International
Standard

ISO/IEC 2477

-1

Programming languages — Avoiding
vulnerabilities in programming
languages —

Part 1:
Language-independent catalogue of
vulnerabilities

Langages de pfogrammation — Conduite pour éviter.des
vulnérabilités dans les langages de programmation's-

Partie 1: Catalpgue de vulnérabilités indépenddiit du langage

First edition
2024-10

Reference number
ISO/IEC 24772-1:2024(en)

© ISO/IEC 2024

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2024

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office

CP 401 o Ch. de Blandonnet 8

CH-1214 Vernier, Geneva

Phone: +41 22 749 01 11

Email: copyright@iso.org

Website: www.iso.org
Published in Switzerland

© ISO/IEC 2024 - All rights reserved
ii

https://www.iso.org
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

Contents

ISO/IEC 24772-1:2024(en)

Page
FFOT@WOTM..........ooooce e85 XV
IIMETOAUCTIONooooo 885555858 xvii
1 SCOPI ...tk 1
2 NOTIMATIVE FEERIT@IICESooooooo s 1
3 Terms and definitions...

3.1 Communication...
3.2 Execution model..
3.3 PTOPEITIES ..k
34 SATETY ANA SECUTTEY oo et 3
3.5| Vulnerabilities
3.6 Specific vulnerabilities
USING this dOCUIMENT...........oociiii e s
4.1 Purpose of this document
4.2 Applying this document........ccco,
4.3 Structure of this document
Genleral vulnerability issues and primary avoidance mechaniSms:=.............cocf o 7
51 General vulnerability ISSUES ...\ e
5.1.1 Predictable execution
5.1.2 Sources of unpredictability in language specification
5.1.3 Sources of unpredictability in language usage..............cooc.... .
5.2 Primary avoidance MmecChaniSIms ...
Programming language vulnerabilities. ... e
6.1 L] =) =Y O
6.2 Type system [THN]..o e e
6.2.1 Description of application vulnerability ..
6.2.2 Related coding guidelines .o} ..o,
6.2.3 Mechanism of failure....; .o
6.2.4 Applicable language characteristics.
6.2.5 Avoiding the vulnerability or mitigating its effects. ... 13
6.2.6 Implications for language design and evolution ... 14
6.3 Bit representations [STR] ..
6.3.1 Description-ofiapplication vulnerability ...
6.3.2 Related eading guidelines......
6.3.3 Mechanism of failure ...
6.3.4 Applicable language characteristics. ... :
6.3.5 Avoiding the vulnerability or mitigating its effects.......... o 15
6.3.6 (~Implications for language design and evolution ... 16
6.4 Fleating-point arithmetic [PLF] :
64,1 Description of application vulnerability ... 16
64.2 Related coding GUIAElINES ...
6.4.3 Mechanism of failure ...
6.4.4 Applicable language characteristics
6.4.5 Avoiding the vulnerability or mitigating its effects 17
6.4.6 Implications for language design and eVOIULION ... 18
6.5 Enumerator issues [CCB]
6.5.1 Description of application VUINErability
6.5.2 Related coding GUIAEIINES ...
6.5.3 Mechanism of failure ...
6.5.4 Applicable language Characteristics
6.5.5 Avoiding the vulnerability or mitigating its effects
6.5.6 Implications for language design and evolution...........cccc....
6.6 Conversion errors [FLC]. .o
6.6.1 Description of application VUINETrability ...

© ISO/IEC 2024 - All rights reserved
iii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.7

6.8

6.6.2
6.6.3
6.6.4
6.6.5
6.6.6

ISO/IEC 24772-1:2024(en)

Related COdING GUIAEIINES ...t
MeChaniSIM O FATIUTE ...
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects
Implications for language design and eVOIUtION ... 22

String termination [CIM] ..o

6.7.1
6.7.2
6.7.3
6.7.4
6.7.5
6.7.6

Description of application vulnerability ...
Related coOding GUIAEIINES ...
MeChaniSM Of FATIUIE ...
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects ... 23
Implications for language design and eVOIULION ... 23

Buffer boundary violation (buffer overflow) [HCBl ..o, 23

6.9

6.10

6.11]

6.17

6.8.1
6.8.2
6.8.3
6.8.4
6.8.5
6.8.6

Unchecked array indexing [XYZ] .o ko e

6.9.1
6.9.2
6.9.3
6.9.4
6.9.5
6.9.6

Unchecked array copying [XYW]

6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6

Pointer type conversions [HECT......ceene

6.11.1
6.11.2
6.11.3
6.11.4
6.11.5
6.11.6

Pointer arithmetic [RVG] ..o

6.12.1
6.12.2
6.12.3
6:12.4
6712.5

Description of application vulnerability
Related coding guidelines ...
Mechanism of failure ...

Applicable language characteristics ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution ... fd .

Description of application vulnerability ...
Related coding guidelines........
Mechanism of failure ...

Applicable language characteristics........a S
Avoiding the vulnerability or mitigating its effects
Implications for language deSIGNErs. ...

Description of application Vulnerability ...
Related coding GUIAEIINES ... Ss e
Mechanism of failure
Applicable language charactexistics
Avoiding the vulnerability er mitigating its effects
Implications for languagé/design and evolution ...

Description of appliation vulnerability ...
Related coding GUIAEIINES ...
Mechanism of fatlure ...
Applicable language characteristics
Avoiding:the vulnerability or mitigating its effects
Impljcations for language design and evolutionc.cccc.....

Description of application vulnerability ...
Related coding GUIAEIINES ...t
Mechanism of failure .
Applicable language characteriStiCs ...
Avoiding the vulnerability or mitigating its effects

6.13

6.14

6.12.6

Implications for language design and evolution

Null pointer dereference [XYH] ...

6.13.1
6.13.2
6.13.3
6.13.4
6.13.5
6.13.6

Description of application VUINerability ...
Related coOding GUIAEIINES ...
Mechanism of failure
Applicable language characteriStiCs ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution

Dangling reference to heap [XYK] ..o

6.14.1
6.14.2
6.14.3
6.14.4

Description of application vulnerability ...
Related coding guidelines.........c.c.oe.
Mechanism of failure ...
Applicable language characteriStiCs ...

© ISO/IEC 2024 - All rights reserved
iv

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.15

6.16

6.14.5
6.14.6

Arithmetic wrap-around error [FIF]

6.15.1
6.15.2
6.15.3
6.15.4
6.15.5
6.15.6

Using shift operations for multiplication and division [PIK]

6.16.1
6.16.2
6.16.3

ISO/IEC 24772-1:2024(en)

Avoiding the vulnerability or mitigating its effects. ... 32
Implications for language design and eVOIUTION ... 32

Description of application vulnerability
Related coding GUIAEIINES ...
Mechanism of failure ...

Applicable language characteristics
Avoiding the vulnerability or mitigating its effectsS.......eie
Implications for language design and eVolution ...

Description of application vulnerability ...
Related coOding GUIAEIINES ...t
Mechanism of fajlure

6.17

6.18

6.19

6.2(

6.21]

6.16.4
6.16.5
6.16.6

Choice of clear namMes [NAL] ..

6.17.1
6.17.2
6.17.3
6.17.4
6.17.5
6.17.6

Dead Store [WXQ] e oo

6.18.1
6.18.2
6.18.3
6.18.4
6.18.5
6.18.6

Unused variable [YZS] .t O e

6.19.1
6.19.2
6.19.3
6.19.4
6.19.5
6.19.6

Identifier name reuSe TYOW ...

6.20.1
6.20.2
6.20.3
6.20.4
6.20.5
6.20.6

NaAMESPACE ISSUES [BIL] oo

6:21.1

Applicable language characteriStiCs ... Dy
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolutionccc.....

Description of application vulnerability ...l
Related coding gUIAElINES ...y R
Mechanism of Failure
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects..s0(...
Implications for language design and evolution... (). ...

Description of application vulnerability ... S e
Related coding guIdelinesdim s
Mechanism of failure .
Applicable language characteriStiCs.
Avoiding the vulnerability or mitigating its effects ...
Implications for language design and evolution

Description of application vulnerability ...
Related coding guideling§7..........coccovcre.
Mechanism of failure,. = ... :
Applicable language characteriStiCs ...
Avoiding the vulnérability or mitigating its effects. ...
Implications forlanguage design and evolution

Description of application vulnerability ...
Related coding guidelines ...,
Mechahism of failure ... :
Applicable language charaCteriStiCs ...
Avoiding the vulnerability or mitigating its effects........
Implications for language design and evolution

Description of application vulnerability ...

6.22

6.23

6.21.2
6.21.3
6.21.4
6.21.5
6.21.6

Related coding guidelines...........coce.
Mechanism of Failure...........coee
Applicable language characteristics
Avoiding the Vulnerability or Mitigating its Effects ...
Implications for language design and evolution

Missing initialization of variables [LAV] ..o

6.22.1
6.22.2
6.22.3
6.22.4
6.22.5
6.22.6

Description of application vulnerability ...
Related coding guidelines ...,
Mechanism of failure.........c.cccee
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution ...

Operator precedence and assOCIALIVILY [JCOW ..o

© ISO/IEC 2024 - All rights reserved
\%

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.24

6.23.1
6.23.2
6.23.3
6.23.4
6.23.5
6.23.6

Side-effects and order of evaluation of operands [SAM]

6.24.1
6.24.2
6.24.3
6.24.4
6.24.5
6.24.6

ISO/IEC 24772-1:2024(en)

Description of application VUINerability ... 44
Related coding GUIAEIINES ... 44
Mechanism of failure
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects. ... 45
Implications for language design and evolutioncccc.....

Description of application Vulnerability ...
Related coding GUIAEIINES ...
Mechanism of failure
Applicable language charaCteriStiCs ...t

Avoiding the vulnerability or mitigating its effects ... 47
Implications for language designand evolution ..o 47

6.25

6.24

6.27

6.29

6.29

Likely incorrect eXpression [KOA] ... Dy

6.25.1
6.25.2
6.25.3
6.25.4
6.25.5
6.25.6

Dead and deactivated code [XYQ] ..ol

6.26.1
6.26.2
6.26.3
6.26.4
6.26.5
6.26.6

Switch statements and lack of static analySiSYCLL] ..

6.27.1
6.27.2
6.27.3
6.274
6.27.5
6.27.6

Non-demarcation of controkflow [EO]]

6.28.1
6.28.2
6.28.3
6.28.4
6.28.5
6.28.6

Loop conttrol variable abuse [TEX] ...

6.29.1
6.29.2
6:29.3
6:29.4

Description of application vulnerability ...
Related coding guidelines ...,
Mechanism of failure ... :
Applicable language characterisStiCs. ...
Avoiding the vulnerability or mitigating its effects..........olh o 48
Implications for language design and evolution

Description of application vulnerability ...
Related coding guidelines ...,
Mechanism of failure
Applicable language characteriStiCs ...
Avoiding the vulnerability or mitigating it's €ffects. ... 50
Implications for language design and evolution

Description of application vulnerability ...
Related coding guidelinesS
Mechanism of failure..........3Cx 7.
Applicable language characteristics...
Avoiding the vulnerabilityor mitigating its effects
Implications for language design and evolution ...

Description of application vulnerability ...
Related coding guidelines ...,
Mechanism-of failure ...
Applicablelanguage characteristics
Avoidihg'the vulnerability or mitigating its effects
Implieations for language design and evolution ...

Description of application vulnerability
Related coding guidelines :
MechanisSm Of fAIIUIE ...
Applicable language charaCteriStiCs ...

6.30

6.31

6.29.5
6.29.6

Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution ...

Off-DY-0NE €ITOT [XZH] oo

6.30.1
6.30.2
6.30.3
6.30.4
6.30.5
6.30.6

Description of application vulnerability ...
Related coding guidelines
MeChaniSIM Of FATIUIE ...
Applicable language charaCteriStiCs ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolutioncc.cc.....

Unstructured programming [EWD] ...

6.31.1
6.31.2
6.31.3

Description of application vulnerability ...
Related coding guidelines........coce,
MeChaniSIM Of FATIUIE ...

© ISO/IEC 2024 - All rights reserved
vi

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.32

6.33

6.31.4
6.31.5
6.31.6

ISO/IEC 24772-1:2024(en)

Applicable language charaCteriStiCs .. 56
Avoiding the vulnerability or mitigating its effects......ee 56
Implications for language design and evolution

Passing parameters and return vValues [CS]] .o

6.32.1
6.32.2
6.32.3
6.32.4
6.32.5
6.32.6

Description of application vulnerability ...
Related coding guidelines ...,
Mechanism of failure.........c.ccenee
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects. ... 58
Implications for language design and evolution

Dangling references to stack frames [DCM

6.33.1
6.33.2

Description of application vulnerability
Related coding guidelines

6.34

6.35

6.36

6.37

6.39

6.33.3
6.33.4
6.33.5
6.33.6

Subprogram signature mismatch [OTR] ..o

6.34.1
6.34.2
6.34.3
6.34.4
6.34.5
6.34.6

RECUTSTION [GDL] oo

6.35.1
6.35.2
6.35.3
6.35.4
6.35.5
6.35.6

Ignored error status and unhandled exceptions [OYB] ...,

6.36.1
6.36.2
6.36.3
6.36.4
6.36.5
6.36.6

Type-breaking reinterpretation of data [AMV].........

6.37.1
6.37.2
6.37.3
6.37.4
6.3%5
6:37.6

Deep vs. Shallow cOPYING [YAN] e

Mechanism Of failure ... D
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution ...

Description of application vulnerabilityg A
Related coding guidelines ...,
Mechanism of failure ...
Applicable language characteristics
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution 2.

Description of application vulnerability ... e
Related coding guidelines :
Mechanism Of fAIIUTE ... oo
Applicable language characteriStiCSu . e
Avoiding the vulnerability or mjtigating its effects
Implications for language design'and evolution.............c......

Description of applicatio’vulnerability ...
Related coding guidelines :
Mechanism Of failUFET
Applicable language charaCteriStiCs ...
Avoiding the yulnerability or mitigating its effects
Implications for language design and evolutionccc......

Description of application vulnerability ...
Related coding guidelines........cco, :
Meehanism Of failUre ...
Applicable language characteriStiCs ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution ...

6.39

6.38.1
6.38.2
6.38.3
6.38.4
6.38.5
6.38.6

Description of application vulnerability ...
Related coding guidelines..........c.cc.
MechaniSm Of FATIUIE ...
Applicable language charaCteriStiCS ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and eVolution ...

Memory leaks and heap fragmentation [XY L] .o

6.39.1
6.39.2
6.39.3
6.39.4
6.39.5
6.39.6

Description of application vulnerability ...
Related coding guidelines.........c.cce.
Mechanism of failure ...

Applicable language characteristics. ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and eVolution ...

© ISO/IEC 2024 - All rights reserved
vii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.40

6.41

ISO/IEC 24772-1:2024(en)

Templates and GENETICS [SY MY .o 70

6.40.1
6.40.2
6.40.3
6.40.4
6.40.5
6.40.6

Description of application vulnerability 70
Related coding guidelines
MeChaNiSIM Of FATIUIE ... s
Applicable language charaCteriStiCs ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolutionc.....

TNNEITEANICE [RIP oot

6.41.1
6.41.2
6.41.3
6.41.4
6.41.5

Description of application VUulnerability ...
Related coding guidelines
MeChaniSIM Of FATIUIE ... s
Applicable language charaCteriStiCs
Avoiding the vulnerability or mitigating its effects

6.47

6.43

6.44

6.45

6.44

6.41.6

Implications for language design and evolution ... B

Violations of the Liskov substitution principle or the contract model [BLP]....cx. Lz

6.42.1
6.42.2
6.42.3
6.42.4
6.42.5
6.42.6

Redispatching [PPH] ...

6.43.1
6.43.2
6.43.3
6.43.4
6.43.5
6.43.6

Polymorphic variables [BKEK] e seieesseesesseesesssseeeseess e

6.44.1
6.44.2
6.44.3
6.44.4
6.44.5
6.44.6

EXtra iNtrinsics [LRIM . e

6.45.1
6.45.2
6.45.3
6.45.4
6.45.5
6.45.6

Argumeént passing to library functions [TR]]

6.46.1
6:46.2
646.3

Description of application vulnerability ...
Related coding guidelines :
Mechanism of failure ...l
Applicable language characteriStiCs ... N
Avoiding the vulnerability or mitigating its effects
Implications for language design and evolution..........,.(.j......

Description of application vulnerability ...
Related coding guidelines.........cccc. :
Mechanism Of failUIe ...
Applicable language characteriStiCs. ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and @Volution ...

Description of application vulnerability ...
Related coding guidelines.....;C87 e,
Mechanism of failure..........q3..-
Applicable language char@eteristics. ...
Avoiding the vulnerability or mitigating its effects
Implications for langirage design and evolution ...

Description of'application vulnerability ...
Related coding guidelines.........cee.
Mechanisiof failure ...

Appljcable language characteristics ...
Avoiding the vulnerability or mitigating its effects
Implications for language design and evVolution ...

Description of application vulnerability ... :
Related coding GUIAEIINES ...
Mechanism Of fATIUTE ...

6.47

6.48

6.46.4
6.46.5
6.46.6

Applicable language characteristics........ccnn
Avoiding the vulnerability or mitigating its effects
Implications for language design and eVOIUtION ...

Inter-language Calling [D]ST ...

6.47.1
6.47.2
6.47.3
6.47.4
6.47.5
6.47.6

Description of application vulnerability ...
Related coding GUIAELINES ...
MechaniSm Of FAIIUIE ...
Applicable language characteristics ...

Avoiding the vulnerability or mitigating its effects
Implications for language design and evolutioncccccc..

Dynamically-linked code and self-modifying code [NYY]...ccoore,

6.48.1
6.48.2

Description of application vulnerability ...
Related coding GUIAEIINES ...

© ISO/IEC 2024 - All rights reserved
viii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.49

6.50

ISO/IEC 24772-1:2024(en)

6.48.3 MechaniSm Of faIlUIE ...
6.48.4 Applicable language characteriSTiCs ...
6.48.5 Avoiding the vulnerability or mitigating its effects
6.48.6 Implications for language design and evolution......
Library signature [NSQJ .o
6.49.1 Description of application vulnerability
6.49.2 Related coding guidelines..........cnn

6.49.3 Mechanism of failure ...

6.49.4 Applicable language characteristics..............
6.49.5 Avoiding the vulnerability or mitigating its effects
6.49.6 Implications for language design and evolution.....

Unanticipated exceptions from library routines [HJW ...,
6.50.1 Description of application vulnerability

6.51

6.572

6.53

6.54

6.50.2 CIOSS TEIETEIICE ...ooocccoevveeveeeessssses s e
6.50.3 Related coding guidelines ...

6.50.4 Applicable language characteristics
6.50.5 Avoiding the vulnerability or mitigating its effects
6.50.6 Implications for language design and evolution
Pre-processor directives [NIMP] ...

6.51.1 Description of application vulnerability ... e
6.51.2 Related coding guidelines ... g
6.51.3 Mechanism of failure ...

6.51.4 Applicable language characteristics
6.51.5 Avoiding the vulnerability or mitigating its effeets
6.51.6 Implications for language design and eVolution ...
Suppression of language-defined run-time checking{MXB]
6.52.1 Description of application vulnerability.
6.52.2 Related coding guidelines
6.52.3 Mechanism of Failure ..o

6.52.4 Applicable language characteristics...............

6.52.5 Avoiding the vulnerability .., 2C
6.52.6 Implications for language désign and evolution.....
Provision of inherently unsafe oferations [SKL]......cccccoc.
6.53.1 Description of application vulnerability
6.53.2 Related coding GUIABHNES ...
6.53.3 MechanisSm Of FalTe ...t
6.53.4 Applicable language characteristics. ...

6.53.5 Avoiding the vulnerability or mitigating its effect
6.53.6 Implicatiens for language design and eVolution ...
Obscure langiiage features [BRS] ...t
6.54.1 Description of application vulnerability
6.54.2 Related coding guidelines ...

6.54.3 "\ MechaniSm Of faTlUre ...
6.54.4~ Applicable language charaCteriStiCs ...
6!54.5 Avoiding the vulnerability or mitigating its effects
6754.6 Implications for language design and evolution......

6.5

6.56

Unspecified behaviour [BQE | ...
6.55.1 Description of application vulnerability
6.55.2 Related coding guidelines ...

6.55.3 Mechanism of failure. ...,

6.55.4 Applicable language characteristics..............

6.55.5 Avoiding the vulnerability or mitigating its effects
6.55.6 Implications for language design and evolution......
Undefined behaviour [EWF] ...
6.56.1 Description of application vulnerability
6.56.2 Related coding guidelines ...

6.56.3 Mechanism of failure ...

6.56.4 Applicable language charaCteriStiCs ...
6.56.5 Avoiding the vulnerability or mitigating its effects. ...,

© ISO/IEC 2024 - All rights reserved
ix

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.57

6.58

ISO/IEC 24772-1:2024(en)

6.56.6 Implications for language design and eVOIULION ... 91
Implementation-defined behaviour [FAB]
6.57.1 Description of application vulnerability ...
6.57.2 Related coOding GUIAEIINES ...
6.57.3 MechaniSm Of FAIlUIE ...
6.57.4 Applicable language characteristics. ...

6.57.5 Avoiding the vulnerability or mitigating its effects
6.57.6 Implications for language design and eVOIUtION ...
Deprecated language features [MEM]
6.58.1 Description of application vulnerability ..
6.58.2 Related cOding GUIAEIINES ...
6.58.3 MechaniSm Of fAIlUIE ...t
6.58.4 Applicable language characteristics

6.59

6.6(

6.6

6.62

6.63

6.58.5 Avoiding the vulnerability or mitigating its effects
6.58.6 Implications for language design and evolutionccccc....
Concurrency - Activation [CGA]
6.59.1 Description of application vulnerability .. :
6.59.2 Related coding guidelines ...l
6.59.3 MechanisSm Of FailUre ... oo
6.59.4 Applicable language characteristics. ... 10

6.59.5 Avoiding the vulnerability or mitigating its effects
6.59.6 Implications for language design and evolution.......s0(.
Concurrency - Directed termination [CGT]
6.60.1 Description of application vulnerability .. .
6.60.2 Related coding GUIAEIINES ...
6.60.3 Mechanism Of faillure ... e
6.60.4 Applicable language characteristics :
6.60.5 Avoiding the vulnerability or mitigating its effect. ...,
6.60.6 Implications for language design andevolution ...
Concurrent data access [COX] . pmtoiiseriessirs s

6.61.1 Description of application vulnerability ..
6.61.2 Related coding guidelines .oy
6.61.3 Mechanism of failure...; @
6.61.4 Applicable language characteristics ... :
6.61.5 Avoiding the vulnerability or mitigating its effect........ci,
6.61.6 Implications for language design and eVOlUtion ...
Concurrency - Prematiire termination [CGS]. ...,

6.62.1 Description-of-application vulnerability ...
6.62.2 Related eading guidelines......
6.62.3 Mechahnism of failure ...

6.62.4 Applieable language characteristics ... :
6.62.5 Avoiding the vulnerability or mitigating its effect ...,
6.62.6~Implications for language design and eVOlution ...
Loeksprotocol errors [CGM]
6!63.1 Description of application vulnerability
6:63.2 Related coding GUIAEIINES ...

6.64

6.65

6.63.3 Mechanism of failure.........ccc.
6.63.4 Applicable language characteristics
6.63.5 Avoiding the vulnerability or mitigating its effect. ...
6.63.6 Implications for language design and eVOIUtION ...
Reliance on external format strings [SHL]
6.64.1 Description of application VUINETrability ...
6.64.2 Related coOding GUIAEIINES ...
6.64.3 Mechanism of failure...........ccoone
6.64.4 Applicable language characteristics
6.64.5 Avoiding the vulnerability or mitigating its effects
6.64.6 Implications for language design and evolutioncc......

Modifying conStants [UJO] ..o

6.65.1 Description of application VUINErability ...

© ISO/IEC 2024 - All rights reserved
X

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

Application vulnerabilities

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

79

7.10

711

7.12

ISO/IEC 24772-1:2024(en)

6.65.2 Related coding GUIAEIINES ...
6.65.3 MechaniSm Of fATlUTE ...
6.65.4 Applicable language characteristics
6.65.5 Avoiding the vulnerability or mitigating its effects
6.65.6 Implications for language design and eVOIUtION ... 105

GeNETal. .o
Unrestricted file upload [CBF]
7.2.1 Description of application VUINErability ...
7.2.2 Related cOding GUIAEIINES ...t
7.2.3 Mechanism of failure ...

7.2.4 Avoiding the vulnerability or mitigating its effects

Dowmntoad of tode withoutimtegrity chreck TDEBT—
7.3.1 Description of application vulnerability
7.3.2 Related coding guidelines ... _
7.3.3 Mechanism Of failure ... g Correee
7.3.4 Avoiding the vulnerability or mitigating its effects

Executing or loading untrusted code [XYS]
74.1 Description of application vulnerability

7.4.2 Related coding guidelines ... Mo
7.4.3 Mechanism of failure ... :
74.4 Avoiding the vulnerability or mitigating its effects .

Inclusion of functionality from untrusted control sphere [DHU]........ccoiiccfoiinn 108
7.5.1 Description of application vulnerabilityc S|, 108
7.5.2 Related coding guidelines :

7.5.3 MechaniSm Of failUre ...t
7.5.4 Avoiding the vulnerability or mitigatingits effects........fo, 108

Use of unchecked data from an uncontrolled. or tainted source [EFS]......cocsfonnn 109

7.6.1 Description of application vulnerability ...,

7.6.2 Related coding guidelines......... @ o,

7.6.3 Mechanism of failure ... S0 s

7.6.4 Avoiding the vulnerability-or mitigating its effects :

CroSS-Site SCIIPTING [XY T oo
7.71 Description of application vulnerability ...

7.7.2 Related coding guidelines
7.7.3 Mechanism of falllire ...

7.74 Avoiding the vulnerability or mitigating its effects
URL redirection to untrusted site ("open redirect") [PYQ]

7.8.1 Description of application vulnerability
7.8.2 RelatedCoding GUIAElINES ...
7.8.3 Mechanism Of failure ...
7.8.4 <Avoiding the vulnerability or mitigating its effects :
INJECTION [RST] e

79:1 Description of application VUINerability ...

7972 Related coding guidelines
79 3 Mechanism of failure

79.4 Avoiding the vulnerability or mitigating its effects
Unquoted search path or element [XZQ]
7.10.1 Description of application vulnerability ..
7.10.2 Related coding GUIAEIINES ...
7.10.3 MechaniSm Of fATlUTE ...
7.10.4 Avoiding the vulnerability or mitigating its effects
Path traversal [EWR] ...
7.11.1 Description of application vulnerability ..
7.11.2 Related coding guidelines ...
7.11.3 Mechanism of failure ...
7.11.4 Avoiding the vulnerability or mitigating its effects
RESOUICE NAMES [HT S| .o

© ISO/IEC 2024 - All rights reserved
xi

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

7.13

7.14

ISO/IEC 24772-1:2024(en)

7.12.1 Description of application VUINErability ... 118
7.12.2 Related cOding GUIAEIINES ... 119
7.12.3 Mechanism of Failure
7.12.4 Avoiding the vulnerability or mitigating its effects
ReSOUTce eXNauStION [KZP] ...t
7.13.1 Description of application vulnerability ...
7.13.2 Related coding guidelines ...
7.13.3 MechaniSm Of failUIe ...

7.13.4 Avoiding the vulnerability or mitigating its effects. ..., 120
Authentication logic error [XZO]
7.14.1 Description of application VUINErability ...
7.14.2 Related coOding GUIAEIINES ...
7.14.3 Mechanism of fajlure

7.15

7.16

7.17

7.18

7.19

7.20)

7.21]

7.14.4 Avoiding the vulnerability or mitigating its effects ... by
Improper restriction of excessive authentication attempts [WPL]
7.15.1 Description of application vulnerability ...,
7.15.2 Related coding guidelines :
7.15.3 Mechanism of failure ...l
7.15.4 Avoiding the vulnerability or mitigating its effects
Hard-coded credentials [XYP] .. Lo
7.16.1 Description of application vulnerability..
7.16.2 Related coding guidelines..............
7.16.3 Mechanism of failure ... e
7.16.4 Avoiding the vulnerability or mitigating its effeets .
Insufficiently protected credentials [XYM]. .S
7.17.1 Description of application vulnerability ... e
7.17.2 Related coding guidelines :
7.17.3 Mechanism of failure ... oo
7.17.4 Avoiding the vulnerability or mitigating its effects
Missing or inconsistent access control [XZN]. ...,
7.18.1 Description of application vulnerability ..
7.18.2 Related coding guidelines .oy
7.18.3 Mechanism of failure ..; @ e
7.18.4 Avoiding the vulnerability or mitigating its effects .
Incorrect authorization [BEF. ...
7.19.1 Description of application vulnerability ...
7.19.2 Related coding guidelines
7.19.3 Mechanism-of Tailure ...
7.19.4 Avoidingithe vulnerability or mitigating its effects
Adherence to least privilege [XYN]
7.20.1 Description of application vulnerability ... :
7.20.2 Related coding GUIdEIINES ...
7.20.3~\MechaniSm Of failUTe ...
7.20:4.~ Avoiding the vulnerability or mitigating its effects .
Privilege Sandbox iSSUES [XYO] ..o
721.1 Description of application vulnerability

7.22

7.23

7.21.2 Related coding guidelines ...,
7.21.3 Mechanism of failure ...

7.21.4 Avoiding the vulnerability or mitigating its effects. ...
Missing required cryptographic step [XZS]
7.22.1 Description of application vulnerability ...
7.22.2 Related coOding GUIAEIINES ...t
7.22.3 MechaniSm Of faIlUIE ...
7.22.4 Avoiding the vulnerability or mitigating its effects
Improperly verified signature [XZR] ...
7.23.1 Description of application vulnerability ...
7.23.2 Related coding guidelines ...
7.23.3 Mechanism of failure ...
7.23.4 Avoiding the vulnerability or mitigating its effects

© ISO/IEC 2024 - All rights reserved
xii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.24 Use of a one-way hash without a Salt [MVX] ... 129
7.24.1 Description of application VUINErability ... 129
7.24.2 Related coding guidelines
7.24.3 Mechanism Of failUIe ...
7.24.4 Avoiding the vulnerability or mitigating its effects ...
7.25 Inadequately secure communication of shared resources [CGY]
7.25.1 Description of application vulnerability ...
7.25.2 Related coding GUIAEIINES ...
7.25.3 Mechanism Of failUIe ...
7.25.4 Avoiding the vulnerability or mitigating its effect
7.26 MeMOTY LOCKING [KXZX] oot
7.26.1 Description of application VUINErability ...
7.26.2 Related coding guidelines
7.26.3 Mechanism Of failure ... D
7.26.4 Avoiding the vulnerability or mitigating its effects
7.27| Sensitive information not cleared before use [XZK] ...
7.27.1 Description of application vulnerability :
7.27.2 Related coding guidelines ...l
7.27.3 Mechanism Of failUure ... R
7.27.4 Avoiding the vulnerability or mitigating its effects
7.28 Time consumption measurement [CCM] ...yl
7.28.1 Description of application vulnerability ..
7.28.2 Related coding guidelines ...
7.28.3 Mechanism of failure ... a s .
7.28.4 Avoiding the vulnerability or mitigating its effect ...
7.29 Discrepancy information leak [XZL]
7.29.1 Description of application vulnerabilityC. .
7.29.2 Related coding gUIdelines ... M
7.29.3 Mechanism Of fallUIe ... B s
7.29.4 Avoiding the vulnerability or mjtigating its effects
7.301 Unspecified functionality [BVQ]. ... a0
7.30.1 Description of application vulnerability ...
7.30.2 Related coding guidelin@&. ...
7.30.3 Mechanism of failure. ...
7.30.4 Avoiding the vulnerability or mitigating its effects
7.31] Fault tolerance and failurgstrategies [REU] ...
7.31.1 Description of'application vulnerability ...
7.31.2 Related coding guidelines..........c.ce.
7.31.3 Mechanist of failure ...
7.31.4 Avoidingthe vulnerability or mitigating its effects
7.32] Distinguished'values in data types [KLK] ... :
7.32.1 Bescription of application VUINErability ...
7.32.2~Related coding GUIAEIINES ...
7.32-3"Mechanism of failure
7324 Avoiding the vulnerability or mitigating its effects
7.33] NICIOCK ISSUES [CCT ittt
7.33.1 Description of application vulnerability ...
7.33.2 Related coding guidelines........cccceee
7.33.3 MechanisSm Of failUIe ...
7.33.4 Avoiding the vulnerability or mitigating its effect.......en
7.34 Time drift and jitter [CDJ]
7.34.1 Description of application VUINETrability ...
7.34.2 Related coOding GUIAEIINES ...
7.34.3 Mechanism of failure ...
7.34.4 Avoiding the vulnerability or mitigating its effect

Annex A (informative) Vulnerability taxonomy and list

Annex B (informative) Selected principles for language designers..............e

© ISO/IEC 2024 - All rights reserved
xiii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

Bibliography

ISO/IEC 24772-1:2024(en)

© ISO/IEC 2024 - All rights reserved
Xiv

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Foreword

[SO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations,

governmen

tal and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the 1ISO/

[EC Directi

ISO and IE
use of (a) 1
claimed pa
received ng
are caution
database 4
responsible

Any trade
constitute :

For an expl
related to

Organizatign (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/forsg

In the IEC, s

This documnent was prepared by Joint TechnicalCommittee ISO/IEC JTC 1, Information

Subcommit]

This first
technically

The main c

the do¢

to clarify that it is the responsibility of the implementation team to create design and coding

and tha
remove

new te

Clause

TS, Part 2 (S6€ WWW.IS0.0rg/dTECHVES O WWWIEC.CIT/INEMDErs _EXPerts/Tefdocs):

C draw attention to the possibility that the implementation of this document(may
atent(s). ISO and IEC take no position concerning the evidence, validity or, applicah
ent rights in respect thereof. As of the date of publication of this document, [SO and

ed that this may not represent the latest information, which may be obtained from
vailable at www.iso.org/patents and https://patents.iec.ch. ISO*and IEC shall n
for identifying any or all such patent rights.

name used in this document is information given for the/¢onvenience of users an
in endorsement.

hnation of the voluntary nature of standards, the meahing of ISO specific terms and ¢
conformity assessment, as well as information—about ISO's adherence to the W

involve the
ility of any
[EC had not

tice of (a) patent(s) which may be required to implement this document'Hewever, implementers

the patent
ot be held

d does not

pXpressions
forld Trade
word.html.

ee www.iec.ch/understanding-standards.

tee SC 22, Programming languages, theirenvironments and system software interfaces.

pdition of ISO/IEC 24772-1 cancels’ and replaces ISO/IEC TR 24772-1:2019, whicl
revised.

hanges are as follows:

ument now describes. avoidance mechanisms rather than providing specific guidan

t some of the avdidance mechanisms stated only apply to specific scenarios; "guidang
d from the title.accordingly;

i has-been expanded to explain how this documentis used with programming language

safety

stahdards, and security standards;

technology,

h has been

ce, in order

standards,
e" has been

'ms have been added in 3.7 to the terms and definitions clause to address specific vulperabilities;

standards,

Clause 5 has been amended to provide general vulnerability issues and primary avoidance mechanisms;
the titles of some Clause 6 vulnerabilities have been renamed to better capture the actual vulnerability;

the clause “Fault tolerance and failure strategies” was moved from 6.37 to 7.31 to reflect that the

vulnerability is more about the system design of fault tolerance and failure recovery strategies than
being language-oriented;

anewl

Clause

anguage vulnerability "Modifying constants [U]JO]" was added in 6.65;

7 was reorganized to gather similar application vulnerabilities together;

in normal systems and in networked systems;

© ISO/IEC 2024 - All rights reserved
XV

new application vulnerabilities were added to expose issues with time management in real-time systems,

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)
— anew Annex B has been added to collate material from the subclauses in Clause 6 entitled “Avoiding the
vulnerability or mitigating its effect” in a single place.
Alist of all parts in the ISO/IEC 24772 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.

© ISO/IEC 2024 - All rights reserved
Xvi

https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Introduction

All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour,
are implementation-dependent, or are difficult to use correctly. The use of those constructs can therefore
give rise to vulnerabilities, as a result of which software programs can execute differently than intended
by the writer. In some cases, these vulnerabilities can endanger the safety of a system or be exploited by
attackers to compromise the security or privacy of a system.

This document catalogues software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical or business critical
software. In general, this is applicable to the software developed, reviewed, or maintained for any application.

This docum
vulnerabili
such as ISO
of this docu

s to avoid or mtigate them. Other parts in the ISO/IEC 2
[EC 24772-2 for Ada and ISO/IEC 24772-3 for C describe how the language-independ
ment apply to the specific programming language addressed by that particularidocu

This docunpent is intended to catalogue avoidance mechanisms spanning multiple programming

so that ap
vulnerabili
mechanism
eliminate §
language th

The intendg
execution (
software sJ
cause the s

Developers
be aware o
practices a
providing g

blication developers will be better able to avoid the programming\constructs t
fies in software written in their chosen language and their attéhdant consequel
s can also be used by developers to select source code evaluation tools that can d
ome constructs that can lead to vulnerabilities in their software or to select a pr
at avoids anticipated problems.

bd audience for this document consists of parties who are concerned with assuring the
f the software of their system; that is, those who are-developing, qualifying, or m4g
stem and are required by their organization to avoid language and design constru
bftware to execute in a manner other than intended.

of applications that have clear safety, securitj~or mission-criticality requirements are
the risks associated with their code and.¢an use this document to ensure that their d
ldress the issues presented by the choseh programming languages, for example by su
oding guidelines.

