrices pour la gréparation

des normes des langages de-programmation

Refe

ISO/IEC TR 1
v g =e ©

rence number
0176:2003(E)

ISO/IEC 2003

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2003

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 22749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

i © ISO/IEC 2003 — Al rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Contents Page
0T =NV o iv
L e Yo 11T o2 oY o v
1 £ o o .- 1
2 NOIrMative refEreNCEeSccciiiieeeerere e e mn e ee e e ee s nn e e e ne e e e gt s M e e e e e smneeenn 1
3 Terms and definitions mee e b e e 1
4 LT T =T 11 4TS o Y N 7
4.1 Guidelines for the form and content of standardsccceeroirrrrccerne e e e 7
4.1.1 Guideline: The general frameWoOrKccccoemriemiiiicccsssneerensersssssssssseeess fbassesssmseeeesessssssssdseesssssssnnnns 7
41.2 Guideline: Definitions of syntax and semantics..........ccccoivniiiiiine s dimnn e, 8
4.1.3 Guidelines on the use of character sets.........ccccooieieiiimrniccccces e s 8
4.1.4 Guideline: Error detection requirements............ccccceieemmmnnnicsn e e 14
4.1.8 Guideline: Exception detection requirementsccccoer e i3 S e 17
4.1.¢ Guideline: Static detection of exceptionscoooeeeeiece L e s 19
41.1 Guideline: Recovery from non-fatal errors and exceptionsccccvriicnmincisrnnnnnicen s, 20
4.1.8 Guideline: Requirements on user documentation5......cccccvrriririiinccccssecrrer e e 20
4.1.9 Guideline: Provision of processor options i iiccccccsseceree s csssseseeeesssssssssadeeesessssnneens 20
4.1.10 Guideline: Processor-defined limitscccce oy e e e me e e e 22
4.2 Guidelines on presentation............ccccccceereee S sssn e ssnr e e e ee e s e n e e e e e s s nann 23
4.21 Guideline: TerminNolOgyccuiiicccerrerrrrrires et herereressssssssssseeesssssssssssmssssessssssssssnsssssssssssssnnedeessssssssnnnns 23
4.2.32 Guideline: Presentation of SoUrce programs..........ccccccerrrriicccssnemeersnssssssssssssessssssssssssnsse dersssssssssnens 24
4.3 Guidelines on processor depPeNdEeNCE.cccoemmrrrrriririrssmnrre e e ressesssnmnr e e s e essssssssnmesessssssss fensmneneneanaas 24
4.3.1 Guideline: Completeness of definitioncccccooeiiiiiiiriccccc e e 24
4.3.2 Guideline: Optional language featuresccccciriirrinni e 24
4.3.3 Guideline: Management of optional language features.........ccccccevcmrrnriicnninniicnc e, 24
4.3.4 Guideline: Syntax and semantics of optional language features...........ccccocvvmriiriic e, 25
4.3.8 Guideline: Predefined keywords and identifiersccccccconniiiiinciicnncccnen e, 25
4.3.6 Guideline: Definition of ‘optional features ... e 25
4.3.7 Guideline: Processor dependence in numerical processingcccccceeccevmmereerrnsssssssseeees dernssccssnneens 26
4.4 Guidelines on conformity requirements..........cccccceiicccisimernecnn s ssen e e s ne e e 26
4.5 Guidelines ONSIrategycccccciiiiiiiiciirrrir s sss e e s ann e e e e e e s e s nmnn e e e s e ensfre e e e e eeennnann 26
4.5.1 Guideline: Secondary standards............cccccceririiiiccisisnmrrenr e snnne dr e s s e 26
4.5.2 GuidelinesIncremental standardscccccererrrerrrrrer e e e 26
4.5.3 Guideline:*Consistency of use of guidelinescccccvvcviiinrii e e, 27
4.5.4 Guideline: Revision compatibilitycccccomiriiiiiinii e 27
4.6 Guidelines on cross-language ISSUEScccircieriiiiiniissn s s e 29
4.6.1 _Guideline: Binding to functional standardsccccvrmiiinniinnns e e, 29
4.6.2 ~ “Guideline: Facilitation of bindingcccccccminiiiiinnii e 29
4.6.3— Guideline: Conformity with multi-level TUNCHIONAl STaNUAIUS........ccccoaomeeeeeeeeerreeesasmmeeeeeesssasessnnmeees 30
4.6.4 Guideline: Mixed language programmingccccecceerreriiiisicssssssmeeersesssssssssssssssesssssssssssnssssssssssssnens 30
4.6.5 Guideline: ComMmMON €leMENESccceiiiiiirererrr e e e s e n e e e e e e e e e e e s 30
4.6.6 Guideline: Use of data dictionaries..........ccccevereiiimrrriirier e e 30
4.7 Guidelines on Internationalization ... e e 30
4.7.1 Guideline: Cultural convention set switching mechanism............cccccoiiiiiii s 30
4.7.2 Guideline: Cultural convention related functionalitycccccimmriiiiccccic e 31
Annex A (informative) Recommended extended repertoire for user-defined identifiers.......................... 32
© ISO/IEC 2003 — Al rights reserved iii

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Foreword

ISO (the International Organization for Standardization) and

IEC (the International Electrotech

nical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respectlve organization to deal with particular flelds of technical act|V|ty ISO and IEC

o colla nfialda of oo tiial intaract thar intaraatinnal Araanioatinna ooy arn

ntal

technical copa

and non-go
technology,

Internationa

1t + 1 ta
Arittees—colaberate—intfeldsef-mutnalnterest—Otherinternational-erganizations,—governm
ernmental, in liaison with 1ISO and IEC, also take part in the work. In the field of inform
SO and IEC have established a joint technical committee, ISO/IEC JTC 1.

Standards are drafted in accordance with the rules given in the ISO/IEC Directives,Part 2.

The main task of the joint technical committee is to prepare International Standards: Braft Internat

Standards a
an Internatid

In exception
of one of thg

type 1,
despite

type 2,
future b

type 3,
normall

Technical R
they can be
be reviewed

Attention is

dopted by the joint technical committee are circulated to national bodies for.voting. Publicatig
nal Standard requires approval by at least 75 % of the national bodies casting a vote.

bl circumstances, the joint technical committee may propose the publication of a Technical R
following types:

when the required support cannot be obtained for the publication of an International Stan
repeated efforts;

when the subject is still under technical development or where for any other reason there i
ut not immediate possibility of an agreement on an'International Standard;

when the joint technical committee has-.collected data of a different kind from that whi
published as an International Standard (“state of the art”, for example).

bports of types 1 and 2 are subject-to review within three years of publication, to decide wh
transformed into International Standards. Technical Reports of type 3 do not necessarily ha
until the data they provide are/considered to be no longer valid or useful.

drawn to the possibility that some of the elements of this document may be the subject of p

rights. ISO gnd IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC TR
ISO/IEC JT(
and system

10176, which i§ a” Technical Report of type 3, was prepared by Joint Technical Comn
L 1, Information, technology, Subcommittee SC 22, Programming languages, their environn
Software interfaces.

This fourth ¢ditionscancels and replaces the third edition (ISO/IEC 10176:2001), which has been techn

revised.

ation

onal

n as

eport

dard,

5 the

th is

ther
Ve to

htent

ittee
ents

cally

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Introduction

Background: Over the last three decades (1966-2002), standards have been produced for a number of
computer programming languages. Each has dealt with its own language in isolation, although to some extent
the drafting committees have become more expert by learning from both the successes and the mistakes of
their predecessors.

9q

4

ome of the
k of drafting
to take into
tter sets.

The

expg
com
accg

first edition of this Technical Report was produced during the 1980s to put together
rience that had been gained to that time, in a set of guidelines, designed to ease the tas]
mittees of programming language standards. This second edition enhances the guidelines
unt subsequent experiences and developments in the areas of internationalizatiomand chara

This
and
lang
publ

The
featu
dive
betts
cony

achig¢ve standardization across languages and across their'standards.

The
whic

Furthermore the avoidance of needless diversity between languages makes it easier for prog

switd

NOTE

by m
effort
comr

document is published as a Technical Report type 3 because the design of ‘programming
hence requirements relating to their standardization - is still evolving fairly2rapidly, and becd
lages, both standardized and unstandardized, vary so greatly in ‘their properties and
cation as a full standard, even as a standard set of guidelines, did not.seem appropriate at th

need for guidelines: While each language, taken as a whole,* is unique, there are ma
res that are common to many, or even to most of them. While standardization should not
sity as is essential, both in the languages and in the form_ of their standards, unnecessar
r avoided. Unnecessary diversity leads to unnecessary, confusion, unnecessary retraining,
ersion or redevelopment, and unnecessary costs.<The aim of the guidelines is therefor

existence of a guideline will often save a drafting"committee from much discussion of detailed
h have been discussed previously for otherdanguages.

h between one and another.

Diversity is a major problem_because it uses up time and resources better devoted to the esser
bkers and users of standards..Building a language standard is very expensive in resources and far too r
goes into “reinventing the{ wheel” and trying to solve again, from the beginning, the same proble
hittees have faced.

How

etc.) for a number of different language processors is also faced with many problems from the eventual stg
aparf from the essential differences between the languages, there are to begin with the variations of layout,
termipology, metalanguages, etc. Much worse, there are the variations between requirements of basically t
somg substantial, some slight, some subtle - compounded by needless variations in the way they are s
reprgsents-an immense extra burden - as does the duplication in providing different support tools for differs
performing-basically the same task.

ver, a software writer faced with the task of building (say) a support environment (operating system fac

languages -
use existing
styles that
s time.

hy individual
inhibit such
diversity is
iInnecessary
e to help to

points all of

rammers to

tial part, both
huch time and
ms that other

lities, utilities,
ndards. Quite
arrangement,
ne same kind,
pecified. This
ent languages

How to use this Technical Report: This Technical Report does not seek to legislate on how programming
languages should be designed or standardized: it would be futile even to attempt that. The guidelines are, as
their name implies, intended for guidance only. Nevertheless, drafting commitiees are strongly urged to
examine them seriously, to consider each one with care, and to adopt its recommendation where practicable.
The guidelines have been so written that it will be possible in most cases to determine, by examination,
whether a given programming language standard has been produced in accordance with a given guideline, or
otherwise. However, the conclusions to be drawn from such an assessment, and consequent action to be
taken, are matters for individual users of this Technical Report and are beyond its scope.

Reasons for not adopting any particular guideline should be documented and made available, (e.g. in an

informative annex of the programming language standard). This and the reason therefore can be taken into
account at future revisions of the programming language standard or this Technical Report.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Of course, care must naturally be taken when following these guidelines to do so in a way which does not
conflict with the ISO/IEC Directives, or other rules of the standards body under whose direction the standard is
being prepared.

Further related guidelines: This Technical Report is concerned with the generality of programming
languages and general issues concerning questions of standardization of programming languages, and is not
claimed to be necessarily universally applicable to all languages in all circumstances. Particular languages or
kinds of languages, or particular areas of concern, may need more detailed and more specific guidelines than
would be appropriate for this Technical Report. At the time of publication, some specific areas are already the
subject of more detailed guidelines, to be found in existing or forthcoming Technical Reports. Such Technical
Reports may extend, interpret, or adapt the guidelines in this Technical Report to cover specific issues and
areas of appticatiom—Users—of this—Techmnicat Report—are Tecommended—totake—suchother guidetiney into
account, as well as those in this Technical Report, where the circumstances are appropriate. See, in pattitular,
ISO/TR 954} and ISO/IEC TR 10034.

Vi © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

TECHNICAL REPORT

ISO/IEC TR 10176:2003(E)

Information technology — Guidelines for the preparation of
programming language standards

This

2 Normative references

The

references, only the edition cited applies. For undated references, /the” latest edition of thg
docyment (including any amendments) applies.

SO/,

ISO/,

SO/,

ISO/,

ruleq for implementation

ISO/
alph

I1SO/

Latin alphabet No. 1

I1ISO/
and

ISO/
stan

ISO/JEC (10646-1:2000, Information technology — Universal Multiple-Octet Coded Character S

Part

Scope

Technical Report presents a set of guidelines for producing a standard for a programming lan

following referenced documents are indispensable for the application' of this document
EC 646:1991, Information technology — ISO 7-bit coded character set for information interch
EC 2382-15:1999, Information technology — Vacabulary — Part 15;: Programming language
EC 4873:1991, Information technology — ISO’ 8-bit code for information interchange — S
EC 6937:2001, Information technology — Coded graphic character set for text communica
hbet

EC 8859-1:1998, Information technology — 8-bit single-byte coded graphic character se

TR 9547:1988, Programming language processors — Test methods — Guidelines for their
acceptability

Hards

1.54rchitecture and Basic Multilingual Plane

EC 2022:1994, Information technology — Character céde structure and extension technique$

guage.

. For dated
referenced

ange

S

tructure and

fion — Latin

s — Part 1:

Hevelopment

EC TR 10084:1990, Guidelines for the preparation of conformity clauses in programming language

et (UCS) —

ISO/IEC TR 11017:1998, Information technology — Framework for internationalization

ISO/IEC 11404:1996, Information technology — Programming languages, their environments and system
software interfaces — Language-independent datatypes

ISO/IEC 14977:1996, Information technology — Syntactic metalanguage — Extended BNF

3

Terms and definitions

For the purposes of this document, the following terms and definitions apply.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

This clause contains terminology which is used in particular specialized senses in this Technical Report. It is
not claimed that all language standards necessarily use the terminology in the senses defined here; where
appropriate, the necessary interpretations and conversions would need to be carried out when applying these
guidelines in a particular case. Also, not all language standards use the terminology of ISO/IEC 2382-15; the
terminology defined here, itself divergent in some cases from that in ISO/IEC 2382-15, has been introduced to
minimize confusion which might result from such difference. Some remarks are made below about particular
divergences from ISO/IEC 2382-15, for further clarification.

3.1 programming language processor (abbreviated where there is no ambiguity to processor)

Denotes the entire computing system which enables the programming language user to translate and execute
programs written in the language, in general consisting both of hardware and of the relevant associated
software.

NOTE 1 A]“processor” in the sense of this Technical Report therefore consists of more than simply (say).a com
or an “implementation” in conventional terminology; in general it consists of a package of facilities, of which a feompi
al sense may be only one. There is also no implication that the processor consists of a4monolithic ¢
however congtituted. For example, processor software may consist of a syntax checker, a code generator, a link-Ig
and a run-time support package, each of which exists as a logically distinct entity. The “processor’ injthis case wol
the assemblape of all of these and the associated hardware. Conformity to the standard would apply to the assembla
a whole, not tp individual parts of it.

piler’
ler” in
ntity,
ader,
Id be
e as

NOTE 2 ISO/TR 9547 the term “processor” is used in a more restricted sense. Fof the purposes of ISO/TR 9547, a
differentiation| is necessary between “processor” and “configuration”; that distinction \is\hot necessary in this Technical
Report. Thos¢ using both Technical Reports will need to bear this difference in terminalogy in mind. See 3.3.4 for another
instance of a [difference in terminology, where a distinction which is not necessaryin ISO/TR 9547 has to be made inh this
Technical Report.

3.2 syntak and semantics
Denote the grammatical rules of the language. The term syntax refers to the rules that determine whether a
program text is well-formed. The syntactic rules need notbe exclusively “context-free”, but must allpw a
processor tq decide, solely by inspection of a program text,"with a practicable amount of effort and within a
practicable amount of time, whether that text conforms~to’ the rules. An error (see 3.3.1) is a violation df the
syntactic rulgs.

