INTERNATIONAL ISO/IEC
STANDARD 8824-1

First edition
1995-10-15

AMENDMENT 1
1996-05-01

rax
Notation One
basic notatig

es de\V ati6n — Notation de syntaxe abstraite numeéfo 1
. Spécifications Wes notations de base

Iso Reference number
2 o ISO/IEC 8824-1:1995/Amd.1:1996(E)

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

Co

s

O 0 1 O

10

12
13
14
15
16
Anf

ex A — Tutorial a

ntents

Normative references

2.1 Identical Recommendations | Internationai Standards
Changes t0 INtrodUuCtionc.cccovveirireiirnieeieeeeeeeeee e oS N oA PN e N
Changes to Definitionsccocoooveieoiiiiiiiiccceeeeeeee
The ASN.1 model of type extensionccccooeeveiivverees [
Extensibility requirements on encoding rules

Changes to Module Definition

Changes to CHO@
Changes to Constrinéd
Changes to exceptiofiN

Changes to ele

3]

= = RN)]

W

[) U ©) LN ®) W}

© ISO/IEC 1996
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized in any form or by any means, electronic or mechanical, including photocopying and
microfilm, without permission in writing from the publisher.

ISO/IEC Copyright Office Case Postale 56 ¢ CH-1211 Geneéve 20 o Switzerland
Printed in Switzerland

il

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

© ISO/IEC ISO/IEC 8824-1:1995/Amd.1:1996(E)

Foreword

ISO
the

devg
with
Oth
work.

In th
Inte
as a

Info
prod

i

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

© ISO/IEC

Introduction

THhis Recommendation | International Standard documents the changes to ITU-T Rec.
support the ASN.1 Rules of Extensibility.

The ASN.1 Rules of Extensibility describes how to write an ASN.1 module in g
tofa new version of an ASN.1 specification. The new version may differ fre
being added to a SET, SEQUENCE or CHOICE, new enumerations being
on| a subtype specification being relaxed. A phased migration to the

.1 specification allqws

conmunicating peers throughout a network to simultaneously havé differing gf the set of values allowed in
th¢ abstract syntax, yet be able to communicate without the sef that its peer has a different

uniderstanding of what the set of values in the abstra

Agsuming that the ASN.1 specification that describe
cah be extended by adding new components to (a SEQ

version, yet all four peers can con
orlginally defined as being exte

(of B) sends a message <Ontaini
abistract level (i.e. afte
components in the SEQUEN

cojurse) not contain any ¢

th¢ ASN.1 specification s
continue to exchange messag ithee Qther the way they always did.

Fdr example, initially peers A, B, C and D may have } i i the types of values that can be exchanged.

ent’the message with all of the new components missing. Peers C and D

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

INTERNATIONAL STANDARD

ITU-T RECOMMENDATION

INFORMATION TECHNOLOGY — ABSTRACT SYNTAX NOTATION ONE (ASN.1):
SPECIFICATION OF BASIC NOTATION

AMENDMENT 1

1
Thi

support the ASN.1 Rules of Extensibility.

2
The

con$ti

wer
Rec
edit
vali
vali

2.1

3

(To ReC. A.080 | IDU/IEC 8824-1)

Rules of extensibility

Scope

Recommendation | International Standard documents the changes to ITU-T Rec <X.680N ISOAEC 882451 needed fo

Normative references

following Recommendations and International Standards contain previsiofis wh hrough reference in this text,

8824-1:1995, Information technology — Abstract Syntdx
Notation @ ,
— ITU-T Rec shdation X.) ISO/IEC 8824-3:1995, Information technology — Abstract Syntdx

sarion of Basic Encodmg Rules (BER), Canomcal Encoding Rules (CER) and Dzstznguzshed

meéndation X.691 (1995) | ISO/IEC 8825-2:1996, Information technology — ASN. 1 encodinlg
rules — Specification of Packed Encoding Rules (PER).

Changes to Introduction

{Add the following text to the Introduction of ITU-T Rec. X.680 | ISO/IEC 8824-1 immediately before the existing
paragraph which begins “Clauses 8 to 31”:}

An ASN.1 specification will initially be produced with a set of fully defined ASN.1 types. At a later stage, however, it
may be necessary to change those types (usually by the addition of extra components in a sequence or set type). If this is
to be possible in such a way that implementations using the old type definitions can interwork with implementations
using the new type definitions in a defined way, encoding rules need to provide appropriate support. The ASN.1 notation
supports the inclusion of an extension marker on a number of types. This signals to encoding rules the intention of the

desi
and
that

gner that this type is one of a series of related types (i.e. versions of the same initial type) called an extension series,
that the encoding rules are required to enable information transfer between implementations using different types
are related by being part of the same extension series.