Specific audliences for this document include developers, maintainers and regulators of:

— safety-
securit]

busine
busine

scienti
complg

y-critical applications.that must ensure properties of confidentiality, integrity, and av

mission-critical applications that must avoid loss or damage to property or finance;

bs-critical applications where correct operation is essential to the successful opers:
5S;

ic, moedeling and simulation applications that require high confidence in the results
%, expensive and extended calculation.

wof potential

7772 series,

ent analysis

ent.

languages,
at lead to
ices. These
scover and
bgramming

predictable
intaining a
ts that can

expected to
bvelopment
bsetting or

critical applications that can cause loss of life, human injury, or damage to the enviroiment;

ailability;

ition of the

of possibly

This docun

1ent can be relevant to other developers as well. A weakness In a non-critical app

ication can

provide the route by which an attacker gains control of a system or otherwise disrupts co-hosted applications
that are critical. All developers can use this document to ensure that common vulnerabilities are removed or
at least minimized from all applications.

This document does not address software engineering and management issues such as how to design and
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of properties and applications to be assured are not treated.
While this document does not discuss specification or design issues, there is recognition that boundaries
among the various activities are not clear-cut. This document seeks to avoid the debate about where low-
level design ends and implementation begins by treating selected issues that some consider design issues
rather than coding issues.

© ISO/IEC 2024 - All rights reserved
xvii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

This document is inherently incomplete, as it is not possible to provide a complete list of programming
language vulnerabilities because new weaknesses are discovered continually. Any such report can only
describe those that have been found, characterized, and determined to have sufficient probability and
consequence.

© ISO/IEC 2024 - All rights reserved
Xviii

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

International Standard

ISO/IEC 24772-1:2024(en)

Programming languages — Avoiding vulnerabilities in
programming languages —

Part 1:

Language-independent catalogue of vulnerabilities

1 Scop

This docu
vulnerabili
mission-cri

Vulnerabili
languages.

2 Norm

There are n

3 Term

For the puf
and in this
ISO and IE(
ISO On

IEC Ele

3.1 Com

3.1.1
protocol
set of rules

ent enumerates approaches and techniques to avoid software programmin

ies in the development of systems where assured behaviour is required for secu
ical and business-critical software. In general, the description of| the vulneral
of avoidance mechanisms are applicable to the software developed,reviewed, or ma
ion.

fies are described in a generic manner that is applicable to\a broad range of pr

ative references

o normative references in this document.
5 and definitions

poses of this document, the terms_ and definitions given in ISO and IEC terminology
Clause apply.

ine browsing platform:@vailable at https://www.iso.org/obp

ctropedia: available at https://www.electropedia.org/

munication

and supporting structures for the interaction of concurrent entities, such as tightly

maintain terminology datahases for use in standardization at the following addressgs:

b language
rity, safety,
bilities and

ntained for

bgramming

y databases

0

embedded

interaction

5'of threads or loosely coupled arrangements such as message communication spannin

g computer

systems and networks

3.1.2
stateless p

rotocol

communication or cooperation between threads where no state is preserved in the protocol (3.1.1) itself,

such as the

3.2 Exec

3.21
thread

HTTP protocol or direct access to a shared resource

ution model

sequential stream of execution such as a single thread in a process or a process in an operating system

© ISO/IEC 2024 - All rights reserved
1

https://www.iso.org/obp/ui
https://www.electropedia.org/
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

3.2.2

ISO/IEC 24772-1:2024(en)

thread activation

creation an

3.2.3

d setup of a thread (3.2.1) up to the point where the thread begins execution

activated thread
thread (3.2.1) that is created and then begins execution as a result of the thread activation (3.2.1)

3.24
activating

thread

thread (3.2.1) that exists first and makes the library calls or contains the language syntax that causes
another thread to be activated

3.2.5

static threpd activation

creation a

by another thread as part of a declarative part of the thread before it begins execution

3.2.6

dynamic thread activation

creation an
repeatable

3.2.7
thread abg
request to

system, angther thread via the operating system, or a request yia‘shared data or communicating

have the th

3.2.8
terminatid

initiation of a thread (3.2.1) at program initiation, by an operating system or rGntim

d initiation of a thread (3.2.1) by another thread (including the main program) as an
command, statement or subprogram call

rt
ttop and shut down a thread (3.2.1) immediately, whether‘that request comes from a

read cease execution

n directing thread

thread (3.2

3.29

thread ter
completion
consistent,

3.2.10
terminate
thread (3.2

1), including an operating system thread, that requests the termination of one or mor

mination
and orderly shutdown of a thread (3.2.1), where the thread is permitted to make d
release any acquired resourges; and notify any dependent threads that it is terminati

l thread
1) that has been halted from any further execution

3.2.11

master thread

thread (3.2

1) that initiates other threads and that eventually waits for one or all terminated thre

before it ca

3.2.12

h take further execution steps, including termination of itself

e kernel, or

executable,

h operating
channel to

e threads

ata objects
ng

nds (3.2.10)

process

single execution of a program, or portion of an application, which is permitted to execute independently,
or which can interact in programmed ways with other processes, and which can share resources such as
memory, processor and filing system with other processes

3.3 Properties

3.3.1
predictabl

e execution

property of the program such that all possible executions have results that can be predicted from the source code

© ISO/IEC 2024 - All rights reserved
2

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

3.4 Safety and security

3.4.1

safety hazard
potential source of material or environmental damage, physical injury, or damage to the health of people

3.4.2

safety-critical
type of software or application where failure can cause very serious consequences such as human injury or death

3.4.3
salt

randomized value that is additional input to a cryptographic algorithm

3.5 Vulnlerabilities

3.5.1

application vulnerability

security vul

3.5.2

language v
property o
thatis stro

3.5.3

nerability (3.5.3) or safety hazard (3.4.1) or defect

ulnerability
" feature of a programming language that through its presence'dr absence can contr
hgly correlated with, application vulnerabilities in programs written in that language

security viilnerability

weakness i
can be expl

3.6 Sped

3.6.1
failure
malfunctio
failure (3.6

pited or triggered by a threat

ific vulnerabilities

n of the system or component which has as subcategories: omission failure (3.6.2),
3), timing failure (3.6.4) and value failure (3.6.5)

3.6.2
omission fi
service tha

3.6.3
commissia
service tha

hilure
 is requested but never rendered

n failure
[initiatesuntexpected actions

3.6.4
timing fai

lure

ibute to, or

h an information system, system security procedures, internal controls, or implementation that

commission

service thatd

3.6.5
value failu

i | _

re

service that delivers incorrect or tainted results

3.6.6

dangling reference
reference to an object whose lifetime has ended due to explicit deallocation or the stack frame in which the
object resided has been freed due to exiting the dynamic scope

3.6.7
unspecifie

d functionality

code that can be executed, but whose behaviour does not contribute to the requirements of the application

© ISO/IEC 2024 - All rights reserved
3

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

4 Using this document

4.1 Purpose of this document

This document describes programming language vulnerabilities and application design vulnerabilities, as
well as mechanisms to avoid them. Programming language vulnerabilities can be design or programming
mistakes, problematic language features, or the absence of a language feature.

As an example of the absence of a feature, encapsulation (control of where names can be referenced from)
is generally considered beneficial since it narrows the interface between modules and can help prevent
data corruption. The absence of encapsulation from a programming language can thus be regarded as a
vulnerability. A property together with its complement can both be considered language vulnerabilities. For
example, at i i i ili i i n interfere
with time gredictability and result in a safety hazard (see IEC 61508-1 for electrical system safety process
requirements and IEC 61508-3 for software safety processes). On the other hand, the absence of automatic
storage reclamation can also be a vulnerability since programmers can mistakenly free storage pfematurely,
resulting in] dangling references.

This docunment can be used by the following:

— Programmers familiar with the vulnerabilities of a specific language can réference this dgcument for
more generic descriptions and their manifestations in less familiar languages.

— Tool vendors can select from this document vulnerabilities to be addressed by their tools.

— Individual organizations planning to write their own coding standards to reduce the |number of
vulnergbilities in their software products can use this<document to assist in the identfification of
vulnerabilities to be addressed in their coding standardsj)and the selection of coding guidelines to be
enforcgd.

— Organifations or individuals selecting a language for use in a project and considering the vulnerabilities
inherent in various candidate languages.

— Scientipts, engineers, economists, statisticians, or others who write computer programs cdn read this
documgpnt to become more familiar with-the issues that can adversely affect their work.

— Educatprs can use the document as a'reference for dangerous vulnerabilities in programming and for
guidange to avoid or mitigate them.

There are several ways to avoid a'vulnerability:
— Codinglguidelines can steer programmers away from constructs found to be problematic.

— Staticanalysis tools.cah be used to detect anomalous situations such as usage of a tool that reffises to pass
a harmiful construct. For instance, this includes a compiler that provides error messages or wiarnings if a
constriict is problematic.

— A programmiring language can be chosen that avoids or mitigates a class of vulnerabilities.

— Specific runtime checks can be written to detect situations that can lead to problematic behaviour.
— Automated analysis tools can be used to enforce coding standards.
— Verification and validation methods such as focused human review of code can be undertaken.

This document gathers descriptions of programming language wvulnerabilities, as well as selected
application vulnerabilities, which have occurred in the past and are likely to occur again. Every vulnerability
discussed here has been experienced in at least one programming language or runtime environment. Some
vulnerabilities occur in all programming languages, while others are mitigated by the features or capabilities
of some programming environments.

© ISO/IEC 2024 - All rights reserved
4

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Each vulnerability and its possible mitigations are described in this document in a language-independent
manner, though illustrative examples are often language specific. In addition, separate language-specific
documents have been developed or are under development for particular languages, such as Ada, C, Python,
and Fortran that describe the vulnerabilities and their mitigations in a manner specific to each language. For
example, ISO/IEC TR 24772-2 describes programming language vulnerabilities for the Ada programming
language. The language-dependent documents should be read in conjunction with this language-independent
document, as its advice is usually applicable but not replicated in the language-dependent documents.

Throughout this document, avoidance mechanisms are specified to each vulnerability listed to prevent
the vulnerabilities from occurring. Readers should be aware, however, that suggested avoidance
mechanisms can be contradictory to each other as they provide alternatives to choose from according
to project requirements.

re editions
5 chosen as

permanent|identification as opposed to subclause numbering which can change between) éditions. Each

description has been assigned an arbitrarily generated, unique three-letter code. Tool wendors
three-letter codes as a succinct way to “profile” the selection of vulnerabilities considered by the

4.2 Applying this document

This docunpent is expected to be used in the creation of software that is safe,Secure and trusted
context of the system in which it is fielded. IEC 61508-3 defines safety:related software as so
is used to |Implement safety functions in a safety-related system. Notwithstanding that in son
a distinctign is made between safety-related software (that can leadto harm) and safety-critic
(that can bie
result in sqdfety hazards. Similar to the security-related systeins defined in ISO/IEC 27001, thi
uses the tefm security-critical systems in the description{of*all vulnerabilities that can result
hazards.

This docunjent is expected to be used in conjunction with some of the following documents, depe
the planned application of the software:

— IEC61%08-1 and IEC 61508-3 on functionaksafety;
— ISO/IEC 27001 and ISO/IEC 27002<en security, and application-related standards pj
ISO/IEC/]TC 1/SC 27;

nationgl safety or security standards;

sector-specific standards-such as MISRA C for automotive sector;[3]

corporpte or organizational standards and directives.

In particular, this doctiment provides answers for questions raised in the construction of:

can use the
ir tools.

within the
ftware that
ne domains
al software

life threatening), this document uses the term saféty-critical for all vulnerabilities that can

5 document
in security

nding upon

oduced by

— safety-griticalrapplications;
— security-ecritical applications:

mission-critical/ business-critical applications;

scientific, modelling and simulation applications that have social impact.

Organizations can use this document for system or application development following the relevant standards

in their safety, security or application domains, in order to:
— determine the criticality of the system, including safety levels, security and privacy;

— analyse failure modes of the system, including omission failures, commission failures, value
failures;

© ISO/IEC 2024 - All rights reserved
5

and timing

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— identify and analyse external events and how they can affect the system; or

— identify and analyse attack surfaces of the system.

To use this

document effectively, organizations are expected to:

individual components;

docum

select &

implen
system
safety

In choosing
documents
ISO/IEC TR

Tool vendo
document.

Programm
guidelines
avoidable.

4.3 Stru
The rest of

Clause 5 ¢
issues disc
vulnerabili
the most cq
Clauses 6 a
in Clauses €

map the identified acceptable programming practices into organizational coding standayds;

identify and analyse sources of programming errors;

identify the programming language(s) to be used in programming the applications in the system;

identify and analyse weaknesses in the product or system, including systems, subsystems, modules, and

determine acceptable programming paradigms and practices to avoid vulnerabilities using the

enitation provided 1n o.4, Llause 6 and Llause /;

nd deploy tooling and processes to enforce coding rules or practices;

ent controls (in keeping with the requirements of the safety, security'and privacy n
that enforce these practices and procedures to ensure that the vulmerabilities do nd
ind security of the system under development.

I avoidance and mitigation mechanisms, organizations should‘Consult the language
of the ISO/IEC 24772 series applicable to their chosen programming language
24772-2 for Ada (ISO/IEC 8652) and ISO/IEC TR 247723 for C (ISO/IEC 9899).

ers and software designers that follow this*document adopt the architectural
bf their organization and choose appropriate mitigation techniques when a vulnera

cture of this document
the document is organized as follows:

xplains how many of/the vulnerabilities common to programming languages
ussed are not vulnerabilities but are language characteristics that can lead to m
[ies that can be exploited. Table 1 provides a summary list of the top 20 approach
mmon vulnerabilities with references to the applicable more detailed descriptions
hd 7. For many that cannot invest the resources to research all of the vulnerabilities d
and 7, implementing the documented mechanisms in Table 1 already provides signifi

to their pro

of language

eeds of the
t affect the

-dependent
s), such as

s that follow this document provide tools that diagnose the vulnerabilities described in this

hnd coding
bility is not

occur. The
stakes and
es to avoid
brovided in
ocumented
rant benefit

res that can

acteristics

niques that

programmers can use to avoid the Vulnerablllty, and ways that language de51gners can modlfy language
specifications in the future to help programmers mitigate the vulnerability. In using Clause 6, it is important
to be aware of how a listed vulnerability is presented by the programming language, the tool environment,
and the operating system that is being used.

This document will rarely be used in isolation, as every program is written in one or more programming
languages. Therefore, this document is supported by a set of standards or technical reports, i.e.
ISO/IEC TR 24772-2 (for Ada), ISO/IEC TR 24772-3 (for C), that can provide additional specific documentation
on the application of this document to the specific language in question.

Clause 7 provides descriptions of selected vulnerabilities, generally unrelated to programming language
features, which have been found and exploited in a number of applications. These vulnerabilities result from

© ISO/IEC 2024 - All rights reserved
6

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

design decisions made by coders in the absence of suitable language library routines or other mechanisms
but have known mitigation techniques. For these vulnerabilities, each description provides:

— asummary of the vulnerability,
— typical mechanisms of failure, and
— techniques that programmers can use to avoid the vulnerability.

Mitigations for vulnerabilities listed in Clause 7 generally do not include the use of programming language-
specific features or choices but consist of alternate design choices or programming techniques.

Annex A is a categorization of the vulnerabilities of this document by general topic areas.

Annex B s
“Implicatio

[fMmariZes information for language designers cited in the subclauses of Clausg
hs for language design and evolution”.

| 6 entitled

Throughoul
such as fal

I this document, the font courier is used for tokens typically present in programming
ke and true, but also for representative program samples from actual programming 1

languages,
hnguages.

5 General vulnerability issues and primary avoidance mechanisms

5.1 Geng¢ral vulnerability issues

5.1.1 Pre¢dictable execution

There are many reasons why software does not execute as,expected by its developers, its usgrs or other

stakeholde

others. Thi

of the codsg
susceptible

Achieving |

on una
in una
in una

by una

Furthermo
be attacked
of other so

execution despitesthe new challenges.

Software vulierabilities are characteristics of software that permit software to execute in w4

1[

's. Reasons include incorrect specifications, cordfigliration management errors and
5 document focuses on the usage of programming languages in ways that render th
less predictable, or the usage of design paradigms that weaken the application 4
to attack.

redictable execution is complicated by that fact that software is often used:
hticipated platforms (for example, ported to a different processor),

ticipated ways (as usage patterns change),

ticipated contexts (for example, software reuse and system-of-system integrations),
hticipated users (ferexample, those seeking to exploit and penetrate a software syste

e, the ubiquitous connectivity of software systems virtually guarantees that most so
— eitherbecause it is a target for penetration or because it offers a springboard for |
tware, Accordingly, it is crucial that programmers take additional care to ensure

h myriad of
b execution
nd make it

hnd
m).

ftware will
pbenetration
predictable

ys that are

unexpected. Programmers Introduce vulnerabilities Into soitware by using language features that are
inherently unpredictable in the various circumstances outlined above or by using features in a manner that
reduces predictability. Although, complete predictability is an ideal (particularly because new vulnerabilities
are often discovered through experience), programmers can improve predictability by carefully avoiding
the introduction of known vulnerabilities into code.

This document focuses on a particular class of vulnerabilities: language vulnerabilities. These are
properties of programming languages that can contribute to (or are strongly correlated with) application
vulnerabilities, security weaknesses, safety hazards, or defects.

Here is an example to clarify the relationship. The programmer’s use of a string copying function that does
not check length can be exploited by an attacker to place incorrect return values on the program stack, hence
passing control of the execution to code provided by the attacker. The string copying function is the language

© ISO/IEC 2024 - All rights reserved
7

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

vulnerability and the resulting weakness of the program in the face of the stack attack is the application
vulnerability. The programming language vulnerability enables the application vulnerability. The language
vulnerability can be avoided by using a string copying function that sets and enforces appropriate bounds
on the length of the string to be copied. By using a bounded copy function, the programmer improves the
predictability of the code’s execution.

The primary purpose of this document is to survey common programming language vulnerabilities; which is
done in Clause 6. Each description explains how an application vulnerability can result and provides various
mitigations and avoidance mechanisms that can prevent the vulnerability from appearing in a program.

Clause 7 documents vulnerabilities that do not directly result from language vulnerabilities. For example,
it is possible that a programmer stores a password in plain text (see 7.17 “Insufficiently protected stored
credentials [XYM]”) because the programming language does not provide a suitable library function for
storing the[password I a non-recoverapie format.

In additior] to considering the individual vulnerabilities, it is instructive to consider ‘the |sources of
uncertainty that can decrease the predictability of software. These sources are briefly considered in the
remainder pf this clause.

5.1.2 Sources of unpredictability in language specification

5.1.2.1 Ipcomplete or evolving specification

The design| and specification of a programming language involves considerations that are very different
from the use of the language in programming. Language specifiers often require compatibility with older
versions of|the language to be maintained, even to the extent,ofipetaining inherently vulnerablle features.
Sometimes|the full implications and the interactions of new gr.€omplex features are not complefely known,
especially when used in combination with other features.

5.1.2.2 Undefined behaviour

It is simply|not possible for the specifier of a programming language to describe every possiblg behaviour.
For example, the result of using a variable to which no value has been assigned is left undefin¢gd by many
languages. |In such cases, a program can do-anything, including crashing with no diagnostic of executing
with wrong data, leading to incorrect results.

5.1.2.3 Unspecified behaviour

The langudge specification incompletely specifies the behaviour of some features, leaving the language
implementg¢r to choose from(a'finite set of choices, but the choice is not always apparent to the programmer.
In such casgs, different compilers or the same compiler with different options processing the code selected
can lead to|different results, with possible harmful results.

5.1.2.4 Implementation-defined behaviour

In some cas€s; the results of execution depend upon characteristics of the compiler that wals used, the
processor i i " i i y interfaces.
In principle, it is possible to predict the execution with sufficient knowledge of the implementation, but such
knowledge is sometimes difficult to obtain. Furthermore, dependence on a specific implementation-defined
behaviour leads to problems when a different processor or compiler is used — sometimes even if different
compiler options are used.

5.1.2.5 Difficult features

Some language features can be difficult to understand or to use appropriately, either due to complicated
semantics (for example, floating point in numerical analysis applications) or human limitations (for example,
deeply nested program constructs or expressions). Sometimes simple typing errors can lead to major
changes in behaviour without a diagnostic (for example in C-based languages, typing “=” for assignment
when one really intended “==" for comparison).

© ISO/IEC 2024 - All rights reserved
8

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

5.1.2.6

ISO/IEC 24772-1:2024(en)

Inadequate language support

No language is suitable for every possible application. Furthermore, programmers sometimes do not have
the freedom to select the language that is most suitable for the task at hand. In many cases, libraries are
used to supplement the functionality of the language. Then, the library itself becomes a potential source of
uncertainty reducing the predictability of execution.

5.1.3 Sources of unpredictability in language usage

5.1.3.1 P

orting and interoperation

The behav1our of a program can change when 1t is recomplled usmg a dlfferent compller recompiled

or even in
and imple
hardware

implementg

51.3.2 C

Nearly all g
selected fr
compiler of
settings ca
implement:

5.2 Prim

Each vulne
mitigated.
effective m

erfaced Wlth dlfferent systems Such changes result from dlfferent ch01ces for
entation-defined behaviour, differences in library function, and differences, iin
gnd operating system support. The problem is far worse if the original programmer d

tion-dependent extensions to the language rather than staying with the standardize

ompiler selection and usage

oftware has defects and compilers are no exception. Therefore, the compiler should 1
bm trusted sources and qualified prior to use. Perhaps less\Obvious, though, is
ptions. Different compiler options can cause differences in generated code. A careful
h improve the predictability of code, such as a setting that®causes the flagging of any
ition-defined behaviour.

ary avoidance mechanisms

rability listed in Clauses 6 and 7 provides aset of ways that the vulnerability can be
Many of the mitigations and avoidance mechanisms are common. Table 1 documen
tigations, together with references to which vulnerabilities they apply.

t platform,
inspecified
underlying
hose to use
1 language.

be carefully
the use of
selection of
usage of an

avoided or
ts the most

© ISO/IEC 2024 - All rights reserved
9

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Table 1 — Primary avoidance mechanisms for software developers

Number |Avoidance mechanism Applicable vulnerabilities

1 Validate input, not make assumptions about the values of param- |6.6[FLC] 7.13[XZP]
eters and check parameters for valid ranges and values in the 7.18[XZN] 7.28[CCM]
calling and/or called functions before performing any operations.

2 When functions return error values, check the error return values |6.36[0YB]
before processing any other returned data. 6.60[CGT]

3 Enable compiler static analysis checking and resolve compiler 6.8 [HBC] 6.10[XYW]
warnings. 6.14[XYK] 6.15 [FIF]

6.16[PIK] 6.17[NIA]
6.18[WXQ] 6.19[YZS]
6.22[LAV] 6.25[K0A]
6.26[XYQ] 6.27[CLL]
6.29[TEX] 6.30 [X4H]
6.34[QTR] 6136[0YB]
6.38[YAN] 6.39[XY[L]
6.47[DJS] 6.54[BRS]
6.56[EWK] 6.57[FAB]
6.60[CGT] 6.61[CGK]
6.62[CGS] 7.28[CCM]

4 Run a static analysis tool to detect anomalies not caught by the 63[STR] 6.6[FLC
compiler. 6.7[CJM] 6.8[HB(]

6.10[XYW] 6.14[XYK]
6.15[FIF] 6.16[PIK]
6.17[NIA] 6.18[WXQ]
6.19[YZS] 6.22[LAV]
6.25[KOA] 6.26[XYQ]
6.27[CLL] 6.29[TEX]
630 [XZH] 6.34[QTR]
6.36[0YB] 6.38[YAN]
6.39[XYL] 6.47[DJY]
6.54[BRS] 6.56[EWF]
6.57[FAB] 6.60[CGII']
6.61[CGX] 6.62[CGP]
7.28[CCM]

5 Perform explicit range checking: when it cannot be shown stat- 6.6[FLC]
ically that ranges will be ebeyed; when range checking is not 6.8[HBC]
provided by the implementation; or if automatic range checking is | ¢ 16[PIK]
disabled. '

6 Allocate and free ftesources, such as memory, threads or locks, at |6.14[XYK]
the same leve] of abstraction.

7 Avoid construets that have unspecified but bounded behaviour, 6.24[XYK]
and if the~Censtruct is needed, test for all possible behaviours. 6.56[EWF]

8 Make'error detection, error reporting, error correction, and re- 6.36[0YB]
covery an integral part of a system design.

9 Use onlythesefeaturesofthe programminglanguage thatenforce 163 HEWD]
alogical structure on the program.

10 Avoid using features of the language which are not specified to an |6.55[BQF] 6.56[EWF]
exact behaviour or that are undefined, implementation-defined or |6,57[FAB] 6.58[MEM]
deprecated. 6.59[CGA]

11 Avoid using libraries without proper signatures. 6.34[QTR]

12 Prohibit the modification of loop control variables inside the loop |6.29[TEX]
body.

13 Prohibit assignments within Boolean expressions, even if allowed |6.25[KOA]

by the language.

© ISO/IEC 2024 - All rights reserved
10

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Table 1 (continued)

Number |Avoidance mechanism Applicable vulnerabilities
14 Prohibit dependence on side effects of a term in the expression 6.31[EWD]
itself. 6.24[SAM]
15 Use names that are clear and visually unambiguous and be con- 6.17[NIA]
sistent in choosing names.
16 Use careful programming practice when programming border 6.6[FLC] 6.29[TEX]
cases. 6.30 [XZH]
17 Beware of short-circuiting behaviour when expressions with side |6.24[SAM]
effects are used on the right side of a short-circuited Boolean 6.25[KOA]
expression, since a left-hand expression evaluating to false, dic-
tates tat tie rightiand expresston, nciuding function catts with
side effects, will not be evaluated.
18 Avoid fall-through from one case (or switch) statement into the 6.27[CLL]
following case statement: if a fall-through is necessary then pro-
vide a comment to inform the reader that it is intentional.
19 Avoid using floating-point arithmetic when integers would suffice, | 6.4[PLF}
especially for counters associated with program flow, such as loop
control variables.
20 Sanitize, erase, or encrypt data that will be visible to others (for |ZAI[EWR]
example, freed memory, transmitted data). Z.12[HTS]
6 Programming language vulnerabilities
6.1 Gengral

This clausg
can lead to

a sumn
charac
typical
technid

ways t
mitigat

Descriptioy
the other p
as ISO/IEC
the languag

provides language-independent descriptions”of vulnerabilities in programming lan
Qpplication vulnerabilities. Each description provides:

hary of the vulnerability,

feristics of languages where thevulnerability can be found,
mechanisms of failure,

Jues that programmers can use to avoid the vulnerability, and

hat language designiers can modify language specifications in the future to help pr
e the vulnerability.

s of how Qulnerabilities are manifested in particular programming languages are
hrts of the)[SO/IEC 24772 series. In each language-specific part of the ISO/IEC 24772
TR 24772-2 (Ada), the behaviour of the programming language is assumed to be as s

different v
include:

buages that

pgrammers

brovided in
series, such
pecified by
s can have

e standard Clted in the respectlve part of the ISO/IEC 24772 series. Clearly, progran

— compilers written to implement some specification other than the standard,

— use of non-standard vendor extensions to the language, and

— use of compiler switches providing alternative semantics.

The vulnerability descriptions in this document are written in a language-independent manner except
when specific languages are used in examples. Language-specific vulnerability descriptions and avoidance
mechanisms are found in the respective language-specific parts of the ISO/IEC 24772 series (e.g.
ISO/IEC TR 24772-2 for the Ada programming language), which mirror the structure of this document.

© ISO/IEC 2024 - All rights reserved
11

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Where applicable, cross-references to existing coding guidelines or rules are provided in the subclauses
entitled “Related coding guidelines”.

In general, this clause will use the terminology that is most natural to the description of each individual
vulnerability. Hence, terminology can differ from description to description.

6.2 Type system [IHN]

6.2.1 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.2.2 Related coding guidelines

JSF AV Rulds[34]: 148 and 183
MISRA C[39: 4.6, 10.1, 10.3, and 10.4
MISRA C++[40]: 3-9-2, 5-0-3 to 5-0-14
CERT C Seclre Coding Standard [41l: DCL07-C, DCL11-C, DCL35-C, EXP05-CG/and EXP32-C

Ada Quality and Style Guidelll: 3.43.4

6.2.3 Mechanism of failure

rations are

The type d
available. T
its collectia
A program

Every prog
every expr¢
safety and

enforce typ

In practica
the inclusid

f a data object informs the compiler how values/are represented, and which ope]
he "type system" of a language is the set of rulestused by the language to structure a1
n of types. Any attempt to manipulate data @bjects with inappropriate operations is 4
is said to be type safe (or type secure) if ittegan be demonstrated that it has no type er

ramming language has some sort ofitype system. A language is statically typed if
bssion is known at compile time. The'type system is considered to be strong if it guar
veak if it does not. There are strongly typed languages that are not statically typed b
e safety with runtime checks.

terms, nearly every language falls short of being strongly typed (in an ideal sense)
n of mechanisms to bypass type safety in particular circumstances. For that reason 3

every langyiage has a different\type system, this description will focus on taking advantage d

features foy

Sometimes
example, ca

flodg
intd
a:

type safety are available in the chosen language.

nsider thédollowing program fragment, written in no specific language:

t aj
gexr \i/

1d organize
type error.
Fors.

the type of
hntees type
bcause they

because of
nd because
f whatever

it is appropriate for a data value to be converted from one type to another compatibje type. For

a\/1;

The variable i is of integer type. It is converted to the float type before it is added to the data value. This is
an implicit type conversion. If, on the other hand, the conversion is required by the programming language
to be specified by the program, for example,

a:

a + float (i)

then it is an explicit type conversion.

Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible
without using implicit or explicit conversion. Type equivalence is usually characterized in terms of "name
type equivalence" — two variables have the same type if they are declared in the same declaration or
declarations that use the same type name — or "structure type equivalence" — two variables have the same
type if they have identical structures. There are variations of these approaches and most languages use

© ISO/IEC 2024 - All rights reserved
12

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

different combinations of them, such as the C bounds-checking interface (see ISO/IEC TR 15942). Therefore,
a programmer skilled in one language can very well code inadvertent type errors when using a different
language.

Programs should be type-safe because the application of operations to operands of an inappropriate type
often produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problems. Searching for type errors is a valuable exercise because their presence
often reveals design errors as well as coding errors. Many languages check for type errors — some at
compile-time, others at run-time. Obviously, compile-time checking is more valuable because it can catch
errors that are not executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always

bear the r1sk of changlng the value For example a conversion from 1nteger to float r1sks the loss of significant

atype wit
This can pr
point value
precision.
power of t

Similar sur
numeric va

a longer representation to a type with a shorter representat1on risks the loss of s1gn1f
pduce particularly puzzling results if the value is used to index an array. Conversioh o
from a type with a longer representation to a type with a shorter representation risk
his can be particularly severe in computations where the number of caleulations ing
e problem size.

prises can occur when an application is retargeted to a machine with|different repres
Jues.

lvalue from
cant digits.
f a floating-
5 the loss of
reases as a

bntations of

Second, a grogrammer can use the type system to increase the probability of catching desigh errors or
coding blunders. For example, the following Ada (ISO/IEC 8652) fragment declares two distinlct floating-
point types:

typg Celsius is new Float;

typqg Fahrenheit is new Float;
The declarptions make it impossible by the language riles to add a value of type Celsius tq a value of
type Fahrenheit without explicit conversion. Of cougse, explicit conversions require additiorlal numeric
calculationp that respect the relationship of the real-world units being converted. For example, r = cc
(where F i§ Fahrenheit and CC is Celsius) only.works in the special case when cc = -40, othprwise it is

necessary to have:

F

Cd

where the flunction convert To Fah#éwheit performs 9*c/5+32.

As another
typs

defines thg
representa
bits depeng

nvert to Fahrenheit (CC)

example, the following Pascal code

AltitudeInFegt -1500.. 45000;

operatingsrange of a plane and lets the compiler decide on the appropriate
ion in centrast to a predefined type integer which will be represented in 16 bits, 3
ing on'the target architecture. In this case, 16 bit integers are insufficient.

6.2.4 Ap

plicable language characteristics

underlying
D bits or 64

This vulnerability is intended to be applicable to languages that support multiple types and allow conversions

between ty

pes.

6.2.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— take advantage of any facility offered by the programming language to declare distinct types and use
any mechanism provided by the language processor and related tools to check for or enforce type
compatibility, such as the C ec-checking interface, ISO/IEC TR 24731;

© ISO/IEC 2024 - All rights reserved
13

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

use available language and tool capabilities to preclude or detect the occurrence of implicit type

conversions, such as those in mixed type arithmetic. If this is not possible, human review can assist in

search

occurr

ing for implicit conversions;

ences makes the justification available to maintainers;

avoid explicit type conversion of data values except when there is no alternative. Documenting such

use the most restricted data type that suffices to accomplish the job; for example, using an enumeration

type to select from a limited set of choices (such as a switch statement or the discriminant of a union
type) rather than a more general type, such as integer, enables tooling to check if all possible choices have
been covered;

proble

identif’

it to an|

create
conver

minim

instead

6.2.6 Im

In future language design and evolution activities; software designers should consider the follow

standa

experie

provid
provid

provid

type er

6.3 Bitr

6.3.1 De

treat eyery compiler, tool, or run-time diagnostic concerning type compatibility as a serio
avoid rjesolution of the issue by modifying the code to include an explicit conversionwit
analysis. Instead, examine the underlying design to determine if the type error is a symptom|

analysé
as auxi

respect the implied unit systems, when converting explicitly from one numeric type to another;

)

i all instances of implicit type conversion, and for each case, if the convefsion is necess
explicit conversion and document the rationale for the maintainers;

e the problem to be solved to learn the magnitudes and/or the precisions of the quanti
liary variables, partial results and final results;

Lypes that more accurately model the problem domain, with corresponding safe ope
sions in lieu of using primitive types;

ze the use of predefined numeric types whose ranges'and precisions are implementati
using types whose ranges and precision are guaranteed.

plications for language design and evolution

Fdizing on a common, uniform terminology to describe their type systems so that pr
nced in other languages can reliably learn the type system of a language that is new

ng a mechanism for selecting data types with sufficient capability for the problem at
ng a way for the computation to determine the limits of the data types actually select

ng compiler options or other mechanisms to provide the highest possible degree of ¢
rors.

ppresentations [STR]

l‘—t issue and
ut further

of a deeper

ary, change

ties needed

rations and

on-defined,

ing items:

bgrammers
o them;

hand;
ed;
hecking for

scription of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a
single computer word, or access to bit fields that can cross computer words for the machine in question.
Mistakes can be made as to what bits are accessed because of the "endianness" of the processor (whether
the highest order bit is called bit 0 or bit n) or because of miscalculations. Access to those specific bits can
affect surrounding bits in ways that compromise their integrity. This can result in the wrong information
being read from hardware, incorrect data or commands being given, or information being mangled, which

can resulti

n arbitrary effects on components attached to the system.

6.3.2 Related coding guidelines

JSF AV Rules!34]1 147, 154 and 155

© ISO/IEC 2024 - All rights reserved
14

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

MISRA C[39]: 1.1, 6.1, 6.2, and 10.1
MISRA C++[49]; 5-0-21, 5-2-4 to 5-2-9, and 9-5-1
CERT C++ Secure Coding Standard[®l: EXP38-C, INT00-C, INT07-C, INT12-C, INT13-C, and INT14-C

See also Hogaboom.[12]

6.3.3 Mechanism of failure

Computer languages frequently provide a variety of sizes for integer variables, such as short, integer, long,
and even big integers. Interfacing with protocols, device drivers, embedded systems, low-level graphics or
other external constructs often requlre each b1t or set of blts to have a partlcular meamng Those bit sets

can but done

they do no
powers of t
using 28
underlying
arise when
or outputt

For the C p1
C++ progra

level consty

Packing of
bit-level pr¢
number thg

NOTE S
bits left-to-r

Storage org
opposite or
data sourcg
can inadve
being perfo

shift can cause the sign bit to be one.:Bit'manipulations can also be problematic when the mani

done on bin
is essential
little-endia

6.3.4 Ap

This vulnery

atqtion. When

, it is common practlce to pack all bits 1nto one Word Masklng and shlftmg of the
o to pick out individual bits or using sums of powers of 2 to pick out subsets of bits"(
24 +23+22 to create the mask 11100) provides a way of extracting those bits. Know

bit storage is usually not necessary to accomplish simple extractions such-as these. P

programmers mix their techniques (e.g. arithmetic and logical operations) to refere

e bit, since storage ordering of the bits need not be what the programmer expects.

ogramming language (ISO/IEC 9899), Hogaboom[12] discusses generic bit manipulati
ming language, ISO/IEC 14882, also shares many of C’s characteristics but also proy
ucts that help the programmer avoid associated vulnerabilities.

bits in an integer is not inherently problematic, however,"an understanding of the in
gramming is crucial to correct programming of thealgorithm. Some computers or of]
bits smallest-to-largest while others number theriJargest-to-smallest.

pme programmers think of this as left-to-right and\right-to-left. Common terminology discu
ght or right-to-left where the sign bit (if present)is considered to be the left-most bit.

anization can cause problems when interfacing with external devices that number

s or sinks and the ordering of thebits or words are not the same on both sides. Pr
‘tently use the sign bit in a bit field but not be aware that an arithmetic shift (sign e
rmed when right shifting causing the sign bit to be extended into other fields. Altern

ary encoded records that)span multiple words. Knowledge of the storage and orderin

when doing bit-wise operations across multiple words, as bytes can be stored in bi
h format.

plicable language characteristics

ability. description is intended to be applicable to languages that allow bit manipulati

ord using
pr example,
edge of the
oblems can
hce the bits

bn in C. The
ides higher

tricacies of
her devices

sses shifting

the bits in

der. One problem arises when incorrect assumptions are made when interfacing with external

bgrammers
ktension) is
ively, a left

pﬁlations are

g of the bits
b-endian or

pns.