The term s@mantics refers to the rules which-determine the behaviour of processors when executing [well-
formed progfams. An exception (see 3.3.2).is a violation of a non-syntactic requirement on programs.

NOTE r ISO/IEC 2382-15 the term static is defined (15.02.09) as “pertaining to properties that can be establ
before the eqecution of a program” and\dynamic (15.02.10) as “pertaining to properties that can only be establ
during the exgcution of a program”. These therefore appear to be close to the terms “syntax” and “semantics” resped
as defined in this Technical Report.3SO/IEC 2382-15 does not define “syntax” or “semantics”, though these are terms

shed
shed
tively

very

commonly us

Furthermore,
single langua
single langua
Report. This
3.3 error

3.3.1
errors

]roblem is not totally absent with “syntax/semantics” but is much less acute.

bd in the programming/language community.

the uses of “Static” and “dynamic” (and other terms) in ISO/IEC 2382-15 seem designed for use wif
e rather than~across all languages, but while that terminology can mostly be applied consistently wi

hin a
hin a

he, it becomes much harder to do so across the generality of languages, which is the need in this Tecknical

pfinnc) conditions

The incorrect program constructs which are statically determinable solely from inspection of the program text,
without execution, and from knowledge of the language syntax. A fatal error is one from which recovery is not
possible, i.e. it is not possible to proceed to (or continue with) program execution. A non-fatal error is one
from which such recovery is possible.

NOTE A fatal error may not necessarily preclude the processor from continuing to process the program, in ways
which do not involve program execution (for example, further static analysis of the program text).

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

3.3.2

exceptions

The instances of incorrect program functioning which in general are determinable only dynamically, through
execution of the program. A fatal exception is one from which recovery is not possible, i.e. it is not possible to
continue with (or to proceed to) program execution. A non-fatal exception is one from which recovery is
possible.

NOTE 1 In case of doubt, “possible” within this section should be interpreted as “possible without violating definitions
within or requirements of the standard”. For example, the hardware element of a language processor may have the
technical capability of continuing program execution after division by zero, but in terms of a language standard which

defines division by zero as a fatal exception, the consequences of such continued execution would not be meaningful.

NOT

3.3.3

con
Occ

dete
deps

NOTE
cond

ane

3.34

rela

In IS
term
necsd
Note
ISO/

ISO/,

The

whic
prog
in Ad

The
and
this

optig

Rep

(glok

34
For

E 2 See also 3.3.4.

itions

rrences during execution of the program which cause an interruption of normal proce
cted. A condition may be an exception, or may be some language-defined jor_user-defined
nding on the language.

!

For example, reaching end-of-file on input may always be an exception in one language, may
tion in another, while in a third it may be a condition if action to be taken ofi-detection is specified in the
Nception if its occurrence is not anticipated.

fionship to other terminology

O/TR 9547 the term “error” is used in a more generalsense to encompass what this Tech
5 “exceptions” as well as “errors”. For the purposesyof/ISO/TR 9547, the differentiation mad
ssary. Those using both Technical Reports will need to bear this difference in terminology i
2 of 3.1 for another instance of a difference\in terminology, where a distinction has to
TR 9547 which is not necessary in this Technical Report.

EC 2382-15 does not define “error” buttdoes define “exception (in a programming language
definition reads “A special situation.which may arise during execution, which is considere
h may cause a deviation from theé* normal execution sequence, and for which facilities
famming language to define, raise; recognize, ignore and handle it”. ON-conditions in PL/l an
a are cited as examples.

reason for not using this terminology in this Technical Report, which deals with the generalit
pbotential standardized\languages rather than just a single one, is that it makes it difficult to di
[Technical Report(needs to do) between “pure” exceptions, more general conditions, an
ns for exception_handling which are built into the language (all in the senses defined in th
rt). It also dees’ not aid making sufficient distinction between ON-conditions being enabled
ally or locally), nor whether the condition handler is the system default or provided by the pro

processor dependence

the purposes of this Technical Report, the following definitions are assumed.

ssing when
occurrence,

always be a
program, but

nical Report
b here is not
n mind. See
be made in

" (15.06.12).
d abnormal,
exist in the
H exceptions

y of existing
stinguish (as
d processor
is Technical
or disabled
jrammer.

If this Technical Report refers to a feature being left undefined in a standard (though referred to within the
standard), this means that no requirement is specified concerning its provision and the effect of attempting to
use the feature cannot be predicted.

If this Technical Report refers to a feature being processor-dependent, this means that the standard requires
the processor to supply the feature but that there are no further requirements upon how it is provided.

If this Technical Report refers to a feature being processor-defined, this means that its definition is left
processor-dependent by the standard, but that the definition shall be explicitly specified and made available to
the user in some appropriate form (such as part of the documentation accompanying the processor, or
through use of an environmental enquiry function).

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 1 The term “feature” is used here to encompass both language features (syntactic elements a change to which
would change the text of a program) and processor features (e.g. processor options, or accompanying documentation, a
change to which would not change the text of a program). Examples of features which are commonly left undefined,
processor-dependent or processor-defined are the collating sequence of the supported character set (a language feature)
and processor action on detection of an exception (a processor feature).

NOTE 2 In any particular instance the precise effect of the use of any of these terms may be affected by the nature of
the feature concerned and the context in which the term is used.

NOTE 3 None of the above terms specifically covers the case where reference to a feature is omitted altogether from
the standard. While in general this might be regarded as “implicit undefined”, it is possible that an unmentioned feature
might necessarily have to be supplied for the processor to be usable (and would hence be processor-dependent) and that
some aspects rrighi-a-tura-h }

3.5 secondary, incremental and supplementary standards

3.51
secondary standards
In this Technical Report, a secondary standard is one which requires strict conformity with ahother (“primary”)
standard - ¢r possibly more than one primary standard - but places further requirements on conforming
products (e.g. in the context of this Technical Report, on language processors or programs).

NOTE Alpossible secondary standard for conforming programs might specify additiohal requirements with respgct to
use of commgnts and indentation, provision of documentation, use of conventions fop-naming user-defined identifiers,| etc.

A possible sefcondary standard for conforming processors might specify additional-requirements with respect to error and
exception harjdling, range and accuracy of arithmetic, complexity of programs which can be processed, etc.

3.5.2
incrementa| standards
In this Techpical Report, an incremental standard adds to.an existing standard without modifying its corjtent.
Its purpose [s to supplement the coverage of the existing, standard within its scope (e.g. language defin|tion)
rather than (as with a secondary standard, see 3.5.1)0-add further requirements upon products conforming
with an exigting standard which are outside that scope. It is recognized that in some cases it might be
desirable to| produce a standard additional to a@,existing one which was both “incremental” (in terms of
language fuctionality) and “secondary” (in terms\of other requirements upon products).

3.53
supplementary standards
In this Technical Report, a supplementary standard adds functionality to an existing standard without
extending it range of syntactic constructs; such as by the binding of a language to a specific set of funcfjons.
Supplementary standards are gxpected to be expressed in terms of the base language which they supplement,
but do not rgplace any eleménis of the primary standard.

3.6 terms related to_character and internationalization
3.6.1

octet
An ordered g$eqglience of eight bits considered as a unit

3.6.2
byte
An individually addressable unit of data storage used to store a character, portion of a character or other data.

3.6.3
character
A member of a set of elements used for the organization, control, or representation of data.

NOTE The definition above is that from the standard developed by ISO/IEC JTC 1/SC2. This ensures that the term
“character” used in this TR is consistent with the coded character set standard. The composite sequence of
ISO/IEC 10646 is not considered as a character. Each element of a composite sequence (as it is in ISO/IEC 10646) is
considered as a “character” in this TR.

4 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

3.64

combining character

A member of an identified subset of the coded character set of ISO/IEC 10646 intended for combination with
the preceding non-combining graphic character, or with a sequence of combining characters preceded by a
non-combining character.

3.6.5

composite sequence

A sequence of graphic characters consisting of a non-combining character followed by one or more combining
characters.

ic symbols of

EC 10646.

e, e.g. The

A chpracter set that is used in an execution environment, €.g. ISO/IEC 10646-1. In most cases, the repertoire
of the extended character set is larger than the basic character set.

character datatype
Character datatype is a family of datatypes-whose value spaces are character sets.

NOTE The value space of the character datatype should be wide enough to represent every membgr of extended
chargcter set, if the repertoire list of characters to be stored in the character datatype is not specified explicitly.

3.6.11
octet datatype
Octet datatype is the datatype of 8-bit codes, as used for character sets and private encodings.

NOT The value space of the octet datatype is wide enough to represent every member of basic chafacter set, but
may hot be wide enough to every member of extended character sets.

3.6.12
octet string datatype
Octet stfing datatype is the datatype of variable-length encoding using 8-bit codes.

NOTE The octet string datatype may be used to represent a member of extended character sets.

3.6.13
multi-byte representation of character
A coded character represented by using a sequence of bytes (one-octet byte, two-octet byte, or four-octet

byte).

NOTE 1 A character that is encoded by UTF-8 (UCS Transformation format) specified by a DAM of ISO/IEC 10646-1
and stored in an octet-string datatype is an example of the multi-byte representation of a character. The size of a coded
character encoded by UTF-8 is up to six octets, therefore it may occupy up to 6 one-octet bytes in the octet string datatype.

© ISO/IEC 2003 — All rights reserved 5

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 2 To handle the multi-byte representation of character correctly in an octet string datatype, the character
boundary needs to be distinguished from the octet(s) boundary. Otherwise a multi-byte representation of character may
be bisected as the result of octet base string manipulation, thus becoming no longer a character. In following reference the
multi-byte representation of a character will be abbreviated as multi-byte character.

3.6.14

multi-octet representation of character

A coded character stored in a character datatype that size is equal to or larger than two octets with whose
values are multiple octets.

NOTE 1 A character that is encoded by UCS-2 stored in a character datatype is an example of the multi-octet
representation_of character, The size of a coded character encoded by UCS-2 s always two octets, therefore it can be
considered ag a coded character that is represented by single two-octet byte.

NOTE 2
character.

rl following reference the multi-octet representation of a character will be abbreviated as the“multitoctet

NOTE 3 A|coded character represented by UTF-16 is categorized in both multi-byte and multi-octet\character, begause
the byte size pf UTF-16 is two-octet, but a character may occupy 1 or 2 two-octet bytes in a octet string datatype.

3.6.15
collation
The logical grdering of strings according to defined precedence rules.

3.6.16
cultural convention
A convention of an information system which is functionally equivalent between cultures, but may differ in
presentation, operation behaviour or degree of importance.

NOTE T|me zone, Summer time, Date and time format, Numetic format, Monetary format, Collation sequence|, and
Character clapsification, are examples of cultural convention.

3.6.17
cultural convention set
A set of cultliral conventions to be referred to by-each programming language standard.

3.6.18
execution environment

An environment where a program is executed.
NOTE 1 Ah execution environment of program is not always the same as the compilation environment of the progffam.
NOTE 2 Cpded character'sets supported by execution environment and input from the environment to progran may
vary from onq to another/Eor example, ISO/IEC 8859-1 may be supported by an environment, and ISO/IEC 10646-1 may

be supported |by anotherenvironment.

3.7 auxilipry verbs used in this TR

3.71
shall
An indication of a requirement on programming language standard or processors.

3.7.2
should
An indication of a recommendation to programming language standard or processors.

3.73

may

An indication of an optional feature of programming language standard or processors. When this Technical
Report provides a recommendation to the programming language standard that supports a specific optional
feature, the auxiliary verb “may” is used in the sentence explaining the condition.

6 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

4 Guidelines

4.1

411

Guidelines for the form and content of standards

Guideline: The general framework

The standard should be designed so that it consists of at least the following elements:

1)

The specification of the syntax of the language, including rules for conformity of programs and

processors.

P) The specification of the semantics of the language, including rules for conformity of pllograms and
processors.

3) The specification of all further requirements on standard-conforming progfams, and |of rules for
conformity.

1) The specification of all further requirements on standard-conforming{processors (such as error and
exception detection, reporting and processing; provision of _precessor options t¢ the user;
documentation; validation; etc.), and of rules for conformity.

b) One or more annexes containing an informal description jof the language, a description of the
metalanguage used in 1) and any formal method usedin 2), a summary of the metalanguage
definitions, a glossary, guidelines for programmers (on processor-dependent features,
documentation available, desirable documentation’of programs, etc.), and a cross-referenced index
to the document.

5) An annex containing a checklist of any implementation defined features.

7) An annex containing guidelines for implementors, including short examples.

8) An annex providing guidance topusers of the standard on questions relating to the yalidation of
conformity, with particular reference to ISO/IEC TR 10034, and any specific requirements relating to
validation contained in 1) tox4)above.

D) In the case where a lahguage standard is a revision of an earlier standard, an annex ontaining a
detailed and precise description of the areas of incompatibility between the old and the new standard.

10) An annex which“forms a tutorial commentary containing complete example programs that illustrate
the use of thejlanguage.

NOTE 1 The ©bjective of this guideline is to provide a framework for use by drafting committees when producing
standards documents. This framework ensures that users of the standard, whether programmers, implementpors or testers,
will find in_the-standards document the things that they are looking for; in addition, it provides drafting committees with a
basiq for organizing their work.

NOTE 2 The elements referred to above are concerned only with the technical content of the standard, and are to be

regarded as logical elements of that content rather than necessarily physical elements (see note 4 below).

NOTE 3

It is to be made clear that the annexes referred to in elements 5) to 10) above are informative

annexes (i.e.

descriptive or explanatory only), and not normative, i.e. do not qualify or amend the specific requirements of the standard
given in elements 1), 2), 3) and 4). It should be explicitly stated that, in any case of ambiguity or conflict, it is the standard
as specified in elements 1), 2), 3) and 4) that is definitive. Note that, if a definition (as opposed to a description) of any
formal method used in elements 1) and 2) cannot be established by reference, then the standard may need to incorporate
that definition, insofar as is allowed by the rules of the responsible standards body (see also 4.1.2).

NOTE 4 Given the requirements of note 3 above, a drafting committee has the right to interleave the various elements
of the standard it is producing if it feels that this has advantages of clarity and readability, provided that precision is not
compromised thereby, and that the distinction between the normative (specification) elements and the informative
(informal descriptive) elements is everywhere made clear.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 5 Element 9) will be empty if the standard is not a revision of an earlier standard. No specific guidelines or
recommendations are included in this Technical Report concerning requirements on programs other than conformity with
the syntactic and semantic rules of the language, and if this is the case in a standard, element 3) will be empty; however, it
is recommended that in such a case an explicit statement be included that the only rules for conformity of programs are
those for conformity with the language definition. It is recommended that none of the other elements should be left empty.

4.1.2 Guideline: Definitions of syntax and semantics

Consideration should be given to the use of a syntactic metalanguage for the formal definition of the syntax of
the language, and the current “state of the art” in formal definition of semantics should be investigated, to
determine whether the use of a formal method in the standard is feasible; the current policies on the use of

formal meth

NOTE 1 T
language syn
explanation; g
metalanguags
precision and
syntax analyZ

NOTE2 A
programming
whether to ag
the position ¢

NOTE3 O
non-specialist
processors.

NOTE4 A
or may need
description of
read as a selff
itself indicate
observed.