ITU-T Rec. X.680 (1994)/Amd.1 (1995 E) 1

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

4 Changes to Definitions

{Add the following new definitions to ITU-T Rec. X.680 | ISO/IEC 8824-1, maintaining the alphabetical order of
definitions in ITU-T Rec. X.680 | ISO/IEC 8824-1. Note that the alphabetic character appearing in the clause numbers
below will be changed to an appropriate numeric character when the definitions are added to the base document.

3.8.a extension series: A series of ASN.1 types which can be ordered in such a way that each successive type in the
series is formed by the addition of text to the end of the type notation of the immediately preceding type in the series.

NOTE - Both nested and unnested types can be extended.

3.8.b extension marker: A syntactic flag (an ellipsis) that is included in all types that form part of an extension
serfes.

3.8c extension root: An extensible type that is the first type in an extension series. It carries the extension’mrarKer
with no additional notation other than comments and whitespace between the extension marker and the matching ‘{}”
or {9)”.

NOTE - Only an extension root can be the first type in an extension series.

3.8d extension addition: One of the added notations in an extension series. Fok set\ty [quense types, each
extension addition is the addition of a single element. For enumerated types™it_i iti & single further
enymeration. For choice types it is the addition of a single further choice. For a alnfritNs the addition of a subtype
element.

NOTE - Extension additions are both textually ordered (followip and logically ordered (having

incfeasing tags or enumeration values).

3.8.e extension-related: Two types that have the same e
mdre extension additions to the other.

3.8f extensible type: A type with an extension\markeg.

3.8¢g extensible constraint: A subtype const

5 The ASN.1 mode

{Add this text as a new
thif clause.)]

In formal terms,<an abstractsyntax defined by the extensible type "X" contains not only the values of type "X", but also
the| values of-all types that are extension-related to "X". Thus, the decoding process never signals an error when either jof
thel above Situations (a or b) is detected. The action that is taken in each situation is a matter for the application layer
dedignef to'specify.

NOTE - Frequently the action will be to ignore the presence of unexpected additional extensions, and to use a defahlt
value or a "missing" indicator for expected extension additions that are absent.

Unexpected extension additions detected by a decoder in an extensible type can later be included in a subsequent
encoding of that type (for transmission back to the sender, or to some third party), provided that the same transfer syntax
is used on the subsequent transmission.

6 Extensibility requirements on encoding rules

{Add this text as a new clause to ITU-T Rec. X.680 | ISO/IEC 8824-1 before clause 6 and after the newly added clause
above, using the same clause heading as this clause:}

2 ITU-T Rec. X.680 (1994)/Amd.1 (1995 E)

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

6.1 All ASN.1 encoding rules shall allow the encoding of values of an extensible type "X" in such a way that they
can be decoded using an extensible type "Y" that is extension-related to "X". Further, the encoding rules shall allow the
values that were decoded using "Y" to be re-encoded (using "Y") and decoded using a third extensible type "Z" that is
extension related to "Y" (and hence "X" also).

NOTE - Types "X", "Y" and "Z" may appear in any order in the extension series.

If a value of an extensible type "X" is encoded and then relayed (directly or through a relaying application using
extension-related type "Z") to another application that decodes the value using extensible type "Y" that is extension-
related to "X", then the decoder using type "Y" obtains an abstract value composed of:

a) nabstract value of the extension root type;

[v4ll nyn.,

¢) delimited encoding for each extension addition (if any) that is in "X" but not in "Y".

The¢ encodings in c) shall be capable of being included in a later encoding of a value of "Y", if so required by the
apglication. That encoding shall be a valid encoding of a value of "X".

Tuforial example: If system A is using an extensible root type (type "X") that is a sequé hn
extension addition of an optional integer type, while system B is using an extension-refage o
extension additions where each is an optional integer type, then transmission by B'x : he
intgger value of the first extension addition and includes the second must not be €0 L he
first (only) extension addition of "X" that it knows about. Moreover, A must be al a
valpie present for the first integer type, followed by the second integer ¥ he
application protocol.

6.2 All ASN.1 encoding rules shall specify the encoding and oding 6f the a
chdice type in such a way that if a transmitted value is in the se ensi iti i er
and the decoder, then it is successfully decoded, othe k of
it ahd to identify it as a value of an (unknown) extensiomaddition.