6.3.5 Av«I:iding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

manipulations will be interfaced;

representations;

avoid bit operations on signed operands;

localize and document code associated with explicit manipulation of bits and bit fields;

© ISO/IEC 2024 - All rights reserved
15

explicitly document any reliance on bit ordering such as explicit bit patterns, shifts, or bit numbers;

understand the way bit ordering is done on the host system and on the systems with which the bit

where supported by the language, use bit fields in preference to binary, octal, or hexadecimal

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— use static analysis tools that identify and report reliance upon bit ordering or bit representation.

6.3.6

Implications for language design and evolution

In future language design and evolution activities, for languages that are commonly used for bit
manipulations, consideration should be given to creating a standardized application programming interface
(API) for bit manipulations that is independent of word size and machine instruction set.

6.4 Floating-point arithmetic [PLF]

6.4.1 Description of application vulnerability

Mostreal n
use ISO/IE
number ca
representa
platform.

Regardless
number us
digits than|
extremely
cause surp|
floating-po

Many algor
most comn
numeric do
not aware (

In some haj
by the data

6.4.2 Rel
JSF AV Rulég
MISRA C[39
MISRA C++
CERT C Sec
Ada Quality
5.5 sub

Imain, or for isolated values. Those without trainifig or experience in numerical analyg

TIDETS CATITOt DE TEPTESeIted exactly I a COMpPUteT: 10 TEPreSent Teat MUIbDeTS, oS
C 60559. If ISO/IEC 60559 is not followed, then the bit representation for aflg
h vary from compiler to compiler and on different platforms, however, relying oh ¢
ion can cause problems when a different compiler is used, or the code is retised

of the representation, many real numbers can only be approximated sihce represent

are available for representation. A floating-point number is only an approximatio
bood one. Floating-point representation of a real number or\aeonversion to floatin
rising results and unexpected consequences to those unac¢ustomed to the idiosy
nt arithmetic.

ithms that use floating point can have anomalous behaviour when used with certain
on results are erroneous results or algorithms that hever terminate for certain segn

f the algorithms, or the domain values for a particular algorithm that require attenti

type, causing different rounding results'when moving to standard precision modes.

ated coding guidelines

s[34]: 146, 147, 184, 197, and-202

:1.1and 14.1

40]; 0-4-3, 3-9-3, and*6-2-2

ure Coding Standard[41l: FLP0O-C, FP01-C, FLP02-C and FLP30-C
r and StyleGuidelll:

section “Accuracy of Operations with Real Numbers”

computers
ating-point
particular
on another

ing the real

ng a binary representation often requires an endlessly repeating string of bits or more binary

n, albeit an

g-point can

ncrasies of

values. The
hents of the
is are often
n.

dware, precision for intermediate floatingpoint calculations can be different than that suggested

7.2 subl

kection “Accuracy Model”

6.4.3 Me

chanism of failure

Floating-point numbers are generally only an approximation of the actual value. Expressed in base 10 world,
the value of 1/31is 0.333333.. The same type of situation occurs in the binary world, but the numbers that can

be represented with a limited number of digits in base 10, suchas1/10

sequences in the binary world. So, 1/10 represented as a binary number is:

0.00011001

10011001100110011001100110011001100110011...

© ISO/IEC 2024 - All rights reserved
16

0.1 become endlessly repeating

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

whichiso*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64 ..and no matter how many digits are used,
the representation will still only be an approximation of 1/10. Therefore, when adding 1/10 10 times, it is
possible that the final result is not exactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small
values, can provide unexpected results. Using an accumulated value to terminate a loop can result in an
unexpected number of iterations. Rounding and truncation can cause tests of floating-point numbers against
other values to yield unexpected results. Another cause of floating-point errors is reliance upon comparisons
of floating-point values or the comparison of a floating-point value with zero. Tests of equality or inequality
can vary due to rounding or truncation errors, which can propagate far from the operation of origin. Even
comparisons of constants can fail when a different rounding mode was employed by the compiler and by
the application. Differences in magnitudes of floating-point numbers can result in no change of a very large

floating-po

Manipulati
not ISO/IE(
for positive
on a partic
or the code
uncertainty
uncertainty
when impr

Most floati
hardware 3
guarantees
better soluf

Implement
can yield d
calculation

Floating-pd
default for
from zero”

Some floati
signof an

See also Go

6.4.4 Ap

This vulne}
since floati

int number when a relatively small number is added to or subtracted from it.

hg bits in floating-point numbers is also very implementation dependent if the implen
60559 compliant or in the interpretation of nan’s. Typically, special representations a
zero and negative zero; infinity and subnormal numbers are specified very ¢losé to zg
ilar bit representation is inherently problematic, especially when a new compiler is

is reused on another platform. The uncertainties arising from floatingspoint can be ¢
r about the actual bit representation of a given value (such as big-endian'or little-endi
r arising from the rounding of arithmetic operations (for example, 'the accumulatig
ecise floating-point values are used as loop indices).

Ing-point implementations are binary. Decimal floating-pdint numbers are availab
nd that capability has been standardized in ISO/IEC 60559-but one should aware wh
the implementation programming language makes. In-general, fixed-point arithmet
ion to common problems involving decimal fractions (such as financial calculations).

hitions (libraries) for different precisions are .often implemented in the highest pre
fferent results in algorithms such as exponentiation than if the programmer had per
directly.

int systems have more than one rounding mode. “Round to the nearest even nun
plmost all implementations. The other rounding modes “Round toward zero” and “R
can result in a more significant loss'of precision and can cause unexpected outcome.

g-point functions can returh.an arbitrary sign when the result is exactly zero. Tests
ber rather than its relatiorship to zero can return unexpected results.

|dberg.[2]

plicable language characteristics

ability description is intended to be applicable to all languages with floating-point
hg-point variables can be subject to rounding or truncation errors.

nentation is
e specified
ero. Relying
ntroduced,
livided into
an) and the
n of errors

le on some

ht precision
c is often a

rision. This
formed the

ber” is the
ound away

hat use the

operations,

6.4.5 Av&riding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— unless the program’s use of floating-point is trivial, obtain the assistance of an expert in numerical
analysis and in the hardware properties of the target system to check the stability and accuracy of the
algorithm employed;

avoid the use of floating-point expressions in a Boolean test for equality unless it can be shown that

the logic implemented by the equality test cannot be affected by prior rounding errors. Instead, use
coding that determines the difference between the two values to determine whether the difference is
acceptably small enough so that two values can be considered equal. If the two values are very large, the

“small

enough” difference can be a very large number;

© ISO/IEC 2024 - All rights reserved
17

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— verify that the underlying implementation is compliant with ISO/IEC 60559 or that it includes subnormal
numbers (fixed point numbers that are close to zero); and be aware that implementations that do not
have this capability can underflow to zero in unexpected situations;

— be aware that infinities, NAN and subnormal numbers are possible and give special consideration to
tests that check for those conditions before using them in floating point calculations;

— use library functions with known numerical characteristics;

— avoid the use of a floating-point variable as a loop counter, but if it is necessary to use a floating-point
value for loop control, use inequality to determine the loop control (thatis, < , <=, > or >=);

— understand the floating-point format used to represent the floating-point numbers to provide some
understanding of the underlying idiosyncrasies of floating-point arithmetic;

— avoid manipulating the bit representation of a floating-point number; instead prefer biiilt-In language
operatprs and functions that are designed to extract the mantissa, exponent, or sign;

— avoid the use of floating-point for exact values such as monetary amount, and instead use fldating-point
only when necessary, such as for fundamentally inexact values such as measurements or valugs of diverse
magnitjudes;

— considé¢r the use of fixed-point arithmetic /libraries or decimal floating point when appropriate;
— use knpwn precision modes to implement algorithms;

— avoid changing the rounding mode from RNE (round nearest even);
— prohibjt reliance on the sign of the floating-point Min and+&x operations when both numbers are zero;

— when adding (or subtracting) sequences of floating-point numbers, sort and add (or subtract] them from
smallest to largest in absolute value or use a suitable.compensated summation algorithm to gvoid loss of
precisipn.

6.4.6 Implications for language design and;evolution
In future language design and evolution activities, language designers should consider the following items:

— if a language does not already adhere to or only adheres to a subset of ISO/IEC 60559, it sh¢uld adhere
complgtely to ISO/IEC 60559;

— providingameans to generate diagnostics for code that attempts to test equality of two floating-point values;

— standafdizing their data type to ISO/IEC 10967-1:2012 and ISO/IEC 10967-2:2001.
6.5 Enumeratorissues [CCB]

6.5.1 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages,
there are no other operations available except order, equality, first, last, previous, and next; in others, the
full underlying representation operators are available, such as integer + and - and bit-wise operations.

Mostlanguages that provide enumeration types also provide mechanisms to set non-default representations.
If these mechanisms do not enforce whole-type operations and check for conflicts, then it is possible that
some members of the set are not properly specified or have the wrong mappings. If the value-setting
mechanisms are positional only, then there is a risk that improper counts or changes in relative order will
result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes,
and if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.

© ISO/IEC 2024 - All rights reserved
18

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions, and annotations. Similarly mismatches in enumeration value specification can be detected
statically. Without such rules, errors in the use of enumeration types are computationally hard to detect
statically as well as being difficult to detect by human review.

6.5.2 Related coding guidelines

MISRA C[39];: 8.12,9.2, and 9.3

MISRA C++[40]: 8-5-3

CERT C Secure Coding Standard [41l; INT09-C

d.011. 2 4 "

Ada Quallt et St_y te-Gttt

L. 4 LLA 42 !
UL J. T SUDUSUTULULIVIT LITUIINICT AlIUIT 1)’ IJCD

See also Holzmann[13] rule 6.

6.5.3 Mechanism of failure

As a progrdm is developed and maintained, the list of items in an enumeration often changes in
ways: new [elements are added to the list; the relationship between the members of the set ¢
representation (the map of values of the items) change; and expressions (that depend on the
specific relationships between elements of the set can create value errors'that can result in wronig results or

in unboun

Improperly
holes in the

If arrays aj
leave space
memory all

When enun
changes to

ed behaviours if used as array indices.

mapped representations can result in some enumeration values being unreachabl
representation where values that cannot be defined are propagated.

for values that are unreachable using the enumeration, with a possibility of unneces
ocations or a way to pass information undetected (hidden channel).

herators are set and initialized explicitlyand the language permits incomplete initia
the order of enumerators or the addition or deletion of enumerators can result in|

three basic
an change;
full set or

e or having

e indexed by enumerations containing non-default representations, some implemenftations can

sarily large

lizers, then
the wrong

values beinig assigned or default values being assigned improperly. Subsequent indexing can resullt in invalid

accesses an

6.5.4 Ap

This vulnery

Langus
or that
identif

Langue
to prev

d possibly unbounded behaviouss.

plicable language Characteristics
ability description is.intended to be applicable to languages with the following chara

ges that permitincomplete mappings between enumerator specification and value §
provide a positional-only mapping require additional static analysis tools and annotat
 the complete mapping of every literal to its value.

ges thatprovide a trivial mapping to a type such as integer require additional static ar
ent mixed type errors. They also cannot prevent invalid values from being placed into

Cteristics:

ssignment,
ions to help

alysis tools
variables of

such e

utheérator types. For example:

enum Directions {back,
enum Directions a

forward, stop};
forward, b = stop,

c =a + b;

In this example, c can have a value not defined by the enumeration, and any further use as that enumeration

will lead to

erroneous results.

constants to represent the values and ranges.

© ISO/IEC 2024 - All rights reserved
19

Some languages provide no enumeration capability, leaving it to the programmer to define named

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.5.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction, this is enforced by the compiler;

in code that performs different computations depending on the value of an enumeration, ensure that

each possible enumeration value is covered, or provide a default that raises an error or exception;

use an enumerated type to select from a limited set of choices and use tools that statically detect

omissions of possible values in an enumeration. For languages with a complete enumeration abstraction,

this is

6.5.6 Im

nforced hy the r‘nmpi]pr

plications for language design and evolution

In future language design and evolution activities, language designers should consider the follow

forlang
should

for lang
definit

6.6 Cony

6.6.1 De

Certain con

aVar]:
or

valy
or

foo
Type conve

uages that currently permitarithmetic and logical operations on enumenation types, a
be provided to ban such operations program-wide;

ruages that provide automatic defaults or that do not enforce staticmatching between
ons and initialization expressions, a mechanism should be provided to enforce such 1

ersion errors [FLC]

scription of application vulnerability

texts in various languages require exact matches with respect to types.

anExpression
el + value2
argl, arg2, arg3, .., argN)

rsion seeks to follow these-exact match rules while allowing programmers som

in using vallues such as: structurally.equivalent types in a name-equivalent language, types W

ranges are
correspond

Conversion
value. For ¢
original va
resultinal
type canre

distinct but intersect (for example, subranges), and distinct types with sensible/
ing values (for example, integers and floats).

s can lead to a lossS of data if the target representation is not capable of representing
xample, converting from an integer type to a smaller integer type can result in trung
ue cannotbe represented in the smaller size and converting a floating point to an
Dss of precision or an out-of-range value. Converting from a character type to a smalle
sultinthe misrepresentation of the character.

ing items:

mechanism

Pnumerator
hatching.

e flexibility
hose value
meaningful

the original
ation if the
integer can
r character

rsion errors can lead to erroneous data being generated, algorithms that fail to term

Type-conv

bounds-errors, or arbitrary program execution.

See also 6.44 "Polymorphic variables [BKK]" for up-casting errors.

6.6.2 Related coding guidelines

CWEIZI; 192. Integer Coercion Error

MISRA C[32]; 7.2, 10.1, 10.3, 10.4, 10.6-10.8, and 11.1-11.8

nate, array

MISRA C++[40]; 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2

CERT C Secure Coding Standard [41]: FLP34-C, INT02-C, INT08-C, INT31-C, and INT35-C

© ISO/IEC 2024 - All rights reserved
20

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.6.3 Mechanism of failure

Conversion errors result in data integrity issues which can result in a number of safety and security
vulnerabilities.

When the conversion results in no change in representation but a change in value for the new type, this can
resultin a value that is not expressible in the new type, or that has a dramatically different order or meaning.
One such situation is the change of sign between the origin and destination (negative - > positive or positive
- > negative), which changes the relative order of members of the two types and can result in memory access
failures if the values are used in address calculations. Numeric type conversions can be less obvious because
some languages will silently convert between numeric types.

Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values

d A Azai 210391 1o £o:1 d 3 1oz lo Alad :
are encounfgerea—AnrArate S==—rrathener-tattitre-occurreaate-toat mproperiymanarea€onversion error

resulting in] the processor being shut down and the destruction of the spacecraft.

Conversion| errors can also result in security issues, such as when an attacker inputs a particular numeric
value to exploit a flaw in the program logic. The resulting erroneous value can then be used as an grray index,
a loop iterdtor, a length, a size, state data, or in some other security-critical manneériFor example, when a
truncated integer value is used to allocate memory, while the actual length is used to copy infgrmation to
the newly gllocated memory, this results in a buffer overflow, as specified in ISO/IEC 60559.

Numeric type-conversion errors can lead to undefined states of executign resulting in infinite loops or
crashes. In|some cases, integer type-conversion errors can lead to exploitable buffer overflow|conditions,
resulting in the execution of arbitrary code. Integer type-conversion errors result in an incorrect value
being stored for the variable in question.

Explicit conversions between entities of different unit systeins without the application of the correct
conversion(factors can lead to incorrect computations. For €xample, the first Martian lander failg¢d due to an
improper cpnversion from metres to feet, resulting in theloss of the lander.

6.6.4 Applicable language characteristics
This vulnenability description is intended to be-applicable to languages with the following charagteristics:
— languapes that perform implicit type conversion (coercion);

— languapes that permit conversions between subtypes of a polymorphic type, see 6.44 "Pplymorphic
variables [BKK]";

— weakly typed languages that do not strictly enforce typing rules;
— languapes that support logical, arithmetic, or circular shifts on integer values;

— languapes that d6hot generate exceptions on problematic conversions.

6.6.5 Avoiding the vulnerability or mitigating its effects

T
()
o8
©
9
()
N3
P

TO avoid th vilnarahilityvy ar mitiagqata itc 11l affactc cafiarq
SVarherauitit y-orHagatte S eeets5-56twa

— if range checking is not provided by the language, use explicit range checks, type checks or value checks
to validate the correctness of all values originating from a source that is not trusted.

NOTE It is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in
some operation somewhere in a program; see Jones.[33]

— use explicit range checks to protect each operation, but pay attention to the large number of integer
operations that are susceptible to these problems and the number of checks required to prevent or
detect exceptional conditions, potentially resulting in prohibitively labour intensive implementation and
expensive computation;

— choose a language that generates exceptions on erroneous data conversions;

© ISO/IEC 2024 - All rights reserved
21

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

error in use;

possibl

€

design objects and program flow, such that multiple or complex explicit type conversions are unnecessary;

document any explicit type conversion made necessary by the algorithm to reduce the plausibility of

use static analysis tools to identify whether or not unacceptable conversions will occur, to the extent

avoid the use of plausible but wrong default values when a calculation cannot be completed correctly;

instead, either generate an error or produce a value that is out of range and is certain to be detected;

take ca

re that any error processing does not lead to a denial-of-service vulnerability;

respect the implied unit systems, when converting explicitly from one numeric type to another.

6.6.6 Im

In future language design and evolution activities, language designers should consider the follow

— provid

— making
of data

6.7 Strin

6.7.1 De

Some prog
occurrence
unexpected

6.7.2 Rel
CWELZl: 17
CERT C Sec

6.7.3 Me

String term
the string
error or p

i
input or ge

it does not.

If the progr

plications for language design and evolution

ng mechanisms to prevent programming errors due to conversions;

F all type-conversions explicit or at least generating warnings for implicit conversions
can occur.

g termination [C]JM]

scription of application vulnerability

-amming languages use a termination charactér’'to indicate the end of a string. Rel
of the string termination character without: verification can lead to either exp
behaviour.

ated coding guidelines

. Improper Null Termination

ure Coding Standard[#1l: STRO3-C, STR31-C, STR32-C, and STR36-C

chanism of failure

ination errors occur when the termination character is solely relied upon to stop pr
ind the termination character is not present. Continued processing on the string ca
entially be«eXploited as a buffer overflow. This can occur because, for a string that i
erated byalibrary, a programmer assumes that it contains a string termination chaf

ammers forget to allocate space for the string termination character, they can expect t

ing items:

where loss

ying on the
oitation or

bcessing on
n cause an
s passed as
acter when

0 be able to

e instances

store an n |

nngfh character cfring inan array thatis » characters]nng nning so can work in so

depending on what is stored after the array in memory, but will almost always fail or be exploited at some point.

6.7.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that use a termination character to indicate the end of a string;

— languages that do not do bounds checking when accessing a string or array.

© ISO/IEC 2024 - All rights reserved
22

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.7.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

avoidr

elying solely on the string termination character;

use library calls that do not rely on string termination characters such as

strncpy ()

instead of

strcpy ()

in the

tandard C]ihr:\ry;

6.7.6 Im

In future lajnguage design and evolution activities, consider the following items:

elimind

check
ISO/IE

specify
6.8 Bulff

6.8.1 De

A buffer bq
storage ou
storage is t
or the heap
to contiguoj
or beyond t

6.8.2 Rel

CWEIZI;
120. By
122. Hq

use static analysis tools that detect errors in string termination.

plications for language design and evolution

ite library calls that make assumptions about string termination characters;

bounds when an array or string is accessed, such as the C\bounds checking int
[TR 15942);

a string construct that does not require a string termination character.
br boundary violation (buffer overflow) [HCB]

scription of application vulnerability

undary violation arises when, due to unhchecked array indexing or unchecked arr
'side the buffer is accessed. Usually; boundary violations describe the situation
hen written. Depending on where\the buffer is located, logically unrelated portions
can be modified maliciously exlinintentionally. Usually, buffer boundary violations 4
us memory beyond either end-of the buffer data. Hence, access to the region before th
he end of the buffer data-are equally possible, dangerous and maliciously exploitable.

ated coding guidelines

ffer copy @ithout Checking Size of Input (‘Classic Buffer Overflow’)

ap-based Buffer Overflow

124. Bq

erface (see

hy copying,
where such
bf the stack
re accesses
b beginning

uridary Beginning Violation (‘Buffer Underwrite’)

129. Unchecked Array Indexing

131. Incorrect Calculation of Buffer Size

787. Out-of-bounds Write

805. Buffer Access with Incorrect Length Value

JSF AV [34]: Rule 15 and 25

MISRA C[39]; 21.1

MISRA C++[40]; 5-0-15 to 5-0-18

© ISO/IEC 2024 - All rights reserved
23

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding Standard[#1l: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C

6.8.3

Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

In all cases, an exception can be raised if the accessed location is outside of some permitted range of the run-
time environment. Typical kinds of failures are:

another variable or uninitialized storage.

contro

An ina

an une
pointet

in obje

structy
cause 4

6.8.4 Ap

This vulney

langua
means

langua

has not

langua

langua

and taj
being @

6.8.5 Av¢idingthe vulnerability or mitigating its effects

To avoid th

A writ¢ access will not result in the intended value being updated and can result in the
unrelated object (that happens to exist at the given storage location) being modified,lin
possibility of changes in external devices resulting from the memory location being hardwat

When 3
runtime housekeeping information (e.g. a function's return address) which'\can change 3

A read access will return a value that has no relationship to the intended value, such as, the value of

An out-of-bounds read access can be used to obtain information that is intended to be confidential.

narray has been allocated storage on the stack, an out-of-bounds write access can mod

flow.

dvertent or malicious overwrite of function pointers in memory can cause them
kpected location or an attacker's code. Even in applications.that do not explicitly u|
s, the run-time will usually store pointers to functions incmemory. For example, objg
ct-oriented languages are generally implemented using funiction pointers in a data s
res that are kept in memory. The consequence of a buffer boundary violation can be
rbitrary code execution. This vulnerability can be-tiSed to subvert any security servi

plicable language characteristics
ability description is intended to be appli¢able to languages with the following chara

bes that do not detect and prevent an' array being accessed outside of its declared
of an index, by pointer, or by usingthe physical memory address to access memory lo

bes that do not automatically,allocate storage when accessing an array element for wh
already been allocated;

bes that provide bounds checking but permit the check to be suppressed;

bes that allow a dopy or move operation without an automatic length check ensuring
get locations are of at least the same size. The destination target can be larger than
opied.

value of an
cluding the
"'e-mapped.

ify internal
program’s

to point to
se function
ct methods
tructure or
targeted to
e.

Cteristics:

bounds, by
rations;

ich storage

that source
the source

e ydlnerability or mitigate its ill effects, software developers can:

prevent out-of-bounds accesses;

use any implementation-provided functionality to automatically check array element accesses and

use static analysis to verify that all array accesses are within the permitted bounds. Such analysis

often requires that source code contain certain kinds of information, for example, that the bounds of all
declared arrays be explicitly specified, or that pre- and post-conditions be specified;

perform sanity checks on all calculated expressions used as an array index or for pointer arithmetic;

ascertain whether the compiler can insert bounds checks while still meeting the performance

requirements of the program and direct the compiler to insert such checks where appropriate.

© ISO/IEC 2024 - All rights reserved
24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

NOTE 1

NOTE 2

6.8.6

ISO/IEC 24772-1:2024(en)

Some guideline documents recommend only using variables having an unsigned data type when
indexing an array, on the basis that an unsigned data type can never be negative. This recommendation simply
converts an indexing underflow to an indexing overflow because the value of the variable will wrap to a large
positive value rather than a negative one. Also, some languages support arrays whose lower bound is greater than
zero, so an index can be positive and be less than the lower bound. Some languages support zero-sized arrays, so
any reference to a location within such an array is invalid.

In the past, the implementation of array bound checking has sometimes incurred what has been
considered to be a high runtime overhead (often because unnecessary checks were performed). It is now practical
for translators to perform sophisticated analysis that significantly reduces the runtime overhead (because
runtime checks are only made when it cannot be shown statically that no bound violations can occur).

Implications for language design and evolution

In future la|nguage design and evolution activities, language designers should consider the follow

provid
provid

overru

determ
reason

where
array b

6.9 Unchecked array indexing [XYZ]

6.9.1 De

Unchecked
within the

6.9.2 Rel
CWEILZL
129. Uy
676. Us
JSF AV Rule
MISRA C[39
MISRA C++

performing automatic bounds checking on accesses to array elements, unless the compiler c3

ng safe copying of arrays as built-in operation;

ng array copy routines in libraries that perform checks on the parameters te €nsure th
h can occur;

ine that the check is unnecessary. It is possible that this capability is optional for p

)

bointer types are provided, specifying a standardized feattife for a pointer type that w
ounds checking.

scription of application vulnerability

array indexing occurs when a value is used as an index into an array without checking
hcceptable index range.

ated coding guidelines

checked Array Indexing

e of Potentially Darngerous Function
s[34]: 164 and\15

1211

40F,540-15 to 5-0-18

ing items:

at no buffer

n statically
brformance

ould enable

that it falls

CERT C Secure Coding Standard [41l: ARR30-C, ARR32-C, ARR33-C, and ARR38-C

Ada Quality and Style Guidelll:

5.5 subsection “Array Attributes”

— 7.6 subsections “Input/Output on Access Types” and “Package Ada.Streams.Stream_I0”

6.9.3 Me

chanism of failure

A single fault can allow both an overflow and underflow of the array index. An index overflow exploit can
use buffer overflow techniques, but this can often be exploited without having to provide “large inputs.”
Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects;

© ISO/IEC 2024 - All rights reserved
25

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

that is, buffer overflows are not always the result. Unchecked array indexing, depending on its instantiation,
can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer
overflow condition, with consequences ranging from denial of service, and data corruption, to arbitrary
code execution.

The most common situation leading to unchecked array indexing is the use of loop index variables as buffer
indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded,
therefore causing a buffer overflow or underflow. Another common situation leading to this condition is
the use of a function’s return value, or the resulting value of a calculation directly as an index into a buffer.
Unchecked array indexing can result in the corruption of relevant memory and perhaps the corruption of
instructions. If the memory corrupted contains data, the program can continue to function with improper
values or stop due to some system error, e.g. an access outside the valid memory. If the memory corrupted
contains instructions, then the access can result in arbitrary or malicious changes to the executing program.
If the corrupted memory can be effectively controlled, then the execution of arbitrary code becomles possible,
as with a standard buffer overflow.

Some langpage implementations statically detect out of bound access and generate”a cqg
diagnostic.|At runtime, an implementation that detects the out-of-bound access canrprovide a 1
Such a notification can be treatable by the program, or not. Accesses can violate(the bounds o
array or viglate the bounds of a particular index. It is possible that the former is.checked and detsg
implementation while the latter is not. The information needed to detect the vitlation can be 4
not, depending on the context of use. For example, passing an array to a subroutine via a pointer
the subroutine of information regarding the size of the array.

Aside from|bounds checking, some languages have ways of protecting-against out-of-bounds acc
languages qutomatically extend the bounds of an array to accommodate accesses that can oths

mpile-time
jotification.
f the entire
cted by the
vailable, or
ran deprive

bsses. Some
rwise have

been beyorld the bounds. However, if this does not match the pfegrammer’s intent, it can mask efrors. Some
languages provide for whole array operations that obviate\the need to access individual elements, thus
preventing|lunchecked array accesses.

6.9.4 Applicable language characteristics

This vulnenability description is intended to be @pplicable to languages with the following charagteristics:

— languapes that do not automatically bounds-check array accesses;

— languapes that do not automaticallyextend the bounds of an array to accommodate array acgesses.

6.9.5 Av¢iding the vulnerability or mitigating its effects
To avoid the vulnerability ofmitigate its ill effects, software developers can:
includg sanity cheeks‘to ensure the validity of any values used as index variables;
consid¢r choosing a language that is not susceptible to these issues;

when available, use whole array operations whenever possible;

prohibit the suppression of [anguage-provided bounds checks without first statically verify
code is free from out-of-bounds accesses.

ng that the

6.9.6 Implications for language designers
In future language design and evolution activities, language designers should consider the following items:

— providing compiler switches or other tools to check the size and bounds of arrays and their extents that
are statically determinable;

— providing whole array operations that obviate the need to access individual elements;

© ISO/IEC 2024 - All rights reserved
26

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— providing the capability to generate exceptions or automatically extend the bounds of an array to
accommodate accesses that could otherwise have been beyond the bounds.

6.10 Unchecked array copying [XYW]

6.10.1 Description of application vulnerability

When the size and addresses of both the source and destination of an array or compound object are not
checked before the copy operation begins, the results can be catastrophic to program integrity. The classic
case of buffer overflow happens when some number of bytes (or other units of storage) are copied from one
buffer to another and the amount being copied is greater than is allocated for the destination buffer. Data
corruption can also happen when the program, or the programmer, does not check for overlap between the
source andtarget:

The first situation, overflow of a buffer in a sensitive region of a system, has been exploited ps a classic
attack vectpr to render systems inoperable or to take them over.

The second situation, that of overlap, can result in data corruption, which is likely [to result in incorrect
functioning of the system with potentially disastrous consequences to the containing system.

6.10.2 Related coding guidelines
CWEIZI; 121. Stack-based Buffer Overflow
JSF AV Rulgs(34l: 15
MISRA C[39: 21.1
MISRA C++[40]: 5-0-15 to 5-0-18
CERT C Secure Coding Standard[#1l: ARR33-C and STR31-C
Ada Quality and Style Guidelll:
7.6 subsection “Input/Output on Access Types”

7.6 fubsection “Package Ada.Streams.Stream_I0”

6.10.3 Meichanism of failure

Many languages and some third-party libraries provide functions that efficiently copy the contents of one
area of storrage to another(area of storage. Most of these libraries do not perform any checks to pnsure that
the copied from/to stordge area is large enough to accommodate the amount of data being copiedl.

When the dource andytarget areas overlap, some libraries do not produce the expected outcomg of copying
the value of the souirce area into the target area, because they do not identify the situation and|save into a
temporary ffirsf\to isolate the overlapped ranges.

The argumentsTo these library functions include the addresses of the contents of the two storage areas and
the number of bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to
the source/destination area. When passed incorrect parameters, the library function performs one or more
unchecked array index accesses, as described in 6.9 “Unchecked array indexing [XYZ]".

6.10.4 Applicable language characteristics
This vulnerability description is intended to be applicable to languages with the following characteristics:
— languages that contain standard library functions for performing bulk copying of storage areas;

— the same range of languages having the characteristics listed in 6.9 “Unchecked array indexing [XYZ]".

© ISO/IEC 2024 - All rights reserved
27

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.10.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

only use library functions that perform checks on the arguments to ensure no buffer overrun can occur

and perform checks on the argument expressions prior to calling the standard library function, to ensure
that no buffer overrun will occur;

notres

NOTE

ult in a buffer overrun or overlap;

use static analysis to verify that the appropriate library functions are only called with arguments that do

Such analysis can require the source code to contain certain kinds of information, for example, that the
bounds of all declared arrays are explicitly specified, or that pre- and post-conditions are specified as annotations
or language constructs.

sanitiz

prohib

6.10.6 Im

In future language design and evolution activities, language designers should.consider the follow

— provid

provid

6.11 Poinjer type conversions [HFC]

6.11.1 De

e all input data so that excessively large input data that can result in overflows is feje

t the suppression of any bounds checks provided by the language.

plications for language design and evolution

ng libraries that perform checks on the parameters to ensurethat no buffer overrun

ng full array assignment.

scription of application vulnerability

The code

appropriat¢ for the data or function being accessed.Otherwise, undefined behaviour can occur.

access via

function pdinter is defined to be “invocation_indirectly through that pointer.” The detailed requi

the meani

Even ifthe {

6.11.2 Rel

CWEIZI;
136. Tyj
188. Rq

roduced for access via a data or function pointer requires that the type of thd
data pointer is defined to be “fetchior store indirectly through that pointer” and 3
of appropriate type can vary among languages.

ype of the pointer is appropfriate for the access, erroneous pointer operations can still ¢

ated coding guidelines

pe Errors
liance en-Data/Memory Layout

s[34]:182 and 183

Cted;

ing items:

can occur;,

pointer is
bpecifically,
iccess via a
rements for

huse a fault.

JSF AV Rule

MISRA C[39]: 11.1-11.8

MISRA C++[40]: 5-2-2 to 5-2-9

CERT C Secure Coding Standard [#1]: INT11-C and EXP36-A

Ada Quality and Style Guidelll:

See also Ha

7.6 subsection “Input/Output on Access Types”

7.6 subsection “Package Ada.Streams.Stream_I0”

ttonlL0] rule 13: Pointer casts.

© ISO/IEC 2024 - All rights reserved
28

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.11.3 Me

ISO/IEC 24772-1:2024(en)

chanism of failure

If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted, or
privacy can be broken by inappropriate read or write operation using the indirection provided by the pointer
value. With a suitable type-definition, large portions of memory can be maliciously or accidentally read or
modified. Such modification of data objects will generally lead to value faults of the application. Modification
of code elements such as function pointers or internal data structures for the support of object-orientation
can affect control flow. This can make the code susceptible to targeted attacks by causing invocation via a
pointer-to-function that has been manipulated to point to an attacker’s malicious code.

6.11.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

pointet

pointet

s (and/or references) can be converted to different pointer (and/or reference) types;

s to functions can be converted to or from pointers to data.

6.11.5 Av¢iding the vulnerability or mitigating its effects

To avoid th
treat a

adoptg
such as

use oth
or othe

6.11.6 Im

e vulnerability or mitigate its ill effects, software developers can:
| compiler pointer-conversion warnings as serious errors;

rogramming guidelines, preferably augmented by statican@alysis, thatrestrict pointerc
the rules itemized above from JSF AV,[34] CERT, 41l Hattent9 or MISRA C[39];

er means of assurance such as proofs of correctnessjanalysis with tools, verification
r methods to verify that pointer conversions do‘ot’lead to later undefined behaviour

plications for language design and evolution

In future language design and evolution activities, language designers should consider creating

provides a

runtime check of the validity of all.accessed objects before the object is read, written ¢

6.12 Poinfer arithmetic [RVG]

6.12.1 De

Using point
program to

6.12.2 Rel
JSF AVI34] R

scription of application yulnerability

er arithmetic incofrectly can result in addressing arbitrary locations, which in turn
behave in unexpeeted ways.

ated coding guidelines

ule: 215

onversions,

techniques,

h mode that
r executed.

can cause a

MISRA C[39

1871-18.4

MISRA C++[40]: 5-0-15 to 5-0-18

CERT C Secure Coding Standard [41l: EXP08-C

6.12.3 Me

chanism of failure

Pointer arithmetic used incorrectly can produce:

— addressing arbitrary memory locations, including buffer underflow and overflow;

— arbitra

ry code execution;

— addressing memory outside the range of the program.

© ISO/IEC 2024 - All rights reserved
29

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.12.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow pointer arithmetic.

6.12.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— avoid using pointer arithmetic for accessing anything except composite types;

— prefer indexing for accessing array elements rather than using pointer arithmetic in languages that

permit

the dual modes of access;

— limitp

6.12.6 Im

No impllications apply.

6.13 Null

6.13.1 De

A null poin

valid memd

6.13.2 Rel

CWEIZI;
476.N

JSF AVI[34];

CERT C Sec

Ada Quality

6.13.3 Me

When a po

pointer der
accessing unanticipatedimemory locations.

6.13.4 Ap

This vulnery

inter arithmetic calculations to the addition and subtraction nfinfngprc

plications for language design and evolution

pointer dereference [XYH]

scription of application vulnerability

fer dereference takes place when a pointer with a value ofNwuL1 is used as though it
ry location. This is a special case of accessing storage via ah invalid pointer.

ated coding guidelines

I

LL Pointer Dereference
ule 174
ure Coding Standard[4ll: EXP34-C

r and Style Guidelll: 5.4 subgéetion “Dynamic Data”

chanism of failure

nter with a value of nurL is used as though it pointed to a valid memory location,
eference is said_to take place. This can result in a segmentation fault, unhandled ef

plicable.language characteristics

ointed to a

then a null
kception, or

ability description is intended to be applicable to languages with the following chara

Cteristics:

prior to the access itself;

Languages that allow the use of a NULL pointer.

6.13.5 Avoiding the vulnerability or mitigating its effects

Languages that permit the use of pointers and that do not check the validity of the location being accessed

Software developers can avoid the vulnerability or mitigate its ill effects by ensuring that prior to
dereferencing a pointer, its value is not equal to NULL.

© ISO/IEC 2024 - All rights reserved
30

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.13.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider a language feature

that would

check a pointer value for nuLL before performing an access.

6.14 Dangling reference to heap [XYK]

6.14.1 Description of application vulnerability

Memory designated by a dangling reference can be reused as soon as the referenced object has been deleted;
therefore, any subsequent access through the dangling reference can affect an apparently arbitrary location

of memory,

corrupting data or code.

This descri
frames can
called poin

A notable §
the same p
leading to f.
repeatedly
another red

Memory co

With suffic
System) or
This is becq
locations af

Allocating §

tracking thle lifetime of that block of memory. This €an cause confusion regarding when and i

memory h3
accessing f1

6.14.2 Rel

CWEIZI
415. D¢
416. Ug

MISRA Cl39

MISRA C++

btion concerns dangling references to the heap. The description of dangling referen

be found in 6.33 “Dangling reference to stack frame [DCM]”. In many languages, ref
fers; the issues are identical.

pecial case of using a dangling reference is calling a deallocator, for exahiple, free (
binter value. Such a double free can corrupt internal data structures of\the heap adm
ulty application behaviour [such as infinite loops within the allocator;réturning the sa
s the result of distinct subsequent allocations, or deallocating memory legitimately
uest since the first free () call, to name but a few], or it can havelnoadverse effects at g

ruption caused by the use of a dangling reference is amongthe most difficult errors {

ent knowledge about the heap management scheme, whigch is often provided by the OS
run-time system documentation, the use of dangling references is an exploitable vt
use the dangling reference provides a way to read‘or modify valid data in the designat
ter freed memory has been re-allocated by subséquent allocations for other data.

ind freeing memory in different modules and-levels of abstraction burdens the progra

s been allocated or freed, leading to.programming defects such as double-free vuli
r‘eed memory, or dereferencing nurzipointers or pointers that are not initialized.

ated coding guidelines

uble Free (Note that'Double Free (415) is a special case of Use After Free (416))
e After Free

:18.1-18.6

40]: 0=3~1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1

CERT C Sec

ure.Coding Standard[4ll: MEM01-C, MEM30-C, and MEM31.C

res to stack
brences are

, twice on
inistration,
me memory
hllocated to
11

o locate.