41.3 Guid

The standar
character s
character se

NOTE 1 F
ability to acc
purpose of sg
important tas
standard-contf

A H Y SH=N 128 4 | datoad kblaf o + o d-ak (P21 1 ba-tal 1t 4
PUST Wit T e STaTTUaTrUS DOUU Yy TO SPUTTSTOTC TUT TNTE - STATTUAT U STTUUTU TS U DT TR TTIT TTTO A COUTTr

aditionally some language standards have not used a full metalanguage (with production rules)for-de|
ax; some have used a metalanguage for only part of the syntax, leaving the remainder for natural-lang
ome have used notation which is not amenable to automatic processing. The advantages of@ frue syn
b are given in the introduction to ISO/IEC 14977:1996. The main ones can be summarized‘as concise
elimination of ambiguity, and suitability for automatic processing for purposes like producing tools su
ers and syntax-directed editors.

the time of publication of this Technical Report, formal semantic definition methods suitabl
languages form an active research area, making it impractical to provide any-definite guidelines concs
opt a particular method, or any method at all; hence the recommendation.to drafting committees to Iqg
Lirrent when they begin work on their standard.

ne of the purposes of including element 5) in 4.1.1 is to ensure that the standard as a whole is accessi
readers while still providing the exact definitions required by those who are to implement the langd

hy formal method used may be specified by referencé.to an external standard or other definitive docu
0 be specified in the standard itself (e.g. an annex pfoviding a complete definition). In either case an infi

contained document even by those unfamiliarwith the particular formal method concerned. As this guid
5, in deciding on matters of this kind, the current policies governing use of formal methods will need

elines on the use of character sets

H should ensure that it is(pessible within the language to support the handling of a wide ran
pts, including multi-octet character sets, e.g. ISO/IEC 10646-1, and non-English single
ts, e.g. ISO/IEC 8859-.

br some applications, and for some classes of users for all applications, it is vital for the language to hay
bpt and manipulate data from character sets other than the minimal character set needed for the
ecifying programs. For some users this need will be greater than the need for international interchang
for any\Janguage standards committee is to ensure that it is possible for each of these needs to be mg
orming way.

NOTE2 §

fining
uage
tactic
ness,
Ch as

e for
rning
ok at

ble to
uage

ment,
brmal

the formal method should be included [element §);of 4.1.1] so that for many purposes the standard can be

eline
to be

e of
Octet

e the
basic
e. An
tina

pme” programs_will require both the ability to _manipulate multi-octet and multi-byte characters an

the

capability of international interchange. This may imply two or more alternative representations of the same “character”
(data object), one of which will be a representation (for interchange purposes) in the minimal character set defined in
4.1.3.1.1.

NOTE 3 In general it should be possible to use non-English single-octet, multi-octet and multi-byte coded character
sets in program text, character literals, comment, and data without recourse to the use of processors which are not
standard-conforming. Programs using such characters in program text, literals or comments may not be standard-
conforming and in general will be less portable internationally than those using only the minimal character set, but may still
be portable within the applications community for those programs. Defined mappings from other character sets to the
minimal character set of the language, and the presence of suitable processor options, are likely to maximize benefits and
use-ability for differing requirements.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

41.31 Guidelines on character sets used in program text

The guidelines in this clause covers the considerations on the character sets used in programming language
source code, i.e. characters used for syntax of programming language, user-defined identifier, character literal,
and comments.

4.1.3.1.1 Guideline: Character sets used for program text

As far as possible, the language should be defined in terms only of the characters included within
ISO/IEC 646, avoiding the use of any that are in national use positions. If any symbols are used which are not
included within ISO/IEC 646 or are in national use positions, an alternative representation for all such symbols

shodld be specified. A conforming processor should be required to be capable of accepting

repr
char
i.e. n

The
pring
the j
the
conyf
hand
inter

NOT
curre
repre

Interpational Reference Version of ISO/IEC 646 that is equivalent with the U.S. national variant (usually ref

acrot

Furth

sented using only this minimal character set. Great care should be taken in specifying how-*
bcters are to be handled, i.e. those characters that correspond to integer values 0 to 32)inclug
ull (0/0) to space (2/0) and delete (7/15), in case of ISO/IEC 646 coded character set.

guideline relates to the need for international interchange of programs, and) hence is b
iple of using a minimal set of characters which can be expected to be common-to all systems|

program is not critical for the application concerned. In some cases, however (such as g
ert text from one alphabet to another), interchange cannot be general but limited to processo
ling larger character sets. The guideline is based on the principle that standards should
change of programs without such application dependence will be-generally possible.

= The motivation here is to provide a common basis for(representing programs, which does
ht (published up to 1998) standards. The characters that are.available in all national variants of ISO/IH
sent programs in many programming languages in a way,that is acceptable to programmers who are fa

ym “ASCII”). In particular, square brackets, curly brackets and vertical line are unavailable.

er, the characters that are available in the./nternational Reference Version of ISO/IEC 646 can

prog

natiopal variant of ISO/IEC 646. For example, theipound symbol may not be available. The characters that a|
ISO/IEC 646 IRV (ASCII) cannot represent programs in many programming languages in a way that is

prog

Cons
shou
time,
both

comg

Of th
thoug
versg
charg
wher
caus

ams in many programming languages in a way-that is acceptable to programmers who are familiar wi

ammers because their terminals support some other national variant of ISO/IEC 646.

ideration needs also to be givern to the use of upper and lower case (roman) letters. If only one case
d be made clear whether the other case is regarded as an alternative representation (so that, for ex
Time, tImE are regarded.as-identical elements) or its use is disallowed in a standard-conforming prq
cases are required or ‘allowed, the rules governing their use should be as simple as possible, an
letely specified.

b non-printing,characters, nearly all languages allow space (2/0), and carriage return (0/13) line feed (0
h they differ’as.to whether these characters are meaningful or ignored. How carriage return without ling
) is to be treated needs consideration, as do constructions such as carriage return, carriage returr
cters are.disallowed that do not show themselves on a printed representation, the undesirable situat
P a,program may be incorrect though its printout shows no fault. If a tabulation character (0/9) is disalld
b frguble, since it appears to be merely a sequence of spaces; if allowed, the effect on languages such 4§

a program
hon-printing”
ive and 127,

bsed on the
likely to use

rograms. In general this guideline is based on the default assumption that the form of representation of

program to
s capable of
ensure that

hot exist with
C 646 cannot
miliar with the
erred to by its

not represent
h a particular
re available in
acceptable to

is required, it
ample, TIME,
gram. Where
l exactly and

10) as a pair,
e feed (or vice
, line feed. If
on may arise
wed, this can
s FORTRAN,

havi

NOTE 2

+] rany £ 1 I + I~ el A
g a g eyl o e TiasS to ot LUTSIUCTCUT

The characters that are available in the eight-bit coded character sets ISO/IEC 4873 with ISO/IEC 8859-1, or

ISO/IEC 6937-2, would be sufficient to represent programs in a way that, in the Western European and American cultures,

looks

NOTE 3

familiar to most (but not APL) programmers.

The character sets that are available in the multi-octet coded character set of ISO/IEC 1064

6-1 would be

sufficient to represent programs in a way that looks familiar to most programmers from most cultures. However, in 1998,
the standard is not yet widely supported on printers and display terminals.

NOTE 4

character coding.

© ISO/IEC 2003 — All rights reserved

For advice on character set matters, committees should consult the ISO/IEC JTC 1 subcommittee for

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

41.3.1.2

Guideline: Identification of characters used for program text

The programming language standard should provide an annex containing a correspondence table between
the graphic representation of the characters used for program text and character identifiers specified by
ISO/IEC 10646.

NOTE

very similar to one another. For example, in ISO/IEC 10646-1,

It is possible to write program text using a character set that includes characters whose shapes are identical or
“LATIN CAPITAL LETTER A”, “GREEK CAPITAL LETTER

ALPHA”, and “CYRILLIC CAPITAL LETTER A” have identical shapes. Also the shape of “FULL WIDTH LATIN CAPITAL
LETTER A” is very similar to these. In addition to that, ISO/IEC 10646-1 specifies many “non-printing” characters that
occupy a certain amount of space in the presentahon of text In some programmmg Ianguages these ‘non-printing”

characters ac]
text only by u
COBOL, cha
character apq
above examp

41313

The progranmpming language standard should define which, and in what way, characters outside the “min

set defined
permitted, th

NOTE 1 It
program text,

NOTE2 U
portability of t

NOTE3 A
the minimal ¢

identifier stapdardized by ISO/IEC JTC 1/SC2, can be considered. For example,

&u000000C1
ISO/IEC 1064

NOTE4 In

identifier, the|
character whi

41314

Character liferals permitted to~be embedded in program text in a standard-conforming program shoul

defined in st
a) The chg

b) A charg

5ing its shape, it is ambiguous whether this shape means the identical or a S|mllar shape (e.g. in thecg
acter “A” means both “LATIN CAPITAL LETTER A” and “FULL WIDTH LATIN CAPITAL LETTER'A’
ears in program text not in data) or a particular one of them (e.g. only “LATIN CAPITAL LETFER A”
e). Adoption of this guideline avoids such ambiguity.

Guideline: Character sets used in user-defined identifiers

n 4.1.3.1.1 can be used in user-defined identifiers. If characters outside of the minimal se
en the characters listed in annex A should be allowable.

is important to allow characters from outside the minimal set to~be“used in user-defined identifig
to improve understandability for programmers whose native language-is not English.

5ing an extended character repertoire for user-defined identifiers may have an adverse effect o
he program concerned.

5 an alternative way to represent characters outside, of-the minimal set in a user-defined identifier by
haracter set for program portability, an escape character or an escape sequence followed by character
if & is an escape sequ
represents LATIN CAPITAL LETTER A WITHYACUTE. The SC2 specified the code value of charact
6, represented by 4 or 8 hexadecimal digits;-for the character short identifier.

the case that a programming language standard allows use of combining characters for user-dd
language standard need not require that a composite sequence is recognized as equivalent wit
Ch is pre-composed from the comiposite sequence.

Guideline: Character sets used in character literals

ch a way thatieach character may be represented using one or more of the following method
racter represents itself, e.g. A, B, g, 3, +, (.

cteris/represented by a pair of characters: an escape character followed by a graphic charg

if the
n the

mal”
t are

rs in

h the

using
short
ence,
brs in

fined
h the

o

cter,

e.g. if &

is.the escape character, & to represent apostrophe, && to represent ampersand, &n to reprg

sent

newline.

d)

10

A character is represented by an escape character or an escape sequence followed by character short
identifier, e.g. if &u is an escape sequence, &u000000C1 represents LATIN CAPITAL LETTER A WITH
ACUTE.

A character is represented by three, five or nine characters: an escape character followed by two, four or
eight hexadecimal digits that specify its internal value, e.g. if & is the escape character, the internal value
of LATIN CAPITAL LETTER A can be represented by &47 in the case of ISO/IEC 646, and can be
represented by &0041 or &00000041 in the case of ISO/IEC 10646-1 depending on its forms, i.e. Two-
octet Basic Multi-lingual Plane (BMP) form or Four-octet canonical form respectively.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Any conforming processor should be required to be able to accept “as themselves” [i.e. as in a)] at least all
printable characters in the “minimal set” defined in 4.1.3.1.1, apart possibly from any special-purpose
characters such as an escape character or those used to delimit literal character strings.

Any conforming processor should be required to be able to accept method c) to represent a character literal
outside of “minimal set” defined in 4.1.3.1.1, any “non-printing character”, or any special-purpose character, in
a way that is independent from any coded character set which is used to represent a source code in a
machine readable format.

The programming language committee should consider to provide the means to accept “as themselves” [i.e.
as in a)] all printable characters in the ISO/IEC 10646-1, apart possibly from any special-purpose characters

suchrasamn escape character or those used to defimitfiterat character strings, for character fiterq], e.g. a pre-

proc

NOT

)

For reasons of portability it is necessary to provide a common basis for representingChara

bssor to translate character literals represented by method a) to method ¢

- 1

progfams, in addition to the characters used for the program text itself. The required character 'set could

(and

state
charg
pract
differ]

Thes|
be sy

NOT
repre
affec]
form

repre
resul
varia

NOT
uses
ident

NOT
printi

4.1.3
The

stan
repe

NOTE

comrj

for general purpose text handling would need to be wider than) that which is necessary forrepresentati
ments. Programs must be representable on as many different peripherals and systems’as possible;
cters required to represent a program therefore needs to be reduced to the minimum that is consisten
ce and readability. On the other hand, programs themselves need to be able\to:represent and pro
ent characters as possible.

b two needs make it impossible to represent every character by itself in-a literal character string if the
itable for general processing of character data.

E 2 A particular problem arises with the representation of @y'space in a character or string lite
sented by a visible graphic character, the argument in favour being that blank spaces in program te
the meaning. However, it can also be represented by itself, the argument in favour being that this is th
of representation. The indistinguishability of a tabulation character from a sequence of spaces
sentation) is a particular problem since a function thatreturns the length of a string, in characters, may
s from two programs that appear identical. There can'be further complications when using a “high quali
ble-width characters. Drafting committees are recommended to pay particular attention to these points.

F 3 The character short identifier referredito by method c) is standardizedd by ISO/IEC JTC 1/SC2
the code value of characters in ISO/IEC40646, represented by 4 or 8 hexadecimal digits, for the ¢
fier.

F 4 The character set in ISO/EC 6937 represents some graphic characters as a pair of octets. This
hg but is difficult to process im operations such as comparison and sorting.

1.5 Guideline: Character sets used in comments

programming.language standard should define the characters that are permitted in con
Jard-conformiing program. For comments, the programming language standard should pern;
rtoire of the‘characters as possible.

For publication in the pages of a journal, some languages make no restriction on permitted

to res
reading and hence escape mecha

Cter literals in
be wider than
bn of program
he number of
t with general
ess as many

anguage is to

ral. It can be
xt should not
e most natural
(in a printed
give different
y” printer with

and the SC2
haracter short

is suitable for

hments in a
it as wide a

characters in
[is preferable

hents; beyond making it clear where the comment finishes. For inclusion on a computer file, however, i

ed for human

nisms are unnecessary, there is no disadvantage in printing characters simply

representing themselves (apart of course from any characters or sequences of characters marking the end of the
comment), and in limiting non-printing characters to those (like carriage return and line feed) necessary for layout
purposes.

41.3.2 Guideline: Character sets used for data

The programming language standard should be defined in such a way that it is not assumed that character
data processed by a program is anything other than a sequence of octets whose meaning depends on the
context. However, a conforming processor should be required at least to be able to input, manipulate and
output characters from the minimal character set defined in 4.1.3.1.1 above.

© ISO/IEC 2003 — Al rights reserved 1

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

The standard should also specify whether, and in what way, support for ISO/IEC 10646-1 is required to be

provided.

NOTE 1

The objective here is to provide a common basis for processing data. Many programs will assume that their

data is expressed in ISO/IEC 646 IRV (ASCII) or some other versions of ISO/IEC 646. But if the standard assumes that all
data is expressed in any one particular character set, it will cause difficulties for some users of other coded character sets.