6.3 All ASN.1 encoding rules shall specify the-en * e Ch
a way that if a transmitted value is in the set of ext¢nsion-additidgs held In, common by the encoder and the decoder, th¢n
it iy successfully decoded, otherwise i JJo iblee desoderto delimit the encoding of and to identify it af a

valpe of an (unknown) extension addition

In 4ll cases, the presence of exte ect the ability to recognize later material when a type with an

extension marker is nestednside e &
NOTE - All vaf i ing RuleS\ef ASN.1 and the Packed Encoding Rules of ASN.1 satisfy all these

reqyirements.

{Change the productisas) Y Rec. X.680 | ISO/IEC 8824-1 to read.:}

DEFINITIO?
TagDefault
ExtensionDefault
BEGIN
ModuleBody

AR
LINDY

ExtensionDefault ::=
EXTENSIBILITY IMPLIED | empty

{All other productions in 10.1 remain the same}
{Insert a new clause after 10.3 in ITU-T Rec. X.680 | ISO/IEC 8824-1:}

10.3bis The "EXTENSIBILITY IMPLIED" option is equivalent to the textual insertion of an extension marker (...) in
the definition of each type in the module for which it is permitted. The absence of "EXTENSIBILITY IMPLIED" means
that extensibility is only provided for those types within the module where an extension marker is explicitly present.

NOTE - "EXTENSIBILITY IMPLIED" affects only types. It has no effect on object sets.

ITU-T Rec. X.680 (1994)/Amd.1 (1995 E) 3

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

8 Change to production for ValueSet
{Replace the production for ValueSet in 13.5 of ITU-T Rec. X.680 | ISO/IEC 8824-1 with:)

ValueSet ::="{'"' ElementSetSpecs ''}"

9 Change to definition of types and values
[Insert a (new) 14.12 in ITU-T Rec. X.680 | ISO/IEC 8824-1:)

14.12 The implied or explicit presence of an extension marker in the definition of a type has no effect on the value

notation—Ihatis,the value notationtor-a-type h-an-extensiontnarke 84 he—sa > he-extenston—ma

wals absent.

10 Changes to ENUMERATED

{Change the production in clause 17 in ITU-T Rec. X.680 | ISO/IEC 8824-1 to read:)

EnumeratedType ::= ENUMERATED "{'' Enumerations '"'}"
Enumerations ::= RootEnumeration |

RootEnumeration ", ".."|

RootEnumeration "," '"..." ","" AdditionalEnmers

RootEnumeration ::= Enumeration

AdditionalEnumeration ::= Enumeration
{"Enumeration” is defined as it is now.}

{Change Note 2 of 17.1 to read.)

and the numeric values inside the "NamedNumber"s in tie "AdditionalEn ation" are not necessarily contiguous.

{Adld the following text after 17.3:)

173bis The value of each ne \dditi i shall be greater than all previously defin
"AflditionalEnumeration"s in the
173ter When a "Na g e g AdditionalEnumeration" the value associated with it shall
different from the value previ defined "Enymerationltem"s (in this type) regardless of whether the previous
deffined "Enumerationltem’, in th eration root or not. For example:

A -- invalid, since both 'a’ and 'c’ equal 0

B:: -- invalid, since both 'c' and 'd’' equal 2

C: --valid, 'c¢'=1

D:: --valid, 'c' = 2
173 quater alue) assqciated with the first "AdditionalEnumeration" alternative that is an "identifier" (nof]
"NamedNumber"), sha she smallest value for which (a) an "Enumerationltem" is not defined in t

"RotEnumeration ‘and (b) 4
exdgmple, theAfollowing are all valid:

2 The numeric values inside the "NamedNu s\ the s eration" are not necessarily ordered or contiguo

1 preceding "Enumerationltem"s in the "AdditionalEnumeration" (if any) are smaller. H

er

he

A.::= ENUMERATED {a, b, ..., ¢} —-c=2
B ::= ENUMERATED {a, b, c(0), ..., d} -d=3
C ::= ENUMERATED {a_b. ... ¢3) d} d=4
D ::= ENUMERATED {a, z(25), ..., d} -d=1

11 Changes to SEQUENCE
{Change the production in clause 22 in ITU-T Rec. X.680 | ISO/IEC 8824-1 to read:)

SequenceType ::= SEQUENCE "{" "}" |
SEQUENCE "{" ExtensionAndException "}" |
SEQUENCE "{'" ComponentTypeLists "'}"

ExtensionAndException ::= "..." | ""..." ExceptionSpec

4 ITU-T Rec. X.680 (1994)/Amd.1 (1995 E)

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

ComponentTypeLists ::= RootComponentTypeList |
RootComponentTypeList "," ExtensionAndException |
RootComponentTypeList "," ExtensionAndException "," AdditionalComponentTypeList |
ExtensionAndException "," AdditionalComponentTypeList

RootComponentTypeList ::= ComponentTypeList
AdditionalComponentTypeList ::= ComponentTypeList

{"ComponentTypelList" is defined as now.}

NOTE - "ComponentType"s that are not marked OPTIONAL or DEFAULT in the "AdditionalComponentTypeList"

should always be encoded, except when the presentation data value is being relayed from a sender that is using an earlier version of
the abstract syntax in which the "ComponentType" is not defined.