(Operating
Inerability.
ed memory

mmer with
ff a block of
nerabilities,

Ada Quality and Style Guidelll:

7.2 sub

6.14.3 Me

5.4 subsection “Dynamic Data”

section “Storage Pool Mechanisms

7.6 subsection “Input/Output on Access Types”

chanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be
reserved for it. An object exists and retains its last-stored value throughout its lifetime. If an object is
referred to outside of its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage

© ISO/IEC 2024 - All rights reserved
31

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

ends the lifetime of the object residing at this memory location (as does leaving the dynamic scope of a
declared variable). The value of a pointer becomes indeterminate when the object it points to reaches the
end of its lifetime. Such pointers are called dangling references. A deallocation causes all remaining copies of
the reference to become dangling.

The use of dangling references to previously freed memory can have a number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation
and timing of the deallocation, the system's reuse of the freed memory, and of the subsequent usage of a
dangling reference.

Like memory leaks and errors due to double deallocation, the use of dangling references has two common

and sometimes overlapping causes:

undefi
— develo

If a pointe
reallocated|
unrelated v
happens to
function pg
address of

6.14.4 Ap
This vulnery

langua
provid

langua

ed;
per confusion over which part of the program is responsible for freeing the memory.

I to previously freed memory is used, it is possible that the referencéd memor
. Therefore, assignment using the original pointer has the effect of“changing the
ariable. This induces unexpected behaviour in the affected program. \If the newly all
hold a class description, in an object-oriented language for exampleg, it is possible t
inters are scattered within the heap data. If one of these functign pointers is overwrit
malicious code, execution of arbitrary code can be achieved,

plicable language characteristics
ability description is intended to be applicable todanguages with the following chara

bes that permit the use of pointers and that\permit explicit deallocation by the d
e for alternative means to reallocate memory still pointed to by some pointer value;

bes that permit definitions of constructs that can be parameterized without en

consistlency of the use of parameter at compite time.

6.14.5 Avg¢iding the vulnerability or mitigating its effects

To avoid th

use an
already

useac

in com
such as
only or]

e vulnerability or mitigate.its ill effects, software developers can:

mplementation that checks whether a pointer is used that designates a memory locat
r been freed;

hding style that\does not permit deallocation;

blicated efror conditions, be sure that clean-up routines respect the state of allocatic
if the language is object-oriented, ensure that object destructors delete each chunk
ce, dn¢tensure that all pointers are set to NuLL once the memory they point to have be

to become

y has been
value of an
bcated data
hat various
ten with an

Cteristics:

bveloper or

forcing the

on that has

n properly,
of memory
en freed;

use a S

abic nna]ycic tool that is canahle of detecting some situations when 2 pninfnr is usd

storage it refers to is no longer a pointer to valid memory location;

6.14.6 Implications for language design and evolution

bd after the

allocate and free memory at the same level of abstraction, and ideally in the same code module.

In future language design and evolution activities, language designers should consider the following items:

providing implementations of the free function that can tolerate multiple frees on the same reference/

pointer or frees of memory that was never allocated. Such an operation is called an idempotent operation;

for properties that cannot be checked at compile time, providing an assertion mechanism for checking

properties at run-time, with the option to inhibit assertion checking if efficiency is a concern;

© ISO/IEC 2024 - All rights reserved
32

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— providing a storage allocation interface that will allow the called function to set the pointer used to

NULL a

fter the referenced storage is deallocated.

6.15 Arithmetic wrap-around error [FIF]

6.15.1 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the

minimum v
— thetyp

— thespe

alue representable in its type and, depending upon whether:
e is signed or unsigned;

cification of the language semantics and /or implementation choices;

the con

This vulnery

6.15.2 Rel
CWEIZI;

128. W

190. In
JSF AV Rule
MISRA C[39
MISRA C++
CERT C Sec

6.15.3 Me

Due to how
representa
The most c
overflow o}

Wrap-arou
execute foy
value) or ar
to execute

The precise

hputation wraps around to an unexpected value.

ability is related to 6.16 “Using shift operations for multiplication and divisien [PIK]”

ated coding guidelines

rap-around Error

feger Overflow or Wraparound

s[34]: 164 and 15

:7.2,10.1,10.3, 10.4, 10.6, 10.7,and 12.4

40]; 2-13-3, 5-0-3 to 5-0-10, and 5-19-1

ure Coding Standard [#1l: INT30-C, INT32>C, and INT34-C

chanism of failure

arithmetic is performed by _comiputers, if a variable’s value is increased past the max
ble in its type, it is possible that the system fails to provide an overflow indication to t}
bmmon processor behaviours are to wrap to a very large negative value, to set a condi
underflow, or saturate at the largest representable value.

hd often generates) an unexpected negative value. This unexpected value can caus

a long time (because the termination condition requires a value greater than so
array bourdds violation. A wrap-around can sometimes trigger buffer overflows that
rbitrary-céde.

consequences of wrap-around differ depending on:

whethé

mum value
le program.
tion flag for

e a loop to
ne positive
tan be used

rthe tvne is sioned orunsigned:
J [=] [=] 4

whether the type is a modulus type;

the minimum representable value;

the semantics of the language specification;

implementation decisions.

whether the type’s range is violated by exceeding the maximum representable value or falling short of

However, in all cases, the resulting problem is that the value yielded by the computation is often unexpected.

© ISO/IEC 2024 - All rights reserved
33

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.15.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that do not trigger an exception
condition when a wrap-around error occurs.

6.15.5 Avoiding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range;

— analyse the software using static analysis to identify unexpected consequences of arithmetic operations.

6.15.6 Implications for language design and evolution

In future lgnguage design and evolution activities, language designers should consider, providing facilities
to specify dither an error, a saturated value, or a modulo result when numeric overflow occurs.|Ideally, the
selection among these alternatives can be made by the programmer.

6.16 Using shift operations for multiplication and division [PIK]

6.16.1 Description of application vulnerability

Using shiftjoperations as a surrogate for multiply or divide can préduce an unexpected value when the sign
bit is changed or when value bits are lost. This vulnerability/is ‘related to 6.15 “Arithmetic wjrap-around
error [FIF]T...

6.16.2 Related coding guidelines

CWEIZI;
128. Wrap-around Error
190. Infeger Overflow or Wraparound

JSF AV Rulds[34]: 164 and 15

MISRA C[29: 7.2, 10.1, 10.3, 10.4, 0.6, 10.7, and 12.4

MISRA C++[40]: 2-13-3, 5-0-3(t9'5-0-10, and 5-19-1

CERT C Secure Coding Standard [41l: INT30-C, INT32-C, and INT34-C

6.16.3 Mejchanism-of failure

Shift operatiénsthat are intended to produce results equivalent to multiplication or division|will fail to
produce co i i i i i i i irl the loss of

significant bits from the value.

Such errors often generate an unexpected negative value, which can cause a loop to continue for a long time
(because the termination condition requires a value greater than some positive value) or an array bounds
violation. The error can sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.16.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that permit logical shift operations
on variables of arithmetic type.

© ISO/IEC 2024 - All rights reserved
34

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.16.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

or static analysis to determine that values are confined to the proper range;

correct operation in the appropriate fashion when it is applicable.

6.16.6 Implications for language design and evolution

In future lalnguage design and evolution activities, language designers should consider the follow

not prg

— flagginlg all occurrences of logical shifts for reviewers.

6.17 Choi

6.17.1 De

Humans so
and modul

developer flo aid in this effort, such as use of mixed-casing, uriderscores and periods, or use of

singular fo
sometimes

Human cog
differ in na
maps such
if alanguag

Convention
medium pr

large p

specifig;

many i
charac

differe
to hum

An importg

ce of clear names [NAI]

metimes choose similar or identical names for objects, types, aggregates of types, sy

viding logical shifting on arithmetic values;

scription of application vulnerability

bs. They tend to use characteristics that are specificito the native language of th

'ms to support the separation of items with similar names. Similarly, development ¢
use casing for differentiation (for example, all.uppercase for constants).

nitive problems occur when different (but'similar) objects, subprograms, types, o
e so little that human reviewers are unlikely to distinguish between them, or when
entities to a single entity. Typing errors,can lead to unintended bindings. The problem
e does not require explicit declaratipins of names.

s such as the use of capitalization, and singular/plural distinctions often work in
bjects, but there are a numbeiof significant issues to be considered:

determine applicable upper and lower bounds for the range of all variables and use language mechanisms

analyse the software using static analysis to identify unexpected consequences of shift operations;

avoid using shift operations as a surrogate for multiplication and division as most compilers will use the

ing items:

bprograms
e software
plural and
onventions

I constants
the system
s amplified

small and

rojects often have mixed programming languages, and such conventions are often language-

)

mplementations-support identifiers that contain international character sets, and sonje language

Ler sets have different notions of casing and plurality;

ht word-ferms tend to be natural language and dialect specific, suchasapidgin, butaren
ans thatspeak other dialects.

nfgeneral issue is the choice of names that differ from each other negligibly (in hury

D« »

heaningless

nan terms),

1 AL £L - 1 1 pa | L (i
for examplp Oy et g oy oty tiraersCores; (o1, -

as ulu and «

—_ J, lJ]lLll d]lb (“D”), Vibud}}y billli‘ldl L}ldlc
“-”” "). There is also an issue where identif

.

17, “0” and “0”), or underscores/dashes (

cters (such
iers appear

distinct to a human but identical to the computer, such as FOO, Foo, and foo in some computer languages.
Character sets extended with diacritical marks and non-Latin characters offer additional problems.

Another issue is that some languages or their implementations only require implementations to parse the
first n characters of an identifier, which creates a sense in readers that names that differ in characters
beyond the limit are distinct while the implementation will make them the same name.

The problems described above are different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
reserved names which can lead to a conflict with the reserved use and the use of which are not necessarily
detected at compile time.

© ISO/IEC 2024 - All rights reserved
35

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Name confusion can lead to the application executing different code or accessing different objects than the
writer intended, or than the reviewers understood. This can lead to outright errors or leave in place code
that can execute sometime in the future with unacceptable consequences.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking
surreptitious behaviour is a goal.

6.17.2 Related coding guidelines

JSF AV Rules(34l: 48, 49, 50, 51,52

MISRA C[39]; 1.1

| a[141]

CERT C Sec
Ada Quality

6.17.3 Me

Calls to the
can result

but human
reviews.

6.17.4 Ap
This vulnery

langua
can use

langua

LCads C4 AnYali 2L
I'C \JU\«lllls Jldiudiu—/—". UuLu4sd U

r and Style Guidelll: 3.2

chanism of Failure

wrong subprogram or references to the wrong data element (that was missed by hunpan review)

in unintended behaviour. Language processors will not make a mijstake in name
cognition limitations can cause humans to misunderstand, and.therefore be misse

plicable language characteristics
ability description is intended to be applicable to lafijguages with the following chara

bes with relatively flat name spaces are more suseeptible. Systems with modules, classe
qualification to disambiguate names that qriginate from different parents;

bes that treat letter case as significant. Sete languages do not differentiate between

differing case, while others do.

6.17.5 Av¢iding the vulnerability or mitigating its effects

To avoid th

use sta3
names
locatio

use a ld

e vulnerability or mitigate its-ll effects, software developers can:

tic analysis tools to shew the target of calls and accesses and to produce alphabet]
and possibly followed with human review to detect the names that are sorted at an
h or which look ajmost identical to an adjacent name in the list;

nguage with'a requirement to declare names before use or use available tool or comp

langua

ce such arequirement;

to enfo.[
avoid mames-that conflict with (unreserved) keywords or language-defined library nan

be being used;

translation,
1 in human

Cteristics:

s, packages

hames with

ical lists of
inexpected

iler options

hes for the

avoid

ames that onty differ by characters that can be confused visuaily im the aiphat

et used in

development, such as for the Roman alphabet characters such as "0" and "0", "1" (lower case "r."), "1"

(capita

n.n

1

nn

)and "l"' "Sll and ll5"’ leu al’ld 2 ’an nnn al’ld llhll;

avoid names that only differ in the use of upper and lower case to other names;

assist compiler checking;

the det

ection of accidentally incorrect function names.

© ISO/IEC 2024 - All rights reserved
36

in languages with optional declarations of variables, always use explicit declarations of the variables to

use language features such as preconditions and postconditions or named parameter passing to facilitate

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.17.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

— providing an option to impose the declaration of names before use;

— requiring that implementations use all the characters of a name when comparing names, instead of some
fixed number of leading characters.

6.18 Dead store [WXQ]

6.18.1 Description of application vulnerability

A variable'
again, or bg
incomplete

This vulnery

6.18.2 Rel
CWEIZl: 56
MISRA C++
CERT C Sec

6.18.3 Me

A variable
referred to

A dead stoi
the value wj
needed (at

mistyped n

There are 1
to be read |
is used. In §
remove apf
or leakage,

A dead ston

the cod
keep th

b value is assigned but never subsequently used, either because the variable is not
cause a second value is assigned before the first is used. This suggests that the desig
y or inaccurately implemented, for example, a value has been created and then{fergo

ability is very similar to 6.19.

ated coding guidelines

8. Unused Variable

40l; 0-1-4 and 0-1-6

ure Coding Standard [41]: MSC13-C

chanism of failure

is assigned a value, but this is never subseguently used. Such an assignment is the
as a dead store.

e can be indicative of careless programming or of a design or coding error, as eithe
as forgotten (almost certainly an ervor) or the assignment was performed even thoug|
best inefficient). Dead stores can also arise as the result of mistyping the name of a val
ame matches the name of a variable in an enclosing scope.

py another execution thread or an external device, or its sensitivity requires destruc
uch cases, though, mark the variable as volatile. Common compiler optimization tech
arent dead stores if the variables are not marked as volatile, hence causing incorred
respectively.

e is justifiable if, for example:

e hastbeen automatically generated, where it is commonplace to find dead stores in{
e generation simple and uniform;

referenced
rn has been
tten about".

n generally

 the use of
h it was not
riable, if the

pgitimate uses for apparent’dead stores. For example, the value of the variable can e intended

tion after it
niques will
t execution

roduced to

the co
avalue

elisinitializing a sparse data set, where allmembersare cleared, and then selected values assigned

6.18.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any programming language that provides
assignment or initialized declarations.

© ISO/IEC 2024 - All rights reserved
37

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.18.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

for each one;

avoid d

eclaring variables of compatible types in nested scopes with similar names;

volatile;

object after the last intended read.

6.18.6 Im

In future 19
optional) w

6.19 Unus

6.19.1 De

An unused
suggests th

Unused vaj
combinatio|

This vulnery

6.19.2 Rel
CWEIZl: 56
MISRA C++
CERT C Sec

6.19.3 Me
Avariable i

As compile
warnings a

In with other techniques.

Ire either suppressed or are being ignored.

plications for language design and evolution

nguage design and evolution activities, language designers should consider providin
arning messages for dead store.

sed variable [YZS]

scription of application vulnerability

variable is one that is declared but neither read nor written in the program. This ty
at the design has been incompletely or inaccurately implemented.

iables by themselves are innocuous, but can prévide memory space that attackers

ability is similar to 6.18 if the variable is initialized but never used.

ated coding guidelines

B. Unused Variable

401: 0-1-3

ure Coding Standard[41k MSC13-C
chanism of failure

5 declared butinever used. The existence of an unused variable can indicate a design or c

s routinely diagnose unused local variables, their presence can be an indication th

use static analysis to identify any dead stores in the program and to ensure that there is a justification

if variables are intended to be accessed by other execution threads or external devices, mark them as

to prevent potential leakage of sensitive information, assign some information-free value to the volatile

g (possibly

pe of error

can use in

bding error.

at compiler

While unusg

edvariables are innocuous, they can provide available memory space to be used by 4

ittackers to

exploit other vulnerabilities.

6.19.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that provide variable declarations.

6.19.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— enable

detection of unused variables in the compiler;

© ISO/IEC 2024 - All rights reserved
38

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— use static analysis to identify any unused variables in the program and ensure that there is a documented

justific

ation for them.

6.19.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing (possibly
optional) warning messages for unused variables.

6.20 Identifier name reuse [YOW]

6.20.1 Description of application vulnerability

When disti
will operat

When it is
reading thg
the same-n)
also lead tg

b on an entity other than the one intended.

hot clear which identifier is used, the program can behave in ways that were(not p
source code. This can be found by testing, but circumstances can arise-(such as t}
amed objects being mostly the same) where harmful consequences gc¢cur. This we
vulnerabilities such as hidden channels where humans believe that important object

. efied , ot et

gram logic

redicted by
1e values of
akness can
s are being

rewritten dr overwritten when in fact other objects are being manipulated.

6.20.2 Related coding guidelines

JSF AV Rulgs[34l: 120, 135, 136 and 137

MISRA C[39: 5.3,5.8,5.9, 21.1, 21.2

MISRA C++[49]: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-15170-2, and 17-0-3

CERT C Secure Coding Standard[41l: DCL01-C and DCL32-C

Ada Quality and Style Guidelll: 5.6 subsection “Nesting”

6.20.3 Mejchanism of failure

Many langt
mechanism

jages support the concept ofjscope. One of the ideas behind the concept of scope is t
for the independent definition of identifiers that share the same name.

o provide a

For instance, in the following code fragment:

int sonj

{
int 4
int g

e var;

var;
ome van;\/* definition in nested scope */

t vary
some |

}

an identifier called some var has been defined in different scopes.

If either the definition of some var or ¢ var that occurs in the nested scope is deleted (for example, when
the source is modified) it is necessary to delete all other references to the identifier’s scope. If a developer
deletes the definition of t var but fails to delete the statement that references it, then most languages
require a diagnostic to be issued (such as reference to undefined variable). However, if the nested definition
of some_var is deleted but the reference to it in the nested scope is not deleted, then no diagnostic will be
issued (because the reference resolves to the definition in the outer scope).

© ISO/IEC 2024 - All rights reserved
39

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

In some cases, non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

exte
ext

rn int global symbol definition lookup table a[100];
ern int global symbol definition lookup table b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant.
This situation only occurs in languages that allow multiple declarations of the same identifier (other
languages require a diagnostic message to be issued).

A related problem exists in languages that allow overloading or overriding of keywords or standard library

function idg
issues of oV

ntifiers. Such overloading can lead to confusion about which entity is intended to be refé
erriding and overloading methods in object-oriented programming, see 6.41 “Inheritan

It is an important principle that definitions for new identifiers do not use a name that.is alrg

within the
static analy

6.20.4 Ap
This vulnery
— langua

— langua

sis tools check for and prevent inadvertent overloading of names beingjused.

plicable language characteristics
ability is intended to be applicable to languages with the followihg characteristics:
bes that allow the same name to be used for identifiers defined in nested scopes;

bes where unique names can be transformed into nonsunique names as part of the norma

6.20.5 Avo¢iding the vulnerability or mitigating its effects

To avoid th

ensure
name |
coding

ensure
is acceq

use avs
otherd

develo
conflic

ensure
implen

e vulnerability or mitigate its ill effects, software developers can:

that a definition of an entity does not occur in a scope where a different entity wit
s accessible and can be used in the,same context, including using a language-spec
convention to ensure that such errors are detectable with static analysis;

thata definition of an entityrdoes not occur in a scope where a different entity with the
sible and has a type thatpermits it to occur in at least one context where the first entit}

iilable language features, which explicitly mark definitions of entities that are inten
efinitions;

h or use tools, that identify name collisions or reuse when truncated versions of n
[S;

that allidentifiers differ within the number of characters considered to be signifi
entatijons that are likely to be used and document all assumptions.

renced. For
ce [RIP]".

ady visible

scope containing the new definition, or alternatively, that language-spegific facilities or other

1tool chain.

h the same
ific project

same name
y Can oCcur;

ded to hide

pmes cause

cant by the

6.20.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

requiri

ng mandatory diagnostics for entities with the same name in nested scopes;

to define uniqueness;

identifiers.

© ISO/IEC 2024 - All rights reserved
40

requiring mandatory diagnostics for entity names that exceed the length that the implementation uses

requiring mandatory diagnostics for overloading or overriding of keywords or standard library function

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.21 Namespace issues [BJL]

6.21.1 Description of application vulnerability

If a language provides separate, non-hierarchical namespaces; a user-controlled ordering of namespaces;
and a means to make names declared in these namespaces directly visible to an application, the potential of
unintentional and possible disastrous change in application behaviour can arise when names are added to a

namespace during maintenance.

Namespaces include constructs such as packages, modules, libraries, classes or any other means of grouping

declarations for import into other program units.

6.21.2 Re

ated coding guidelines
OO

MISRA C++[40l; 7-3-1, 7-3-3, 7-3-5, 14-5-1, and 16-0-2

6.21.3 Mechanism of Failure

The failure
provides the name B but not A. The application wishes to use A from n1 and B froni iv,. At this poin
no obviousl|issues. The application chooses to import both namespaces to obtain names for direqd
example:

use N1,| N2; - presumed to make all names in N1 and N2

-- directly visible in the scope of intended ‘wuse
Xt

A H

B;

The semantics of the above example are intuitive and unambiguous.

Later, duri
recompilat
above exa

g maintenance, the name B is added to ¥1’The change to the namespace usuall
on of dependent units. At this point, twe!declarations of B are applicable for the use
ple.

Some langyages try to disambiguate the above'Situation by stating preference rules in case of suc
among names provided by different name, spaces. If, in the above example, n1 is preferred
meaning of|the use of B changes silentlypresuming that no typing error arises. Consequently, th
of the program change silently and unintentionally, since the implementer of N1 cannot assume t}
of N1 would prefer to take any declaration of B from n1 rather than its previous namespace.

It does not matter what the preference rules actually are, as long as the namespaces are mutable
example is gasily extended by-adding A to N2 to show a symmetric error situation for a different prec

If a language supports‘overloading of subprograms, the notion of "same name" used in the abo
is extende¢l to meaif not only the same name, but also the same signature of the subpr
vulnerabilifies associated with overloading and overriding, see 6.20 “Identifier name reuse [YOW

is best illustrated by an example. Namespace w1 provides the name A,\but not . Namespace v,

t, there are
t usage, for

y implies a
of B in the

ambiguity

Iver N,, the

b semantics
1at all users

. The above
bdence rule.

ve example
bgram. For
/1" and 6.41

“Inheritande [RIP]". In the context of namespaces, however, adding signature matching to the n
activity merelyextends the described problem from simple names to full signatures, but does

|

me binding
ot alter the

mechanism or quality of the described vulnerability. In particular, overloading does not introduce more

ambiguity for binding to declarations in different name spaces.

This vulnerability not only creates unintentional errors, but it also can be exploited maliciously, if the source

of the application and of the namespaces is known to the aggressor and one of the namespaces is
the attacker.

6.21.4 Applicable language characteristics
The vulnerability is applicable to languages that:

— support non-hierarchical separate namespaces;

© ISO/IEC 2024 - All rights reserved
41

mutable by

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— have the means to import all names of a namespace wholesale for direct use and;

— have preference rules to choose among multiple imported direct homographs.

All three conditions are required together for the vulnerability to arise.

6.21.5 Avoiding the Vulnerability or Mitigating its Effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— avoid wholesale import directives, i.e. directives that give all imported names the same visibility level
as each other and/or the same visibility level as local names (provided that the language offers the
respective capabilities);

use on
langua

6.21.6 Im

In future language design and evolution activities, language designers should consider the follow

avoidin

provid
names

6.22 Miss

6.22.1 De

Reading a
execution i
callers, ort

Uninitializg
is delivered
data settin

Variables that are declared during medule construction (by a class constructor, instantiation, or e

can have al
but is more|

Another vy
objects are

When poss
initializatia

In the block that uses the value of that‘variable and has the potential to export bal

ly selective single name import directives or using fully qualified names (provid
be offers the respective capabilities).

plications for language design and evolution

g preference rules among mutable namespaces;

ng mechanisms such that ambiguities are invalid and avoidable'by the user, for examp
qualified by their originating namespace.

ing initialization of variables [LAV]

scription of application vulnerability

variable that has not been assigned a value appropriate to its type can cause un

p cause out-of-bounds memory accessés.

d variable usage is frequently not-detected until after testing and often when the code
and in use, because happenstance will provide variables with adequate values (suc
bs or accidental left-over values) until some other change exposes the defect.

fernate paths that cdn read values before they are set. This can happen in straight sequ
prevalent when ¢oncurrency or co-routines are present, with the same impacts descy

incrementally built, or fields are added under maintenance.

ble andssupported by the language, whole-structure initialization is preferable to fi

bd that the

ing items:

le, by using

predictable

d values to

in question
h as default

laboration)
lential code
ibed above.

Inerability otcurs when compound objects are initialized incompletely, as can happen when

eld-by-field

n statements, and named association is preferable to positional, as it facilitates hu

and is less

an review

susceptible to error injection under maintenance. For classes, the declaration and initialization

can occur in separate modules. In such cases, it is necessary to show that every field that needs an initial
value receives that value, and to document ones that do not require initial values.

6.22.2 Related coding guidelines

CWEIZI: 457. Use of Uninitialized Variable

JSF AV Rulesl34]: 71, 143, and 147

MISRA C[32
MISRA C++

1:9.1,9.2,and 9.3
[40]. 8-5-1

© ISO/IEC 2024 - All rights reserved
42

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding Standard[#1l: DCL14-C and EXP33-C

Ada Quality and Style Guidelll: 5.9 subsection “Initialization”

6.22.3 Me

chanism of failure

Uninitialized objects can have invalid values, valid but wrong values, or valid and dangerous values. Wrong
values can cause unbounded branches in conditionals or unbounded loop executions or can simply cause
wrong calculations and results.

There is a special case for pointers or access types. When such a type contains null values, a bound violation
and hardware exception can result. When such a type contains plausible but meaningless values, random
data reads and writes can collect erroneous data or can destroy data that is in use by another part of the

program; W
bad instrud
can resulti

Uninitializg
safety situg

The genera

6.22.4 Ap

This vulne
before they

6.22.5 Av¢iding the vulnerability or mitigating its effects

Fhien such a type 1S an access to a subprogram with a plausible (but wrong) value,
tion trap can occur or a transfer to an unknown code fragment can occur. All of thes
h undefined behaviour.

d variables are difficult to identify and use for attackers, but can be apbitrarily dg
tions.

| problem of showing that all program objects are initialized is intrdctable.

plicable language characteristics

Fability description is intended to be applicable to langudges that permit variables
are assigned.

en either a
e scenarios

Ingerous in

to be read

throughout

problem is

sis tools to

alue before

le that sets

tify where

ucture, not

To avoid the vulnerability or mitigate its ill effects, software developers can:

— carefully structure programs to show that all variables are set before first read on every path
each sybprogram;

— use stdtic analysis tools to show that allobjects are set before use, and since the general
intractpble, keep initialization algorithims simple so that they can be analysed;

— when declaring and initializing the’ object together, use compiler diagnostics or static analy
statically verify that the declarafive structure and the initialization structure match;

— use dyaLamic tools where-available to detect uninitialized variables during testing.

— when an object is visible’from multiple modules, identify a module that is required to set the y
reads dan occur from any other module that can access the object, and ensure that the mody
the valfie is executed first;

— when 4n object can be accessed concurrently, including by interrupts and co-routines, idel
early initidlization occurs and show statically that the correct order is set, i.e. via program st
by timing, ©S precederice, or chance;

and before any branches;

every variable declared and not initialized earlier is initialized on each branch;

ensure

NOTE

that the initial object value is a sensible value for the logic of the program;

consider initializing each object at declaration, or immediately after subprogram execution commences

if the algorithm forces the subprogram to commence with conditional statements, show statically that

So-called junk initialization (e.g. setting every variable to zero) prevents the use of tools that detect
otherwise uninitialized variables.

© ISO/IEC 2024 - All rights reserved
43

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

define or reserve fields or portions of the object to only be set when fully initialized, understanding

however, that this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables;

when setting compound objects, if the language provides mechanisms to set all components together,

use those in preference to a sequence of initializations as this facilitates coverage analysis; otherwise
use tools that perform such coverage analysis and document the initialization;

initialization;

avoid performing partial initializations unless there is no choice and document any deviations from full

where default assignments of multiple components are performed, explicitly declare all component

names and/or ranges to help static analysis and to identify component changes during maintenance;

assign
can be
tools ta

6.22.6 Im

In future language design and evolution activities, language designers should ¢onsider the follow

some |
raise e

setting
safety

suppor
6.23 Opel

6.23.1 De

Each langul
operands b

Experience
precedencs

6.23.2 Rel
JSF AV Rule
MISRA CI39

use ndmed assignments in preference to positional assignment where the languagée

ind to which operators. These-rules are also known as grouping or binding.

ents so that such named assignments can be used to build reviewable assignmentstry
analysed by the language processor for completeness; otherwise use comments and
help show correct assignment where the language only supports positional assignme

plications for language design and evolution

hnguages have ways to determine if modules and regions are\elaborated and initial
kceptions if this does not occur. Languages lacking these capabilities can consider add

aside fields in all objects to identify if initialization has occurred, especially for s
Homains;

ting whole-object initialization.

rator precedence and associativity. JEW]
scription of application vulnerability

age provides rules of precedence and associativity that determine for each expres

and experimental eviderce show that developers can have incorrect beliefs about
of many binary opetators, as documented by Jones[33] (see ISO/IEC TR 24718).

ated coding guidelines
s(341: 204.and 213
1 104512.1, 13.2, 14.4, 20.7, 20.10, and 20.11

MISRA C++

4024-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2

has named
ictures that
secondary
nt notation.

ing items:

ized and to
ing them;

pcurity and

sion which

the relative

CERT C Secure Coding Standard[41l: EXP0O-C

Ada Quality and Style Guidelll:

5.5
5.5

subsection “Parenthetical Expressions”

subsection “Short Circuit Forms of the Logical Operators”

7.1 subsection “Arbitrary Order Dependencies”

© ISO/IEC 2024 - All rights reserved
44

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.23.3 Mechanism of failure

In C (ISO/IEC 9899) and C++ (ISO/IEC 14882), the bitwise operators (bitwise logical and bitwise shift) are
sometimes thought of by the programmer as having similar precedence to arithmetic operations. Therefore,
just as an individual can correctly write

x - 1=

= 0 //x minus one is equal to zero

a programmer can erroneously write

x & 1 == 0 // mentally meaning “(x and-ed with 1) is equal to zero”
whereas the operator precedence rules of C and C++ bind the expression as x and (1 == 0),
producing 'fa}bc", whichis-inter P etedas—zer O, thenbitwise—and-theresutt-with 7 PL udut,ius

zero, contrd

Examples f
absence of

a * b A
intending t

(a * b)

whereas ARL's uniform right-to-left associativity produces

*

a (b

6.23.4 Ap

This vulney
rules are su

6.23.5 Av¢iding the vulnerability or mitigating its effects

To avoid th

adopt
specifi

use pa
mixed

6.23.6 Im

break yp complex-&xpressions and use temporary variables to make the intended order clea

\ry to the programmer’s intent.

Fom an opposite extreme can be found in programs written in APL, which is notewo
hiny distinctions of precedence. One commonly made mistake is to write:

Cy

b produce

+ c,

+ c).

plicable language characteristics

ability description is intended to be applicable to languages whose precedence and a
fficiently complex that developers often ,do/not fully remember them.

e vulnerability or mitigate its ill effects, software developers can:

rogramming guidelines (preferably augmented by static analysis), for example, use th|
C rules cross-referencedwithin 6.24 “Side effects and order of evaluation of operands

rentheses around.binary operator combinations that are known to be a source of er
hrithmetic/bitwise’and bitwise/relational operator combinations);

plications for language design and evolution

In future langhdge design and evolution activities, language designers should consider the follow

fa constant)

thy for the

ssociativity

e language-

[SAM]";

ror, such as

[er.

ing items:

— in the language definition, avoiding the provision of precedence or of a particular associativity for
operators that are not typically ordered with respect to one another in arithmetic;

— requiri

6.24 Side-

ng full parenthesization to avoid misinterpretation.

effects and order of evaluation of operands [SAM]

6.24.1 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects, such as assignment, increment,
decrement, or broader effects even on the execution environment. For example, some programming

© ISO/IEC 2024 - All rights reserved
45

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

languages permit such side-effects, and if, within one expression, two or more side-effects modify the same
object, undefined behaviour results, for example, from C:

i= v[it+].
Some languages allow subexpressions to be evaluated in an unspecified ordering, or even removed during
optimization. If these subexpressions contain side-effects, then the value of the full expression can be

dependent upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can

receive values that are dependent upon the order of evaluation.

For exampl

Robot.Turn Left (Angle)

will have wi

[fa progran
the expectd

6.24.2 Rel
JSF AV Rule
MISRA C[39
MISRA C++
CERT C Sec
Ada Quality
5.5 sub

5.5 sub
7.1 sub

6.24.3 Me

When sube
can result i
same platfd

All examplg
functions W

Consider:

a

e, in a robot scenario, the logical expression

and Robot.Drive (Distance)

11dly dilferent eltects depending upon the order oI evaluation oI the subexpressions.

h contains these unspecified or undefined behaviours, testing the program and se€ing t
d results can give the false impression that the expression will always yield the expec

ated coding guidelines

s[34]: 157,158, 204, 204.1, and 213
:12.1,13.2,13.5and 13.6

40]; 5-0-1

ure Coding Standard[41l: EXP10-C, EXP30-C

r and Style Guidelll:

section “Parenthetical Expressions”

section “Short Circuit forms of the Logical'Operators”

cection “Arbitrary Order Dependencies”

chanism of failure

xpressions with side effects’ are used within an expression, the unspecified order of
In a program producing different results on different platforms, or even at different t
rm.

s here use the syntax of C-based languages; the effects can be created in any language
rith side-effects in the places where C allows the increment operations.

E(bh_+ g(b);

hat it yields
red result.

evaluation
mes on the

that allows

where f a

| 1 41 L 1£ H 1 o Lo PR | 41 pa | 4 4
U g ool mouily O I L {D) 15 TVAIUdLlTU TIT ST, LTI LIIT D UsSTU d5 d pPdidIITLCT LU gt

) can be a

different value than if g (o) is performed first. Likewise, if g (b) is performed first, f (b) can be called with a
different value of b.

Other examples of unspecified order, or even undefined behaviour, can be manifested, such as:

a

or

ali++]

f(i) + i++;

b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding
side-effects and order of evaluation are not changed by the presence of parentheses. Consider:

© ISO/IEC 2024 - All rights reserved
46

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

j

ISO/IEC 24772-1:2024(en)

i++ * i4+;

where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains.

The unpredictable nature of the calculation means that the program cannot be tested adequately to any
degree of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data
values triggering execution that was not anticipated by the developer.

6.24.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that permit expressions to contain subexpressions with side effects;

— langua

6.24.5 Avoiding the vulnerability or mitigating its effects

To avoid th

makeul
and (b

keep e
compré¢

ensure
evalualf

6.24.6 Im

In future 14

6.25 Like

6.25.1 De

Certain ex
statement i
is possible
an uninten
assignment
where the

programmg
a programl
possible is

bes whose subexpressions are computed in an unspecified ordering.

e vulnerability or mitigate its ill effects, software developers can:

se of one or more programming guidelines, which (a) prohibitunspecified or undefined
can be enforced by static analysis; (see JSF AV and MISRA rules inr this clause);

xpressions simple to reduce potential side effects, support static analysis, impr
hension, and reduce errors;

that each expression results in the same value (including side effects), regardless of
ion or execution of terms of the expression.

plications for language design and evolution

y incorrect expression [KOA]

scription of application vulnerability

bressions are symptomatic of what is likely to be a mistake made by the progra
s not contrary to the\language standard but is unlikely to be what the programmer
the statement has ho effect and effectively is a null statement, but alternatively it ca
led side-effect! A common example arises in languages that use for equality 4

and allow«assignments as expressions: leading to the use of in a Boolean
brogrammer intended to perform an equality test using . It is valid and possi

behaviours,

bve human

he order of

nguage design and evolution activities, language designers should consider langualge features
that will elfminate or mitigate this vulnerability, such as pure functions.

mmer. The
ntended. It
h introduce
nd for
expression
ble that the

r intended to do an assignment within the it expression, but due to this being a co
mer (doing so would be using a poor programming practice. A less likely occurren

effectively

thie/substitution of for in what is supposed to be an assignment statemen

deployed code where they can be maliciously exploited.

mon error,
e, but still
, but which
mselves in

Other easily confused operators in languages are the logical operators such as s« for the bitwise operator s,
or vice versa.