NOTE 2 See also the guideline on collating sequences 4.1.3.5 below.
4.1.3.3 Guidelines on datatypes for character data
4.1.3.3.1 Guideline: Character datatype

The progran
repertoire of]

NOTE 1 M
that enumera
should be the

NOTE2 T

nming language standard should provide a character datatype whose value space is\the ¢
the extended character set in an execution environment.

the case that the value space of a character datatype is not specified explicitly, by using the repertoi
tes allowable repertoire of characters for the datatype, the default value space of the character dat
entire repertoire of the extended character set.

he repertoire of the extended character set may be processor-defined, but the.language standard shou

restrict the repertoire.

The charact

NOTE T
(see 4.1.3.3.9
subtype of the
characters in
coded charad
programming

pr datatype should be independent from any coded charactersgt.

ne character datatype may be sub-typed to restrict its value’,space specified by a character repertoi
), but it should not be sub-typed by an encoding schemé of character data. For example, a distinc
e character datatype that is unique to the encoding scheme of ISO/IEC 10646-1 should not be provided
the ISO/IEC 10646-1 should be handled through a generic character datatype that is independent fror
ter set, as long as the programming language does-not address the object code level portability. Fd
languages that address the object code level partability, such as Java, use of ISO/IEC 10646 encod

recommended for the character datatype.

41.3.3.2

In addition t
the octet stri

NOTE 1 T
set, but may 1

NOTE2 T
programs tha
area between
for character
the data becq
octet, the pro

Guideline: Octet and octet string datatype

hg datatype for character data;

e value space of the octet datatype is large enough to represent the entire repertoire of the basic cha
ot represent the entiresrgpertoire of the extended character set.

he use of octef or-octet string datatype for character data would be effective to keep the portabil
assume the size of the datatype for character. For example, some program may share the same mq
character_string and data of another datatype, e.g. union statement of C language. If the size of a dat
becomes 'changed in order to contain an extended character set, the alignment of memory area assign4
mes broken. In order not to impact on existing programs that assum the size of character datatype
jrarmming language standard could use the octet or the octet string datatype for character data, in addit

the character

ntire

re list
Atype

d not

e list
ora
. The
h any
r the
ng is

b the character datatype (see 4.1:3.3.1), a programming language standard may use the octet or

acter

ty of
mory
atype
ed for
is an
on to

datatype for backward compatibility of such program.

NOTE 3

The programming language standard may allow use of the octet string datatype to represent a wide range of

characters, from outside the basic character set, by means of a sequence of values of the octet string datatype, i.e. multi-
byte character (see also 4.1.3.7).

41.3.3.3

Guideline: Subtypes of character datatype

A programming language standard may provide sub-types of the character datatype or may provide multiple
distinct character datatypes, by specifying a character repertoire list, in order to restrict the character set that
can be assigned into the sub-type or the character datatype. An example of the sub-type of character datatype
is kind=n of FORTRAN. If the programming language standard provides such sub-types of character
character datatype or multiple distinct character datatypes, inter character datatype assignment and
comparison should be processor-defined.

12 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE Assignment from a character datatype whose value space is ISO/IEC 646 IRV to another character datatype
whose value space is ISO/IEC 10646 is an example of the inter character datatype assignment.

4.1.3.4 Guidelines on character handling

41.3.41 Guideline: Character classification

The programming language standard should provide the means of testing whether a character data belongs to
subsets of the extended character set (character classes) likely to be of importance in programs, such as
alphabetic, alphanumeric, upper case letters, lower case letter, decimal digit, hexadecimal digit, control

character, punctuation character, printable character, graphic character, and space character. The
progfamming language standard should require that the means supplied does not depend on a-sgecific coded
charcter set, and may require, or permit, the provision of such means of testing for further user-defined
subsets (user-defined character class) that are culture-specific or natural language-specific:

NOTE For example, LATIN CAPITAL LETTER A could be classified in alphabeticy alphanumeri¢, uppercase,
hexaflecimal digit, printable, and graphic character subset, but not in lower case, decimal digit, punctuation nor space
chargcter subset.

41.3.4.2 Guideline: Character transformation

The |programming language standard should provide the means te-transform a character to gnother. The
meaps provided by the standard should not depend on any specific.eoded character set, any spgcific culture,
nor gny specific natural language.

NOTE 1 Transformation from an upper case letter to the corresponding lower case letter and from a full width letter to
the cprresponding half width (normal) letter are examples of character transformation.

NOTE 2 This character transformation functionality should be usable by a programmer, but not necegdsarily applied
when a language processor is parsing the program text:

NOTE 3 The mapping rule such as upper case.to lower case mapping is culture and natural language spdgcific.

4.1.3.5 Guideline: Collating sequences

The programming language standard should specify completely the default collating sequence to|be provided

by a
the

sequ
optig
mea
colla

If a
anot

sincef the collation sequence is a cultural convention.

NOTE 1

conforming processor, and,preferably that this should be that implied by the ordering of the

ence is other than<that implied by ISO/IEC 646, means should be provided whereby th
nally switch to the ISO/IEC 646 collating sequences, and consideration should be given
s for the user optionally to switch to alternative collating sequences, whether or not the de
ting sequence.is'that based on ISO/IEC 646.

programming language standard provides the functionality to switch collating sequence
her, the: cultural convention set switching mechanism described in 4.7.1 could be used for

haracters in

minimal character set drawn from ISO/IEC 646 as defined in 4.1.3.1.1 above. If the default collating

e user may
to providing
fined default

from one to
he purpose,

Programs which perform ordering of character data are in general not portable unless the collating sequence

is completely defined. This guideline ensures that such programs will be portable at least where only those characters

drawi

NOTE 2

n from the minimal character set defined in 4.1.3.1.1 are used.

Drafting committees may wish to consider further guidance relating to characters not included i

character set, especially where ordering of character data is a major anticipated use of the language.

n the minimal

NOTE 3 Possible means of including alternative collating sequences are language features or processor options (see
4.1.9).
NOTE 4 Possible reasons for wishing to provide such alternative means are to obtain maximum processing efficiency

by use of a processor-defined internal character set, or to allow orderings more useful for particular purposes, e.g. a=A <
b=B < ... <z=Z. (ISO/IEC 646 implies0<1<..<9<A<B..<Z<a<b...<z which is not always convenient.)

© ISO/IEC 2003 — All rights reserved

13

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 5 The international default ordering of character strings that consist of characters defined by ISO/IEC 10646, the
switching mechanism of the ordering from the default to an alternative sequence, and language independent string
comparison APIs, are presently being standardized towards ISO/IEC 14651.

4.1.3.6 Guideline: Multiple-octet coded character sets

The programming language standard should provide a character datatype whose value space is an extended
character set representable by a multiple-octet code. The programming language standard should ensure that
at least every character specified by ISO/IEC 10646 can be a value of the character datatype.

The programming Ianguage standard need not reqwre that a composﬂe sequence of ISO/IEC 10646 be
recognized & i ' ' i f
character dgtatype and processed separately The programmmg language standard may specify functlo ality
to test the boundary of a composite sequence in a character string, and to convert the composite.sequgnce
into the corrgsponding pre-composed character, if it exists.

If a progranming language standard has a requirement to store a composite sequence in,single value|of a
datatype, th¢ programming language standard committee should consider the provision datatype distinct [from
other charadter datatypes, whose values include composite sequences of characters,and provide functionality
to convert a[character string to and from a value of this datatype or to and from a string of this datatype.

A programming language standard may support characters using (the” multi-byte representation. If the
programming language standard supports a multi-byte representation® of characters, the standard should

a) Converf the multi-byte character stored in an octet string.datatype to the corresponding character sfored
in an chiaracter datatype, and vice versa.

Requiremengs should be included covering ertor detection, reporting and handling, with appropriate confofmity
clauses. The¢ standard should specify a minimum set of errors which a conforming processor must dete¢t (in
the absencd of any masking errors);/minimum level of accuracy and readability of error reports; whethér an
error is fatallor non-fatal; and, for non-fatal errors, the minimum recovery action to be taken.

NOTE 1 The objective of this_guideline is to enhance the value of standards to users. The inclusion of requirements on
error detectiop, reporting and handling provides a minimum level of assurance to the programmer of assistance from the
processor in ifientifying errors.

NOTE 2 Sge 3.3.1.for a definition of the term “error” in this context.

NOTE 3 That/an’error is statically determinable (see 3.3.1) does not imply that the processor must necessarily
determine it sfatically rather than dynamically.

NOTE 4 It is recognized that requiring provision of specific error detection requirements within the standard entails a
certain overhead in a conforming processor. It is a matter for each standards committee to determine how severely such
overhead will affect the users of the language concerned, and consequently whether requiring detection is worthwhile. It is
of course open to the committee to specify or recommend the provision of processor options which would permit the user
to control the use of error detection (see 4.1.9).

4.1.4.1 Checklist of potential errors

The following is a list of typical errors which can arise in the submission of program text to a processor.
Drafting committees should check all of the following for relevance to their language, and the standard
produced should address all that are appropriate, plus others specific to the language concerned. This list is
not to be considered either as exhaustive or as prescriptive.

14 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 101

76:2003(E)

In all cases the standard should specify whether the error concerned is fatal or non-fatal. Depending on the
design and philosophy of the language, it may occur that a particular usage is not invalid (whereas it would be
in another language) but that users would nevertheless benefit from the availability of a warning message

withi

n the processor.

41411 Errors of program structure

a)

unmatched brackets - either open without close, or vice versa.

NOTE This covers all sorts of bracket: (), [], {} etc.

b)

NOT

d)

e)

f)
NOT

NOT
h)

NOT

)
4.1.4
a)
b)
NOT

c)

fnmatched structure - simitarly. (e.g. begin-en

ine number missing (e.g. in Basic);
hbsence of program heading (e.g. in Pascal);

constructs in disallowed order (e.g. parameter statement after data statement in FORTRAN
for...do...else in Algol 60);

program incomplete (e.g. no main program in FORTRAN);

= In many languages this is a particular case of b).

program overcomplete (e.g. two main programs in FORTRAN);
= In many languages this is a particular case of b):

section of program that cannot be accessed;

This is disallowed in (e.g.) FORTRAN;.but is not a fault in many languages.

imitation on construct violated (e.g:~too many continuation lines in FORTRAN, level 01 stater
n incorrect margin in COBOL);

construct in disallowed contéxt (e.g. declaration in Pascal statement-part).
1.2 Transfer of control
reference to non-existent or out-of-scope label;

fransfer infe a loop or procedure body

E In some languages this is included in a).

E In some languages, such as Algol 68, it is not meaningful to try to distinguish between this'and a}.

, or if...then

nent starting

pXit from function instead of normal return

41.41.3 Words and numbers

unknown or misspelt keyword;
undeclared identifier;
duplicated identifier;

invalid syntax of numerical value (e.g. two decimal points).

© ISO/IEC 2003 — All rights reserved

15

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

41.41.4 Procedures
a) function that does not define its result (e.g. no assignment to function identifier in FORTRAN or Pascal);

b) call of unknown procedure or other named program segment (e.g. attempt to PERFORM non-existent
paragraph in COBOL);

c) wrong number of arguments in procedure call;

d) wrong type of argument in procedure call.

41.41.5 Pata structures

a) array dgclared with too many dimensions;

b) attempt|to select element of non-existent structure (e.g. A[i] where A is not an array);
c) array vgriable unsubscripted (in context where subscript necessary);

d) incorredt number of subscripts;

e) use of ynknown field selector;

f) incorreqt type of subscript or selector;

g) invalid yse of structure element (e.g. in many languages, array-variable used as control variable of logp);

h) empty gtructure in disallowed context (e.g. character string.in FORTRAN).

41.4.1.6 |exical requirements

a) symbol hot in character set.

41.41.7 Assignments

a) type incompatibility (e.g. int j; realx;:..; j:=x; in Algol 68);

b) assignnpent to loop control variable (not a fault in some languages);
c) assignment to constant'(elg. const k=2; ... k:=4 in Pascal).

d) assignment between-different datatypes (e.g. from character datatype to octet string datatype)

41.41.8 Program element structure

a) expression incorrectly formed (€.g. A~Bn FORTRANYJ;
b) incorrect statement syntax (e.g. IF(A.EQ.B) 12, 15 in FORTRAN);
c) reference incorrectly formed;

d) declaration incorrectly formed.

16 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

41.

ISO/IEC TR 10176:2003(E)

5 Guideline: Exception detection requirements

Requirements should be included covering exception detection, reporting and handling, with appropriate
conformity clauses. A minimum set should be specified of exceptions which a conforming processor must be
capable of detecting (possibly by the user invoking a processor option). Conforming processors should be
required to be capable of accurately reporting the occurrence of exceptions; whether an exception is fatal or

non

NOTE 1

-fatal; and, for non-fatal exceptions, the recovery action to be taken.

The objective of this guideline is to enhance the value of standards to users by the inclusion of

requirements

on exception detection, reporting and handling. This ensures a minimum level of “safety” to the user, e.g. in executing a
program with incorrect data.

NOTE 2 See 3.3.2 for a definition of the term “exception”.
NOTE 3 That an exception is in general determinable only dynamically (see 3.3.2) does not imply(that th
precluded from determining it statically rather than dynamically if the nature of the language, itself and

conc

NOT
sens
mear
provi

see

NOT
exce

how

deteq

brned makes static detection feasible (see 4.1.6).

E 4 It is recognized that languages exist which do not in themselves recognize)the concept of “exa
e that any syntactically correct program is regarded as executable even if the/consequent output ma
ingless. Nevertheless it is recommended that in such cases standards committees consider requiring
3.3.3) which can arise during program execution, as a processor option (see'4.1.9).

E 5 It is recognized that requiring provision of specific requiremeénts within the standard for thg
btions entails a certain overhead in a conforming processor. It is@a,matter for each standards committeq

severely such overhead will affect the users of the langdage concerned, and consequently whe|
tion is worthwhile. It is of course open to the committee to.specify or recommend the provision of prog

which would permit the user to control the use of exception handling (see 4.1.9).

41.

The

8.1 Checklist of potential exceptions

following is a list of typical exceptions which can arise during execution of a program by

Draffing committees should check all of(the following for relevance to their language, and f{

prod

not

Ina
the

(wh
war

Whe

into
pos
cou
che

4.1.
a)
b)

c)

NOTE

fatal

©IS

tp be considered either as exhaustive or as prescriptive.
I
q
€
n

cases the standard should.specify whether the exception concerned is fatal or non-fatal. D
esign and philosophy of the language, it may occur that the occurrence of a particular event
reas it would be in anether language) but that users would nevertheless benefit from the av
ing message withinthe processor.

n considering tequirements in this area, drafting committees may well need to take executi
account, which for some languages, some processors or some applications could be con
ible way.of dealing with conflicting priorities (e.g. between speed and safety) for differing

be to.specify that processor options (see 4.1.9) should be available to allow the level a

S

P processor is
he processor

eption” in the
be empty or
processors to

e an appropriate amount of detection and reporting of specified conditions’ (Chosen to suit the particllar language,

detection of
to determine
her requiring
essor options

B pProcessor.
he standard

Liced should address all that are appropriate, plus others specific to the language concerned. This list is

epending on
s not invalid
hilability of a

bn overhead
siderable. A
applications
nd extent of

I
4jking to be controlled.

5.1.1 Data operations
attempt to divide by zero;
numeric overflow on arithmetic (floating-point or fixed-point, including integer) operation;

numeric underflow on floating-point operation;

, replacing the underflow value by zero and continuing, or as fatal, which would be the default.