{Replace the first sentence of 22.4 with the following.}

"Type" in the "COMPONENTS OF Type" notation shall be a sequence type that itself contains no extension matker, bfit
it mpy include components that do.

{Create a new clause after 22.4 with the following:}

224

12

{Change the production in clause 24 in ITU-T Rec. X.680 | ISO/IEC 8824-

"CofnponentTypeLists" is specified in 22.1.

[Replace the first sentence of 24.2 with the following;

If a

extension marker is not visible to the
Typg" the "Type" is treated as though.i

{Add the following text after 24.3:

24.3

{Modify clause 24.4 to say

24.4

13
{Ch

bis The tag of ea
gredter (see 6.4) than thosevof

set type.

bis The "COMPONENTS OF Type" notation shall not be used in "AdditionalCost

Changes to SET

SetType +:=SET "{" 'v}n |
SET "{" ExtensionAndException "}" |
SET "{" ComponentTypeLists "'}"

inge the production in clause 26 in ITU-T Rec. X.680 | ISO/IEC 8824-1 to read.)

ChoiceType ::= CHOICE "{"' AlternativeTypeLists '"}"
ANlernativeTypeLists ::=

RootAlternativeTypeList |

RootAlternativeTypeList "," ExtensionAndException |

RootAlternativeTypeList "," ExtensionAndException "," AdditionalAlternativeTypeList
RootAlternativeTypeList ::= AlternativeTypeList
AdditionalAlternativeTypeList ::= AlternativeTypeList

{"AlternativeTypeList" is defined as now.}

{Add the following text after 26.3:}

26.3
(see
in th

bis The tag of each new "NamedType" added to the "Additional AlternativeTypeList" shall be canonically greater
6.4) than those of the other components of the "AdditionalAlternativeTypeList", and shall be the last "NamedType"
e choice type.

ITU-T Rec. X.680 (1994)/Amd.1 (1995 E) S

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

{Modify 26.5, changing "Where this type is used ..." to.}
When this type does not have an extension marker and is used ...
{Modify 26.5, adding new text at the end of the first sentence to say:}

When this type has an extension marker, it shall not be used where this International Standard requires distinct tags
(see 22.5, 24.3, 26.2).

14 Changes to Constrained Types
{Replace the last two sentences of 42.5 of ITU-T Rec. X.680 | ISO/IEC 8824-1 with-)}

"BExceptionSpec" is defined in clause 43. Unless it is used in conjunction with an "extension marker" (see clause@4-bis),
it [shall only be present if the "ConstraintSpec" includes an occurrence of "DummyReference" (see 8.4n00 ITU-T
Regc. X.683 1 ISO/IEC 8824-4) or is a "UserDefinedConstraint” (see ITU-T Rec. X.682 | ISO/IEC 8824-3, clause 9).

—

{{hange the production in 42.6 in ITU-T Rec. X.680 | ISO/IEC 8824-1 to read:}

SubtypeConstraint ::= ElementSetSpecs

15 Changes to exception identifier
{Add two new subclauses 43.5 and 43.6 to ITU-T Rec. X.680 | ISO/IEC 8824

435 Where a type is constrained by multiple constraints, mq
th¢ exception identifier in the outermost constraint shall be rega

436 Where an exception marker is prese
ignored and is not inherited by the type being const

16 Changes to element
[Add immediately in front of the prod
ElementSetSpecs ::=
RootElemefitSetS
RootEle @’*
l"..ll 'l’ll A d‘ .

RootElemerp

the
"RpotElementSt

{Afdd a new clause 478is and'the following subclauses in ITU-T Rec. X.680 | ISO/IEC 8824-1:)
44bis Theextension marker

NOTE - Like the constraint notation in general, the extension marker has no effect on some encoding rules of ASN.1, sfich
as the Basi¢'Encoding Rules, but does on others, such as the Packed Encoding Rules.

ension ma - ellinsi i n indication that e ension addition are-exnpe ed maxe no atement as

to how such additions should be handled other than that they shall not be treated as an error during the decoding process.