6.25.2 Related coding guidelines

CWEIZI

480. Use of Incorrect Operator

481. Assigning instead of Comparing

© ISO/IEC 2024 - All rights reserved
47

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

482. Comparing instead of Assigning

570. Expression is Always False

571. Expression is Always True

JSF AV Rule

s[34]: 160

MISRA C[39]; 2.2, 13.3-13.6, and 14.3

MISRA C++[49]: 0-1-9, 5-0-1, 6-2-1, and 6-5-2

CERT C Secure Coding Standard[#1l: MSC02-C and MSC03-C

6.25.3 Me|

Substitutio
make. Oths
an express
assuming t
sometimes
of the expr¢

if
If (a == D)
and as such

Embedding
operators (|

Incorrectly

6.25.4 Ap

This vulner
to likely ing

6.25.5 Avoiding the vulnerability-or mitigating its effects

To avoid th
simplif]

prohib
unexp§

prohib

chanism of failure

h of = in place of in a Boolean test in languages that use this syntax is ateasy
r instances can be the result of intricacies of the language definition that specifies v
on is evaluated. For instance, having an assignment expression in a Bogleéan statem
hat the complete expression will be executed in all cases. However, this is not always
the truth-value of the Boolean expression can be determined after enly executing sg
bssion. Consider:

(a == Db) |l (d-1)))

is determined to be true, then there is no need for the subexpression (c (d-1)) tol

, the assignment (c (a-1)) will not occur.

expressions in other expressions can yield unmegpected results. Increment and
-+ and -) can also yield unexpected results whefiyniixed into a complex expression.

calculated results can lead to a wide variet¥ of erroneous program execution.

plicable language characteristics

ability description is intended to beapplicable to all languages, since all languages are
orrect expressions.

e vulnerability or mitigate its ill effects, software developers can:
y expressions;

t assignment expressions in function calls, as sometimes the assignments can be ex¢
cted ordeérand instead, perform all assignments before the function call;

t assighments within a Boolean expression, and if intended, move the assignment tq

mistake to
rhat part of
ent is likely
the case as
me portion

be executed

decrement

susceptible

cuted in an

before the

Boolea

h'ekpression for clarity and robustness;

rationale for the side effect;

the rationale for the usage in each instance.

6.25.6 Implications for language design and evolution

use staticanalysistools that detectand warn of expressions thatinclude assignment within an expression;

annotate code that includes assignment within an expression to show that it is intentional and include

prohibit the use of statements that have no program effect, but if necessary, document with comments

In future language design and evolution activities, language designers should consider the following:

— prohibiting assignments used as function parameters;

© ISO/IEC 2024 - All rights reserved
48

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— prohibiting assignments within a Boolean expression;

— avoiding situations where easily confused symbols (such as

valid in the same context.

6.26 Dead and deactivated code [XYQ]

6.26.1 Description of application vulnerability

and == ,or;and:or!= and /=)are

Dead and deactivated code is code that exists in the executable, but which can never be executed, either
because there is no call path that leads to it (for example, a function that is never called), or the path is
semantically infeasible (for example, its execution depends on the state of a conditional that can never be

achieved).

Dead and
security iss
dead code i

Also coverg

Dead and d

6.26.2 Rel
CWEILZL
561. Dg
570. EX
571. EX
JSF AV Rule
MISRA C[39
MISRA C++

CERT C Sec

6.26.3 Me

Dead code
(for examp

eactivated code can be undesirable because it can indicate the possibility of a.cod
ue is also possible if a jump target is injected. Many safety standards prohibit dead cq
5 not traceable to a requirement.

d in this vulnerability is code that is believed to be dead, but which is inadvertently e

ated coding guidelines

ad Code

pression is Always False

pression is Always True

s[34]: 127 and 186

:2.1and 4.4

40]; 0-1-1 to 0-1-10, 2-7-2, and 2-7-3

ure Coding Standard[41l:-MSC07-C and MSC12-C

chanism of failure

n an application-can never be executed, either because statically there is no call path

never be executed, as.in:

int
if

i 0;
i A=0)

ng error. A
de because

kecuted.

pactivated code is considered separately from the description of 6.19/*Unused variable [YZS]".

to the code

e, a functign-that is never called) or dynamically because the execution paths to the code can

then

fun al();

else

fun b ()

fun_b () is dead code, as only fun_a () can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of separately compiled modules.

The presence of dead code is not in itself an error. There can be legitimate reasons for its presence, for

example:

— defensive code, only executed as the result of a hardware failure;

— code that is part of a library or template not required in the program in question;

© ISO/IEC 2024 - All rights reserved
49

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

diagnostic code not executed in the operational environment;

code that is temporarily deactivated with the intention that it will soon be needed. This can occur as a

way to make sure the code is still accepted by the language translator to reduce opportunities for errors
when it is reactivated;

code that is made available so that it can be executed manually via a debugger.

Such code is often referred to as deactivated. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions and
other constructs that use complex name resolution strategies. It is possible that the developer believed that
some code is not going to be used (deactivated), but its existence in the program means that it appears in

ace and can be selected as the best match for some use that was intended to be of an

the namesp
function. T
preference

However, it
is importar

[t is import

optimized
compiler m|

6.26.4 Ap

This vulner
or executal

6.26.5 Avo¢iding the vulnerability or mitigating its effects

To avoid th
identif’
remove
NOTE

same V3
Investig
for any

ensure

for cod
handle
throug

hat is, although the developer believes it is never going to be used, in practice)it
to the intended function.

can be the case that, because of some other error, the code is rendered unredchable. T
t to understand and document why dead code is present.

ant to be aware that some defensive code, such as that created to cateh hardware e
hway by the compiler. Use of optimization fences such as volatile accesses (consult la
anuals) can help.

plicable language characteristics

ability description is intended to be applicable to languages that allow code to exist ir
le, which can never be executed.

e vulnerability or mitigate its ill effects,.software developers can:

 any dead code in the application usiiig static analysis or testing with specialized too

dead code from an applicationunless its presence serves a documented purpose;
When a developer identifies code that is dead because a conditional consistently eval

lue, this can be indicative-ofian earlier bug or indicative of inadequate path coverage in the t

ation can ascertain why. the same value is occurring.

deactivated code;provide a justification as to why it is present;

that any code.thiat was expected to be unused is documented as deactivated code;

e that appears to be dead code but is in reality accessible only by asynchronous evel
's, or present for debugging purposes, prevent the optimizations that remove the code
h judidious use of volatile attributes, pragmas, or compiler switches and document th

verloading
is used in

herefore, it

'Tor, can be
hguage and

da program

Is;

uates to the
est regimen.

\ts or error
in question
b rationale;

apply s

andard brancii COverage MeasUTeNent toots and ensure by 1009 coverage thatati b

neither dead nor deactivated.

6.26.6 Implications for language design and evolution

No implications apply.

© ISO/IEC 2024 - All rights reserved
50

ranches are

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.27 Switch statements and lack of static analysis [CLL]

6.27.1 Description of application vulnerability

Many programming languages provide a construct, such as a C-like switch statement, that chooses among
multiple alternative control flows based upon the evaluated result of an expression. The use of such
constructs can introduce application vulnerabilities if not all possible cases appear within the switch or if
control unexpectedly flows from one alternative to another.

6.27.2 Related coding guidelines

JSF AV Rule

s[34l: 148, 193, 194, 195, and 196

MISRA C[39
MISRA C++
CERT C Sec
Ada Quality

6.27.3 Me

The fundan
treated cor
include:

:16.3-16.6
40]; 6-4-3, 6-4-5, 6-4-6, and 6-4-8
ure Coding Standard[41l: MSC01-C

r and Style Guidelll: 5.6 subsection “Case Statements”

chanism of failure

ental challenge when using a switch statement is to make.sure that all possible cases
rectly. In most cases, this is not enforced by the languagé.or the compiler. Possible co

— notha
handli
not det

In particulg

An additio
subsequent

6.27.4 Ap
This vulnery

— langua
alterna

— langua

1

dling a case;
g a case by a default clause instead of the specific case handling code needed;

ecting out-of-bounds cases;

jumpinjg to "arbitrary” code.

1, the last of these consequences can be exploited by malicious attacks.

hal vulnerability can occurtif the execution of one case includes” flowing throt
case which violates thetheory of multiple independent alternatives in the switch sta

plicable language ‘characteristics

ability description is intended to be applicable to languages with the following chara

tive control flows based on the evaluation of an expression;

bes that do not require full coverage of all possible alternatives of a switch statement

bes that-¢ontain a construct, such as a switch statement, that provides a select

are, in fact,
hsequences

Igh” to the
tement.

Cteristics:

ion among

— languages that provide a default case (choice) in a switch statement.

6.27.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— ensure

that every valid choice has a branch that covers the choice;

— avoid default branches where it can be statically shown that each choice is covered by a branch;

— use a default branch that initiates error processing where coverage of all choices by branches cannot be
statically shown;

© ISO/IEC 2024 - All rights reserved
51

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

such capability;

avoid “flowing through” from one case to another;

use a restricted set of enumeration values to improve coverage analysis where the language provides

in cases where flow-through is necessary and intended, use an explicitly coded branch to clearly mark

the intent and provide comments explaining the intention to help reviewers and maintainers;

NOTE

perform static analysis to determine if all cases are, in fact, covered by the code;

The use of a default case can hamper the effectiveness of static analysis since the tool cannot determine
if omitted alternatives were or were not intended for default treatment.

use other means of mitigation including manual review, bounds testing, tool analysis, verification

technid

6.27.6 Im
In future

specificatid
the value s¢

6.28 Non-

6.28.1 De

Some progj
mark only
programmg

6.28.2 Rel

jues, and proofs of correctness to show coverage.

plications for language design and evolution

language design and evolution activities, language designers should conside
ns that require compilers to ensure that a complete set of alternatives i§ provided in ¢
t of the switch variable can be statically determined.

demarcation of control flow [EO]J]

scription of application vulnerability

amming languages explicitly mark the end of an i f Statement or a loop, whereas othe

b1, causing unintended sequences of control flow

ated coding guidelines

JSF AVI[34]: Rules 59 and 192

MISRA C[39
MISRA C++
Ada Quality
6.28.3 Me
Some prog

of the softy
formatting

:15.6 and 15.7
40]: 6-3-1, 6-4-1, 6-4-2, 6-4-3:-6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and 16-0-2
r and Style Guidelll: 5.6

chanism of failure

fammers relyron indentation to determine inclusion of statements within constru
vare doesinot always reveal that statements that appear to be included in a consty
but are.actually outside of it because of the absence of a terminator. Moreover, for 3

then-else

btatements where the number of e1se’s does not match the number of i £’s, the progr

r language
ases where

I languages

he end of a block of statements. Languages of thélatter category are prone to oversights by the

cts. Testing
uct (due to
nested if-
ammer can
d results.

be confuse11 about which i f statement controls the e1se part directly. This can lead to unexpectg

6.28.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that contain loops and conditional

statements

that are not explicitly terminated by an end construct.

6.28.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— where the language does not provide demarcation of the end of a control structure, adopt a convention
for marking the closing of a construct that can be checked by a tool, to ensure that program structure is

appare

nt;

© ISO/IEC 2024 - All rights reserved
52

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

rules d

ISO/IEC 24772-1:2024(en)

ocumented in 6.29.2 "Loop control variable abuse [TEX]”;

techniques;

tools sometimes disguise such errors;

optional compound statements, for example

inC

adopt programming guidelines (preferably augmented by static analysis). For example, consider the

use other means of assurance, such as proofs of correctness, analysis with tools, and dynamic verification

use pretty-printers and syntax-aware editors to highlight such problems, but also be aware that such

where the language permits single statements after loops and conditional statements but permits

i
or Pascal
if

g

always use

6.28.6 Im

In future language design and evolution activities, language designers should consider the follow

adding
termin|

provid
matchg

6.29 Loop

6.29.1 De

Many langy
control var
variable, a {
loop iterati

In some lan
Experience
resulting in

Some langy

creatinlg syntax for explicit termination of loops and conditional statements;

(...)

statement else statement;

xpression then statement else statement;

the compound version (i.e.C's {... } or Pascal'spbegin... end).

plications for language design and evolution

a mode that strictly enforces compound conditional ‘and looping constructs w
htion, such as end if or a closing bracket;

ng syntax to terminate named loops and conditionals and to determine if the structur
s the structure as inferred.

control variable abuse [TEX]

scription of application vulnerability

ages support a looping construct whose number of iterations is controlled by the val
iable. Looping constructs provide a method of specifying an initial value for this |

D1.

guages, it is possible to modify the value of the loop control variable within the body
shows that.such value modifications are sometimes overlooked by readers of the s
faults Being introduced.

ages,.such as C-based languages do not explicitly specify which of the variables apy

loop heade;

ing items:

ith explicit

e as named

ue of a loop

bop control

est that terminates the'loop and the quantity by which it is decremented or incremented on each

of the loop.
purce code,

earing in a

isithe control variable for the loop. MISRA C[39] and MISRA C++[49] have proposed al

orithms for

deducing which, if any, of these variables is the loop control variable in the programming languages C and
C++ (these algorithms can also be applied to other languages that support a C-like for-loop).

6.29.2 Related coding guidelines

JSF AVI34] Rule: 201

MISRA C[39]; 14.2

MISRA C++[49]: 6-5-1 to 6-5-6

© ISO/IEC 2024 - All rights reserved
53

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.29.3 Mechanism of failure

The mechanism of failure is that changes to a loop control variable inside the loop body can cause the loop
to unexpectedly:

— exit prematurely;
— execute forever;

— not cover the complete range of values documented by the loop header.

Readers of source code often make assumptions about what has been written. A common assumption is that
a loop control variable is not modified in the body of the loop. A programmer can write incorrect code based
on this assumption. Similarly, reviewers, who are often domain specialists and not programmers, also make

assumptior

6.29.4 Ap

This vulney

be modified in the body of its associated loop.

6.29.5 Avo¢iding the vulnerability or mitigating its effects

To avoid th

avoid n

useas

6.29.6 Im

In future 1é
identifier ty

6.30 Off-h

6.30.1 De

A program
This usuall
from the dg

confus

confus
structu
1 (or sd

s about written code and assume that loop control variables are not changed by the.l

plicable language characteristics

ability description is intended to be applicable to languages that allow ayloop controll

e vulnerability or mitigate its ill effects, software developerscan:
nodifying a loop control variable in the body of its associated loop body;

atic analysis tool that identifies the modification ofd loop control variable.

plications for language design and evolution

nguage design and evolution activities,l@nguage designers should consider the ad
fpe for loop control that cannot be modified by anything other than the loop control d

y-one error [XZH]

scription of application vulnerability

uses an incorrect maximum or minimum value that is 1 more or 1 less than the co
[y arises from one ef\several situations where the bounds as understood by the deve
sign, such as:

on betweenithe need for < and <= or > and >= inatest;

on as to'the index range of an algorithm, such as: beginning an algorithm at 1 when the
re ig-indexed from 0; beginning an algorithm at 0 when the underlying structure is in

bop body.

variable to

lition of an
onstruct.

rrect value.
loper differ

underlying
dexed from

merother start point); using the length of a structure as its bound instead of the sentilnel values;

— failing to allow for storage of a sentinel value, such as the nuL string terminator that is used in the C
programming language (ISO/IEC 9899) and C++ programming language (ISO/IEC 14882).

These issues arise from mistakes in mapping the design into a particular language, in moving between
languages (such as between languages where all arrays start at 0 and other languages where arrays start at
1), and when exchanging data between languages with different default array bounds.

The error described can cause a bounds violation and the potential reading or writing of data and
corresponding corruption of adjacent data. It can also be a serious security hole as it can permit someone to
surreptitiously provide an unused location (such as 0 or the last element) that can be used for undocumented
features or hidden channels.

© ISO/IEC 2024 - All rights reserved
54

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.30.2 Related coding guidelines

CWEIZl: 193. Off-by-one Error

6.30.3 Mechanism of failure

An off-by-one error can lead to:

an out-of-bounds access to an array (buffer overflow);
incomplete comparisons or calculation mistakes;

aread from the wrong memory location;

Such incory
unbounded

Off-by-one

an incdrrect conditional.

ect accesses can cause cascading errors or references to invalid locations, resulting in
behaviour.

errors are not often exploited in attacks because they are difficult’ to”identify

potentially

hnd exploit

externally, put the cascading errors and boundary-condition errors can be severé;

6.30.4 Applicable language characteristics

As this vulperability arises because of an algorithmic error by the develeper, it can in principle frise in any

language; However, it is most likely to occur when:

— the lanjguage relies on the developer having implicit knowledge of structure start and end findices (for

example, knowing whether arrays start at 0 or 1 - or indeed some other value);

the lan

puage relies upon explicit bounds values to terminate variable length arrays.

6.30.5 Avo¢iding the vulnerability or mitigating:its effects

To avoid the vulnerability or mitigate its ill effécts, software developers can:

h systematic development proeess, use development/analysis tools and perform thorqugh testing

common ways of preventing-errors, and in this case, off-by-one errors;

follow
are all

use static analysis tools that warn of potential off-by-one errors;

specify the
b attributes
ric literals.
se them in

where feferences are beinig*made to array indices and the languages provide constructs to
whole grray or the starting and ending indices explicitly [e.g. Ada (ISO/IEC 8652) provides th
‘First and ‘Last for_éach dimension], use the language-provided constructs instead of numg
Where|the language does not provide such constructs, declare named constants and u
prefergnce to numeric literals;

ugh library
ose library

where the lariguage does not encapsulate variable length arrays, provide encapsulation thrg
objectd and a coding standard developed that requires such arrays to only be used via th
objects, so the developer is not burdened with managing bounds values.

6.30.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing
encapsulations for arrays that:

— prevent the need for the developer to be concerned with explicit bounds values;

— provide the developer with symbolic access to the array start, end, and iterators.

© ISO/IEC 2024 - All rights reserved
55

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.31 Unstructured programming [EWD]

6.31.1 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to read for humans, less
understandable, harder to maintain, harder to statically analyse, more difficult to match the allocation and
release of resources, and more likely to be incorrect.

6.31.2 Rel
JSF AV Rule

ated coding guidelines

s[34]: 20, 113, 189, 190, and 191

MISRA CI39]; 15.1-15.3, and 21.4

MISRA C++
CERT C Sec
Ada Quality

6.31.3 Me
Lack of stri
— memor
error-y

design

source

6.31.4 Ap
This vulner
— langua
langua

langua

langua

40]: 6-6-1, 6-6-2, 6-6-3, and 17-0-5
ure Coding Standard[41l: SIG32-C
r and Style Guidelll: 4.1, 5.4, 5.6

chanism of failure

[ctured programming can lead to:

y or resource leaks;

rone maintenance;

that is difficult or impossible to validate;

code that is difficult or impossible to statically analyse.

plicable language characteristics

ability description is intended to_be-applicable to languages with the following chara
bes that allow leaving a loop without consideration for the loop control;

bes that allow local jumps (goto statement);

bes that allow non-loeal jumps (setjmp/longjmp in the C programming language);

bes that suppontniultiple entry and exit points from a function, procedure, subroutine

6.31.5 Av¢iding théyulnerability or mitigating its effects

To avoid th

e vulnerability or mitigate its ill effects, software developers can:

prohib

t the use of language features that transfer control of the program flow via a jump, s

Cteristics:

or method.

ch as goto;

shown

prohibit the use of language features such as continue and break in the middle of loops;

that the code with multiple exit points is superior;

prohibit multiple entry points to a function/procedure/method/subroutine;

prohibit the use of multiple exit points from a function/procedure/method/subroutine unless it can be

use only those features of the programming language that enforce a logical structure on the program

and create program flow that follows a simple hierarchical model that employs looping constructs such

as for,

repeat, do, and while.

© ISO/IEC 2024 - All rights reserved
56

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.31.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider supporting and
favouring structured programming enforced through language constructs to the extent possible.

6.32 Passing parameters and return values [CS]]

6.32.1 Description of application vulnerability

NOTE F

or the purpose of this description, the term subprogram will be used.

Nearly every procedural language prov1des some method of abstraction that permlts decomposition of

the flow of
computatia
the value o
providing 3
passing pat

Ol
n only if it changes data visible to the calhng program statement It can do thls h
a non-local variable, changing or setting the value of a parameter, or, in the case of
| return value. As different languages use different mechanisms with diffefent se
ameters, a programmer using an unfamiliar language can obtain unexpectediresults

ffect on the
y changing
a function,
mantics for

6.32.2 Related coding guidelines

JSF AV Rulds[34l: 20, 116

MISRA C[39: 8.2, 8.3, 8.13, and 17.1-17.3

MISRA C++[491: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4

CERT C Secpre Coding Standard[41l: EXP12-C and DCL33-C

Ada Quality and Style Guidelll: 5.2

6.32.3 Mechanism of failure

The mechanisms for parameter passing include call by reference, call by copy, and call by name. Thhe last is so
specialized|and supported by so few programifting languages that it will not be treated in this dgscription.
In call by reference, the calling program*passes the addresses of the arguments to the called syitbprogram.
When the Jubprogram references the-corresponding formal parameter, it is sharing data with|the calling
program. If the subprogram changes.a formal parameter, then the corresponding actual argurpent is also
changed. If|the actual argument is ah expression or a constant, then the address of a temporary location is
passed to the subprogram, which can be an error in some languages.

In call by fopy, the called subprogram does not share data with the calling program. Inst¢ad, formal
parameterg act as loeal\variables. Values are passed between the actual arguments and [the formal

parametery

Some langy
three cases

by copying:

te’consider:

ages-control changes to formal parameters based on labels such as in, out, or inout.

There are

‘call by

‘call by

‘call by

value’ for in parameters;
result’ for out parameters and function return values;

value-result’ for inout parameters.

For call by value, the calling program evaluates the actual arguments and copies the result to the
corresponding formal parameters that are then treated as local variables by the subprogram. For call by
result, the values of the locals corresponding to formal parameters are copied to the corresponding actual
arguments. For call by value-result, the values are copied in from the actual arguments at the beginning of
the subprogram's execution and back out to the actual arguments at its termination.

© ISO/IEC 2024 - All rights reserved
57

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The obvious disadvantage of call by copy is that extra copy operations are needed, and execution time is
required to produce the copies. Particularly if parameters represent sizable objects, such as large arrays,
the cost of call by copy can be high. For this reason, many languages also provide the call by reference
mechanism.

The disadvantage of call by reference is that the calling program cannot be assured that the subprogram
has not changed data that was intended to be unchanged. For example, if an array is passed by reference
to a subprogram intended to sum its elements, the subprogram can erroneously also change the values of
one or more elements of the array. However, some languages enforce the subprogram's access to the shared
data based on the labelling of actual arguments with modes — such as in, out, or inout or by pointers to
constant objects.

Another problem w1th call by reference is umntended aliasing. It is p0551ble that the address of one actual

argument i bprogram,
assuming the two formal parameters to be dlstmct can treat them 1nappropr1ately For example, if a
subprograr is coded to swap two values using the exclusive-or method, then a call to swape,.x) Will zero the
value of x. Aliasing can also occur between arguments and non-local objects. For example;'if a subprogram

modifies a

will result fn aliasing and, possibly, unintended results.

Some lang
programmg
by copy to
the latter 3
subprograr

hages provide only simple mechanisms for passing data to subprograms, leavi

br to synthesize appropriate mechanisms. Often, the only available mechanism is
pass small scalar values or pointer values containing addresses of data structures
mounts to using call by reference with no checking by thee Janguage processor. In
s can pass back pointers to anything whatsoever, including data that is corrupted or

to use call
Of course,

such cases,
absent.

Some langt
such as arn
mechanism

ages use call by copy for small objects, such as scalars, and call by reference for lafge objects,
ays. Some languages permit the choice of mechanism to be implementation-defined.|As the two
s produce different results in the presence of alidsing, it is very important to avoid aljasing.

imeter that
t can be an

An additional problem occurs if the called subprogram-fails to assign a value to a formal parz:
the caller gxpects as an output from the subprogrant’In the case of call by reference, the resu

uninitializdd variable in the calling program. In the case of call by copy, the result can be that

legitimate

initializatign value provided by the caller isgoverwritten by an uninitialized value becausel the called

program did not make an assignment to the-parameter. This error can be difficult to detect thr
because th¢ failure to initialize is hidden ifi-the subprogram.

An additional complication with subprégrams occurs when one or more of the arguments are ¢
In such cases, the evaluation of one-argument can have side-effects that result in a change to
another or unintended aliasingtImplementation choices regarding order of evaluation can affeq
of the computation. This particular problem is described in 6.24 “Side-effects and order of ey
operands [$AM]".

6.32.4 Applicablelanguage characteristics

This vulnerfabilitydescription is intended to be applicable to languages that provide mechanisms

ugh review

xpressions.
he value of
t the result
aluation of

for defining

subprograrps where the data passes between the calhng program and the subprogram via para

meters and

6.32.5 Avoiding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:
when a choice of mechanisms is available, pass small simple objects using call by copy;

when a choice of mechanisms is available and the computational cost of copying is tolerable,
objects using call by copy;

© ISO/IEC 2024 - All rights reserved
58

use available mechanisms to label parameters as constants or with modes like in, out, or inout;

pass larger

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

safeguards to prevent aliasing, including:

minimize side-effects of subprograms on non-local objects;

using call by reference;

when the choice of language or the computational cost of copying forbids using call by copy, take

when side-effects are coded, ensure that the affected non-local objects are not passed as parameters

to avoid unintentional aliasing effects, avoid the use of expressions or function calls as actual

arguments, and instead, assign the result of the expression to a temporary local and the local passed;

uti

lize tools or other forms of analysis to ensure that instances of aliasing are absent;

perform reviews or analysis to determine that called subprograms fulfil their responsibilities to assign

values

6.32.6 Im

In future 1
such as in,
controlled

Lo all output parameters.

plications for language design and evolution

hinguage design and evolution activities, language designers should corisider provi
out, and inout, that control the subprogram’s access to its formal patameters, and
hCcess.

6.33 Dangling references to stack frames [DCM]

6.33.1 De

scription of application vulnerability

Many lang

ages allow the address of a local variable to be stored as a value in other variableg

are the application of the address operator in the C (ISO/ZIEC 9899) or C++ programming
(ISO/IEC 14882), or of the 'Access or 'Address attributes.in the Ada programming language (ISO

In some la
of the actug
after the lif
the stack.

6.33.2 Rel
CWEIZl: 56

guages, this facility is also used to model the call-by-reference mechanism by passing
| parameter by-value. An obvious safety requirement is that the stored address shall
etime of the local variable has expired. This situation can be described as a dangling 1

ated coding guidelines

P. Return of Stack Variable Address

JSF AVI34] Rule: 173

MISRA C[39
MISRA C++
CERT C Sec

6.33.3 Me

:4.1 and 18.6
40]: 0-3-1, 7-5:1; 7-5-2, and 7-5-3
ure Coding Standard[41l: EXP35-C and DCL30-C

chianism of failure

Hing labels,
enforce the

. Examples
languages
IEC 8652).
the address
not be used
eference to

The consequences of dangling references to the stack come in two variants: a deterministically predictable
variant, which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to
impossible to elicit during testing. The following code sample illustrates the two variants; the behaviour is
not language-specific:

stru
type
arra
arra
{
str
ptr
ret

}

ct s { ..}

def struct s array type[1000];
y_type* ptr;

y_type* F()

uct s Arr[1000];
= GArr; // Risk of variant 1;
urn &Arr; // Risk of variant 2;

© ISO/IEC 2024 - All rights reserved
59

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

stru
arr
ptr
sec

secC

ISO/IEC 24772-1:2024(en)

ct s secret;

ay type* ptr2;

2 =F(Q;

ret = (*ptr2)[10]; // Fault of variant 2
ret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of arr to a pointer variable that survives the lifetime
of arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows
systematic examination of portions of the stack contents without triggering an array-bounds-checking
violation. Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as
memory gets corrupted by completely unrelated code portions.

Alife-time
above, the
needed to 4

The risk of
expensive (¢

on the ill-founded assumption that the stack will not be affected by anything unfil'this next call is

assumptior
stealing”, W
overwritte
after the ca
next to imp
to find by t
altered. On
variant 1).
in identifyi

6.33.4 Ap

This vulnery

the ada
or can

no che
the des

6.33.5 Av¢iding the vulnerability or mitigating its effects

To avoid th

avoid u
where

check as part of pointer assignment can prevent the risk, and in many cases, such as th

nsure that the copied pointer value lives no longer than the designated object:

variant 2 is an idiom “seen in the wild” to return the address of a local-variable
opy of a function result, if it is consumed before the next routine calloccurs. The idi

is false, however, if an interrupt occurs and interrupt handling émploys a strategy c
rhich uses the current stack to satisfy its memory requiremeints: Thus, the value of
h before it can be retrieved after the call on . As this fault will'only occur if the interr
1l has returned but before the returned result is consumed, the fault is highly intert
ossible to re-create during testing. Thus, it is unlikely to‘be exploitable, but also excee
esting. It can begin to occur after a completely unrelated interrupt handler has beg
y static analysis can relatively easily detect the danger (unless the code combines it
Some compilers issue warnings for this situation and some forms of static analysis a
hg such problems.

plicable language characteristics
ability description is intended to béapplicable to languages with the following chara

ress of a local entity (or formalparameter) of a routine can be obtained and stored i
be returned by this routine as-a result;

'k is made that the lifetimle of the variable receiving the address is no longer than the
ignated entity.

e vulnerability or mitigate its ill effects, software developers can:

sing-the address of locally declared entities as storable, assignable or returnable v4
dioms of the language make it unavoidable);

e situations

check is statically decidable by a compiler. However, for the general case, a_dynamic check is

to avoid an
bm is based
issued. The
hlled "stack
Arr can be
upt arrives
mittent and
dingly hard
n coded or
Fith risks of
re effective

Cteristics:

h a variable

 lifetime of

lue (except

completely enclosed by the lifetime of the designated object;

prohibit the return of the address of a local variable as the result of a function call.

6.33.6 Implications for language design and evolution

In future la

nguage design and evolution activities, language designers should consider:

— not providing means to obtain the address of a locally declared entity as a storable value;

when such an address is stored, ensure that the lifetime of the variable containing the address is

— defining implicit checks to implement the assurance of enclosed lifetime expressed in 6.33.5.

© ISO/IEC 2024 - All rights reserved
60

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

NOTE
as part of a return statement or expression.

6.34 Subprogram signature mismatch [OTR]

6.34.1 Description of application vulnerability

In many cases, the check is statically decidable, for example, when the address of a local entity is taken

If a subprogram is called with a different number of parameters than it expects, or with parameters of

different types than it expects, then the results will be incorrect. Depending on the language, th
environment, and the implementation, the error can be as benign as a diagnostic message or

e operating
as extreme

as a program continuing to execute with a corrupted stack. The possibility of a corrupted stack provides

opportunities for penetration.

6.34.2 Related coding guidelines

CWELZI;

628. Fynction Call with Incorrectly Specified Arguments

686. Fynction Call with Incorrect Argument Type

683. Function Call with Incorrect Order of Arguments
JSF AVI[34] Rule: 108

MISRA C[39: 8.2-8.4, 17.1, and 17.3
MISRA C++49l: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3~{; 8-4-1, and 8-4-2

CERT C Secure Coding Standard[#1l: DCL31-C, and DCL35:6

6.34.3 Mejchanism of failure

When a subpprogram is called, the actual arguments of the call are pushed on to the execution s
the subprogram terminates, the formal parameters are popped off the stack. If the number and
actual argyments do not match the number and type of the formal parameters, then dependir
calling medhanism used by the language-translator, the push and the pop will not be consistent a
stack will be corrupted.

Stack corruption can lead to unpredictable execution of the program and can provide oppor
execution df unintended or mralicious code.

The compilption systems.for many languages and implementations can check to ensure that the |
parameterg and anyexpected return match the declared set of formal parameters and returr
subprograr signatihe) in both number and type. However, when the call is being made to an
compiled syibprogram, an object-code library, or a module compiled in a different language, additi
are recommended to ensure a match between the expectations of the caller and the called subpr

tack. When
type of the
g upon the
nd, if so, the

funities for

st of actual
value (the
externally

pnal checks

bgram.

For functions that accept a variable number of parameters, parameter mismatches are particularly likely.

6.34.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

arguments are equal to the number and types of the formal parameters;

languages that do not require their implementations to ensure that the number and types of actual

implementations that permit programs to call subprograms that have been externally compiled (without

a means to check for a matching subprogram signature), subprograms in object code libraries, and any

subprograms compiled in other languages.

© ISO/IEC 2024 - All rights reserved
61

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.34.5 Avoiding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— use language or compiler support or static analysis tools to detect mismatches in calling signatures and
the actual subprogram, particularly in multilingual environments;

— take advantage of any mechanism provided by the language to ensure that subprogram signatures match;

— avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call;

— take advantage of any language or implementation feature that guarantees matching the subprogram
signature in linking to other languages or to separately compiled modules;

— intensiyely review subprogram calls where the match is not guaranteed by tooling;

— ensure|that only a trusted source is used when using non-standard imported modules:

6.34.6 Implications for language design and evolution

In future lal[lguage design and evolution activities, language designers should.consider:
— ensuring that the signatures of subprograms match within a single compilation unit;

— providing features for asserting and checking the match with extepnally compiled subprograms.
6.35 Recyrsion [GDL]

6.35.1 Description of application vulnerability

Recursion is an elegant mathematical mechanism for@efining the values of some functions. It is fempting to
write code [that mirrors the mathematics. However, the use of recursion in a computer can have|a profound
effect on the consumption of finite resources, leading to denial of service.

6.35.2 Related coding guidelines

CWEIZl: 674. Uncontrolled Recursion

JSF AVI34] Rule: 119

MISRA C[39: 17.2

MISRA C++[40]: 7-5-4

CERT C Secpre Coding Standard[41]: MEMO05-C

Ada Quality and-Style Guidelll: 5.6 subsection “Recursion and Iteration Bounds”

6.35.3 Mechanism of failure

Recursion provides for the economical definition of some mathematical functions. However, economical
definition and economical calculation are two different subjects. It is tempting to calculate the value of
a recursive function using recursive subprograms because the expression in the programming language
is straightforward and easy to understand. However, the impact on finite computing resources can be
profound. Each invocation of a recursive subprogram can result in the creation of a new activation record,
complete with local variables. If available memory space is limited, then the calculation of some values will
lead to an exhaustion of resources resulting in the program terminating.

In calculating the values of mathematical functions, the use of recursion in a program is usually obvious,
but this is not true when considering computer operations generally, especially when processing error

© ISO/IEC 2024 - All rights reserved
62

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

conditions. For example, finalization of a computing context after treating an error condition can result in
recursion (such as attempting to recover resources by closing a file after an error was encountered in closing
the same file). Although such situations often have other problems, they typically do not result in exhaustion
of resources but can otherwise result in a denial of service.

6.35.4 Ap

plicable language characteristics

This vulnerability description is intended to be applicable to any language that permits the recursive

invocation

of subprograms.

6.35.5 Avoiding the vulnerability or mitigating its effects

To avoid th
minim

conver

calculation can be remodelled as an iterative calculation which will have a smaller impa

compu
costto

use sta

restric

tolerab
amech|
using e

6.35.6 Im

No implicat

6.36 Igno

6.36.1 De

Unpredicte

functioning

written by

remedial ad

handled.

6.36.2
CWEIZI: 75
JSF AV Rul

MISRA C[32

MISRA C++
CERT C Sec

Rel

o vn]nprqhi]ify or mitigate jts ill effects software dmmlnpprc can:

ze the use of recursion;

[recursive calculations to the corresponding iterative calculation. In principle, an

human understanding versus the practical limits of the computing resource;
Fic analysis to detect non-obvious recursive call paths such as indirect and long recursive

F recursion to cases where the depth of recursion can be shown to be statically bo
le number and document this number. Alternatively, monjtor the depth of the recursi
anism such as passing a recursion depth value that is inc¢remented for each level of rec
xplicit comparison against a maximum depth limit £o trigger handling of the situatior

plications for language design and evolution

ions apply.
red error status and unhandled eéxceptions [OYB]

scription of application vulnerability

of the code. They are detected and reported by the language implementation or by e
the user. Different strategies and language constructs are used to report such errors
tion. Serious vulrerabilities arise when detected errors are reported but ignored or n

ated coding guidelines

L. Improper Check for Unusual or Exceptional Conditions

y recursive
ct on some

'ing resources, but which can be more difficult for a human to comprehend. The tradeoff is the

e call cycles;

unded by a
on through
ursion, and
.

d faults and exceptional-situations arise during the execution of code, preventing the intended

kplicit code
and to take
ot properly

s[341- 115 and 208

1: 4.7
[40]: 15-3-2 and 19-3-1
ure Coding Standard[41l: DCL09-C, ERR00-C, and ERR02-C

Ada Quality and Style Guidelll: 4.3

6.36.3 Me

chanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution can often continue outside the envelope provided by its specification,

© ISO/IEC 2024 - All rights reserved
63

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

making additional errors or serious malfunction of the software likely to occur. Alternatively, execution can
terminate. The mechanism can be easily exploited to perform denial-of-service attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a
language or applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or thread-local error
indicators, program misbehaviour can occur if the error indication is not checked after each call. As these
frequent checks cost execution time and clutter the code immensely to deal with situations that occur rarely,
programmers are typically reluctant to apply the scheme systematically and consistently. Failure to check
for and handle an arising error condition continues execution as if the error never occurred. In most cases,

this continued execution in an ill-defined program state will sooner or later fail, possibly catastrophically.

The raising
the error h
will not allg
mechanis
execution 1
from the la
its existend
if the hand
handling ig

parametersg.

of their des|

The cause
detection
increases a
strategies 3

)w the program to continue executlon in the current context when an error occuts, T

o the closest handler for the exception found on the call stack. The failure mecha
k of a handler for a raised exception (unless the language enforces restrictions that
e), resulting in the termination of the current thread of control. A further complic:

ler is not geared to handle the multitude of error situations that ate vectored to if.

therefore in practice more complex for the programmer than,\for example, the uj
Furthermore, different languages provide exception-handlingiriechanisms that diff
ign, which in turn can lead to misunderstandings by the programmer.

for the failure is usually a mismatch in the expectatiohs of the programmer as to

d creates vulnerabilities when components thatiemploy different fault detection an
re combined in the same program.