O/IEC 2003 — Alll rights reserved

It is recommended that a processor option be specified, to permit the user to treat such an exception as non-

17

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

d) attempt to raise a negative value to a non-integral power (where a real arithmetic result rather than a
complex arithmetic result is expected);

e) attempt to raise zero to a negative or zero power;

NOTE Even where the language accepts and defines the result of such an operation it is recommended that the
processor be capable of treating such a condition as a non-fatal exception.

f) overflow upon string or list concatenation;

g) attempt to perform an operation undefined for an empty string or list (e.g. car(L) in Lisp, where L is
empty);

h) operatign undefined for value (e.g. succ(last) in Pascal, or ordering operation attempted.on-item of
(unordered) set type);

i) attempt|to perform operation on an undefined value;

j) attempt|to dereference a nil pointer value;

k) attempt|to delete a non-existent item;

I) overlapping assignment (e.g. A[2:5]=A[m:n] where m=1 and n=4 - valid_in' some languages);
m) operatign requiring dynamic storage allocation (not a fault in many-Janguages);

n) truncatipn of a multi-byte character;

0) data (cqde value) is not in repertoire.

4.1.5.1.2 Niolations of aggregate limits

a) subscript out of range;

b) substring reference out of range;

c) incorredt dimensionality in array reference;

d) unrecognized dynamically generated field selector of record;
e) index of control flow switeh out of range;

NOTE Fpr example;index out of implied range in “computed GOTO” statements; while this may not be an excgption
in the language - the ‘default being to proceed to the next statement - the possibility of a warning or non-fatal excgption
message beirljg available should be considered.

f) Value olLease caolactar nat allowad for
CaSC—SCTrICCtoOTTotTanOvwW e OO~

NOTE Similar remarks apply as for e).

4.1.51.3 Procedure calls
a) unable to execute call (e.g. named procedure unavailable);
b) mismatch between actual and formal parameters (in number, datatype, or other attributes);

c) recursive call of procedure in disallowed context (e.g. where the language does not support recursion, or
a recursive procedure must specifically be declared as such);

18 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

NOTE

ISO/IEC TR 101

use of procedure parameters, means that consideration must also be given to detecting them as exceptions.

d)

argument out of defined range for intrinsic function (e.g. sqrt(x) where x is negative).

4.1.5.1.4 Input-output operations

a)
b)
NOT
c)
NOT
d)

NOT
level
mere
and {

e)
NOT

f)

attempt to open file which cannot be found;

attempt to open file which is already open;

76:2003(E)

Though some such cases can be detected as errors, the possibility of indirect recursion, including through the

= Perhaps non-fatal though it may indicate incorrect file naming.

llegal file name;

File names may be generated dynamically.
httempt to access (for input or output) file to which access is unauthorized;

= It is advisable not to require in the standard the provision of an unnecessary amount of inform
5 of security than provided by the host environment. Any message should be’ aimed at a legitimate
y omitted to unlock a protected file for read or write access, and who will bé able to obtain the needd
bke the necessary action without direct assistance from the processor.

unexpected end of file during input;

= May be fatal, non-fatal or condition-raising, depending'on the language.
Fequired record not found on input (in random-access input);

ttempt to input from output-only file (e.g. pritter stream);

attempt to output to input-only file (e.gokeyboard);

attempt to create a record which,already exists;

attempt to replace a non-existing record;

httempt to close file already closed.

1.5 Systemilimitations and characteristics
nsufficientimemory available for specified operation;

limelimit exceeded;

Ation or lower
Lser who has
bd information

mit on danth of nactin
HH-ER-Gepti-o+ResStH

d)

e)

g
use of non-standard dynamic processor-defined extension;

language/culture dependent service is not available.

4.1.6 Guideline: Static detection of exceptions

The standard should specify that, where a processor will detect, solely by inspection of the program text, that
an exception may (or will) occur if an otherwise well-formed program is executed, a processor option (see
4.1.9)is to be provided whereby the user may choose how the anticipated exception is to be handled.

© ISO/IEC 2003 — All rights reserved

19

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 1 In a particular case the most appropriate form of handling will depend on the nature of the exception in the
context of the application and the stage of development of the program. This cannot be foreseen either by the standard or
by the designer of the processor if the action is left processor-dependent. Provision of a user-controlled processor option
reduces the need for the user to include devious codes to “program around” restrictions.

NOTE 2 In the case of a fatal exception, it is recommended that the default option be to treat the statically-detected
exception as if it were a fatal error, an alternative option being to treat it as a non-fatal error and to continue processing
(until, unless some other action intervenes, the anticipated fatal exception is encountered).

NOTE 3 In the case of a non-fatal exception, it is recommended that the default option be to treat the statically-
detected exception as if it were a non-fatal error and to continue processing (until, unless some other action intervenes,
the anticipated non-fatal exception is encountered, and thereafter as if the non-fatal error had not been anticipated), an
alternative bejng to treat It as a non-fatal error but Not o proceed to execution.

NOTE 4 The recommendations in notes 2 and 3 above do not preclude the provision of further alternative options.

4.1.7 Guideline: Recovery from non-fatal errors and exceptions
Where the S
the actions
fully as are g

ts of
d as

tandard permits recovery mechanisms from error or exception conditions,-the' required resu
o be taken by the processor (when such a recovery mechanism is invoked) should be defing
efined the normal semantic features of the language.

NOTE T
faults. Users
such circumst

rable
bur in

he objective of this guideline is to improve the predictability of processor action in the case of recovd
pf standard-conforming processors should be able to expect a similar degree of consistency of behavi
ances as they do with normal programs.

4.1.8 Guideline: Requirements on user documentation
Requirements on the documentation which is to be provided.with a standard-conforming processor should be
included. S@me particular requirements of this kind may e found in ISO/IEC TR 10034. Committees |may

wish to extend the documentation requirements which thase guidelines recommend.
NOTE 1 T
make effectivi
examples will

ce to
ecific

ne value of standards to users is enhancediby the inclusion of requirements on documentation, sin
E use of a processor it is necessary thatcadequate documentation is available to explain its use. Sp
be found in ISO/IEC TR 10034.

NOTE 2 This guideline does not specify the:-form in which the documentation is to be provided; this is also the|case

with ISO/IEC
systems, yet
is envisaged

TR 10034. Some language committees may specify conventional manuals, others may specify “on-line
bthers may require both, or leave the question open, depending on the nature of the languages. Howe
hat all should specify afeasonable level of minimal provision, in some form, in this area, at least to the

help
er, it
level

recommended in ISO/IEC TR 10034:

user
re of

ry, to
hd in

NOTE 3 hatever form of.documentation is required by the standard, it should be specified in such a way that the
of the procegsor can cheek: by inspection that the processor conforms with such requirements. By the very natt
documentatioh this should, be possible. Validation services should not be expected, and should not feel it necessa
check conformity with -requirements related to this guideline, except as envisaged in ISO/IEC TR 10034 a
ISO/TR 9547

419 Gui

The standard should specify processor options required to be provided within a standard-conforming
processor, including in each case a specification of standard default settings of the option and the form or
forms in which the processor options are to be made available to the user.

NOTE 1 The aim here is to widen the range of facilities guaranteed to the user by standard conformity of a processor.
When a processor is being used, almost always some facilities are needed in addition to the ability to process standard-
conforming programs and to detect programs which are not standard-conforming, depending on the particular application;
this guideline assures the user that a standard-conforming processor will provide at least a minimum set of such facilities.

NOTE 2 “Processor option” in this context means an option for the user which the processor is required to supply, not a
facility which the processor may optionally provide.

20 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

NOTE 3

“proc

NOTE 4

ISO/IEC TR 10176:2003(E)

essor directives” embedded in a standard-conforming program.

interpreters.

NOTE 5

and dynamically - e.g. processor directive or interactive session command.

NOTE 6

Options may be provided, for example, as “switches” set when the processor is invoked by the user, or as

Default settings of an option could possibly vary between different types of processor, such as compilers or

In some cases it will be appropriate to require the option to be provided both statically - e.g. processor option -

In general the form of provision of a required option can be left processor-dependent, though where it is

invoked by a directive embedded in the program text, a program invoking it will not be standard-conforming or (e.g. if the
directive is embedded in “pragmatic comments”) will not be fully portable unless the form is specified in the standard.

NOT
partid
partid

NOT
in4.1

NOT
agen
is noj

validated. Rather than, as a consequence, limiting the number of options ©orremoving them from the starj

comrj

419

Draffing committees should consider all\ef'the following features as potential areas for specifyi

proc
type

E 7 A checklist of appropriate options is given in 4.1.9.1. The choice from these or others_to“be
ular standard is a matter for the individual language committee to determine in the light ef\ithe n
ular language.

E 8 Provision of processor options is sufficiently common that this guideline, and many*of the specif
.9.1, can be regarded as recommending standardization of “existing practice”.

F 9 It should be noted that, for purposes of validation of conformity, e.g. by a registered validat
Cy, each possible combination of settings of options produces, in general, a.different processor requirin
[reasonable to expect that the effect on conformity of all possible combinations of settings can be

hittees are recommended to ensure that

checking that the provision of options is in accordance with._the standard can, as far as possible,
by the user;

the requirements upon provision of options are sp.designed as to limit the validation overhead, €
as many as possible checkable independently without interaction with the effects of other options.

A Checklist of potential processor options

ssor options, and the standard produced should address all that are appropriate for the Ig
5 of processor covered:

the handling of non-standard features;

the use of machine-dependent or processor-dependent features;
the type(s) of eptimization;

the use_of overlays;

the’ selection of debugging, profiling and trace options, including post-mortem dumps;

covered in a
ature of their

ic items listed

on service or
§ validation. It
checked and
dard, drafting

be performed

.g. by making

ng standard
nguage and

the handling of errors, exceptions and warning messages;

the handling of array bound, overflow and similar range checking;

the control of output listing and pagination, including any listing of variable attributes and usage and listing

of object or intermediate code;

operating modes, such as execution automatically following compilation;

the mapping of relevant language elements (such as files or input-output channels into corresponding

elements of the host environment);

© ISO/IEC 2003 — All rights reserved

21

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

the use

of preconnected files and their status on termination;

the rounding or truncation of arithmetic operations;
the precision and accuracy of representation and of arithmetic, as appropriate;

the default setting of uninitialized variables;

and reporting, of usage incompatible with the old standard.

in the case where a language standard is a revision of an earlier standard, the detection within programs,

NOTE 1 It
of combinatio

NOTE2 §

4.1.10 Guid

Minimum le
conforming
a) itis pro
of the |3

may well be appropriate in many cases to specify several different settings of a given option, or a hier
hs of settings, though see note 9 of 4.1.9 above.

e also 4.1.6 and 4.4.

eline: Processor-defined limits

els should be specified of guaranteed translation time and run-time support to be supplie
brocessors in appropriate circumstances, namely where

pable that programs in the language may encounter processor-defined limits in the implement|
nguage, and

b) such li

its can be expressed in terms of the logical behaviour of_programs (rather than implement

issues guch as storage capacity);

and provide jadvice on choice of actual levels.

NOTE 1

Users should be able to feel assured of a guarantéed minimal level of support from a conforming proce

Severe procepsor restrictions (e.g. inability to handle SET OF\CHAR in Pascal) impede portability; at a minimum, all
restrictions should be documented. In all the cases listedvabove, it is desirable that programmers be able to rely

specified mini
NOTE2 T
NOTE3 A

mum, while allowing processors to supply‘additional capability if they so choose.
he limits specified in the standard may-be semantic or syntactic, depending on the language.

5 can be seen from the chegklist below, it is clear that some of these requirements upon processors m

interdependent, and drafting committees ‘are advised to pay particular attention to ensuring mutual consistency bet

them. Attentig
example, itm
places a muc

41101 C

Examples of

n also needs to be paid\to'the implications of having to meet all the limits on provision simultaneous
hy be relatively simple-for a processor to meet any individual one of these limits, but meeting them all at
n greater demandupen the resources of the underlying system supporting the processor.

hecklist of potential processor-defined limits

features for which it may be appropriate to specify minimal limits in standards are

archy

d by

ation

ation

SSOfr.
such
on a

ay be
ween
y; for
once

length @

f character strings:

internal

number

number

number

22

range of integers;

precision of real numbers;

magnitude of real numbers;

of files which can be open simultaneously;
of dimensions for arrays;

of array elements;

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

— length of external names;

— length of records which can be read or written;
— length of keys in keyed files;

— length in characters of a line of source text;
— length in items of a list-structured object;

— depth of nesting of various constructs (e.g. lists, records, procedure calls, loop constructs);

— humber of items in various program constructs (e.g. declarations or statements in a blogk off compilation
Lnit, procedures or modules in a package) and the accumulated length of such items.

Particular care is needed where limit requirements impinge on the external world, for example in the context of
mixgd language processing (see 4.6.4).

4.1.10.2 Actual values of limits

When advising implementors on considerations involved in setting the” actual values of processor-defined
limit$, note that such advice may do one or more of

— recommending specific values;
— frecommending minimum useful values;
— recommending maximum useful values;

— recommending that limits should depend on processor thresholds where efficiency changes sharply (such
as word size, or memory size);

— fecommending that limits should depend on resource availability, which may fluctuate during processing;
— petting forth other criteria appropriate to the specific language.

In each case the reasons for(the recommendations should be explained. Different recommendatjons may be
apprppriate for different limits,

It shpuld be noted that\appropriate processor-defined limits need to be made accessible to users,|in particular
for those performing-eonformity testing, as well as being documented. Where this is not available through
langyage facilitiesy(such as environmental enquiry functions), appropriate guidance to implementars should be
provided.

4.2 | Guidelines on presentation

4.21 Guideline: Terminology

As far as possible, the standard document should use the terminology given in the appropriate parts of ISO
2382, taking into account common practice in the language community concerned and possible costs of
transfer to new terminology (see 4.5.4). Additional terms not covered by ISO 2382 should be defined in a
specific section of the standard, and these additional terms should be registered with the appropriate
subcommittee of ISO/IEC JTC 1.

NOTE 1 The objective of this guideline is to avoid unnecessary variations in terminology between standards for
different languages. In general, the same word should be used for the same concept in all language standards; this aids
“programmer portability” between languages, mutual understanding, and promotion of commonality between languages,
and also strengthens the credibility of standards generally by making sure that one standard recognizes the existence and
validity of other related standards.

© ISO/IEC 2003 — Al rights reserved 23

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 2 Any divergence from standard terminology should be explicitly documented in the glossary section of the
standard. Where for historical reasons a different word is commonly used, the standard should record this fact in an
appropriate way, and could use that different word in any informal language definition included as an annex. Similarly the
same word should not be used for different concepts in different language standards, and explanations should similarly be
incorporated.

4.2.2 Guideline: Presentation of source programs

A consistent format should be adopted for textual presentation of source programs, and should be used in the
relevant programming language standards documents for examples of language constructs, program
fragments, and complete programs; when determining this format, such matters as indentation, how to break

up long stat

NOTE 2
standards, or

to the community of language users who read and maintain programs.

recommending consistency of appearance of programs in standards documents, there'is no suggestiol
drafting committees, should specify style.

4.3 Guidelines on processor dependence

4.31 Guid
The number
(and preferg
be required
left as procq
processor-d
required lim

NOTE 1 T
everything wi
standard and
ranges of faci

NOTE2 T
scope is itsel
simply as an
something is
use of exclus
within it.