44.2 The joint use of the extension marker and an exception identifier is an indication that extension additions are
expected and thus should not be treated as an error in the decoding process, and that the application standards prescribes
specific action to be taken by the application if there is a constraint violation. It is recommended that this notation be
used in those situations where store and forward or any other form of relaying is in use, so as to indicate that any
unrecognized extension additions are to be returned to the application for possible re-encoding and relaying.

44.3 Set arithmetic, if any, in the "ElementSetSpecs” notation shall be performed without consideration given to the
presence of the extension marker.

NOTE - In other words, the presence of an extension marker has no effect on set arithmetic.

6 ITU-T Rec. X.680 (1994)/Amd.1 (1995 E)

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

44.4 If a type defined with an extensible constraint is referenced in a "ContainedSubtype", the newly defined type
does not inherit the extension marker. If the newly defined type is meant to be extensible then an extension marker shall
be explicitly added to its "ElementSetSpecs". For example:

A ::= INTEGER (0..10, ...) -- A is extensible
B ::= INTEGER (A) -- B is inextensible
C ::= INTEGER (A, ...) -- C is extensible
44.5 If a type defined with an extensible constraint is further constrained with an "ElementSetSpecs" that does not

contain an extension marker, the resulting type is one whose constraint is not extensible. For example:

A= INTEGER] "L A A s extensible
B:=A (.5 -- B is inextensible
Cu=A -- C is extensible
44.6 Components of a set, sequence or choice type that are constrained to be absent shal be present,‘regardlegs

of whether the set, sequence or choice type is an extensible type.

NOTE - Inner type constraints have no effect on extensibility.
For gxample:

A ::= SEQUENCE {
a INTEGER
b BOOLEAN OPTIONAL,

}
B ::= A (WITH COMPONENTS {b ABSENT})

ITU-T Rec. X.680 (1994)/Amd.1 (1995 E) 7

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

ISO/IEC 8824-1:1995/Amd.1:1996(E)

{Add the following tutorial annex to ITU-T Rec. X.680 | ISO/IEC 8824-1:)

Annex A

Tutorial annex on the ASN.1 model of type extension
(This annex does not form an integral part of this Recommendation | International Standard)

All Overview

Alll It can happen that an ASN.1 type evolves over time from an extension root type by means of a‘series| of
exfensions called extension additions.

AJl.2 An ASN.1 type available to a particular implementation may be the extensi pe;~or may be the
exfension root type plus one or more extension additions. Each such ASN.1 type that i xtensjon addition aflso
coptains all previously defined extension additions.

o

A.l.3 The ASN.1 type definitions in this series are said to be extension-relateéd. (s s 3.8 8. for a more predise
definition of "extension-related"), and encoding rules are required to encodg ex nsmn- Q) 8s,iN a such a way that
if fwo systems are using two different types which are extension-related een the two systems will
su¢cessfully transfer the information content of those parts of the extensi are common to the two
systems. It is also required that those parts that are not commo
(pgrhaps to a third party) on a subsequent transmission, provided the sdm¢ transfer sy

en¢oding rules to make appropriate provision for tra
on|the line), such types (including the extension
and is called an extension marker.

EXAMPLE:
Ropt type
SEQUENCE { PQUENCE {
a INTEGER, a INTEGER,
s
} b BOOLEAN,
c INTEGER,
d REAL
A.L.5 The spec f the extension root type appears before/above the ASN.1 extension marker, and fhe

exfension additions appe

A.1.6 A typethat has an extension marker can be nested inside a type that has none, or it can be nested within a type
in pn extension root, or it can be nested in a type that is an extension addition. In such cases the extension series fre
trepted independently, and the nested type with the extension marker has no impact on the type within which it is nest¢d.
Or1]y one ellipsis (i.e. extension marker) can appear in any specific construct.

A.1.7 A new type in the extension series is defined in terms of a single extension addition to the previous type in the
extension series. This does not prevent multiple extension additions from being made in successive publications of some
particular Recommendation | International Standard.

A.1.8 While the normal practice will be for extension additions to be added over time, the underlying ASN.1 model
and specification does not involve time. Two types are extension-related if one can be "grown" from the other by
extension additions. That is, one contains all the components of the other. There may be types that have to be "grown" in
the opposite direction (although this is unlikely). It could even be that, over time, a type starts with a lot of extension
additions which were progressively removed! All that ASN.1 and its encoding rules care about is whether a pair of type
specifications are extension-related or not. If they are, then all ASN.1 encoding rules will ensure interworking between
their users.

8 ITU-T Rec. X.680 (1994)/Amd.1 (1995 E)

https://iecnorm.com/api/?name=f1a4ed12877e9d3020bf6cfbab3967a9