Another c

se of the failure is the scant attention that’many library providers pay to descril

situations that can be encountered and reported by‘calls on their routines. In this case, the c3
possibly rdact sensibly to, and recover from, all error situations that can arise. Similarly

informatio

Different e
handling i
reduce the
complicate
where the |
thought. In
situations 4

provided when the error occurs can be insufficiently complete to allow recovery fro

9

) some languages can stress.the capabilities of static analysis tools and can, in
pffectiveness of their analysis. Inversely, the use of error status variables can lead to
l control structures, particularly when recovery is not possible locally. Therefore, fo
nighest of reliabilitytis required, the decision for or against exception handling deser
any case, it is important that exception-handling mechanisms be reserved for truly
nd other situations where no local recovery is possible. Situations which are merely u|

the end of flile condition,\are better treated by explicit testing — either prior to the call which c:

error, or im

In general, ¢
add-on. Thg

mediately.afterward.

brror-detection, reporting, correction, and recovery are problematic if made as alate op
by drefar more effective if made as an integral part of the system design.

achieves this by raising the exception upon discovery of the error, then transferring

e exceptlon
control of
ism results
guarantees
ntion arises

Exception
e of status
br in details

where fault

nd fault recovery are designed to happen. The opportunity for mishandling recognlized errors

d reporting

be all error
ller cannot

the error
n the error.

Fror handling mechanisms have different strengths and weaknesses. Dealing with exception

ome cases,
tonfusingly
I situations
ves careful
inexpected
nusual, like
in raise the

portunistic

6.36.4 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomatically present in all
languages. Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.36.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— reserve exception-handling mechanisms for truly unexpected situations and other situations where no
local recovery is possible;

© ISO/IEC 2024 - All rights reserved
64

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

handle exceptions by the exception handlers of an enclosing construct as close as possible to the origin

of the exception but as far out as necessary to be able to deal with the error and consider preventing
implicit exceptions by checking the error condition in the code prior to executing the construct that

causes

the exception.

demonstrated that the error condition is impossible;

returned data;

provide sufficient information for handling the error situation;

check error return values or auxiliary status variables following a call to a subprogram, unless it is

when functions return error values, check the error return values before processing any other

for each routine, document all error conditions, matching error detection and reporting needs, and

when e
the con

context;

when it
handle

always
absenc

in app
examp

6.36.6 Im

In future language design and evolution activities, language designers should consider a standar

mechanism
them. This
the mechar

6.37 Typ¢

6.37.1 De

In most ca
same stora
in the valug
the value o
type, unexj

use staftic analysis tools to detect and report missing or ineffective error detection or handli

xecution within a particular context is abandoned due to an exception or errorgondit
text by closing open files, releasing resources, and restoring any invariants“associat

)

isnotappropriate to handle the errorlocally, retreat to a context wherethe fault can be
d, after finalizing, closing, and terminating the current context and any intermediate

enable error checking provided by the language, the software'System, or the hardy
e of a conclusive analysis that the error condition is rendered impossible;

carefullly review all error handling mechanisms, because of thé.complexity of error handling;

ications with the highest requirements for reliability, use defence-in-depth appr
e, checking and handling errors even if thought%o be impossible.

plications for language design and evolution

s for detecting and treating error-conditions, so that all languages to the extent poss
Hoes not mean that all languages use the same mechanisms, as there will be a variety;,
isms should be standardized.

-breaking reinterprétation of data [AMV]

scription of application vulnerability

bes, objects ifiprograms are assigned locations in processor storage to hold their v
be space is’assigned to more than one object — either statically or temporarily — th
of one 0bject will have an effect on the value of the other. Furthermore, if the repreg
f an ebject is reinterpreted as being the representation of the value of an object with
ected’results can occur.

ng;

on, finalize
ed with the

completely
contexts;

ware in the

U

oaches, for

dized set of
ble can use
but each of

alue. If the
bn a change
entation of
a different

6.37.2 Related coding guidelines

JSF AV Rules![34] 153 and183

MISRA C[39]; 19.1, and 19.2

MISRA C++
CERT C Sec

(40]; 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9
ure Coding Standard[*1l: MEM08-C

Ada Quality and Style Guidelll: 7.5 subsections “Unchecked Access” and “Unchecked Conversion”

© ISO/IEC 2024 - All rights reserved
65

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.37.3 Me

ISO/IEC 24772-1:2024(en)

chanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same
stored representation of data. The most fundamental example is a program loader that treats a binary
image of a program as data by loading it, and then treats it as a program by invoking it. Most programming
languages permit type-breaking reinterpretation of data; however, some offer less error-prone alternatives
for commonly encountered situations.

Unintentional or malicious reinterpretation of data can cause overwriting or disclosure of arbitrary
memory regions. In addition, type-breaking reinterpretation of representation presents obstacles to human
understanding of the code, the ability of tools to perform effective static analysis, and the ability of code

optimizers

to do their job.

Examples i

provid

Fortrap (ISO/IEC 1539-1) common statement] or dynamically (such as pointers);

operat
represg

union f]

NOTE D

the data. If the discriminant capability is not provided by the language, then\itis the programmer’s respg

ensure cons
In all of the

It is easier
the languag
declare the

A much mg¢re difficult situation occurs when pointers are used to achieve type reinterpretd

languages
arbitrary Id

6.37.4 Ap

This vulnery
of the samd

6.37.5 Avo¢iding the vulnerability or mitigating its effects

To avoid th

avoid 1
to marn

| |
ICIuucT,.

ng alternative mappings of objects into blocks of storage performed either statically

ons that permit a stored value to be interpreted as a different type' (such as t
entation of a pointer as an integer);

ypes, particularly unions that do not have a discriminant stored as pdrt of the data st
iscriminants are additional components of the data structure that.determine the layout 9
stency.

Se cases, accessing the value of an object can produgce an unanticipated result.

o avoid operations that reinterpret the same stored value as representing a different
ve clearly identifies them. For example, Ada (ISO/IEC 8652) forces the programmer t
conversion to be an instantiation of unchecked Conversion.

perform type-checking of pointers-and place restrictions on the ability of pointer
cations in storage (see 6.11 “Pointértype conversions [HFC]").

plicable language charactetistics

ability description is intehded to be applicable to languages that permit multiple inte
bit pattern.

e vulnerability or mitigate its ill effects, software developers can:

eintefpretation performed as a matter of convenience; for example, avoid an inte
ipulate character string data. When type-breaking reinterpretation is necessary, d

carefullyyn the code;

such as the
reating the
ructure.

f the rest of
onsibility to

type when
o explicitly

tion. Many
s to access

rpretations

ger pointer
ocument it

avoid o

perations that reinterpret the same stored value as representing a different type;

when using union types, use discriminated unions in preference to non-discriminated unions;

when data are reinterpreted with a different type, use language-defined capabilities to flag and check

such usage (such as Ada’s ‘va1id attribute), or use static analysis to show that the operation always
succeeds;

use static analysis tools to locate situations where unintended reinterpretation occurs;

segregating intended reinterpretation operations into distinct subprograms.

© ISO/IEC 2024 - All rights reserved
66

as the presence of reinterpretation greatly complicates static analysis for other problems, consider

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.37.6 Implications for language design and evolution

In future la

nguage design and evolution activities, language designers should consider:

— putting caution labels on operations that permit reinterpretation, because the ability to perform
reinterpretation is sometimes necessary, but the need for it is rare. For example, the operation in Ada

that pe

rmits unconstrained reinterpretation is called unchecked Conversion.

objects, owing to the difficulties with non-discriminated unions.

6.38 Deep vs. shallow copying [YAN]

offering union types that include distinct discriminants with appropriate enforcement of access to

6.38.1 Description of application vulnerability

When struftures containing references as data components are copied, a decision is made

the referenfces are copied (shallow copy) or, whether the objects designated by the réferences
and a reference to the newly created object is used as the component value of the, copied stru
copy). Almgst all languages define structure-copying operations as shallow copies, ite. the copie

n whether
are copied
cture (deep
d structure

references the same object. Deep copying is algorithmically more challenging, sinée no object shall be copied

twice althdgugh it can be reachable by multiple paths within the graph spanned’by the referenc
deep copying can be expensive in time and memory consumption. If, howeter; a shallow copy is 1

a deep co
spanned by
the new st

An identicz
references)

6.38.2 Rel

JSF AVI[34] R
Ada Quality

6.38.3 Me

Problems w
a new valu
and leaves
results in t}
the intentid
first time, s
for reasons
changeint

was needed, serious aliasing problems can arise in thesobjects that are part of
the copied references. Subsequent modification of such anyobject is visible via both
ucture.

|1 problem arises when array indices are stored-a$ component values (in lieu of
and used to access objects in an array outside the'eopied data structure.

ated coding guidelines
ules: 76,77, 80
r and Style Guidelll: Sections 5.4

chanism of failure

ith shallow copying arise when an object that is a referenced part of a copied structure

b. In a “deep copy”, such an assignment affects only the (original or copied) object
the other(s) unchanged. When the structure was copied by a “shallow copy”, such an
ne value of the gbject being changed in both the original and the copied structure, wh
n of the progtammer. The problem often manifests itself only during maintenance w
uch an assighment to a contained object is introduced. If shallow copying was origin
of efficiency but under the premise of absence of assignments, this premise is now v
he perceived copy of the graph comes as a surprise.

es. Further,
hade where
the graphs
the old and

pointers or

is assigned
hssigned to
assignment
chisrarely
hen, for the
ally chosen
olated. The

Knowledge

ofthe use of shallow copying in lieu of deep copying can be exploited in attacks

by causing

unintended changes in data structures via the described aliasing effect.

The exposure and effects are similar to any other unintended aliasing, as described in 6.32 "Passing
parameters and return values [CS]]".

6.38.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that have pointers or references as part of composite data structures;

— languages that support arrays.

© ISO/IEC 2024 - All rights reserved
67

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.38.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

adversely;

constructors, and other operations that copy component values.

6.38.6 Implications for language design and evolution

use shallow copying only where the aliasing caused is intended and comment usage at the usage point;

use deep copying if there is any possibility that the aliasing of a shallow copy would affect the application

use abstractions to ensure deep copies where needed, e.g. by (re-)defining assignment operations,

In future
mechanism

6.39 Mem

6.39.1 De

A memory leak occurs when software does not release allocated memory after’it ceases to be use

occurrence]
can be exp
a sequence
shutdown j

As mitigati

language design and evolution activities, language designers should consider
s to create abstractions that guarantee deep copying where needed.

ory leaks and heap fragmentation [XYL]

scription of application vulnerability

s of a memory leak can consume considerable amounts of-avdilable memory. A m
oited by attackers to generate denial-of-service by causing-the program to execute
that triggers the leak. Moreover, a memory leak can causeany long-running critical
rematurely.

bn, some modern languages provide a concept of “9whership” to simplify the lifetime m

providing

1. Repeated
emory leak
repeatedly
program to

anagement

of objects alllocated on the heap and to control access (such as writing). Another mitigation is a mnechanism,

called a stq
mechanism
region such

6.39.2 Rel
CWEIZl; 40
JSF AVI34] R
MISRA C[39
CERT C Sec
Ada Quality

5.4 sub

rage pool, which is implemented by somedanguages. Storage pools are a specializ
where all the memory associated with a’class of objects is allocated from a specif
that storage exhaustion in one pool does hot affect the code operating on other mem

ated coding guidelines

[. Failure to Release MemoryBéefore Removing Last Reference (aka ‘Memory Leak’)
ule: 206

1412

ure Coding Stafhdard[4ll: MEM00-C and MEM31-C

r and StyleGuidelll:

section“Nested Records”

bd memory
ic bounded
pry.

5.4 sub

section “Dynamic Data”

5.9 sub

6.39.3 Me

section “Unchecked Deallocation”

chanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by
the runtime system, the application, or a garbage collector) after it ceases to be used, can result in future

memory all

ocation requests failing for lack of free space.

Alternatively, memory claimed and returned can cause the heap to fragment into progressively smaller
blocks, which, with the usual allocators, will result in a higher memory consumption and steadily increasing
search times for blocks of suitable size, until the system spends most of the CPU-time for searching the heap
for suitable blocks.

© ISO/IEC 2024 - All rights reserved
68

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Either condition can thus result in a memory exhaustion exception, progressively slower performance by
the allocating application, program termination or a system crash.

If an attacker can determine the cause of an existing memory leak or can increase the allocation rate for
blocks of different sizes, the attacker will be able to cause the application to leak or fragment quickly and
therefore cause the application to crash or fail to perform within acceptable time limits. Denial-of-Service

attacks can

thus occur.

6.39.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

languages that reclaim memory under programmer control can exhibit heap fragmentation and

memodtj

langua
exhibit

6.39.5 Avoiding the vulnerability or mitigating its effects

To avoid th

use gal
collect

in syst
data ar
be garl

in syst
to the ¢

allocat
NOTE

for devd
confusi

when a

use re
elimind

use sto
provid

avoid t

use storage pools wheinavailable in combination with strong typing.

y I€aks;

bes that support mechanisms to dynamically allocate memory and employ garbdgeco
memory leaks (and if the garbage collection is not coalescing, heap fragmentation).

e vulnerability or mitigate its ill effects, software developers can:

'bage collectors that reclaim memory no longer accessible by~the application, as sol
brs are part of the language while others are add-ons;

bms with garbage collectors, set all non-local pointers or references to null, when the
e no longer needed, since the data transitively reachable' from such a pointer or refere
age-collected otherwise, effectively causing memony leaks;

bms without garbage collectors, cause deallocation of the data before the last pointer ¢
lata are lost;

e and free memory at the same level of abstraction, and ideally in the same code modt

Allocating and freeing memory indifferent modules and levels of abstraction can mak
lopers to match requests to free storage with the appropriate storage allocation request. Th
bn regarding when and if a block’efmemory has been allocated or freed, leading to memory le

vailable, take advantage-of ownership concepts to manage the heap;

ference counting techniques or choose languages that use reference-counting tec
Ite storage leaks;

Fage poolsof equally-sized blocks to avoid fragmentation within each storage pool and i
e applieation-specific (de-)allocators to achieve this functionality;

lection can

ne garbage

designated
hce will not

r reference
le;
e it difficult

is can cause
aks.

hniques to

[fnecessary,

he dse of dynamically allocated storage entirely, or allocate only during system initial

ization and

never
safety-

ttocate once the malim eXecution COMIMENCES, particutarty imsatety-criticat SyStems (a
critical software) and long running systems;

been freed.

6.39.6 Implications for language design and evolution

In future la

nguage design and evolution activities, language designers should consider:

d hence for

use static analysis, which can sometimes detect when allocated storage is no longer used and has not

— providing syntax and semantics to guarantee program-wide that dynamic memory is not used (such as
the configuration pragmas feature offered by some programming languages).

© ISO/IEC 2024 - All rights reserved
69

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— specifying that implementations document the choices made for dynamic memory management
algorithms, to help designers decide on appropriate usage patterns and recovery techniques as necessary.

6.40 Templates and generics [SYM]

6.40.1 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized
by type and then instantiated for specific types. In C++ (ISO/IEC 14882) and related languages, these are
referred to as templates, and in Ada (ISO/IEC 8652) and Java™,1 generics. To avoid having to keep writing

“templates/generics”, these will simply be referred to collectively as generics.

Used Well’ gnhnrirc canmalke cade r‘lnnrnr’ more. pvnr‘]it‘fahln' and eoasiertamaintain [lsed harﬂy’ i y can have
the reverse|effect, making code difficult to review and maintain, leading to the possibility of program error.
6.40.2 Related coding guidelines

JSF AV Rulgs[34]: 101, 102, 103, 104, and 105

MISRA C++[40]: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2

Ada Quality and Style Guidelll: 8.3 and 8.4 subsection “Using Generic Pararaeters to Reduce Coupling”
6.40.3 Mechanism of failure

The value ¢f generics comes from having a single piece of code ‘that supports some behaviour in a type-
independenit manner. This simplifies development and nraintenance of the code and assfsts in the
understanding of the code during review and maintenance; by providing the same behaviour fpr all types
with which|it is instantiated.

Problems arise when the use of a generic actual makes the code harder to understand during

maintenan

In most caj
can legally
copied and
misuse of a
vulnerabili

Confusion,
does not re
rely on a pd
function, o
some langu
the require
property o

re, by not providing consistent behaviqur:

es, the generic definition will be réquired to make assumptions about the types w
be instantiated. For example, @ sort function requires that the elements to be sof
compared. If these assumptions are not met, the result is likely to be a compiler et
generic leads to a compilerferror, this can be regarded as a development issue, and nof

[y

hnd hence potentiakwlnerability, can arise where the instantiated code is apparently
sult in a compiler.error. For example, a generic class defines a set of members, a subs
rticular property of the instantiation type (such as a generic container class with a sq
nly the sort™function relies on the instantiating type having a defined relational o
ages, suchjas C++ (ISO/IEC 14882), if the generic is instantiated with a type that does
ments;-but the program never subsequently makes use of the subset of members that
the.rstantiating type, the code will compile and execute (for example, the generic

instantiate

review and

th which it
ted can be
ror. Where
a software

invalid, but
et of which
rt member
berator). In
hot meet all
rely on the
rontainer is

'with a user defined class that does not define a relational operator, but the program

never calls

the sort member of this instantiation). When the code is reviewed, the generic class will appear to reference
a member of the instantiating type that does not exist.

Similar confusion can arise if the language permits specific methods of an instance of a generic to be explicitly
defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For
example, for the same generic container class, the sort member normally sorts the elements of the container
into ascending order. In some languages, a special case can be created for the instantiation of the generic
with a particular type, such as the sort member for a f1cat container being explicitly defined to provide
different behaviour, such as sorting the elements into descending order. Specialization that does not affect
the apparent behaviour of the instantiation is not an issue.

1) Java™is the trademark of a product supplied by Oracle. This information is given for the convenience of users of this
document and does not constitute an endorsement by ISO or IEC of the product named.

© ISO/IEC 2024 - All rights reserved
70

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.40.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages that permit definitions of objects or functions
to be parameterized by type, for later instantiation with specific types, such as Templates in C++
(ISO/IEC 14882), or Generics in Ada (ISO/IEC 8652) or Java.

6.40.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

document the properties of an instantiating type necessary for a generic to be valid;

if an instantiating type has the required properties, ensure that all operations of the generic are either

valid o

avoid,
doesn

6.40.6 Im

In future language design and evolution activities, language designers should consider the follow

standa
experie
the san

design
provid

provid
be cheq

6.41 Inhe

6.41.1 De

Inheritancg

can introdiyice several vulnerabilities, both inadvertent and malicious. Given that inheritance

overriding
and data, it|
since an ov
essential in
constructo
(that is, dat
unchanged

Languages

!

L I P | 1 dol b dl o =l
uliavdildulc, WIICTLITTH UL TTULT CUT T Ty " USTU I LT PIugl dlll,

r carefully document, any special cases where a generic is instantiated with aspeci
t behave as it does for other types.

plications for language design and evolution

dizing on a common, uniform terminology to describe generics/templates so that pr
nced in one language can reliably learn and refer to the type=system of another langu:
e concept, but with a different name;

ng generics in such a way that any attempt to instantidte a generic with constructs
e the required capabilities results in a compile-time\érror;

ng an assertion mechanism for checking properties at run-time, for those properties
ked at compile time, plus the ability to inhibitassertion checking if efficiency is a con

ritance [RIP]

scription of application vulnerability

, the ability to create enhanced and/or restricted object classes based on existing ob

bf methods of the parenttlass and that object-oriented systems are designed to encap
can be difficult to determine where in the hierarchy an invoked method is actually dg
erriding method(does not need to call the method in the parent class that has been

itialization andumanipulation of class data can be bypassed. This can be especially d
" methods, cepy methods, or destructor methods and in particular when private data ¢
a compenents not visible to methods of subclasses) of the parent class are left unin
Serious.violations of type invariants can arise as a consequence.

that allow multiple inheritance add additional complexities to the resolution

fic type but

ing items:

bgrammers
nge that has

that do not

that cannot
cern.

ect classes,
allows the
sulate code
fined. Also,
pverridden,
hingerous in
omponents
itialized or

of method

invocations:

Q 1 1 4] 41 o A | e 4 ey 4 1 1 |
OUIIT IdIIgUdgts Ldll TTSUIVE LT IIITUHIUU TUTIILILY LU UIITITIIU TId55TS5, UD4dSTU U

inheritance tree is traversed.

6.41.2 Related coding guidelines

JSF AV Rule

s[341: 78, 79, 80, 81, 86, 87, 88, 89, 89,90, 91, 92, 93, 94, 95, 96 and 97

MISRA C++[49]: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

Ada Quality and Style Guidelll: 9

© ISO/IEC 2024 - All rights reserved
71

n how the

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.41.3 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety

in several ways:

hierarchy that overrides commonly called methods in the parent classes;

accidental redefinition, where a method is defined that inadvertently overrides a method that
been defined in a parent class;

accidental failure of redefinition, when a method is incorrectly named or the parameters are
properly, and thus does not override a method in a parent class;

execution of malicious redefinitions, which can occur through the insertion of a class into the class

has already

not defined

breakil
or vali
overrid
visible
compo

ng of class invariants, which can be caused by redefining methods that initialize, (o
ate class data without including that initialization, copying, destruction, or walids
ing methods. This applies particularly to class invariants involving data of the pare
in methods of the subclass. Inherited methods of the parent that have access to the
nents will likely fail if the components are left uninitialized or set inapprepriately;

direct reading and writing of visible class members instead of using inherited«getter and set
functigns, thus missing additional functionality provided by these member fnctions.

These vulngrabilities can increase dramatically as the complexity of the hierarchy increases, e
the use of multiple inheritance.

As methods are inherited from multiple chains of ancestors;\the determination of whig
implementations exist and are being called, becomes incredsingly more difficult for the p
Understanding which methods and data components apply to a given (sub)class becomes §
difficult if these methods or components are inherited homographs (i.e. data components wi
names or methods with identical signatures). Different languages have different rules to
resulting ambiguities. Misunderstandings lead to inadvertent coding errors. The complexit
even more|when multiple inheritance is used tosthodel "has-a" relationships (see 6.42 “Violaf
Liskov substitution principle [BPL]"); methods_never intended to be applicable to instances of
are inherited nevertheless. For example, an ii¥stance of class aircraftcarrier lets it be “tury
because it gbtained its propulsion screw by.a *has-a"-inheritance with “turn” being an obviously
method for| the class of propulsionscrew.\Meanwhile, the user has a quite different expectatio
means to thrn an aircraft carrier. The ,complications increase if the carrier inherits twice fro
propulsiorfscrew because it has two propulsion screws.

Finally, if ambiguities in methad or component namings are resolved by preference rules, cha
execution dqf methods can bé introduced by adding yet another unrelated but homographic met
declaration anywhere is the hierarchies of ancestor classes during maintenance of the codsg
implementgtions can thus be added with each release of an object-oriented library and affect th¢
of previously verifiedcode (see 6.42 “Violations of the Liskov substitution principle [BPL]").

The mechapismof-failure for these additional dangers caused by multiple inheritance is the inad

py, destroy
ition in the
nt class not
be “private”

fer member

specially in

h methods
ogrammer.
exceedingly
th identical
resolve the
y increases
ions of the
a subclass
"ed merely
meaningful
n of what it
m the class

nges in the

hod or data
. Malicious
e behaviour

vertent use
s instances

6.41.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow single or multiple

inheritances.

6.41.5 Avoiding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— avoid the use of multiple inheritance whenever possible;

© ISO/IEC 2024 - All rights reserved
72

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

avoid a

ISO/IEC 24772-1:2024(en)

ccessing data components when getting and setting functions are available for them;

each object in the hierarchy;

compilation and/or initialization;

prohibit the use of visible inheritance for “has-a” relationships;

use components of the respective class for “has-a” relationships;

provide complete documentation of all encapsulated data, and how each method affects that data for

inherit only from trusted sources, and, whenever possible, check the version of the parent classes during

delegate initialization, copy, or destruction of the parent’s data components by calling the corresponding

operation of the parent type, and in particular when the parent has data components not visible to

methodls of the subclass.

6.41.6 Im

In future language design and evolution activities, language designers should consider;

— provid

provid

6.42 Violations of the Liskov substitution principle or the contract model [BLP]

6.42.1 De

Object orie
class of the
right to exf
of the valu
the declarg

instances of the parent class. This is the basis gf;the Liskov substitution principle.

The Liskov
as well if o

plications for language design and evolution

ng a compiler option to report the class in which a resolved methodresides;

ng for runtime environments a trace of all runtime method resplutions.

scription of application vulnerability

htation typically allows polymorphic variablest¢ontaining values of subclasses of tl
variable. Methods of the declared class of a receiving object can be invoked and the c4
ect that the semantics of the interface called-upon are observed regardless of the pr¢

d class be ensured. Instances of suhclasses become both technically and logically

substitution principle states that an instance of a subclass is always an instance of the
he ignores the added specializations. It implies that inheritance is used only if there

“is-a”-relati

nship between the subclass and the superclass. Moreover, preconditions of methods

be weakengd and never strengthened as they are redefined for a subclass. Inversely, postcondi
most be stijengthened and neyér be weakened by such a redefinition. The caller of an interface
only the preconditions of theinterface and is allowed to rely on its postconditions. The rules s
sure of this|property which isalso known as the Contract Model.

Violations ¢f the Liskowv substitution principle or the Contract Model can result in system malf]
additional preconditions of redefinitions or promised postconditions of interfaces are not met.

An alternafive ‘\inheritance semantics is that of “has-a”-relationships, usually appearing in p

he declared
ller has the
cise nature

e of the receiving object. Similarly, it is«inmifportant that the existence of accessed components of

specialized

superclass
is a logical
can at most
ions can at
guarantees
tated make

linctions as

rograms in

languages yith'multiple inheritance, where the paradigm is sometimes referred to as a “mix-in".

tisin stark

conflict with the Liskov Principle, since a polymorphic variable motor of class engine should no

t be able to

hold a car, merely because the subclass car was created by a mix-in of the class engine to the class venicle.

The principles stated above apply to implicit as well as explicit preconditions and postconditions. Explicit

conditions permit formal reasoning tools to be applied.

6.42.2 Related coding guidelines
JSF AV Rulesl34l: 89,91, 92,93

© ISO/IEC 2024 - All rights reserved
73

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.42.3 Mechanism of failure

When a client calls the method of a class which dispatches to the implementation of a subclass with
a strengthened precondition, the client has no mechanism to know about the added preconditions to be
satisfied. Hence, the call can fail on a violated precondition. Similarly, if the called implementation has a
weaker postcondition, it is possible that the postcondition asserted to the client is not satisfied. As a
consequence, the client can fail. Failing to meet preconditions or to guarantee postconditions is bound to
cause exceptions or system failures. The specific scenarios are extensive and range from faults that happen
to be handled by the system to complete loss of security and safety.

Using visible inheritance to implement a “has-a”-relationships deteriorates class design and thereby can be
the cause of consequential errors. There is no immediate failure mode, however.

6.42.4 Applicable language characteristics
This vulnenability description is intended to be applicable to languages with the following-chara¢teristics:
— languapes that have polymorphic variables, particularly object-oriented languages;

— languapes that provide inheritance among classes.

6.42.5 Avo¢iding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:
— obeyal| preconditions and postconditions of each method, whether they are specified in the language or not;
— prohibit the strengthening of preconditions (specified oynot) by redefinitions of methods;
— prohibit the weakening of postconditions (specified er.not) by redefinitions of methods;

— prohibit the use of visible inheritance for “has-a%,relationships and use components of the respective
class fdr “has-a”-relationships instead;

— use stafic analysis tools that identify misuse of inheritance in the contract model.

6.42.6 Implications for language design-and evolution

In future |language design and (eyolution activities, language designers should considern] providing
language mechanisms to formally specify preconditions and postconditions, including |class-wide
preconditiqns and postconditions.

6.43 Redispatching [PPH]

6.43.1 Descriptien-of application vulnerability

When very[sitnilar functionality is provided by methods or interfaces with varying parameter structures, a
frequently found implementation strategy is to designate one of them as the worlc horse and have all others
call on it to perform the (common) work. A prime example are constructor or initialization methods where
different sets of initial values for certain components are provided and the remaining components are set to
default values.

When the semantics of inner calls of dispatching methods ask for dispatching in turn, the call is said to
be “redispatching”. In this case, the following scenario can evolve: in class c, the implementation of
method A dispatches to method B, the work horse. In a derived c1ass cb, the decision is made to change the
implementation of B. The programmer finds the signature of the inherited method 2 matching the needs
of the new call and calls a as part of the redefinition of 8. The outcome of a previously correct dispatching
call on B in c for a polymorphic variable of c1ass c holding a reference to an object of c1ass cb now causes
infinite recursion between the redefined method B and the inherited method 2 of class cb.

© ISO/IEC 2024 - All rights reserved
74

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

This vulnerability is not restricted to the example above but can happen whenever the design calls for
multiple services converging to a single implementation.

6.43.2 Related coding guidelines

Ada Quality and Style Guidelll: 9.3 subsections “Primitive Operations and Redispatching” and
“Polymorphism”

6.43.3 Me

chanism of failure

The mechanism is the intrinsic call semantics of the language. If the call semantics demand dispatching for
nested method calls, the failure scenario is guaranteed. While the example above is tractable, the infinite

recursion can-invaolve mll]fiplp nhjp(‘fc :\Inng a reference chain and_tbhus it becomes r}nir‘k]v 1

ndecidable

whether su
implement
transitively

It has been

Malicious €
some trigge
it with any
used. The v

6.43.4 Ap

This vulner
calls within

ch a situation exists or not. Even for simple cases, avoidance requires knowledgs
ition of all called methods inherited from superclasses and needs to applycthis
. Such a requirement is diametrically opposed to fundamental software engineering ¢

shown that released libraries have contained many instances of infinite gecursions.

xploit of the vulnerability adds a subclass that contains this infinite\recursion cond
r value. The recursion can be sufficiently obscured so that no analysistool or reviewe
certainty. The system can then be caused to fault with a stackleverflow anytime th
ulnerability can thus be used for Denial-of-Service (DoS) attacks.

plicable language characteristics

b about the
knowledge
xioms.

itionally on
" can detect
s trigger is

ability description is intended to be applicable to latiguages that demand or allow dispatching for

dispatching operations.

6.43.5 Av¢iding the vulnerability or mitigating its effects

To avoid th

enforcg

e vulnerability or mitigate its ill effects, software developers can:

aprinciplethat,evenacrossclasshierarchies,convergingservicesuseaconsistentimple

agree
constr

avoid
Variab

bn and document a redispatch hierarchy within groups of methods, such as ini
ctors, and use it consistently throughout the class hierarchy;

ispatching calls in_methods where possible. See upcast consequences in 6.44 “P
es [BKK]"...

mentation;

tializers or

plymorphic

6.43.6 Implications forlanguage design and evolution

None.

6.44 Polymorphic variables [BKK]

6.44.1 Description of application vulnerability

Object-oriented languages allow polymorphic variables, in which values of different classes can be stored
at different times. In most of these languages, variables are declared to be of some class, while the actual
value can be of a more specialized subclass. Polymorphic variables go hand in hand with method selection
at run time, when the method defined for the actual subclass of the receiving object or controlling argument
is invoked. This approach is safe, as method implementation and actual type of the object match by
construction. If, however, the language permits casting of the polymorphic reference to process the object as
if it were of the class casted to, several vulnerabilities arise. Casts are distinguished as follows:

— upcasts, where the cast is to a superclass;

© ISO/IEC 2024 - All rights reserved
75

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— downcasts, where the castis to a subclass and a check is made that the object is indeed of the target class

of the c

— unsafe

ast (or a subclass thereof);

casts, where there is no assurance that the object is of the casted class.

Distinct vulnerabilities arise for each of these cast types.

— Upcasts are needed so that redefined methods can call upon the corresponding method of the parent
class to achieve the respective portion of the needed functionality and then complete it for the extensions
added by the subclass. Without calling the parent’s implementation of a method in the redefined method,
the private components of the parent class are inaccessible to the redefined method. Hence, there is a
risk that they are no longer consistent with the overall state of the object. Inversely, if the issue is avoided
by inheriting rather than redefining the method for a subclass, there is the risk that the subclass-specific

parts are-ireonsistent-with-the-everal state-of the-ebjectorevenuninitialized——

Downc
defined

Unsafe
“Pointg

Some languiages also have implicit upcasts and downcasts as part of the language semanticsg

issues appl

6.44.2 Rel
JSF AV Rulég
67 Maj
78 Virt
94 red;d
178 Lix
179 Po

185 Us

6.44.3 Me

Objects leff
parent clas

Exceptions
addition of

Unsafe cast

hsts carry the risk that the objectis notof the correctclass. If checked by the language; a
| downcasts typically are, an exception will occur in this case.

r type conversions [HFC]".

 to implicit casts as for explicit casts.

ated coding guidelines

s[34]:

e all data members private

ual method and virtual destructor

bfinition of an inherited non-virtual fungtion
hited downcast

nter casts

b C++ upcasts in place of G casts

chanism of failure

in an inconsistent state by means of an upcast and a subsequent legitimate methog
5 can be expleited to cause system malfunctions.

raised by~ failing downcasts allow Denial-of-Service attacks. Typical scenarios
objects of some unexpected subclasses in generic containers.

slanguage-

casts allow arbitrary breaches of safety and security similar to the breaches described in 6.11

. The same

| call of the

nclude the

s\to,classes with the needed components allow reading and modifying arbitrary meiory areas.

See 6.11 “P

Oimter type conversions fHFCT™

6.44.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that have polymorphic variables, particularly object-oriented languages;

— languages that permit upcasts, downcasts, or unsafe casts.

© ISO/IEC 2024 - All rights reserved
76

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.44.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

forbid the use of unsafe casts;

— when upcasting:

— ensure functional consistency of the subclass-specific data to the changes affected via the upcasted
reference;

— use type invariants if provided to detect semantic violations caused by upcasts;

— try to avoid downcasts, and where a downcast is necessary:

md

pré
ex(

6.44.6 Im

In future la

ke sure that any resulting error situations are handled;

bcede downcasts by an appropriate membership test, as needed, to avoid .possibl
eptions.

pblications for language design and evolution

6.45 Extra intrinsics [LRM]

6.45.1 De

Most langul
translation
the standal
application|

6.45.2 Rel

No guidelin

6.45.3 Me

Most stand
application|
language st
same signa

For examp
sgrt (). Ifa
can overrid

scription of application vulnerability

ges define intrinsic procedures, which are easily“available, or always simply avail
unit. If a translator extends the set of intrinisics beyond those defined by the sta
d specifies that intrinsics are selected before procedures of the same signature def
a different procedure can be unexpectedlyy used when switching between translator

ated coding guidelines
es apply.
chanism of failure

ard programming languages define a set of intrinsic procedures that can be u
Some language(standards allow a translator to extend this set of intrinsic proced
andards specify that intrinsic procedures are selected ahead of an application procs
fure. This can\cause a different procedure to be used when switching between translz

e, most\languages provide a routine to calculate the square root of a number, usul
translator also provided, as an extension, a cube root routine, say named cbrt (), th3

eanap

£ errors or

hguage design and evolution activities, language designers should ¢onsider forbidding unsafe casts.

hble, to any
ndard, and
ined by the

D.

sed in any
ures. Some
dure of the
itors.

ally named
t extension
() routines

plication defined procedure of the same signature. If the two different cbrt

chose differ

go wrong.

If the language standard specifies that application defined procedures are selected ahead of intrinsic
procedures of the same signature, the use of the wrong procedure can mask a linking error.

6.45.4 Applicable language characteristics

This vulnerability description is intended to be applicable to any language where translators can extend
the set of intrinsic procedures and where intrinsic procedures are selected ahead of application defined (or
external library defined) procedures of the same signature.

© ISO/IEC 2024 - All rights reserved
77

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.45.5 Avoiding the vulnerability or mitigating its effects

To avoid th

e vulnerability or mitigate its ill effects, software developers can:

— use whatever language features are available to mark a procedure as language defined or application
defined;

— avoid using procedure signatures matching those defined by the translator as extending the standard set.

6.45.6 Im

plications for language design and evolution

In future language design and evolution activities, language designers should consider:

provid

provid

providi

nogmechanismstodocumentwhethertranslatorscanextendthe setofintrinsic proce
(=]

ures or not;

ng mechanisms to document the precedence for resolving collisions;

ng mechanisms to mark a subprogram signature as being the intrinsic or an applicati

procedure;

intrins

6.46 Argu

6.46.1 De

Libraries t}
passed to them. In those cases where parameter validation isrequired, it is possible that there is 1

parameter

6.46.2

CWEIZI; 114
JSF AV Rule
MISRA C[39

MISRA C++
CERT C Sec

6.46.3

When callifg a library, either the calling function or the library can make assumptions about pa
ibrary assumes that a parameter is non-zero so division by that parameter is performed without

r;Lmeters. For

eéwalue. Sometimes, some validation is performed by the calling function, but the librpry can use

example, a

checking th

implen

Rel

Me|

enting a diagnostic to be issued when an application procedure matches the sign
c procedure.

ment passing to library functions [TR]]

scription of application vulnerability

at supply objects or functions are in most cases notrequired to check the validity of

validation.

ated coding guidelines

. Process Control

s(341 16, 18, 19, 20, 21, 22, 23,24)and 25

:1.3,4.11, 21.2-21.8, and-21/10

40; 17-0-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1
ure Coding Standapd[41l: INT03-C and STRO7-C

chanism of failure

n provided

hture of an

barameters
10 adequate

the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and
can cause unanticipated results.

6.46.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that provide or use libraries that do
not validate the parameters accepted by functions, methods and objects.

© ISO/IEC 2024 - All rights reserved
78

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.46.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— use libraries that validate any values passed to the library functions before the value is used;

— develop wrappers around library functions that check the parameters before calling the function;

— demonstrate statically that the parameters are never invalid using static analysis tools capable of
detecting data validation routines;

— use only libraries that are known to have been developed with consistent and validated interface
requirements.

NOTE Some of these approaches work best 1t used 1n conjunction with other approaches.