4.3.2 Guid

eline: Completeness of definition

ntors
5form
, and

h that

of aspects within its scope that the standard leaves n¢t completely defined should be mininized

bly eliminated altogether). Where full definition is impracticable, in general such aspects sh
o be processor-defined, subject where appropriate 10 specified minimal or other limits, rather
ssor-dependent or undefined. In this case, a,complete checklist should be provided of all
bfined features [see 4.1.1, elements 6) and 7)]; guidance should be provided for implemen

ould
than
such
tors,

ts (see 4.1.10), as appropriate, should be’specified, and the documentation accompanying the
processor should be required to provide for the user a full specification of the processor definitions used.

nough in particular cases counter-arguments to this guideline may exist on the grounds of “flexil
hin the scope of a standard which is(left undefined, processor-dependent or processor-defined weaker]
harms portability. Flexibility may,(sensibly be provided within the standard itself in the form of guara

ity for the user, but not as unguaranteed variations in provision which are outside the control of the user|.

nis guideline applies to,matters within the scope of the standard and it is important that the definiti
sufficiently precise that\it is clear when a matter is outside the scope. Where genuine doubt can exig
aid to the user of.the standard, to avoid misunderstanding - it may be appropriate to state explicitl
Lindefined by the standard. However, the scope of a standard should not be given contrived precision g
on clauses which remove from its definition aspects which, given the objective of the standard, fall nat

eliné: Optional language features

ility”,
s the
hteed

pn of
t - or

that
y the
urally

Inclusion wi
alternatives,

NOTE 1

| 4l 4 ol al £ ' 1l £ 4 ool ' 1 PUPAHH
M uic staridaru Ut UpuuTidl 1ditguaytc 1ITatuitcs, WIITUITT do UPLUTIdl aUUllivlTo Ul do UPL

should be minimized.

onal

The argument here is similar to note 1 under 4.3.1. Language options provided for the user within the standard

are acceptable provided the choice is with the user. Language options which may or may not be available and are out of
the control of the user are not acceptable.

NOTE 2

Ideally, the aim should be to have no optional features at all.

4.3.3 Guideline: Management of optional language features

Where complete avoidance of language options is impracticable, they should be organized in levels so that
each level is a pure subset of all higher levels, and the number of different levels should be minimized.

24

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

NOTE 1

ISO/IEC TR 101

76:2003(E)

If a standard contains N optional features (whether separate facilities, or modules containing several facilities),

this implies the existence of 2 to the power N different possible combinations and hence different processor configurations.
This severely harms portability and greatly increases the problems of validation.

NOTE 2

Drafting committees will always have to balance the arguments against levels and subsets, the arguments

against making the language and its implementations too large, and the dangers of leaving extensions to provide further
functionality outside the standard and hence liable to be provided in incompatible ways.

NOTE 3

migration of optional features to mandatory features.

Wh

neveg

NOT
defin
that

confq

Ther
funct
funct
with

warn

NOT
4.3.5
The

stan
and

identifier is not directly supported by-the processor.

NOT

NOT
requi
built-
langy

4.3.6

Revision of an existing standard offers an opportunity to reduce the number of options and levels, including by

ever a language feature is made optional in a standard, whether by inclusion in a level h

al level, or otherwise, and if a processor accepts, syntactically, a standard-conforming prog
evel or subset for which standard conformity is claimed, then the standard\(should
rtheless, the processor must process that program in the way described by the standard.
= The aim of this guideline is to ensure consistency of semantics. It must be possible to be sure th

f a feature is described in the standard, whether optional or not, it is proyided in the same way in
rming implementations.

e can also be the problem that a processor claiming conformity oply~at a lower level may still prov

onality will not be standard-conforming. Standards committees may wish to consider whether this is a
their language which might cause serious problems, and whether some further conformity stateme)
ng might be appropriate.

F 2 Detailed consequences of this general guideline are provided below (see 4.3.5, 4.3.6).

Guideline: Predefined keywords and identifiers

standard should specify that any standard keyword or identifier defined in any section of|
Hard, whether optional or not, retains:the same standard-defined meaning throughout the wh
ppplies to all standard-conforming/processors, at whatever level, even if, when optional, thg

E 1 In line with 4.3.4, this'guideline ensures consistency of use of standard-defined words.

F 2 This appliesyfor example, to COBOL reserved words, FORTRAN keywords, Pascal word
red identifiers, and predefined identifiers such as the names of standard datatypes, and to the nam
n functions; buttit does not preclude redefinition within a program of the meaning of a standard-defined
age (and thejstandard) permits this (e.g. by application of scope rules).

Guideline: Definition of optional features

As far'as possible, any optional (or higher level) features should be defined functionally in terms g

gher than a
ram beyond
equire that,

at any syntax

bd in the standard, whether optional or not, means the same thing in any standard-conforming implenentation, and

all standard-

de equivalent

onality to some language feature at a higher level, but provide ‘it -with different syntax. Any program using that

ikely scenario
nt or at least

a language
ple standard
keyword or

symbols and
s of optional
dentifier if the

f mandatory

(or lower level) features.

NOTE 1

featu

NOTE 2

res can implement those features individually in a (functionally) standard-conforming way.

This guideline enhances portability because a user of (say) a lower level processor but who needs higher level

The purpose of including such higher level features in the standard is often to relieve the user of the need to

implement them individually, and (very often) so that the implementor can provide them more efficiently than can a user
with only the lower level language features available. (A simple example is that of the standard intrinsic functions
commonly required to be supplied by a standard-conforming processor, many of which - like the common trigonometric or
arithmetic functions - can be programmed in the language itself.) On the other hand the purpose of providing them as
options or higher level features is often so that users will not have to “pay” in some way to get features they will never or
will rarely use. This guideline simply recognizes this and suggests a means whereby it can be taken into account without
impairing portability.

© ISO/IEC 2003 — All rights reserved 25

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

It is recognized that some optional or higher level features are intrinsically incapable of being treated in this way and it is
not suggested that they should therefore be avoided. However, it may be felt appropriate to point out in the standard that
their use has a greater impact on portability than those which are expressible in terms of mandatory or lower level features.

4.3.7 Guideline: Processor dependence in numerical processing

Where a major anticipated use of the language is for arithmetic processing, means whereby the user may
specify and interrogate the range, precision and accuracy of arithmetic operations should be included in the

standard.

NOTE 1 Because of the wide variety of data processing equipment with which languages are used, these features of
numerical work—arecommonty teftprocessor-defimedorprocessor-dependent—White for many usesitisadequatefor the
default ranggs, precisions and accuracy of arithmetic to be processor-defined, such variations severely inhibft the
production of portable numerical software, and specifying lower limits (see 4.1.10) is only a partial solution.

NOTE 2 Spitable means of providing such facilities may be specific language features, processor options, ‘or bind|ng of
a language-independent facility.

NOTE 3 Pfocessor limits, as in 4.1.10, should still also be specified for processor-defined defaults.

NOTE 4 lt|is recommended that processor (or language-independent facility) documentation be required to inclide a
specification ¢f the means (including algorithms for controlling accuracy) used to achieve(requirements under this hegding.
NOTE 5 Dyafting committees, and also implementors (through recommendations-in element 7) of the standard, see
4.1.1) should seek guidance from professional numerical analysts on how to drawup and how to meet requirements yinder
this heading.

4.4 Guidelines on conformity requirements

Guidelines ¢n requirements for conformity to the standafd.may be found in ISO/IEC TR 10034. Partipular
attention is |[drawn to the need for consistency betweerrequirements for different levels or options, if the
standard pefmits subsets or optional modules.

4.5 Guideglines on strategy

4.5.1 Guideline: Secondary standards

Where existing standards do not address all of the issues proposed in these guidelines, standards commiftees
should cons|der producing secondary standards to cover such matters (e.g. requirements upon processorg).
NOTE 1 The advantage of the use of secondary standards is that they make it possible, in effect, to improve the
content of thg corresponding‘primary standards without introducing unnecessary delay, such as by having to wait for the
next full revision.

NOTE 2 Sge 3.5 for a definition of “secondary standard”.

NOTE 3 This procedure could also be considered for standards not yet in existence but in an advanced stage of

processing, where delay in order to introduce further requirements would be undesirable.

4.5.2 Guideline: Incremental standards

Standards committees should, in general, use incremental standards to add new constructs to existing
languages rather than incorporate them in a complete revision.

NOTE 1
existing stand

NOTE2 S

26

ards without introducing unnecessary delay, e.g. while waiting for the next full revision.

ee 3.5.2 for a definition of “incremental standard”.

The advantage of incremental standards is that they make it possible, in effect, to augment the content of

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 3 Consideration should always be given to producing a revised standard (to correct errors but not change the
language except perhaps to extend existing constructs) and an incremental standard in parallel, rather than attempt to do
the two together; though perhaps in such a way that the two could be merged at a later revision, after gaining experience

of the new standard.

NOTE 4

For an example of the incremental standards approach see ISO 1989/AMD1.

4.5.3 Guideline: Consistency of use of guidelines

Where guidelines in this Technical Report are applied in a primary standard, they should be applied, as
appropriate, to related secondary, incremental and supplementary standards, in the same manner.

NOT
addit|

E 1
ons and corrections can be made to primary standards without the need to reconsider and-reg

The concept of secondary, incremental and supplementary standards will provide a mechavLism whereby

pprove those

standards immediately. Standards committees should consider utilizing these mechanisms to revise, portigns of primary
standards on a more frequent basis than is possible for the complete standard. To maintaif) stylistic| compatibility,
secondary, incremental and supplementary standards should follow the same form as thepprimary standard. This will
enhapce the ability of the committee to integrate any changes or modifications into the\ primary standgrd when that
standard is updated as a whole.

NOTE 2 For guidelines relevant to secondary, incremental and supplementary-standards see 4.5.1, 4.5.2, 4.6.1 and
4.6.2

4.5.4 Guideline: Revision compatibility

For ¢ach proposed addition, deletion or modification that represents a potential incompatibility frg

stan

NOT
and 9

jard
the rationale for the proposed change should be stated;

the way in which the proposed change will.affect the original language feature should be dg
bccordance with the classifications in 4.5.4.1 below;

the difficulty of converting affected programs should be assessed, according to 4.5.4.2 below;
an attempt should be made to.determine how widely the affected feature is used;

bll the above should be documented, and conversion guidance should be provided in the relg
bf the standard [see element 9) of 4.1.1].

E Altering a standard in an incompatible manner during a revision may bring benefits but will als
o should not bewundertaken lightly. The rationale for a proposed change should include statements of
Specific penefits, and how the benefits result from the change. Benefits may fall into such ¢
mproved programming practice, better portability, better machine performance, elimination
br jimproved consistency and clarity of the language specification.

m an earlier

termined, in

vant section

D entail costs,

ategories as
bf ambiguity,

Costs (other than those directly associated with compatibility, which are discussed below). Costs may fall

into such categories as use-ability, performance, or ease of learning.

4541 Classifications of types of change
1) Change to semantics of well-defined feature. A change is made to the semantic specification of a
feature for which the original document guarantees a reasonably precise result. The feature remains
syntactically valid, but a program may now produce different results.
2) Deletion of semantically well-defined feature. A feature well-defined in the original document is
rendered syntactically invalid by the new specification.
© ISO/IEC 2003 — All rights reserved 27

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

document is rendered syntactically invalid by the new specification.

Deletion of semantically ill-defined feature. A feature which was not well-defined in the original

Clarification of semantically ill-defined feature. A feature which was not well-defined in the

original document, so that its interpretation was open to question, is properly defined in the new
specification. (This, strictly speaking, is not an incompatibility, since no guarantee has been
withdrawn, but is included here for completeness since some past interpretations may not be
compatible with that in the revised document.)

obsolescent is deleted or changed in the new specification.

Change or deletion of obsolescent feature. A feature designated in the original document as

3)

4)

3)

6)

7) Ch

8) Ch

9) Ch
NOTE C

definition has

4.54.2

At least fou
From the sts

Cthge of level definition.

|

Djfficulty of converting affected programs

Semantic transformation. The original function can still be performed using the language

hnge of processor defined limit.
nge of other processor requirement.
nge of conformity clause.

pnversion problems (if any) in cases 6) to 9) are different from those in casés (1) to 5), where the langd
been changed.

levels of difficulty may be distinguished. In doubtful cases use the more severe classifica
ndardization point of view, the following are listed in grder of decreasing conversion effort:

possible translation. There is no feasible way-to-implement the original function within the
hdard.

han translation, based upon knowledge of the purpose of the program, is required.

1) No
sta

2)
hur
3) Si
pr
4) Si
syn
NOTE 1 T

programs us§g
consider the
question, few
estimate canr
valid, but prof

nificant syntactic transformation. A mechanical translation is feasible, but some analysis g

ram structure as a whole may.be required, or a significant amount of code may be generated.

ple syntactic transformation. Old statements can be mechanically transformed to the
tax with little or no knewledge of the rest of the program or its purpose.

ne extent of use of the affected feature may be estimated in terms of whether a high or low proporti
the feature, orof ffequency of use within programs. In making this estimate the drafting committee s
existing patteri® of implementation. Thus, for example, even though many programs use the featy
may actually be affected if the committee is simply ratifying existing practice. It is recognized tha
ot be precise; the point is to distinguish at least between clearing up anomalous cases which are techr
ably(Unused in practice, and changing features on which many programs may truly depend.

uage

tion.

new

but

f the

new

on of
hould
re in
t this
ically

NOTE2 D

a)

ocumentation will be needed under one or more of the following headings:

Along

Obsolescence. A notification that the standard's support for the language feature in question is scheduled to be

withdrawn in the next revision. This action allows users to plan a smooth evolution of their software base away from
dependence upon the feature (or upon the old interpretation of the feature, if there is a semantic change).

b)
c)

1)

28

Documentation of transition semantics. (see note 3)
Conversion guidance. This may be one or more of

A conversion program.

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 101

76:2003(E)

2) An algorithm that is detailed enough to be understood by a reasonably informed user of the language.

3) A commentary describing the conversion process.

4) As much conversion information as possible, in cases when a well-defined conversion process is not feasible.
NOTE 3 Transition semantics: Transition between two interpretations of the same language feature may be provided

in various ways:

a)

(Ing

The standard may require conforming implementations to make both the old and the new interpretations available to
the user through the use of a user-controlled option (which itself may be part of the language, or provided as a

rocessor option).

The standard may allow implementations to use either the old or the new interpretation, but with thie ‘old
scheduled to be withdrawn in the next version. (The implementation should then be required‘to do
nterpretation it is using.)

f it is judged that the costs of such measures outweigh the benefits, the standard~may simply a
nterpretation and require implementations to provide a “flagging” capability which would detect and rg
possible incompatibility. [Flagging may also be required in conjunction with case ©) If this course of g
hen the standard should be as specific as possible about the cases to be flagged and should provid
guidance on the form of flagging, the user documentation which will be needed, and so on.

bneral, changing the interpretation of a language feature is to be avoidéd,if possible, but may be essen

elimipate inconsistencies, or as enabling action to permit other desirable changes.)

NOT
is ba
defin

F 4 While this section applies primarily to revision of an existing standard, in cases where a new (in

tion) the drafting committee may well find it appropriateto.take into account at least some of the gu

preparing the formal standard.

interpretation
cument which

dopt the new
port cases of
ction is taken
e appropriate

tial in order to

itial) standard

5ed upon a previous informal, unofficial or “de facto” standard (for example a published and implemented language

delines when

4.6 | Guidelines on cross-language issues

NOTE At the time that this Technical Report'is published, active work is in progress which is expected to result in
another Technical Report giving guidelines for“language bindings. The guidelines resulting from this work|could lead to
thosg described below in this section being modified or extended. Standards committees should therefore|check on the
progiess of this work before applying these-guidelines.