6.46.6 Implications for language design and evolution
In future nguage design and evolution activities, consider the following items:

— ensuring that all library functions defined operate as intended over the spetified range of ipput values
and react in a defined manner to values that are outside the specified range;

— defininglibraries that provide the capability to validate parameters duting compilation, during execution
or by static analysis;

— implenjenting language-defined libraries that provide the preconditions and postconditions flor each call
so thatfunction arguments can be validated during compilation;execution or via other static anjalysis tools.

6.47 Inter-language calling [D]S]

6.47.1 Description of application vulnerability

When an application is developed using more than one programming language, complicationg arise. The
calling conyventions, data layout, error handinng and return conventions all differ between languages; if
these are npt addressed correctly, stack gverflow/underflow, data corruption, and memory corfuption are
possible.

In multi-lajguage development enyironments, it is also difficult to reuse data structures and pbject code
across the languages.

6.47.2 Related coding guidelines

No guidelines apply.

6.47.3 Mechanism of failure

When callipg.d function that has been developed using a language different from the calling language,
consider the call convention and the return convention used. If these conventions are not handled correctly,
there is a good chance the calling stack will be corrupted, (see 6.34“Subprogram signature mismatch
[OTR]”). The call convention covers how the language invokes the call and how the parameters are handled
(see 6.32 “Passing parameters and return values [CS]").

Many languages restrict the length of identifiers, the type of characters that can be used as the first
character, and the case of the characters used. In addition, modules developed in different languages or
using different compilers, can map names differently, causing mistakes to be made during program build.
All of these restrictions should be considered when invoking a routine written in a language other than the
calling language. Otherwise, the identifiers can bind in a manner different than intended.

Character and aggregate data types require special treatment in a multi-language development environment.
Consideration of the data layout of all languages that are to be used, including padding and alignment, is

© ISO/IEC 2024 - All rights reserved
79

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

extremely important. If these data types are not handled correctly, the data can be corrupted, the memory
can be corrupted, or both can become corrupt. This can happen by writing/reading past either end of the
data structure, see 6.8 “Buffer boundary violation (buffer overflow) [HCB]”. For example, a Pascal sTrING

data type

VAR

str: STRING(10);

corresponds to a C structure (to capture the length information)

struct
int 1
char

i

and not to th

{
ength;
str [10];

he

char ¢

where lend
length that

Most nume

is different from the physical length of the Pascal sTr1NG and assumes a NOL.terminat

Fic data types have counterparts across languages, but the layouts can|differ and only

th contains the actual length of sTriNG. The second C construct is implemented with a physical

pr.

those types

that matchthe in the different languages be used. For example, in some implementations of C++ 4
signed |char

would matg¢h a Fortran (ISO/IEC 1539-1)

inteder (1)
and would match a Pascal

PACKHD -128..127
These corr¢spondences can be implementation-defin€d, necessitating verification.
Sophisticated error-handling mechanisms, suchias exception handling, often do not work across language
boundaried. Consequently, very simple errorreporting mechanisms are needed across such boundaries,
restrictingthe sophisticated mechanisms for use only within the bounds of a single language.
6.47.4 Applicable language characteristics
The vulnerability is applicable to all high-level programming languages and low-level prpgramming
languages, |since all are susceptible to this vulnerability when used in a multi-language development
environment.

6.47.5 Av¢iding thé yulnerability or mitigating its effects

To avoid th

e vulnerability or mitigate its ill effects, software developers can:

use the

intér-language methods and syntax specified by the applicable language standard(s)

NOTE

For example, Fortran (ISO/IEC 1539-1) and Ada (ISO/IEC 8652) specify how to call C (IS

functions.

unders

tand the calling conventions of all languages and language processors used;

for items comprising the inter-language interface:

— understand the data layout of all data types used;

— understand the return conventions of all languages used;

— prefer that the language in which error check occurs is the one that handles the error;

© ISO/IEC 2024 - All rights reserved
80

0/IEC 9899)

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

lower-case letters in identifiers;

6.47.6

avoid using a special character as the first character in identifiers;

avoid using long identifier names.

Implications for language design and evolution

avoid assuming that the language makes (or does not make) a distinction between upper case and

In future language design and evolution activities, language designers should consider developing standard
provisions for inter-language calling to languages most often used with the programming language under

considerati

on.

6.48 Dyna

6.48.1 De

Code that i
replacinga
PATH on the
so that a di
was tested

On some pl
Historically
running on
software a
the algorit
interpreted
code can b
unanticipat

6.48.2 Rel

}

imically-linked code and self-modifying code [NYY]

scription of application vulnerability

5 dynamically linked can be different from the code that was tested. This can be t
library with another of the same name or by altering an environment variable such as 1

(Portable Operating System Interface) POSIX®-compliant?) platforms (see ISO/IEC/
fferent directory is searched for the library file. Executing code that is different than
can lead to unanticipated errors or intentional malicious activity.

atforms, and in some languages, instructions can modifyether instructions in the
r self-modifying code was needed for software to overcome limitations of the hardw
a platform with very limited memory. It is now often‘wsed (or misused) to hide fund

m is tuned at runtime to give better performance or just-in-time (JIT) compilatior
code with compiled code. Apart from automatically-generated benign code, sel
e difficult to write correctly and even more difficult to test and maintain correctly
ed errors.

ated coding guidelines

JSF AVI[34] Rule: 2

6.48.3 Me

Through th
different fr

On some pl
in the instr
behaviour

chanism of failure

e alteration of a library file or environment variable, the code that is dynamically liq
bm the code which was tested resulting in different functionality.

atforms, a pointer-to-data can erroneously be given an address value that designate
uction space: If subsequently a modification is made through that pointer, then an un
an result.

6.48.4 Ap

he result of
D TLIBRARY
[EEE 9945)
that which

code space.
hre, such as
tionality of

d make it more difficult to reverse engineer, or forspeciality applications such as graphics where

to replace
-modifying
r leading to

ked can be

s a location
anticipated

plicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

instruction space;

languages that allow execution of code that exists in data space;

languages that permit the use of dynamically linked or shared libraries;

2)

languages that allow a pointer-to-data to be assigned an address value that designates a location in the

languages that execute on an OS that permits program memory to be both writable and executable.

POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers (IEE), Inc. This information is

given for the convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

© ISO/IEC 2024 - All rights reserved
81

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.48.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

change

d;

requirement for self-modifying code;

heavily document them.

verify that the dynamically linked or shared code being used is the same as that which was tested;

retest the application before use when it is possible that the dynamically linked or shared code has

prohibit self-modifying code except in rare instances. Most software applications should never have a

in those extremely rare instances where its use is justified, limit the amount of self-modifying code and

6.48.6 Im

In future
mechanisni
the one in t

6.49 Library signature [NSQ]

6.49.1 De

Programs
implement
hand is ted
both langu

Integrating
interface th
during link

Byte aligni
languages 3

6.49.2 Rel
MISRA C[39
MISRA C++

6.49.3 Me

When the |

plications for language design and evolution

anguage design and evolution activities, language designers should consider f
so that a program can implicitly or explicitly check that the digital signattre of a libra
he compile/test environment.

scription of application vulnerability

vritten in modern languages can use libraries written in other languages than t}
ition language. If the library is large, the effort of adding signatures for all of the funct
ous and error prone. Portable cross-language signatures will require detailed under
hges, which some programmers lack.

two or more programming languages into a single executable relies upon know
e function calls, argument list and global.data structures so the symbols match in the

ing.

ment can be a source of data cerruption if memory boundaries between the pr
re different. Each language candlso align structure data differently.

ated coding guidelines
111
40]; 1-0-2

chanism-of failure

brafyyand the application in which it is intended to be used are written in different

the specific

roviding a
ry matches

le program
ions use by
standing of

ing how to
object code

bgramming

languages,

ation of signatures is complicated by inter-language issues.

Asusedinthis vulnerability description, the termlibrary includes the interface to the operating system, which
can be specified only for the language used to code the operating system itself, such as in C (ISO/IEC 9899).
In this case, any program written in any other language faces the inter-language interoperability issue of
creating a fully-functional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard can be absent or can be very difficult. Thus, a translator-by-translator solution
is often necessary, which increases the probability of incorrect signatures, since the solution is recreated for
each translator pair. It is possible that incorrect signatures are not caught during the linking phase.

© ISO/IEC 2024 - All rights reserved
82

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.49.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that do not specify how to describe
signatures for subprograms written in other languages.

6.49.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— use tools to create the signatures;

— avoid using translator options or language features to reference library subprograms that do not have

proper

signatures.

6.49.6 Im

plications for language design and evolution

In future language design and evolution activities, language designers should consider:

provid
(this c4

— provid

ng correct linkage even in the absence of correctly specified’\ procedure
n be very difficult where the original source code is unavailable);

ng specified means to describe the signatures of subprograms.

6.50 Unanticipated exceptions from library routines [HJW]

6.50.1 De
Alibraryin
developer,

source. In
other than

While the ul
behaviour f

6.50.2 Crd
JSF AVI[34] R
MISRA C[39
MISRA C++
Ada Quality

6.50.3 Rel

scription of application vulnerability

this context means a set of software routines produced outside the control of the main
1sually by a third party, and where the application developer often does not have a
such circumstances, the application developer has limited knowledge of the library
from their behavioural interface.

se of libraries can present several vulnerabilities, the focus of this vulnerability is any
hat a library routine exhibits, in pakticular the generation of unexpected exceptions.

ss reference

ule: 208

1411

40]; 15-3-1, 15-8-2, 17-0-4

r and StyleGuidelll: 5.8 and 7.5

ated coding guidelines

signatures

application
tcess to the
y functions,

indesirable

In some la

o oo g o o o C O T AT P oo o ICo o to— I pro et or o Ot o o T oy 1o ot T IS

immediate termination, without for example, releasing previously allocated resources. If a library routine
raises an unanticipated exception, this undesirable behaviour can result.

Considerations of 6.36 “Ignored error status and unhandled exceptions [OYB]”, are also relevant here.

6.50.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that can link previously developed library code (where the developer and compiler do not
have access to the library source);

— languages that permit exceptions to be thrown but do not require handlers for them.

© ISO/IEC 2024 - All rights reserved
83

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.50.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— wrap all library calls within a "catch-all" exception handler (if the language supports such a construct),

so that

NOTE

any unanticipated exceptions can be caught and handled appropriately;

This wrapping can be done for each library function call or for the entire behaviour of the program, for

example, having the exception handler in main for C++ (ISO/IEC TR 24731-1). However, the latter is not a complete
solution, as static objects are constructed before main is entered and are destroyed after it has been exited.
Consequently, MISRA C++[40] bars class constructors and destructors from throwing exceptions (unless handled

locally).

— alternatively, use only library routines for which all possible exceptions are specified.

6.50.6 Im

In future language design and evolution activities, language designers should consider:

— provid

— fully dg
proces

6.51 Pre-

6.51.1 De

Pre-proces
- this is esql

If great car
In many ca
within the

Source cod
maintain c
expectina

6.51.2 Rel
Holzmann[
JSF AVI34] R
MISRA C[39
MISRA C++

plications for language design and evolution

ng a mechanism for catching all possible exceptions (for example, a "catch-all" handlg

fining the behaviour of the program when encountering an unhandled exception, se
bor directives [NMP]”.

processor directives [NMP]

scription of application vulnerability

bor replacements happen before any source codelsyritax check, therefore there is no ty
ecially important in function-like macro parameters.

e is not taken in the writing of macros, the expanded macro can have an unexpects
ses if explicit delimiters are not added*around the macro text and around all macro
macro text, unexpected expansion is;the result.

e that relies heavily on complicated pre-processor directives can result in obscure :
pde since the syntax they expect can be different from the expressions programmet
civen programming language.

ated coding guidelines

3 rule 8

ules: 26, 2428, 29, 30, 31, and 32
:1.3,4:9520.5, and 20.6

401y 16-0-3, 16-0-4, and 16-0-5

be checking

d meaning.
arguments

ind hard to
s regularly

CERT C Secure Coding Standard[#1l: PRE01-C, PRE02-C, PRE10-C, and PRE31-C

6.51.3 Me

chanism of failure

Readability and maintainability can be greatly decreased if pre-processing directives are used instead of
language features.

While static analysis can identify many problems early; heavy use of the pre-processor can limit the
effectiveness of many static analysis tools, which typically work on the pre-processed source code.

© ISO/IEC 2024 - All rights reserved
84

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

In many cases where complicated macros are used, the program does not do what is intended. For example:

define a ma

cro as follows,

#define CD(x, y) (x +y - 1) / vy

whose purpose is to divide. Then suppose it is used as follows

which expa

a=CD (b & ¢, sizeof (int));

nds into

a (b & ¢ + sizeof (int) - 1) / sizeof (int):;

which most

will provid

6.51.4 Ap
This vulnet
langua
langua
langua
langua
langua
langua

langua

times will not do what is intended. Defining the macro as

#define CD(x, + /

y) ((x) (y) - 1) (y)

b the desired result.

plicable language characteristics

ability description is intended to be applicable to languages with/the following chara
bes that have a lexical-level pre-processor;

bes that allow unintended groupings of arithmetic statements;

bes that allow cascading macros;

bes that allow duplication of side effects;

bes that allow macros that reference themselves;

bes that allow nested macro calls;

bes that allow complicated macros.

6.51.5 Avo¢iding the vulnerability-er mitigating its effects

Software d
directives ¥

6.51.6 Im

evelopers can avoid, the vulnerability or mitigate its ill effects by not using pr
vhere it is possibleto achieve the desired functionality without their usage.

plications forlanguage design and evolution

In future |

— reducingcor-eliminating dependence on lexical-level pre-processors for essential functional

guage.design and evolution activities, language designers should consider:

Cteristics:

E-processor

ty (such as

conditional compilation);

— providing capabilities to inline functions and procedure calls, to reduce the need for pre-processor macros.

6.52 Suppression of language-defined run-time checking [MXB]

6.52.1 Description of application vulnerability

Some languages provide runtime checking to detect errors that can lead to vulnerabilities, and thus prevent
them. Canonical examples are bounds or length checks on array operations or null-value checks upon
dereferencing pointers or references. In most cases, the reaction to a failed check is the raising of a language-

defined exc

eption.

© ISO/IEC 2024 - All rights reserved
85

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

As run-time checking requires execution time and as some project guidelines exclude the use of exceptions,
languages often provide a mechanism to optionally suppress such checking for regions of the code or for the

entire prog

ram. Analogously, compiler options can be used to achieve this effect.

6.52.2 Related coding guidelines

No coding guidelines apply.

6.52.3 Me

chanism of Failure

Vulnerabilities that could have been prevented by the run-time checks are undetected, resulting in memory

corruption,

propagation of incorrect values or unintended execution paths.

6.52.4 Ap
This vulnet
— langua
— langua

— langua
option:

6.52.5 Av¢iding the vulnerability

To avoid th

prohib
been p

if the ¢
those @

where
is mad
ensure|

clearly

6.52.6 Im

No implicat

6.53 Provjiision.of inherently unsafe operations [SKL]

plicable language characteristics

ability description is intended to be applicable to languages with the following chara
bes that define runtime checks to prevent certain vulnerabilities;

bes that allow runtime checks to be suppressed;

bes or compilers that suppress checking by default, or whose compilers or interpret
to omit the above checks.

e vulnerability or mitigate its ill effects, software dévelopers can:

t the suppressing of checks, or restrict the suppression of checks to regions of the cod
‘oven to be performance-critical;

efault behaviour of the compiler or the language is to suppress checks, then expli
hecks;

Checks are suppressed, statically verify that each suppressed check cannot fail, and if't
b to suppress language-defined-checks, use explicit checks at appropriate places in
that errors are detected befaore any processing that relies on the correct values;

identify code sections where checks are suppressed.

blications for language design and evolution

ions apply.

Cteristics:

ers provide

e that have

Citly enable

he decision
the code to

6.53.1 De

sCription of application vulnerability

Languages define semantic rules to be obeyed by conforming programs. Compilers enforce these rules and
diagnose violating programs.

A canonical example is illustrated through the rules of type checking, intended among other reasons to
prevent semantically incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real
numbers to Booleans, or complex numbers to two-dimensional coordinates.

Occasionally, it is necessary to step outside the rules of the type model to achieve needed functionality. One
such situation is explicit type conversion of memory as part of the implementation of a heap allocator to the
type of object for which the memory is allocated. A type-safe assignment is impossible for this functionality.
Thus, a capability for unchecked explicit type conversion between arbitrary types to interpret the bits in

© ISO/IEC 2024 - All rights reserved
86

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)
a different fashion is a necessary but inherently unsafe operation, without which the type-safe allocator
cannot be programmed.

Another example is the provision of operations known to be inherently unsafe, such as the deallocation of
heap memory without prevention of dangling references.

A third example is any interfacing with another language, since the checks ensuring type-safeness rarely
extend across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by
programmers in situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitable to violate program security.

6.53.2 Related coding guidelines

No coding guidelines apply.

6.53.3 Mejchanism of Failure

The use of [inherently unsafe operations or the suppression of checking circumyvents the features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesses can b¢ corrupted
as a consequence of unsafe operations. Depending on the circumstanceséand the unsafe operfation used,
most of the|vulnerabilities described in this document can result.

6.53.4 Applicable language characteristics
This vulnerability description is intended to be applicable tojlanhguages with the following charagteristics:

— languapes that allow compile-time checks for the _prevention of vulnerabilities to be suppressed by
compiler or interpreter options or by language constructs;

— languapes that provide inherently unsafe operations.

6.53.5 Avo¢iding the vulnerability or mitigating its effect
To avoid the vulnerability or mitigate its-ill effects, software developers can:
— restricf the suppression of compile-time checks to where the suppression is functionally essential;

— use inherently unsafe operations only when they are functionally essential and document edch usage at
the sitq of that usage;

— clearly|identify pregram code that suppresses checks or uses unsafe operations to permit the focusing of
review|effort tgexamine whether the function can be performed in a safer manner;

— use staftic ahalysis tools that detect and report the use of unsafe features.

6.53.6 Implications for language design and evolution

No implications apply.
6.54 Obscure language features [BRS]

6.54.1 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand, or difficult to use
correctly. The problem is compounded if a software design is reviewed by people who are not language
experts, such as hardware engineers, human-factors engineers, or safety officers.

© ISO/IEC 2024 - All rights reserved
87

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Even if the design and code are initially correct, it is often the case that maintainers of software do not fully
understand the intent.

The consequences of the above problems are more severe if the software is intended to be used in trusted
applications, such as safety-critical or mission-critical ones.

Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities
in development or in maintenance.

6.54.2 Related coding guidelines
JSF AV Rules!34l: 84, 86, 88, and 97

MISRAC[BQ 14 104 12 4 12 < 10 C 2914 4 214 C 21 21 77 Jd21 O
L. I, ITU T, IO. 1T, 1J.0, I10.J, 2z 1.1, Z1.J, Z1.0, Z1L.7 aiidzT.0

MISRA C++[40]: 0-2-1, 2-3-1, and 12-1-1
CERT C Secure Coding Standard[*1l: FI003-C, MSC05-C, MSC30-C, and MSC31-C.
ISO/IEC TR|15942:2000, 5.4.2, 5.6.2 and 5.9.3

6.54.3 Mechanism of failure
The use of pbscure language features can lead to an application vulnerability in several ways:

— the original programmer misunderstands the correct usage of the feature and utilizes it in¢orrectly in
the dedign or code it incorrectly;

— reviewgrs of the design and code misunderstand the intént/or the usage and thereby overlook problems;

— maintafiners of the code do not fully understand thedntent or the usage and introduce problems during
maintenance.

6.54.4 Applicable language characteristics

This vulnenability description is intended tobe applicable to any language.

6.54.5 Av¢iding the vulnerability ex mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— avoid the use of language)features that are obscure or difficult to use, especially in combination with
other difficult language features;

— adopt doding stafidards that discourage use of such features or show how to use them corregtly;

— avoid the useof complicated features of a language;

— avoid the use of rarely used constructs that can be difficult for entry-level maintenance personnel to
understand;

— use tool-based static analysis to find incorrect usage of obscure language features and to determine that
features forbidden by coding standards are not used.

NOTE Consistency in coding is desirable for each of review and maintenance. Therefore, the desirability of
the particular alternatives chosen for inclusion in a coding standard is not expected to be empirically proven.

To avoid the vulnerability or mitigate its ill effect, organizations can:

— when developing software with critically important requirements, adopt a mechanism to monitor which
language features are correlated with failures during the development process and during deployment;

© ISO/IEC 2024 - All rights reserved
88

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— adopt or develop stereotypical idioms for the use of difficult language features, codify them in
organizational standards, and enforce them via review processes.

6.54.6 Implications for language design and evolution

In future la

removi

nguage design and evolution activities, language designers should consider:

ng or deprecating obscure, difficult to understand, or difficult to use features;

providing language directives that optionally disable obscure language features;

providing precise descriptions of complex features in the language standard;

6.55 Unslecified behaviour [BQF]

6.55.1 De

Language S
a construct
implement
The phrase
must analy

The extern
having uns
is the order

6.55.2 Rel
JSF AV Rule
MISRA C[39
MISRA C++
CERT C Sec

6.55.3 Me|

A develope
behaviour y
always selg
source of p

Many lang

being attentive to ease af use of features

scription of application vulnerability

pecifications do not always uniquely define the behaviour of a construct. When an
that is not uniquely defined is encountered (this can be at anyoficompile, link, o
itions are permitted to choose from the set of behaviours allowed-by the language sp
"unspecified behaviour" is sometimes applied to such behayviours, (language specifi
e and document the terms used by their respective language).

al behaviour of a program whose source code contains one or more instances of|
pecified behaviour cannot be deterministically predicted. A typical example in man)
of evaluation of expressions and statements in the presence of side effects.

ated coding guidelines

s[341: 17, 18, 19, 20, 21, 22, 23, 24, 25
: 1.1, 1.3,19.1, and 20.2

40]; 5-0-1, 5-2-6, 7-2-1, and 16+3-1
ure Coding Standard[41]; MS€15-C

chanism of failure

uses a constructin a context where its behaviour is unspecified and presumes that t
vill be consistently reproduced by the translator. Consistent behaviour depends on th
cting this«wexpected behaviour; the equally valid choice of a different behaviour is
fogranfailure.

hage “constructs can have unspecified behaviour, but unconditionally recommend

instance of
I run time)
ecification.
' guidelines

constructs
 languages

he obtained
b translator
a frequent

ing against

any use of

hese constructs is imprnr‘fir‘a] For instance in many]nngnngpc the order of evalu

htion of the

operands appearing on the left- and right-hand side of an assignment is unspecified, but in most cases the set
of possible behaviours always produce the same result.

The appearance of unspecified behaviour in a language specification is the recognition by the language
designers that in some cases flexibility is needed by software developers, and that it can provide a
worthwhile benefit for language translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence
of machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a
program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce
the same external effect when the program containing them is executed, then rebuilding the program cannot
result in a change of behaviour for that specific usage of the construct.

© ISO/IEC 2024 - All rights reserved
89

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

For instance, while the following assignment statement contains unspecified behaviour in many languages
(that s, it is possible to evaluate either the a or B operand first, followed by the other operand):

A = B;

in most cases the order in which a and B are evaluated does not affect the external behaviour of a program
containing this statement.

6.55.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages whose specification allows a finite set of more
than one behaviour for how a translator handles some construct, where two or more of the behaviours can
result in differences in external program behaviour.

6.55.5 Av«l)iding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— use la:|[guage constructs that have specified behaviour;
ic analysis tools that identify conditions that can result in unspecified behaviour;

— usest

— ensure|that a specific use of a construct having unspecified behaviourptoduces a result that|is the same
for all If the possible behaviours permitted by the language specification;

— for sityiations where the order of evaluation or the number, of-evaluations is unspecified, use only
operatjons with no side-effects, to avoid the vulnerability;

— when developing coding guidelines for a specific language/identify all constructs that have yinspecified
behavipur and, for each construct where the set of possible behaviours can vary, mandpte that all
alterndtives are considered.

6.55.6 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:
— minimizing the amount of unspecified-behaviours;

— minimjzing the number of possible behaviours for any given unspecified choice;

— documgpnting the differencéin’external effect associated with different choices.
6.56 Undefined behayiour [EWF]

6.56.1 Description of application vulnerability

Language specifi¢ations often categorize the behaviour of a language construct as undefined rather than as
a semantic violdtion, that is, an erroneous use of the language. In this case, no specific behaviour|is required
and the translator or runtime system is at liberty to do anything it pleases.

The external behaviour of a program containing an instance of a construct having undefined behaviour, as
defined by the language specification, is not predictable.

6.56.2 Related coding guidelines

JSF AV Rulesl34l: 17, 18, 19, 20, 21, 22, 23, 24, 25
MISRA C[39]: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2
MISRA C++[40]: 2-13-1, 5-2-2, 16-2-4, and 16-2-5

© ISO/IEC 2024 - All rights reserved
90

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding guidelines!*1l: MSC15-C

6.56.3 Mechanism of failure

The behaviour of a program built from successfully translated source code containing a construct having
undefined behaviour is not predictable. For example, in some languages the value of a variable is undefined
before it is initialized. Hence, the behaviour of the program can be surprising to the programmer and the

user and ca

n result in destructive malfunctions.

6.56.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

— langua
langua

— langua

bes that do not fully define the extent to which the use of a particular constructis a vio
be specification;

bes thatdo not fully define the behaviour of constructs during compile, link andprogran

6.56.5 Avo¢iding the vulnerability or mitigating its effects

To avoid th
ensure|

ensure
which 1

NOTE 1
can be

use st

To avoid th

when d
behavi

NOTE 2

impact
exampl

6.56.6 Im

e vulnerability or mitigate its ill effects, software developers can:
that undefined language constructs are not used;
that a use of a construct having undefined behaviour daes not operate within the

he behaviour is undefined;

rformed, as appropriate.

Jte
ic analysis tools that identify conditions that-¢an result in undefined behaviour.

e vulnerability or mitigate its ill effectsj<organizations can:

eveloping coding guidelines for a spécific language, document all constructs that hav
bur.

The items on this list can be'classified by the extent to which the behaviour is likely to have

pn the external behavioup-of'a program (the criticality can vary between different impleme
e, whether conversion betweéen object and function pointers has well defined behaviour).

plications for language design and evolution

In future language design*and evolution activities, language designers should consider:

minim

enume

zing undefined behaviours to the extent possible and practical;

ratingall cases of undefined behaviour;

ation of the

h execution.

domain in

When it is not possible to completely verify the domain of operation during translation, runtime checks

b undefined

tome critical
ntations, for

— provid

behaviour.

6.57 Implementation-defined behaviour [FAB]

6.57.1 Description of application vulnerability

ng mechanisms that permit the disabling or diagnosing of constructs that produce undefined

Language specifications do not always fully define the behaviour of a construct, and thus leave compiler
implementations to decide how the construct will operate. When an instance of a construct that is not
uniquely defined is encountered (this can be at translation, link-time, or during program execution)
implementations are permitted to choose from a set of behaviours. The only difference from unspecified
behaviour is that implementations are required to document how they behave.

© ISO/IEC 2024 - All rights reserved
91

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The behaviour of a program, whose source code contains one or more instances of constructs having

implementation-defined behaviour, can change when the source code is recompiled or relinked.

6.57.2 Related coding guidelines

JSF AV Rules(34]: 17, 18, 19, 20, 21, 22, 23, 24, 25
MISRA C[39]: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2
MISRA C++[40]; 5-2-9, 5-3-3, 7-3-2, and 9-5-1
CERT Secure C coding guidelines[41l: MSC15-C

ISO/IEC TR 15942:2000,59
Ada Quality and Style Guidelll: 7.1

6.57.3 Mejchanism of failure

A developer uses a construct in a way that depends on a particular implementation-defined
occurring. The behaviour of a program containing such a usage is dependent onthe translator u
it always sqglecting the expected behaviour.

Some imple¢mentations provide a mechanism for changing an implementation's implementat

behaviour
ted to build

jon-defined

behaviour (for example, use of pragma in source code). Use of such a chiange mechanism creates the potential

for additionjal human error if a developer is unaware that a change of'behaviour was requested e
source cod¢ and writes code that depends on the implementation-defined behaviour that occur

that explici

Some lang
against an)
significant
N, for ident]
characters

The appea
language d
translators

6.57.4 Ap
This vulnery

langua
relianc

langua

change of behaviour.

¥ use of these constructs can be impractiéal> For instance, in many languages the
characters in an identifier is implementation-defined. In this case, enforcing a maxi
ifiers project-wide and using only translators that distinguish the identifiers based
will resolve the problem.

rance of implementation-defined behaviour in a language specification is recogni
bsigners that in some cases implémentation flexibility provides a worthwhile benefit fi
this usage is not a defect-in the language.

plicable language characteristics
ability is intended-to be applicable to languages with the following characteristics:

bes whose specification allows some variation in how a translator handles some const
e on oneform of this variation can result in differences in external program behaviou

bes (Whose implementations are not required to provide a mechanism for

hrlier in the
ed prior to

lage constructs have implementation-defined behaviour, but unconditionally recpmmending

number of
um length,
n at least N

rion by the
br language

ruct, where
r;

controlling

implen

entation-defined behaviour.

6.57.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— document the set of implementation-defined features an application depends upon, so that upon a change
of translator, development tools, or target configuration, it can be ensured that those dependencies are
still met;

— ensure that a specific use of a construct having implementation-defined behaviour produces an external
behaviour that is the same for all of the possible behaviours permitted by the language specification;

© ISO/IEC 2024 - All rights reserved
92

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

subset

ISO/IEC 24772-1:2024(en)

of all implementation-defined behaviours;

defined behaviour is changed within the current file;

use a language implementation whose implementation-defined behaviours are within an acceptable

create highly visible documentation (perhaps at the start of a source file) that the defaultimplementation-

when developing coding guidelines for the use of constructs that have implementation-defined behaviour,

disallow all uses in which the variations of possible behaviours can produce undesirable results;

6.57.6 Implications for language design and evolution

In future la

provid
enume

provid
define

6.58 Dep1

6.58.1 De

Most langu
Languages
of these feg
there is alw
security pr
messages |
years to dg
features ug
remove the
future vuly
that the de
features ar

6.58.2 Rel
JSF AV Ruld
MISRA C[39
MISRA C++

ng a list of implementation-defined behaviours for portability guidelines for a specifi
rating all cases of implementation-defined behaviour;

ng language directives that optionally disable language features that\.have imple
| behaviours.

recated language features [MEM]

scription of application vulnerability

ages evolve over time. Sometimes new features are added making other features ¢

tures indicates that there is a better way of acecomplishing the desired functionalit
rays a time lag between the acknowledgement that a particular feature is the source
pblems, the decision to remove or replace,the feature, and the generation of warnin
y compilers that the feature should no€be used. Given that software systems can
velop, it is possible and even likely that a language standard will change causing 5
ed to be suddenly deprecated. Mddifying the software can be costly and time co
deprecated features. However, if*the schedule and resources permit, this would be
erabilities can result from leaving the deprecated features in the code. Ultimately
brecated features will be.reguired to be removed from the code when the deprecate
e removed during a langtiage revision.

ated coding guidelines

s[34]: 8 and 11

: 1.1 and-42

40]; 1-0-1, 2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2

verify code behaviour using at least two different compilers with two different technologies.

c language;

mentation-

bxtraneous.

have some features that are frequently the basis forsecurity or safety problems. The dleprecation

y. However,
of safety or
gs or error
take many
ome of the
hsuming to
prudent as
it is likely
d language

y and Stvle Gunidelll: 71 subsection “Ohsolescent Features”

Ada Qualit

6.58.3 Me

chanism of failure

Ideally all code conforms to the current standard for the respective language. In reality however, a language
standard can change during the creation of a software system or suitable compilers and development
environments are still unavailable for the new standard for some period of time after the standard is
published. To smooth the process of evolution, features that are no longer needed or which serve as the
root cause of or contributing factor for safety or security problems are often deprecated to temporarily
allow their continued use, but also to indicate that those features are planned for removal in the future. The
deprecation of a feature is a strong indication from the language architects that it should not be used. Other
features, although not formally deprecated, are rarely used and there exist other more common ways of

© ISO/IEC 2024 - All rights reserved
93

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

expressing the same function. Use of such features can lead to problems when others are assigned the task
of debugging or modifying the code containing those features.

6.58.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— all languages that have standards, though some only have de facto standards;

— alllanguages that evolve over time and as such can potentially have deprecated features at some point.

6.58.5 Avoiding the vulnerability or mitigating its effects

To avoid th

adhere
availab

avoid t

6.58.6 Im

use mulltiple compilers and other static analysis tools to help identify and eliminate’deprecat

stay abreast of language discussions in language user groups and standards groups.

P vulnerability or mitigate 1ts 11l effects, software developers can:

to the latest published standard for which a suitable compiler and developmeut'env
le;

he use of deprecated features of the language;

plications for language design and evolution

In futurel

— removing obscure language features for which there are commonly used alternatives;

vulner
coding

provid
6.59 Cong

6.59.1 De

A vulnerab
lack of som
sufficient
has been s
thread ori
thread(s) tc
or exceptio

removing language features that have routinely beén found to be the root cause of safety

\lijsibility or awareness into the execution of the activated thread to determine if the

guage design and evolution activities, language designers should consider the follow

hbilities, or that are routinely disallowed>in software guidance documents or proj
standards;

ng language mechanisms that optionally disable deprecated language features.
urrency - Activation [CGA]

scription of application-vulnerability

lity can occur if anjattempt has been made to activate a thread, but a programming ¢
e resource prevents the activation from completing. It is possible that the activating t

ccessful{Fhe unrecognized activation failure can cause a protocol failure in thg

otherthreads that rely upon some action by a not yet activated thread. This can caus

wait forever for some event from the not yet activated thread, or can cause an unha
h ifvthe other threads.

ronment is

pd features;

ing items:

or security

lect-specific

error or the
hread lacks
e activation

activating
e the other
ndled event

6.59.2 Related coding guidelines

CWEIZl; 364. Signal Handler Race Condition

See also Hoare,[11] Holzmann,[14] Larsen, Peterson, and Wang,[34] Guide to using the Ravenscar Tasking
Profile in high integrity systems, ISO/IEC TR 24718, and the specification of the Ravenscar tasking profile
specified in ISO/IEC 8652:2023, D.13.

© ISO/IEC 2024 - All rights reserved
94

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.59.3 Mechanism of Failure

The context of the problem is that thread activation occurs for all threads except the main thread by program
steps of another thread. The activation of each thread requires that dedicated resources be created for that
thread, such as a thread stack, thread attributes, and communication ports.

If all activation in a program is static activation, static analysis can determine exactly how many threads will
be created and how much resource, in terms of memory, processors, CPU cycles, priority ranges and inter-
thread communication structures, will be needed by the executing program before the program begins. If
the activation of any thread in the program is dynamic activation, then runtime queries are required to
determine if all threads successfully started.

If insufficient resources remaln when the actlvatlon attempt is made the activation w1ll fa11 Slmllarly, if
there is a progrs : ecHth : - - causes it to
AAWVhen static

fresources
psults of an
ration from

notified of

activation flailures (if the particular construct or capability supports activation failure notificatipn) and can
be progranjmed to take alternate action. If notification occurs but alternaté.action is not programmed, then
the program will execute erroneously. If the activating thread is loosély) coupled with one or njore not yet

wait indefi
incomplete

Activation
paradigm

reads, and the activating thread does not receive notification of a failure to activate
hitely for the not yet activated thread to do its work oriean make wrong calculations
data.

pf a single thread is a special case of activatiofis of collections of threads simultang

create anonpymous threads to execute each slice of datarIn such situations, the activating thread

to individu
the activati

If the rest
algorithm d
or incorrec

6.59.4 Ap

This vulnery
to languag
or Window

h1ly monitor each activated thread, so a failure of some to activate without explicit no
g thread can result in erroneous calculations.

olrthe application is unaware that ai'activation has failed, an incorrect execution of the

an occur, such as deadlock of threads waiting for the activated thread, or possibly cau
L calculations.

plicable language characteristics

ability is intendedto be applicable to languages that permit concurrency within the 1
bs that use support libraries and operating systems [such as POSIX (see ISO/IEC/
s®3)] that provide concurrency control mechanisms. In essence, all traditional la

fully functional operating systems (such as POSIX-compliant OS or Windows) can access the (

mechanism

S.

then it can
because of

ously. This

activation of collections of threads) can be used in languages that parallelise calcullations and

is unlikely
Fification to

application
sing errors

hnguage, or
EEE 9945)
hguages on
S-provided

6.59.5 Avg¢iding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

always check error return codes on operating system commands, library provided or language thread

activation mechanisms before processing any other parameters or attempting to access any activated
threads;

handle

use static analysis tools to verify that return codes are checked;

errors and exceptions that occur on activation;

3)

Windows® is the trademark of a product supplied by Microsoft. This information is given for the convenience of users

of this document and does not constitute an endorsement by ISO or IEC of the product named. Equivalent products may
be used if they can be shown to lead to the same results.

© ISO/IEC 2024 - All rights reserved
95

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— create explicit synchronization protocols, to ensure that all activations have occurred before beginning

the par

allel algorithm, if not provided by the language or by the threading subsystem;

use programming language provided features or thread-library provided features that couple the

activated thread with the activating thread to detect activation errors so that errors can be reported
and recovery can be made;

guaran

tee correct activation of threads.