4.6.1 Guideline: Binding to functional standards

Where a binding is required between the programming language and a functional standard defindd externally,
the gtandards committee’ should ensure that this is specified in a supplementary (or incremental] standard to
the functional specification, cross-referenced to the primary language standard.

NOTE The-objective here is to specify the location of the binding specification for a functional standard.

4.6.2 ,Guideline: Facilitation of binding

The standard should be designed so that it takes into account the existence of relevant existing or potential
language-independent functional standards, in such a way that it facilitates binding (preferably by means of a
supplementary standard), including the possibility of generic bindings for future functional standards.

NOTE 1 Many language processors currently obtain specialized functionality from language-independent subsystems
provided by the host environment. Many users want and expect functionality to be provided in a uniform manner across
language systems. Functional standards recognize both of these needs and it is beneficial for language standards to be so
designed as to take account of them.

NOTE 2 Examples of existing (or emerging) functional standards are GKS (graphics), DBMS (database systems) and
IRDS (information resource dictionary). Examples of potential functional standards are for communications facilities,
screen management, mathematical library facilities, etc. It will be necessary for users to be able to invoke each of these
from a variety of different languages.

© ISO/IEC 2003 — Al rights reserved 29

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

4.6.3 Guideline: Conformity with multi-level functional standards

The standards committee should ensure that the rules for conformity with multi-level functional standards are
consistent with those for conformity with multi-level primary standards given above, both for programs and for

processors.

NOTE 1

apply to conformity with external functional standards as to the primary language itself.

NOTE 2

It is necessary, especially with the increasing number of functional standards, to ensure that the same criteria

The requirements for processors apply equally to subroutine packages (or their equivalent) which implement

functional standards, since in the terms used in this Technical Report such a subroutine package will form part of the

processor as

4.6.4 Guid

When speci
programmin
programs m
language. T
provide mea

NOTE S
other languag
facilities writt
available in a
those packag

4.6.5 Guid

Those elem
languages S
functionality
be specified

NOTE T

4.6.6 Guid

aras hinding tothe functional standard-is concerned

eline: Mixed language programming

fying requirements upon conforming processors, possible needs of users for /mixed lang
j should be taken into account. These may include the incorporation of modules. or segmer
ainly written in another language, as well as the use of modules or segments-written in an
he committee should consider whether it is appropriate to require cofiferming processo
ns to facilitate this, or to provide guidance to implementors on such provision.

andards are commonly designed as if the language and its community operate in an isolated world in
es do not exist. However, in practice many users of many languages(fihd the need to invoke in somg
en in other languages. The growth of libraries of reusable softwarejpackages which are not neceg
specific language, and the risk of decreased reliability in the configuration management of multiple cop
bs, reinforces the need to give attention to this topic.

eline: Common elements

ents and properties within the language which’ may be held in common with those of
hould be defined in the standard; the hierarchy of the elements should be specified; ang
of the common holding of definitions to be‘performed internal and external to the language sh

his guideline is aimed at ensuring that common elements may be used consistently across languages.

eline: Use of data dictionaries

Where a st
dictionary t

hE
of those dat

preferably in

NOTE T
and those in t
provide some

ndard exists for a data’ dictionary and users of the language standard require access to
ough their language; the semantics and the matching of the structures, elements and propg
elements in thé language which are associated with the dictionary standard should be sped
a supplementary standard.

ne aim of this guideline is to remove any possible ambiguity between the data descriptors in the langd
he dictionary, provide an additional check on the functionality, semantics and structure of the dictionary
commonality within the dictionary for the use of alternative languages.

lage
ts in
bther
rs to

ivhich

way
sarily
es of

bther
the
ould

that
rties
fied,

uage
, and

The holding of elements within the dictionary requires definition of properties for each element type which, if commonly
defined for instances, provides the necessary means for the validation of format, content, and relationship with other
instances.

4.7 Guidelines on internationalization

4.7.1 Guideline: Cultural convention set switching mechanism

The programming language standard should provide the functionality to dynamically switch from one cultural
convention set to another (e.g. setlocale() function in C language). If the programming language supports
multiple threads in a process, the cultural convention set binding should be done by thread or by API, not by
process.

30 © ISO/IEC 2003 — Al rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

NOTE 1 setlocale() function in C and POSIX standards is an example of the culture convention set switching
mechanism.

NOTE 2 locale object may be used for object oriented languages in order to indicate a cultural convention set to be
applied for a method of a cultural sensitive object.

4.7.2 Guideline: Cultural convention related functionality

Every cultural convention related functionality, e.g. character string ordering service, provided by a
programming language standard should refer to the cultural convention, e.g. collating sequence, associated at
execution time, and behave correctly as defined in the cultural convention.

The |programming language committee should consider what cultural convention related fungtionality are
releMant to and should be provided by the subjecting programming language standard.

NOTE Candidates of cultural convention related functionality provided by programming\language standards are
described in ISO/IEC TR 11017 “Framework of internationalization”.

© ISO/IEC 2003 — Al rights reserved 31

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

Annex A
(informative)

Recommended extended repertoire for user-defined identifiers

The recommended extended repertoire consists of those characters which collectively can be used to
generate word-like identifiers for most natural languages of the world. This I|st comprlses the letters

(combining ¢
marks conv
included in Yords or considered appropriate for use in identifiers. Also excluded are most presentation f

ntionally used as parts of words. The list excludes punctuation and symbols not géng

of letters and a number of compatibility characters. The inclusion of combining characters corresponds to

those allowgd under a level 2 implementation of ISO/IEC 10646-1. These are the minimum required to
reasonable |ob of representing word-like identifiers in Hebrew, Arabic, and scripts of South and South
Asia, which make general use of combining marks. However, combining marks for level 8‘implementatio
ISO/IEC 10§
identifiers.

Attention is|drawn to the fact that using the extended repertoire for identifiefs may impact source
portability, since the presence of these characters in program text may not,\be supported on systems
implement Igss than the full repertoire of ISO/IEC 10646-1.

The charactgr repertoire listed in this annex is based on ISO/IEC 10646-1:2000. It is subject to expansi
the future, tp track future amendments to the standard. Characters. currently listed in this Annex will n
removed from the recommended extended repertoire in future révisions. However, the use of some chara
may be discpuraged.

The character repertoire listed in this annex should bg.gonceived of as a recommendation for the mini
extended repertoire for use in user-defined identifiers. Each programming language standar
implementaton of the standard can extend the repertoire at the adaptation, in accordance with establi
practice of iflentifier usage for the language and\any additional user requirements that may be present
example, th¢ C language should allow U0OO3FLOW LINE in addition to the character repertoire listed bg
COBOL shquld allow U002D HYPHEN-MINUS as well; Java allows a rather large extension to supp
level 3 implgmentation of ISO/IEC 10646-1. Some programming language standards may allow half- of
width compatibility characters from ISO/IEC 10646-1, and some of the standards, e.g. COBOL, may recog
these charagters in a width-insensitive manner.

Programming language standards generally have restrictions on what characters may be allowed as thg
character of|an identifier. For-example, digits are often constrained from appearing as the first character
identifier. Tq assist in theiridentification, the decimal digits in ISO/IEC 10646-1 are separately noted in th
below. In addition, combining characters should not appear as the first character of an identifier. To maxi
the chanceg of interoperability between programming languages (as for example, when linking com
objects between(languages), programming language standards and their implementations should follow

do a
east
ns of

46-1 are not included in the list, so as to avoid the problem of alternative representations of

code
that

DN in
pt be
cters

mum
i or
shed

For
Blow;
Drt a

full-
nize

first
Df an
e list
mize
piled
nese

restrictions whefiyrmaking use of the extended repertoire for user-defined identifiers.

The characters, recommended for identifiers in programming languages consist of the following character

ranges of ISO/IEC 10646-1. Combining characters for scripts are separated out.
The table shows

— the first and the last code point in hexadecimal form for a range of characters
— the General Category property of these characters (see legend below)

— the number of characters in this range between square brackets

— and the names of the first and the last character in the range.

32 © ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

ISO/IEC TR 10176:2003(E)

The following table is also available in electronic form on the ITTF secure web site for downloading. Its file name
is ISOIEC_TR_10176_2003_Table.txt and the URL is http://www.iso.org/ittf/ISOIEC_TR_10176_2003_Table.txt.

Legend:

The following table identifies the property of characters suitable for identifiers, as used in the Unicode
Character Database and in the table ISOIEC_TR _10176_2003_Table.ixt on the ITTF web site.

Abbr. Description

L& | The symbol “L&” indicates characters of type Lu, LI, or Lt (see below).

Lu Letter, Uppercase

LI Letter, Lowercase

Lt Letter, Titlecase

Lm |Letter, Modifier
Lo Letter, Other

Mn | Mark, Non-Spacing

Mc | Mark, Spacing Combining

Nd Number, Decimal Digit

NI Number, Letter

Pc | Punctuation, Connector

© ISO/IEC 2003 — Al rights reserved 33

http://www.iso.org/ittf/ISOIEC_TR_10176_2003_Table.txt
https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

2003(E)

ISO/IEC TR 10176

FNLIEIL IS INION TN CUANT T TT T T AA SZONCITT A NTRT T T orrr (TY7 T T I TN ® TANILI A O TNIT T TTT T A S7OTITT NI T LI TTrTTILT

INFNNYIOEOO0dA (INY ¥IXO HLIM VOHWO HHLLAT TIVWS MEHED " " INHWWNYIDHEDOX ANV VIYVA HLIM VYOHWO HHLLAT TIVNA|
YISVYd HLIM OHY YHLLAT TYLIAYD MHHED " "AHOVIA HLIM NOTISAN HYHLLAT TTIVR

YIXO HIIM VIOI YHLLAT TVYLIAYD MUHED " "INHNOdSIdHd HLIM VIOI JHLLHT TIVKW

MIXO ANV VAILATVIA HLIM VIOI YHLLAT TIVWS MHHYD " "AHOVIA HLIM VIOI JHLLHET TIVN
INHFWNYIODHEOSO0dd HLIM YVIH YHLLAT TYLIAVYD MHHEED " "INHWOISIYHd HLIM YIH JHLLIHET TTIVRW
INHNNYIODHEOPAA ANV VIXQ, HILIIM VIH JHLLHET TIVAS MHHED " " INHNAVIDADOdA ANV VIYVA HLIM VIHE YHLLAT TTIVRN
INHNNYIOEDE0dd HLIM VHATV JHLLAT TYLIVYD MHHYD ™ " INHWOdSIYHd HLIM VHATVY YHLLAT TTIVRN
INIWNNVIDHEOO0dA (INY VIXO HLIM VHATVY JHLLUT TIVNS MHEEED " " INHWNVIDHEDOdX ANV ITISd HLIM VYHATVY dHLLAT TIVNA
YIXO HLIM VDHWQ MHLLHAT TIVWS MAHED ™ " INHWOdSIY¥Hd ANV VISVA HIIM NOTISdN ¥HLIHT TVLIIJY
YIXO ANV VYISVA HLIM NOTISdN ¥HLLAT TVLIAY

YIYVYA ANV VISYA HLIM NOTISdN YHLLHAT TVYLIJY]

YISVd HLIM NOTISdN ¥HLLAT TVYLIAY

INHWNOdSIdHd ANV VISVA HE&IM . NOTISAN HHLLAT TIVWS MHHYID ™ "ITISd HLIM NOTISdN JHLLHET TIVKW
YIXO ANV VYISVA HLIM NOJOIWO YHLLAT TVYLIAVYD MHHYD® "ITISd HLIM NOJIDIWO H¥HLLAT TVYLIAY
YIXO ANV VYISVA HLIM NOJIDIWO HdHLLIAT TIVWS MHHYD" "ITISd HLIM VIHE YHLLAT TIVRN

YIXO ANV VISVA HLIM NOTISdH MHLLAT TVLIAVD MHHID® "ITISd HLIM NOTISdH H¥HLLAT TVLIAY
YIXO ANV VISVA HLIM NOTISdH HHLLAT TIVWNS MHEHED ™ "ITISd HLIM VHATVY JHELLAT TTIVRW

LOL YULLHET MHHEED " "YWOILS dHLLH

TOWAS IVM MHHYD " "TOAWAS YILIH

SONOL HITW VDHWO YHLLAT TIVWS MHHYD " "VWOIS H¥HLLAT TVLIAY

OHYd Y¥HLLIAT TYKLAVD MHHIID " "SONOL HLIM NOTISdN dHLLAT TVLIAY

SONOL HLIM NOYJDIWO dHLLHT TVLIJVY]

SONOL HLIM VYIOI ¥HLLAT TVLIAWYD) MHHID " "SONOL HLIM NOTISdH HHLLAT TVLIAY

SONOL HLIM VHATVY YHLLAT TYLIJY

|V S W A W R W9y & 5 [R V5 B WV [WD J 05 [WP W A WV B WD SR oP I VP B VD R VD R OD R op R vp B VB By v

HATIL HLIM A JHLLIHET TIVNS NIIVT CMOTHd LOd HLIM V¥V ¥HLLAT TYLIJVYP

HAOCAY 10d HLIM S ODNOT YHLLAT TIVWS NILVT® "MOTHY ONIY HIIM YV ¥HLIHT TYLIJVP
HAISSNOYHEd TVINHAIE JHILATA/NIDIVT® "V ENINL JHLLAT TIVHE

NOJOVW HLIM A YHLLHAT TIVAS -NILIVT" "N0 JHLLAT TYLIIVYP

NOJVD HLIM H YHLLHAT TIVWS NILVT® "NOd¥d HLIM Zd JYHLLAT TYLIAVYD

MOITO XHTAOILHEE JdULLHET NILVT MOITO TVINAA dHLILAf

NNAM YHELLAT NILVT® "HATA/ANOL JHLLIHET TYLIVYP

IMOdLS HLIM OMIL ¥HLLH[L
AH@HEHHEENMMMHHMAAA@ZmZHH@A..MMOMHmEHHEOMMBBMQQQ<Zw
mHmmmmmHQmBHZOMMBquQQ<2mZHH@Q..MMOMHmEBHZOMMHBMAQ<BHm<u
mHmmmm<HQEBHZOMMBBMAQ<BHm<UZHH@Q..M><MOEHHZ<MWBBMQA<HHQ<U

Z JULLAT TIVNS NILVT® "V JHLIAF . ITVNE
Z JULLAT TYLIdYD NIIVT® "V dHLLAT TYITIYP

MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEYD
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEEID
MHEEID
MHEED
MHEED
MHEED
MHEEID
MHEEID

N dHLLHET TIVWS NILVT LdI¥pSdddNsS

NIIVT
NIIVT
NILVT
NILVT
NIIVT
NIIVT
NILVT
NILVT
NILVT
NIIVT
NIIVT

FOLVYOIANT, IUNITIO HEN[LTADSVYIN
FOLVOIANI IVNIQIO HNINIWHA

NIIVT
NIIVT

[L] 3T
[€] 3T
[eT] =»1T
[91] 3T
[v] 3T
[L] R
[€] 3T
[L] 3T
[eg] =1
[te]l =BT

37

37

3T
[8] 3T
[9] 3T
[ge]l =BT
[91] 3T
[zz]l 31
[9z] =»1
[8] 3T
[vv] 1
[oz] =1

3T
[€] 3T

37

37
[o6] =1
[9GT] »1T
[v6] 1
[8T]1 =1
[z6]l =1

[v] 37

[G6T] BT
[Te]l =BT
[ez] =BT

3T

3T
[9z] =»1
[9z] =1

044T" " 944T
pAAT " 24T
DHAT" " 0HAT
daqdT- " 9adr
€QqdT"T0adt
00471 " 90471
yOAT " " ZOAT
04471 " 9441
AT 0841
QLAT" "AGAT
ascat

ac4aT

6GAT

LGAT "0GAT
avdT" "8rdT
SPAT""0zdT
ATAT" "8TAT
GTAT "004T
€4€0" "¥dE0
LAEO0" *0dED
IDE0 " "EVED
TVEOD ™ "E8€E0
08€0

¥8€E€0" "88€0
98€0

o219 #
AL0¢C
6d9T " " 0VIT
d63T" "003T
avezo* t0Gzo
€€20°°2220
ATZ0" "¥OT0
€DT0° 0210
A4T0 " "04dT0
gg710

vd10° 8400
9.400" "800
9d00- " 0200
vd00

¥Y00
YL00""T900
¥G00" "TF00
utleT 4

*93TS gem 2Indes JALLI oYl 3® 3IXI S[Cel £00Z 9LTOT ¥l OHIOSI Se ATTedTuoIloe[e STqe[TeA® ST 3ISTT STYUL

I0 000Z:T-9%90T DHI/OSI UT SIo3deIeyd JO ©i1T03Iadel 8Yl UO paseq ‘SISTITIUSPT I0J POMOTTER SI930eIeyd JO 3ISTT Y X9UUY -

UOTITPS YIINOJ

0°€ °pooTun

‘9LTOT ¥l

© ISO/IEC 2003 — All rights reserved

34

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

2003(E)

ISO/IEC TR 10176

HAVYTIY LdIY9DSdHdNS dHLLAT

OVIYAS

MYL 9HLLHET DOVIYAS® "HIHE dHLLHT
HAVTIVY JHLLAT

WHHN MOT TIVWS D2IdVIY" "dOLS MOT HIINHD ALJWAH

NOON HOIH TIVWS DJIdVdY ' "HHAX HODIH TIVKS

NHYE HOIH TIVIWS DJIdVdVY '™ "VINSAVW AHTVY HLIM WYT HLIM dVYS HINLVOIT HOIH TIVIS
AUTVY LdITFOSEHdNS FHLLAT

NOMAS DIIVYIY " " NVILVHIVA

MOTHE, 1Od HLIM NIVHD YHLLAT DIVYV" "MOTHd LOd HLIM NUHHHS HHLLAT
HYIX TIVWNS DIdVdVY "™ "MYM TTIVINS

Y dHLLAT

HAOAY/ZZNYH HIIM HHIIVE HHA FHLLAT DIAVAVY " "YISYM AHTY JHLLIHT
HEIX ¥HLLIAT DIAVYVY" "HHA JHLLIHT

THIMIYL

NIVHD JULLHAT OIIVIY " "VYZWVH dHLLAT

LO0d NIS INIOd MHJHH® *I1Od NIHS LNIOd
HAYd LNIOd

DHELAN INIOd MAIGHH® *SINENO INIOd
WYTOH INIOd MHEYAHH® "VAHHS INIOd

JOX HTdNOd HSIAAIX HINLVDIT MHIIHH " JAVA HTdN0d HSIAAIX HINLVOIT
AVLCAELLET MEIGHH " " 3TV JHLLET

NMIX HOH HdALVOIT TIVWS NVINHWAY [EAV JHLLAT TIVNS N
HYd dHLLAT TVYLIAVYD NVYINHWIY W "dAY HdHELLAT TYLIdYD N

SISHIUVIA HLIM NEHA JHLLHET TIVAS DITIIYAD "SISHYAVIA HLIM NYHA FHLLAY A¥LIIVYD O
SISHIUVIA HLIM HHD YHLLHAT TIVWS DITIIY¥AD ™ "HAHYA HLIM Y JHLLIHET UV¥EKIIYD O

HHD NVISSVYMVYHM ¥HLLAT TIVWS DITIIYAD" "HHD NVISSVYMVHM YHLIAT TYLIAYD O

JMOOH HIIM NE ¥HLLAT TIVWS DITIIYAD" "MOOH HLIM NH YHLLAT TYLIEYOND

JOOH HLIM VM JYHLLAT TIVWS DITIIYAD ™ "NODIS LAOSIWHS HHALLHET TVYLIIVO D

YAJOM HHTIHT TIVING DTTTTYAD " “HAYMD HITM HT MHLTAT TYITIVD D

OVIYAS
OVIYAS

0IdvdY
0IdvdaY
OIdvdY
OIdvdY
0IdvdaY

0IdvdY
OIdvdY
OIdvdY
0IdvdY
0IdvdY
OIdvdY
OIdvdY

MHIIHH
MEIIHH
MHIIHH
MHIIHH

MHIIHH
MHIIHH

[INHINI Y
I INHINIY

LTTIEAD
[TTIYXD
[TTIYXD
[TTIYXD
LTTIEAD
[LTTIEAD

(bUTUTqWOD)

[Lz]

[7]
[z]
(L]

[8]

(buTUTqWOD)

[€]
fotl

(butuTqWOD)

[€]
[Lel

[zl
g€l
[z]
[z]
[Lg]
[o€T]

U

o7
o7

UN
UN
Un
Un
UN

oT
wg
oT
oT
oT
ug
oT

U
Ui
Ui
U

oT
oT

3T
3T

3T
3T
3T
3T
371
371

TTLO
0eTIAS #
D2CL0""CTILO
0TLO
OBTIAS #
adE90 " "vd90
8H90 " "LHU90
2d90° "9d90
0L90

Z2690° "d¥#90
OTqRIY #
2490 "Y4aA90
9H90 " "SH90
Sdgo

€d90° "TL90
¥%90°"T¥90
0790
YE90""TC90
OTqeayY #
Z20S0° "1DS0
A9G0
adso - "ddso
6450 04dS0
MOICOH #
2450 " 04590
YHS0 " " 0dS0
MOICOH #
L8S0""T9G0
9660 "T€S0

ueTUSWIY #

6470 " 8410
GAF0 " " 0dF0
20F0 " "€0F0
8070 " LOF0
pOv0 " "08%0
870" "00%0
OTTTTIAD #

35

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

2003(E)

ISO/IEC TR 10176

TT DITYOOA NDIS THMOA ITVUONHG™ T DITVOOA NDIS THMOA
YNYIIA NOIS

NV NOIS THMOA ITUYDNHE O NOIS THMOA

IV NDIS THMOA ITVONHA ™ " NODIS THMOA

dd DITUYOOA NDIS THMOA ITVYONHA™ "N NDIS THMOA

IT NDIS THMOA ITVYDNHA® "VY¥ NDIS THMOA

YOUVSIA NOIS ITVYONHA® "VIVASANY NOIS

NANIEVIANYD NOIS

TYNOODVIA JHMOY HLIM Vi JHLLIHET ITUYONHLG ™ “TYNODVIA HTAAIW HLIM VI JYHLLAT
TT DITVYOOA HdHLLAT ITVYDNHL® "VAX dHLLAT

VYHY dHLLET ITYONAI® "Vdd JHLLET

YH YHLIET ITYONHE "VHS YHLLAT

YT JdLLAT

Yd JHLLET ITVONHG ™ "Vd dHLLAT

YN JHLLET ITYONHE "O dHLLAT

IV JHLLET ITVONHI ™ "3 YHLLAT

T DITVYOOA ¥HLLAT ITVYONHG® "V JYHLLHAT

TT DITVYOO0OA NOIS THMOA TWMYOVYNVAHA® "T DITUYDOA NDIS THMOA
YLLVAANY NDIS SSHYLS ‘TIVOUNVAHA ™ "VILVYAN NODIS SSHALS
YIWVIIA NOIS

NY NOIS THMOA TUVOUYNVAHLA® "O VYIANYD NDIS THMOA

IY NDIS THMOA IUYOUNVAHA® "N NOIS THMOA

II NDIS THMOA IYVOVNYAHA® "VYY NDIS THMOA

VYOdVSIA NOIS

YIVASONY NDIS IYVDUYNVAHA® "QANIIVIANYD NOIS

TT DITVOOA ¥YHLIAT IY¥VOVNVARA" "¥0O ¥HLLIAT
WO

VYHYIOVAY NOIS

YH JHLIET TIVOUNVAHA® "V dHLLAT

IV
IV
iR+
iR
IYY]
IV
iR
iR

iR+
iR
IV
IV

NOMAS VYNVVHL " " ITIAVEY)

[TYONHd
[TYONHI
[TYONHI
[TYONHI
[TYONHd
[TYONHd
[TYONHI
[TYONHI

[TYONHI
[TYONHd
[TYONHd
[TYONHI
[TYONHI
[TYONHd
[TYONHd
[TYONHd
[TYONHI

DYNVYAHA
DYNVYAHA
DYNVYAHA
DYNVYAHA
DYNVYAHA
DYNVYAHA
DYNVYAHA
DYNVYAHA

DYNVYAHA
DYNVYAHA
DYNVAHA
DYNVYAHA

YNVYHL

NAYVYM JYHLLAT ¥YNVVHL® "YVYH dHLLHT YNVYYHL

[z] un ¢ €Hd60° "2H60
uW ¢ aseo

[z] oW ¢ 0060 "9d060
[z] oW ¢ 8060 "LD60
[v] upn ¢ 7060 1060
[e] oW ¢ 0060 " "H4d60
[z] oW ¢ €860 2860
up ! 1860
(butuTqWoDo) TTebusg #
[z] o1 ! Td60° " 0460
[e] o1 ! TH60 " "4d60
[z] o1 ! ade0 - "2d60
[v] o1 ! 6460 94960
ot ! 24960

[L] o1 ! 0960 " "YY60
[zzl o1 ¢ 8Y60°"€660
[z] o1 ! 0660 "4860
[8] ot ¢ 0860° 6860
TTebusg #

[z] upn ¢ €960 2960
[z] upn ¢ 2660 "1G60
up arveo

[v] oW ¢ O¥60° "6%60
[8] upn ¢ 8760 "T¥60
[€] oW ¢ 060" "HEGOD
oW €060

[z] upn ¢ 20601060
(buTuTqWoOD) TIebRURASQ #
[oT] o1 ¢ T960° "8560
oT ¢ 0660

ot ! aceo

[eg] o1 ¢ 6€60° 5060
Tiebeueasqg #

[TT] umw ¢ 0dL0" "9VYLO
(butuTqWOD) ®UEEYJ #
[ge]l o1 ¢ GYL0 " 08LO
eueey] #

© ISO/IEC 2003 — All rights reserved

36

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

2003(E)

ISO/IEC TR 10176

YTT JULLET YATEO® "Y1 JHLLAT VAIHO
Yd JHLLIET VAIYO™ "Vd YHLLAT YAIHO
YN JHLLET YAIYEO™ O ¥HLLAT VAIYO
IV MHTIHAT YATHO:" "o MEULTLHAT YAIE0

T DITVOOA ¥HLLAT VAIYO® "V YHLLHA[I YAIYO

YIWYIIA NOIS I[LVIVLND

NY NOIS THMOA ILVIVLND™ O NOIS THMOA I[LVIVLND
O YdANVYD NODIS THMOA ILVIVLND

IV¥V NDIS THMOA ILVIVLAD " "H NODIS THMOA ILVIVLND
d YIANVYD NOIS THMOA IIVIVLAD®™ "N NDIS THMOA ILVIVLND
IT NDIS THMOA ILVIVLND™ "VYVY NOIS THMOA I[LVIVLND
UYDIVSIA NOIS I[LVIVLND

YIVASANY NDIS ILVIVLND ™ "NANIAYIANYD NOIS ILVIVLND
dd DITVYOOA dHLLHET ILVIVLND

WO ILVIVLND

VHYIOVAY NOIS I[LYIVLND

YH YHLLIET ILVIVLND ™ "VA YHLLHET ILYIVLND

YIT dHLLET ILVIYLND " VT JHLLET ILVIVLND

Yd JHLLIET ILVIVLND ' "Vd JULLHET ILYIVLND

YN JHLIET ILVIVLND® O YHLLHAT ILVYIVLND

O YdANVYD THMOA ILVIVLND® "H YHLLHET ILVIYLND

d YIANVYD THMOA ILVIYLND

d OITVOOA JHLIHET ILVIVLND®™ "V JYHLLHET ILVIVLND
YINTITANOIS IHMAWGIAD® "O0 NDIS THMOA IHMAWIND
IYV NDIS TadMOA IHMAWIND® "HHE NOIS THMOA IHMAWIND
NN NOIS THMOA TIHMAWIND ™ "N NOIS THMOA IHMNWIND
IT NDIS THMOAAZHMOWIND® "VYVY NOIS THMOA IHMAWIND
IANId NOIS IHMAWAIND

AYMINO M AHMAWAND ° " TII IHMAWAND

Y JHLLET IHMANEND

Ydd JHLLET IHMAWIND ® AHEY dHLLET IHMANIND

YH YHLLIET IHMAWIND ¢ NS, dHLLET IHEMANIND

YHS dHILHET IHMAWGIND " “WAIHLLIET IHMANIND

YTIT dHLLET IHMAWGIND® " VTEALLET ITHMANIND

Yd JHLLIET IHMAWIND ™ "Vd JHLIET IHMONIND

YN JHLLIET IHMAWIND ™ 00 JdHIEHATNIHMANIND

IV JHLIET IHMAWEND ™ "HHE YHLLAT AHMANIND

QA0 MIILIET THNAWNMAS: Y MAIIIT THYNWEND

[z]

(buTuTqWOD)

[€]
[z]
[zl
el

(butuTqWOD)

[€]

(vl

U
oI
oI
Ui
U
oI
oI
Ui

o7

UN
UN
U
O
UN

oT
oT
oT
oT
oT
oT

€ed0 " "2ed0
0€40 " "¥Ycd0
8240 "€140
0Td0 " "40490
00d0° "504d0
BATIO #
adsvo
D0V0 " "ddOVv0
60Y0
80VY0 " " LOY0
GOY0 " " TOVY0
0O¥0 " "H4Y0
€8Y0
Z8Y0 " " TI8Y0
T3exelng #
0dY0

0dYo0

agvo
6dY0 " " SdvY0
€dY0 " " ¢Zdv0
09Y0 " "¥YYY0
8YVY0 " "€6Y0
T6Y0 ™ "d8Y0
asvo
d8VY0 " "S8Y0

T3ezelng 4

ayvo - "4dvvo
8FY0 " " LFYO
ZyY0 " " TPY0
0PVY0 " "HEVYO0

Z0Y0
TynuInD 4
7LY0 " "ZLY0

dGVY0
DGVY0 " "6G5VY0
6EY0" "8EY0
9€Y0 " "SEY0
€EY0 " "ZEY0
0€Y0 " "¥ZY0
8CY0 " "€TVY0
0TY0 " "40Y0
Y0OY0 " "S0Y0
TUYNUIND #

37

© ISO/IEC 2003 — All rights reserved

https://iecnorm.com/api/?name=8365213261b3afe477e8c6077da77633