6.59.6 Implications for language design and evolution

In future la

nguage design and evolution activities, language designers should consider:

use static thread activation in preference to dynamic thread activation so that static analysis can

includi

— provid
6.60 Cong

6.60.1 De

This discus
of prematu

A directed

thread itse
(that is, hoy
Immediate

When a thy
error situa

hg automatic synchronization of thread initiation as part of the concurrency model;

ng a mechanism permitting query of activation success.
urrency - Directed termination [CGT]

scription of application vulnerability

sjon is associated with the effects of unsuccessful or late termination of a thread. For 4
e termination, see 6.62 “Concurrency - Premature termination [CGS]".

fermination request is asynchronous if it comes from anether thread, or synchronous
f. The effect of the abort request (such as whether itis treated as an exception) and its
v long the thread continues to execute before it js'shut down) depend on language-sp
shutdown minimizes latency but can leave shared data structures in a corrupted stat

ead is working cooperatively with other threads and is directed to terminate, there
Fions that can lead to compromise of the'sSystem. Error situations arise when the t¢

directing thread requests that another thread abart, but the to-be-terminated thread:

isnot i

ignore;
takes

In any casg

n a state such that the termination‘can occur;
the direction to terminate;or
nger to terminate than(istolerable to the application.

, in most systems, a:thread will not terminate until it is next scheduled for execution.

Unexpectedly delayed termination or the consumption of resources by the termination itself

failure to n

6.60.2 Rel

eet deadlines; which, in turn, can lead to other failures.

ated eoding guidelines

discussion

if from the
immediacy
pcific rules.
.

are several
brmination-

fan cause a

CWELZ: 36

t+Signal Handler Race Condition

See also Hoare,[l1] Holzmann, [14]. Larsen, Peterson, and Wang,[3¢] and the Ravenscar Tasking Profile,
specified in ISO/IEC 8652:2023, D.13, “The Guide to using the Ravenscar tasking profile”, specified in

ISO/IECTR

6.60.3 Me

24718.

chanism of failure

The abort of a thread does not happen because a thread is in an abort-deferred region and does not leave
that region (for whatever reason) after the abort directive is given. Similarly, if abort is implemented as an
event sent to a thread, and if the thread is permitted to ignore such events, and it does so, then the abort will
not be obeyed.

© ISO/IEC 2024 - All rights reserved
96

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The termination of a thread often does not happen if the thread ignores the directive to terminate, or if the
finalization of the thread to be terminated does not complete.

If the termination directing thread continues, using the false assumption that termination has completed, then

arbitrary failure can occur, up to and including unbounded behaviours, see 6.56 “Undefined behaviour [EWF]

6.60.4 Applicable language characteristics

”

This vulnerability is intended to be applicable to all languages that permit concurrency within the language,
or support libraries and operating systems (such as POSIX-compliant or Windows operating systems) that
provide hooks for concurrency control. In essence, all traditional languages on fully functional operating
systems (such as POSIX-compliant OS or Windows) can access the OS-provided mechanisms.

6.60.5 Av«l)iding the vulnerability or mitigating its effect

To avoid th

use mdq
termin

NOTE
relation

provid

handle
where

where

6.60.6 Im

In future |
providing 3
entity that

6.61 Conc

6.61.1 De

Concurreng
to occur, qu
data visiblg
out-of-orde
livelock, or

e vulnerability or mitigate its ill effects, software developers can:

chanisms of the language or system to determine that aborted threads(r threads
hte have successfully terminated;

These mechanisms include direct communication, runtime-level |echecks, explicit
ships, or progress counters in shared communication code to verify progress.

e mechanisms to detect and/or recover from failed termination;

use static analysis techniques, such as CSP or model-checking%o'show that thread terminat

d;
hppropriate, use scheduling models where threadssmnever terminate;

bossible, avoid using forced termination.

plications for language design and eyolution

anguage design and evolution activities, programming language designers shou
mechanism (either a language mechanism or a service call) to signal either another t
an be queried by other threads when a thread terminates.

urrent data access [CGX]

scription of application vulnerability

y presents a-significant challenge to program correctly and has many possible ways
ite a few-known attack vectors, and many possible but undiscovered attack vectors. I
from_ntere than one thread and not protected by a sequential access lock can be cq
r acCesses. This, in turn, can lead to incorrect computation, premature program t

directed to

dependency

on is safely

d consider
hread or an

for failures
particular,
rrupted by
brmination,

system corruption.

6.61.2 Related coding guidelines

CWEIZl;

214. Information Exposure Through Process Environment

362. Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

366. Race Condition Within a Thread

368. Context Switching Race Conditions

413. Improper Resource Locking

© ISO/IEC 2024 - All rights reserved
97

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

764. Multiple Locks of a Critical Resource

765. Multiple Unlocks of a Critical Resource

820. Mi

ssing Synchronization

821. Incorrect Synchronization

See also Burns and Wellings,[2] and Hoare.[11]

6.61.3 Mechanism of failure

Reading and updating shared data directly, i.e., without locking mechanisms, in more than one thread

circumven
rely upon
read or upd
concurrent

6.61.4 Ap

The vulner
sharing, w
facilities sul

6.61.5 Avo¢iding the vulnerability or mitigating its effect

To avoid th

place a

against

use op
synchr
paradi

where
provid

where
6.63 Ld

6.61.6 Im

Ither mechanisms such as timing or other program state to determine if sharedd

use lanlguages and those language features that provide a robust synchronization mechanisn

lated by a thread. Regardless, direct visibility to shared data permits direct access t
ly. Arbitrary behaviour of any kind can result if such actions are not performed atomi

plicable language characteristics

hbility is intended to be applicable to all languages that provide conicurrent executi
hether as part of the language or by use of underlying operation system facilitie
ch as event handlers and interrupt handlers.

e vulnerability or mitigate its ill effects, software deyvelopers can:

1 data in memory accessible to only one thread at a time;

data corruption;

brating system primitives, such asthe POSIX (see ISO/IEC/IEEE 9945) locking pri
pnization, to develop a protocol following the principles of the Adaprotected orava sy
Pms;

o

order of access is important for correctness, implement blocking and releasing pa

facilities for atomie.access exist, use such mechanisms to prevent simultaneous acce
ck protocol errors [CGM]).

plications/for' language design and evolution

In future |

— forlan

guage-design and evolution activities, language designers should consider:

uages that do not presently consider concurrency, creating primitives thatlet applicat

regionsof Sequentiat access to data;

NOTE

as one

anisms but

lata can be
p such data
cally.

n and data

5, including

h to protect

mitives, for
nchronized

radigms, or

e a testin the same protécted region to check for correct order and generate errors if the test fails;

ss (see also

ons specify

Mechanisms such as protected regions, Hoare monitors or synchronous message passing between
threads result in significantly fewer resource access mistakes in a program.

of the models that are known to have safe properties. For examples, see Einarsson.[8]

© ISO/IEC 2024 - All rights reserved
98

providing the possibility of selecting alternative concurrency models that support static analysis, such

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

6.62 Conc

ISO/IEC 24772-1:2024(en)

urrency - Premature termination [CGS]

6.62.1 Description of application vulnerability

When a thread is working cooperatively with other threads and terminates prematurely for whatever
reason but unknown to other threads, then the portion of the interaction protocol between the terminated

thread and

other threads is damaged. This can result in:

was synchronous;

other threads receiving wrong or incomplete results if the interaction was asynchronous;

indefinite blocking of the other threads as they wait for the terminated thread if the interaction protocol

deadlo
compu

6.62.2 Rel
CWEIZl: 36

See also 1}
ISO/IEC 86

6.62.3 Me

There are 4
multithrea

termination of a thread include:

the tern
commu

the fin
waiting
finalizg
notific

removy
in oute

If a thread
sense of w§
leftin a loc
the termind

rk—if =t other threads—weredepemding upor theterminmatedthread for someasp
fation before continuing.

ated coding guidelines
. Signal Handler Race Condition

loare,[l1] Larsen, Peterson, and Wang,[36] "The Ravenscar Tasking Profile", s
2:2023, D.13, Guide to using the Ravenscar tasking profile, specifiéd in ISO/IEC TR 2

chanism of failure

| number of steps in the termination of a thread as listed below. However, dependir
ling model, some steps can be combined, explicitlyprogrammed, or missing. The s

mination of programmed execution of the thread, including termination of any s}
nication;

lization of the local objects of the thread;

b for any threads that depend on the thread to terminate;

tion of any state associated.with dependent threads;

ition that finalization is(cemplete, including possible notification of the activating tas

1l and clean-up of thread control blocks and any state accessible by the thread or by ot
' scopes.

terminates prematurely, threads that depend upon services from the terminated thi
iting exclisively for a specific action before continuing) can wait forever since held 1
ked state-resulting in waiting threads never being released or messages or events exy
itedthread will never be received.

pct of their

pecified in
1718.

g upon the
teps in the

ynchronous

-

)

her threads

ead (in the
bcks can be
ected from

If a thread

pppndc an the fprminnfing thread and receives notification of termination bhut the

dependent

thread ignores the termination notification, then a protocol failure will occur in the dependent thread. For
asynchronous termination events, an unexpected event can cause immediate transfer of control from the
execution of the dependent thread to another (possible unknown) location, resulting in corrupted objects or
resources; or can cause termination in the master thread, which can also cause the failure to propagate to
child threads.

These cond

itions can result in:

— premature shutdown of the system;

— corruption or arbitrary execution of code;

livelock;

© ISO/IEC 2024 - All rights reserved
99

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

deadlock;

depending on how other threads handle the termination errors.

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can
be done within the aborted thread to prepare data for return to the master thread, except possibly the
management thread (or operating system) notifying other threads that the event occurred. If the aborted
thread was holding resources or performing active updates when aborted, then any direct access by other
threads to such locks, resources or memory can result in corruption of those threads or of the complete
system, up to and including arbitrary code execution.

Static analysis techniques, specifically model checking, can be used to statically verify several concurrency

properties,

including correct data access and termination protocols.

6.62.4 Ap

This vulnet
support lib

plicable language characteristics

ability is intended to be applicable to languages that permit concurrency within‘the 1
raries and operating systems that provide hooks for concurrency control.

6.62.5 Avoiding the vulnerability or mitigating its effect

To avoid th

use corj

at appr]
still op

NOTE
relation

handle

provid
or abor

use sta

6.62.6 Im

e vulnerability or mitigate its ill effects, software developers can;

currency mechanisms that are known to be robust;

if possible, avoid forcing immediate termination externally;

opriate times use mechanisms of the language or system to determine that necessary
erating;

Such mechanisms can be direct comniunication, runtime-level checks, explicit
ships, or progress counters in shared commuugication code to verify progress.

events and exceptions resulting from:termination;

e manager threads to monitor progress and to organize and recover from improper te
tions of threads;

fic analysis techniques, such-as model checking, to show that thread termination is safé

plications for language design and evolution

In future language design @nd evolution activities, language designers should consider:

provid
code. S

provid

ng a mechianism to preclude the abort of a thread from another thread during critig
bme languages (for example, Ada or Real-Time Java) provide a notion of an abort-defer

ng'amechanism to signal another thread (or an entity that can be queried by other thr

hnguage, or

threads are

dependency

rminations

ly handled.

al pieces of
red region;

eads) when

a threadterminates;

or asynchronous transfers of control.

6.63 Lock protocol errors [CGM]

6.63.1 Description of application vulnerability

Concurrent programs use protocols to control:

— the way that threads interact with each other,

— howto

schedule the relative rates of progress,

© ISO/IEC 2024 - All rights reserved
100

providing a mechanism that, within critical pieces of code, defers the delivery of asynchronous exceptions

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

the pre

ISO/IEC 24772-1:2024(en)

how threads participate in the generation and consumption of data,

the allocation of threads to the various roles,

servation of data integrity,

the detection and correction of incorrect operations.

When protocols are not correct, or when a vulnerability lets an exploit destroy a protocol, then the

concurrent

portions fail to work co-operatively and the system behaves incorrectly.

»

This vulnerability is related to 6.61 Concurrent data access [CGX]”, which discusses situations where the
protocol to control access to resources is explicitly visible to the participating partners and makes use of
visible shared resources. In comparison, this vulnerability examines scenarios where such resources are

protected h

6.63.2 Rel
CWEIZl:
413. Iny
414. Mi
609.D
667. Im
821.In
833. D¢

See also 1
ISO/IEC 86

6.63.3 Me

Threads us|
effect comy
not followe
These erro

deliber
disrupf
errors

errors

y protocols and considers ways that the protocol itself can be misused.

ated coding guidelines

proper Resource Locking
ssing Lock Check

uble Checked Locking
proper Locking

correct Synchronization
adlock

Hoare, 111 Larsen, Peterson, and Wangg#36l "the Ravenscar Tasking Profile", s
h2:2023, D.13 and the Guide to using the:Ravenscar tasking profile, specified in ISO/IE

chanism of failure

hunication with each other{ Protocol errors occur when the expected rules for co-op
d, or when the order of logk acquisitions and release causes the threads to quit workil
's can be as a result of?

ate termination-of one or more threads participating in the protocol;
ion of messages or interactions in the protocol;
pbr exceptions raised in threads participating in the protocol;

ntheprogramming of one or more threads participating in the protocol.

pecified in
" TR 24718.

e locks and protocols to schedule their work, control access to resources, exchange dlata, and to

eration are
g together.

In such situations, there are a number of possible consequences:

from another thread, and no further progress in the system is made;

the other portions, no further progress in the system is made;

data can be corrupted or lack currency (timeliness);

protocol in an unrecoverable state.

© ISO/IEC 2024 - All rights reserved
101

deadlock, where some sets (possibly all) of threads eventually stop computing as they wait for results

livelock, where one or more threads commandeer all of the computing resource and effectively lock out

one or more threads detect an error associated with the protocol and terminate prematurely, leaving the

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The potential damage from attacks on protocols depends upon the nature of the system using the protocol
and the protocol itself. Self-contained systems using private protocols can be disrupted, but it is highly
unlikely that predetermined executions (including arbitrary code execution) can be obtained. On the
other extreme, threads communicating openly between systems using well-documented protocols can
be disrupted in any arbitrary fashion with effects such as the destruction of system resources (such as a
database), the generation of wrong but plausible data, or arbitrary code execution. In fact, many documented
client-server-based attacks consist of some abuse of a protocol such as SQL transactions.

6.63.4 Applicable language characteristics

The vulnerability is intended to be applicable to languages with the following characteristics:

langua

ges that support concurrency directly;

langua
langua

langua

bes that permit calls to operating system primitives to obtain concurrent behaviours;
bes that permit 10 or other interaction with external devices or services;

bes that support interrupt handling directly or indirectly (via the operating/system).

6.63.5 Av¢iding the vulnerability or mitigating its effect

To avoid th

considg
protoc

conside
regions
which

shown

whens
mecha
Watchg

use hig

design
availab

use mo
where

place a
of mulf

e vulnerability or mitigate its ill effects, software developers can:

r the use of synchronous protocols, such as defined by CSP;Petri Nets or by the Ada

br the use of simple asynchronous protocols that exeliisively use concurrent threads an
, such as defined by the Ravenscar Tasking Profile (see ISO/IEC 9899 and ISO/IEC
ran also be shown statically to have correct:behaviour using model checking tech
by Asplund and Lundqvist;[38]

fatic verification is not possible, considetthe use of detection and recovery techniques u
nisms and protocols that can be verified independently from the main concurrency en
log timers coupled with checkpoints constitute one such approach;

h-level synchronization paradigims, for example monitors, rendezvous, or critical reg

the architecture of the application to ensure that some threads or tasks never block,
le for detection of coneutrency error conditions and for recovery initiation;

del checkers to niodel the concurrent behaviour of the complete application and ched
progress fails;

1 locks and’releases in the same subprograms, and ensure that the order of locking ar
iple locks is correct;

gle processor, make use of a scheduling regime based on ceiling protocols with delays

rendezvous

bl since these can be statically shown to be free from protocol errors such as deadlock and livelock;

d protected
TR 24718),
hologies, as

sing simple
vironment.

ons;

and can be

k for states

d releasing

prohibited

the cor

onasi
while Jrioritv is elevated; this is guaranteed to be deadlock free (if the tasks and resources a|

rect priorities);

group as a separate process;

verified).

6.63.6 Implications for language design and evolution

In future la

— raising

nguage design and evolution activities, language designers should consider:

the level of abstraction for concurrency services;

© ISO/IEC 2024 - All rights reserved
102

fre assigned

for multicore systems, consider assigning all interacting tasks to the same CPU then treat each such

minimize the use of dynamic priorities and dynamic ceiling priorities (so that the static values can be

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— designing concurrency services that help to avoid typical failures such as deadlock;

— providing services or mechanisms to detect and recover from protocol lock failures.

6.64 Reliance on external format strings [SHL]

6.64.1 Description of application vulnerability

Many languages use format string to control how output is generated or input acquired. If the contents of
the format string can be influenced by external data, there is an opportunity for an attacker to gain access
to what was intended to be private data, to execute arbitrary code, or to cause resource exhaustion or buffer

overrun. Even without an attacker, mistakes in format strings can cause serious program errors.

6.64.2 Related coding guidelines

CWEIZl; 134. Uncontrolled Format String

6.64.3 Mejchanism of failure

Format strings are parameters of input or output functions. They consist of fixed.text and contro

that are ag
displayed o
There are s
1) Foran
orach
format|
contro
of the Y
ina 6 d
malicid
2) As the
format
can the

As the
if the f
values

3)

4) Format
by the
the out
numbe

If the f

r loaded.
everal mechanisms relating to format strings that can leadto safety and security pro

output function, the format string controls what is written to an output channel (file
hracter buffer. In the latter case, particularly therevs the possibility of buffer overru
string causes data to be written beyond the end.of the buffer. In most languages that
using format strings, it is possible for controhsequences in the format string to cont

haracter field, padding with spaces if necessary). If the size of the target field is acc
usly increased (say to $6000d) at runtime, then buffer overrun or resource exhaustio

format string controls what is written to an output channel, if an attacker can i
string, then they can control what is written to a buffer, including executable code. If t
n cause corruption of the program stack, it becomes possible to execute this code.

ormat string is interpreted at run-time and expects to find a parameter for each contr
pbrmat string has maere-control sequences than supplied parameters, it is likely tha
will be read off the.stack. This can lead to values being output that can leak sensitive i

strings are able’to modify data values passed for output, with the result that value
hpplicatiopcan be arbitrarily changed, with serious consequences for applications th:
put. Again; using C-based languages as an example, the ¢n control sequence mean|
I of chatacters output so far by this function to the value pointed to by the associated
inetion is intended to output the value of an object whose address is supplied by a j

|

| sequences

sociated with other parameters of the function, and which eontrol how the parameters are

blems.

or printer)
h, when the
provide 1/0
rol the size

ralue written (e.g. the control sequence $6d\n C-based languages means write an integer value

dentally or
can occur.

luence the
he attacker

1 sequence,
r additional
hformation.

5 generated
it rely upon
s write the
parameter.
ointer, and

the cor

trol’'sequence ¢n is added to apply to the object, then the object is not output but is

modified to

the number of bytes output so far.

5)

The programmer rarely intends for a format string to be user controlled. However, this weakness

frequently occurs in code that reads log messages from a file. Such messages can safely be output using
a format string that is interpreted as "output a string", but it is not unknown for the programmer to omit
the format string and use the message to be output as the format string, expecting it to consist solely
of literal text. If the message has been corrupted so that it includes control sequences, any of the issues

mentio

ned in 1) to 4) above can occur.

6.64.4 Applicable language characteristics

This vulnerability is intended to be applicable to languages that support format strings for input/output

functions.

© ISO/IEC 2024 - All rights reserved
103

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.64.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

and that the proper number of arguments is always sent to that function;

ensure

never let a non-static text string be output as the format string;

all control sequences used to format I/0 match the associated parameter.

ensure that all format string functions are passed as static string which cannot be controlled by the user

always supply an expected format string, even if it is the apparently redundant "write a string";

6.64.6 Im

In future 1
ensure that

6.65 Mod

6.65.1 De

Many prog}

lications for langlmgp dpqign and evolution

hnguage design and evolution activities, language designers should consider-mec
all format strings are verified to be correct in regard to the associated arguments’or

ifying constants [U]JO]

scription of application vulnerability

qualificatign assists in static verification and optimization of the code, 'and hence is very useful.

However, s
semantics {
behaviour.

6.65.2 Rel
CERT C Sec
MISRA C[39
MISRA C++

6.65.3 Me

In code rey
constant dg
the languag
bound of a

hen range from legitimate and deterministic behaviour to implementation-defined o
Dften, the alterations are performed by means of jindirection.

ated coding guidelines

ure Coding Standard!41l: DCL52-CPP, ES:50, EXP 40-C, EXP55-CPP, EXP05-C
:11.8

40]: 5.2.5, 7-1-1, 9-3-3

chanism of failure

iews and manual code inspections, users tend to rely on the belief that an entity deq
es not change its(value during the execution of the program (regardless of the exact s
e). The initializing value is taken to be its value throughout the execution. For exampl
ring buffer«array can be declared as a constant. If, however, the value can be chan

the executipn, the bélief in immutability can be falsified. In the example, after changing the u

constant, ir
the constar

sufficiently large buffer allocations or out-of-bounds buffer accesses, seemingly chec
t upper bound, can occur.

hanisms to
arameters.

ramming languages allow the user to specify some declared entity to be constant. The constant

bme of these languages allow alteration of the value of.this entity in some cases affter all. The

- undefined

lared to be
emantics of
e, the upper
ged during
bper-bound
ked against

Even the w

..........................

s based on

the known initial value of the constant entity. Optimization constant propagation can replace uses of the
constant by its initializing value. The alteration of the value at run-time then has no effect on this use of
the constant, while it changes other uses of the constant where constant propagation did not take place.
Moreover, different compilers or even the same compiler under different switch setting can optimize
different uses of the constant differently, leading to non-deterministic executions that often result in
dangerous malfunctions.

The vulnerability can be exploited if the modification of constants is known to the attacker and the code that
modifies the constant can be triggered by the attacker.

The vulnerability can be difficult to detect if levels of indirection are involved in the modification of the

constant.

© ISO/IEC 2024 - All rights reserved
104

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.65.4 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

— languages that allow the specification of an entity to be constant and, at the same time, legitimize or
tolerate changes of its value.

6.65.5 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

qualify entities that are not changed within their scope as constants;

prohib

prohib
consta

6.65.6 Im

t r‘hnnging the value of entities declared to be constant;

t creating references or pointers to entities declared to be constant since thisinclu
hts as actual parameters by reference, unless immutability of the formal parameter is

use stafic analysis tools that detect the alteration of constant entities.

plications for language design and evolution

In future language design and evolution activities, language designers shotld Consider:

avoidin

g language constructs that allow the modification of constant entities;

— ensuringthatthe property tobeimmutable cannotbe changed by:language operations such as

or cony

7 Appli

ersion.

cation vulnerabilities

7.1 Genegral

This clause
in a numbe
decisions n
these vulng

a sumn
— typical
technic

These vuln
independer
such as ISO|

provides descriptions of selected application vulnerabilities which have been found ar
- of applications and which have-well known mitigation techniques, and which result f
nade by coders in the absence“of suitable language library routines or other mech
rabilities, each description(provides:

nary of the vulnerability;
mechanisms of failure;
ues that programmers can use to avoid the vulnerability.

brabilities)are application-related rather than language-related. They are written in
t manmner, and consequently there are no corresponding sections in the language-sp
[EC-24772-2 for Ada and ISO/IEC 24772-3 for C.

les passing
ensured;

assignment

d exploited
rom design
inisms. For

h language-
ecific parts,

7.2 Unrestricted file upload [CBF]

7.2.1 Description of application vulnerability

A first step often used in an attack is to get an executable developed by the attacker loaded on the system
under attack. Then the attack determines how to execute this code. Many times, this first step is accomplished
by unrestricted file upload. In many of these attacks, the malicious code can obtain the same privilege of
access as the application, or even administrator privilege.

7.2.2 Related coding guidelines

CWEIZl: 434, Unrestricted Upload of File with Dangerous Type

© ISO/IEC 2024 - All rights reserved
105

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

7.2.3 Me

There are s

upload

7.2.4 Av¢iding the vulnerability or mitigating its effects

To avoid th
allow g
disallo
useau
check
NOTE 1

that the
deal wi

and thg

require
is used

removsg
ASCII g

setalixg
lengths

setupp

attacky.

NOTE 2

3 | - | £ -
Creatingatrentarot service;

use a dedicated location, which does not have execution privileges, to store and validate upl

ISO/IEC 24772-1:2024(en)

chanism of failure

everal failures associated with an uploaded file:

executing arbitrary code;

phishing page added to a website;
defacing a website;

creating a vulnerability for other attacks;

browsing the file system;

ng a malicious executable to a server, which can be executed with administratorpriv

e vulnerability or mitigate its ill effects, software developers can:
nly certain file extensions;
v certain file extensions;
Lility to check the type of the file;
he content-type in the header information of all file§that are uploaded;
The purpose of the content-type field is to describle the data contained in the body compl

receiving agent can pick an appropriate agent or mechanism to present the data to the user,
h the data in an appropriate manner.

n serve these files dynamically;

a unique file extension (named-by the application developer), so only the intended tyy
for further processing. Eachupload facility of an application can handle a unique file

all non-American Standard Code for Information Interchange (ASCII) Unicode charac
ontrol charactersl4] from the filename and its extension;

hit for the filenamejlength; including the file extension within the range of the minima
set by ISO/IEC\9660;

er and lowerlimits on file size. Setting these limits can help to prevent or weaken deni

Al of the above have some shortcomings, for example, a GIF (.gif) file’s free-form com

ilege.

btely enough
br otherwise

oaded files,
e of the file
Lype;

ters and all
ly accepted

h] of service

ment field is

not alw

ys'amenable to a sanity check of the file’s contents. An attacker can hide code in a file segm

ent that will

still be executed by the application or server. In many cases, it will take a combination of the techniques from the

above li

st to avoid this vulnerability.

7.3 Download of code without integrity check [DLB]

7.3.1 Description of application vulnerability

Some applications download source code or executables from a remote, and implicitly trusted, location (such
as the application author) and use the source code or invoke the executables without sufficiently verifying
the integrity of the downloaded files.

© ISO/IEC 2024 - All rights reserved
106

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

7.3.2 Rel

ISO/IEC 24772-1:2024(en)

ated coding guidelines

CWEIZl: 494. Download of Code Without Integrity Check

7.3.3

Mechanism of failure

An attacker can execute malicious code by compromising the host server used to download code or
executables, performing DNS spoofing, or modifying the code in transit.

7.3.4 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— perforin proper forward and reverse DNS Tookups to detect DNS spoofing. Encrypt the_d

reliablg

NOTE 1
site ori

use av
make t

NOTE 2
transm

if prov

crypto
signaty

7.4 Exec

7.4.1 De

Executing
cause an af

7.4.2 Rel
CWEIZI;
114. Pr|
306.M
CERT C Sec

7.4.3 Me

 encryption scheme before transmission;

This is only a partial solution since it will not prevent target code from being modjfied o]
h transit.

etted library or framework that does not allow this weakness to occurorprovides con
his weakness easier to avoid;

Specifically, it can be helpful to use tools or frameworks to‘perform integrity ched
tted code.

ding code that is intended to be downloaded, such as for automatic updates of softwa
braphic signatures for the code and document that dewnload clients are required t
res.

uting or loading untrusted code [XYS]

scription of application vulnerability

fommands or loading libraries freman untrusted source or in an untrusted envir
plication to execute malicious comimands (and payloads) on behalf of an attacker.

ated coding guidelines

pcess Control
ssing Authentication for Critical Function

ure Coding'Standard[41l: PRE09-C, ENV02-C, and ENV03-C

chanism of failure

ode with a

the hosting

structs that

king on the

re, then use
b verify the

nment can

Process control vulnerabilities take two forms:

what the command is;

controls what the command means.

an attacker can change the command that the program executes so that the attacker explicitly controls

an attacker can change the environment in which the command executes so that the attacker implicitly

Considering only the first scenario, that is, the possibility that an attacker can control the command that is

executed, p

rocess control vulnerabilities occur when:

— data enters the application from a source that is not trusted;

© ISO/IEC 2024 - All rights reserved
107

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— the data are used as or as part of a string representing a command that is executed by the application;

— by executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

7.4.4 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

ensure that libraries that are loaded are well understood and come from a trusted source with a digital

signature, since the application can execute code contained in native libraries, which often contain calls
that are susceptible to other security problems, such as buffer overflows or command injection;

validat

determ

11 3 Ll 4
dll TIdtIvUe 11T d1ricy,

ine ifthe application requires the use of the native library since it can be very difficultt

what these libraries actually do, and the potential for malicious code is high;

validat

ifthen
the liby

NOTE
7.5 Incly

7.5.1 De

e all input to native calls for content and length to help prevent buffer overflow attacl

htive library does not come from a trusted source, review the source-code of the librar
ary from the reviewed source before using it.

Rebuilding from source code can require escrow on the source ¢ode for proprietary softwj
ision of functionality from untrusted control spheré [DHU]

scription of application vulnerability

The softw
is unknow
unexpected

7.5.2 Rel

CWEIZl:
98. Imyj
829.In

7.5.3 Me

When inclul
software e
can be mal
in transit fj

re imports, requires, or includes executable functionality (such as a library) from a
to the user, unexpected or otherwise. Any“call or use of the included functionally c
behaviour, up to and including arbitrary-éxecution.

ated coding guidelines

roper Control of Filename\for Include/Require Statement in PHP Program ('PHP File

Clusion of Functionality from Untrusted Control Sphere

chanism of failure

ding third“party functionality, such as a web widget, library, or other source of functi
fectively trusts that functionality. Without sufficient protection mechanisms, the fy
jcious’in nature (either by coming from an untrusted source, being spoofed, or beir
ory atrusted source). The functionality can also contain its own weaknesses or gra

additional

determine

s

)

y and build

are.

source that
hn result in

nclusion')

onality, the
nctionality
g modified
Nt access to

as systems

nnrfinnn]ify and state information that was intended to be kppf private to the base s
tate information, sensitive application data, or the DOM of a web application.

ystem, such

This can lead to many different consequences depending on the included functionality, but some examples
include injection of malware, information exposure by granting excessive privileges or permissions to the
untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware.

7.5.4 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— use a vetted library or framework that does not allow this weakness to occur or provide constructs that
make this weakness easier to avoid;

© ISO/IEC 2024 - All rights reserved
108

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— when the set of acceptable objects, such as filenames or URLSs, is limited or known, create a mapping from
aset of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs;

for any security checks that are performed on the client side, ensure that these checks are duplicated on
the server side, in order to avoid CWE-602[Z] as described in 7.14 "Authentication logic error [XZ0]", 7.7
"Cross-site scripting [XYT]", and 7.9 "Injection [RST]".

7.6 Use of unchecked data from an uncontrolled or tainted source [EFS]

7.6.1 Description of application vulnerability

This vulnerability covers a general class of behaviours, the identification of which is referred to as "taint

analysis".

Whenever g program gets data from an external source, there is a possibility that that data-cauldl have been

tampered

ith by an attacker attempting to induce the program into performing some damagin

could have peen corrupted accidently leading to the same result. Such data are called "tairited".

The gener
acceptable
therefore s

principle is that before tainted data are used, checks are completedo ‘ensure they
bounds or have an appropriate structure. Otherwise, they can be-accepted as unt
hfe to use.

7.6.2 Related coding guidelines
No codjng guidelines apply.
7.6.3 Mechanism of failure

The princip

use of 1

use of 1

use of t

al mechanisms of failure are:
he data in an arithmetic expression, causing the one of the problems described in Claj
he data in a call to a function that exécutes a system command;

he data in a call to a function thatestablishes a communications connection.

7.6.4 Avo¢iding the vulnerability or mitigating its effects

To avoid th

NOTE1 D
are to be usd

test po
overflo

checki

e vulnerability or mitigate its ill effects, software developers can:

ifferent mechanismg of failure require different mitigations, which also depend on how the
d.

fentially tainted data used in an arithmetic expression to ensure that it does not cause
w, divide by zero or buffer overflow;

hteger data used to allocate memory or other resources to ensure that the size of the i

won't

use resource exhaustion;

g action, or

are within
hinted, and

tainted data

arithmetic

Integer data

structure.

NOTE 2

This vulnerability is described as "data from an uncontrolled source", to create a distinct

check strings passed to system functions to ensure that they are well formed and have an expected

ion between

data from outside the program that is still trustworthy and data that comes from a source that can credibly be

modifie

NOTE 3

d by an attacker, or otherwise corrupted.

Data read from a file is usually regarded as trustworthy (untainted) if the file is read-only and inside
a firewall, but potentially tainted if it is from a more generally accessible location. See 7.22 “Missing required
cryptographic step [XZS]".

© ISO/IEC 2024 - All rights reserved
109

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.7 Cross-site scripting [XYT]

7.7.1 Description of application vulnerability

Cross-site scripting (XSS) occurs when dynamically generated web pages display input, such as login
information that is not properly validated, allowing an attacker to embed malicious scripts into the
generated page and then execute the script on the machine of any user that views the site. If successful,
cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies, create requests that can
be mistaken for those of a valid user, compromise confidential information, or execute malicious code on the

end user sy

stems for a variety of nefarious purposes.

7.7.2 Related coding guidelines

CWELZI;

79. Failure to Preserve Web Page Structure ('Cross-site Scripting')

80. Fai

81. Failure to Sanitize Directives in an Error Message Web Page

82. Fai
83. Fai
84. Fai

85. Doubled Character XSS Manipulations

86. Inv
87. Alte

7.7.3 Me

Cross-site s
code, genef
output, it g¢
sends the a
do things t
malicious p

XSS attacky
where the
log, and so
as in an en
a form, the
browser. T]

ure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)

ure to Sanitize Script in Attributes of IMG Tags in a Web Page
ure to Sanitize Script in Attributes in a Web Page

ure to Resolve Encoded URI Schemes in a Web Page

hlid Characters in Identifiers

rnate XSS Syntax

chanism of failure

cripting (XSS) vulnerabilities occur when an attacker uses a web application to sen
ally JavaScript, to a different*end user. When a web application uses input from a
bnerates without filtering ity an attacker can insert an attack in that input and the web
ftack to other users. Thé end user trusts the web application, and the attacks exploit {]
hat would not normally, be allowed. Attackers frequently use a variety of methods to
ortion of the tag, stich as using Unicode, so the request looks less suspicious to the us

can generally be' categorized into two categories: stored and reflected. Stored attack
njected code-is permanently stored on the target servers in a database, message fo1
forth. Reflécted attacks are those where the injected code takes another route to the y
ail message, or on some other server. When a user is tricked into clicking a link or
injeécted code travels to the vulnerable web server, which reflects the attack back t
ne.browser then executes the code because it came from a "trusted" server. For a re

d malicious
user in the
application
hat trust to
encode the
3

(s are those
um, visitor
rictim, such
submitting
b the user's
flected XSS

attack to w

ork, the victim 1s tricked 1nto submitting the attack to the server. This 1s still a very

dangerous

attack given the number of possible ways to trick a victim into submitting such a malicious request, including
clicking a link on a malicious Website, in an email, or in an inter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to
avoid them in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of
these vulnerabilities can be found using scanners, and some exist in older web application servers. The
consequence of an XSS attack is the same regardless of whether it is stored or reflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end
user that range in severity from an annoyance to complete account compromise. The most severe XSS attacks
involve disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take

© ISO/IEC 2024 - All rights reserved
110

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

over their account. Other damaging attacks include the disclosure of end user files, installation of Trojan

horse programs, redirecting the user to some other page or site, and modifying presentation of c

Cross-site scripting (XSS) vulnerabilities occur when:

included in dynamic content that is sent to a web user without being validated for malicious

ontent.

data enters a Web application through an untrusted source, most frequently a web request. The data are

code;

— themalicious content sent to the web browser often takes the form of a segment of JavaScript, but can also
include HTML, Flash or any other type of code that the browser executes. The variety of attacks based
on XSS is almost limitless, but they commonly include transmitting private data like cookies or other

session information to the attacker, redirecting the victim to web content controlled by the

attacker, or

performing other malicious operations on the user's machine under the guise of the vulnerable site.

Cross-site gcripting attacks can occur wherever an untrusted user has the ability to publish\g
trusted wepsite. Typically, a malicious user will craft a client-side script, which — when parse
browser —[performs some activity (such as sending all site cookies to a given e-mail address). If
unchecked,| this script will be loaded and run by each user visiting the website. Since the site re
run the scrjipt has access to the cookies in question, the malicious script does also/There are sd
possible atfacks, such as running “Active X” controls from sites that a user perceives as trustwoj
theft is however by far the most common. All of these attacks are easily prevented by ensuring th
tags — or fpr good measure, HTML tags at all — are allowed in data to be poSted publicly.

Specific instances of XSS include the following.

ontent to a
d by a web
the input is
questing to
veral other
thy; cookie
at no script

"Basic'|XSSinvolvesa complete lack of cleansing of any special characters, including the most fyndamental

ents such as “<”, “>”, and “s”.

A web dleveloper displays input on an error page (such ag-acustomized 403 Forbidden page). If
can influence a victim to view/request a web page that causes an error, then the attack can bg

A Web ppplication that trusts input in the form of HTML IMG tags is potentially vulnerable to 2
Attackers can embed XSS exploits into the values for IMG attributes (such as SRC) that is st
then executed in a victim's browser. Whensthe page is loaded into a user's browser, the
automatically execute.

The software does not filter “JavaScript™ or other URI's (Uniform Resource Identifier) from

es within tags, such as onmeuseover, onload, onerror, O style.
The web application fails to filter input for executable script disguised with URI encodings.

The we
charac

b application fails\to filter input for executable script disguised using doubling of t
fers.

The so
identif

ftware does'not strip out invalid characters in the middle of tag names, schemes
ers, whichare still rendered by some web browsers that ignore the characters.

The sof

tware fails to filter alternate script syntax provided by the attacker.

an attacker
successful.

(SS attacks.
eamed and
exploit will

dangerous

he involved

and other

Cross-site

2 dus 44] 1 loodt 211 1ias 1]
CTIPUITs dttdLRS L4all ULLUL dlly WIITTIT UIdU PUSSIULY IIIdIILIUUS USTI S 4T dllUW

d to post

unregulated material to a trusted website for the consumption of other valid users. The most common
example can be found in bulletin-board websites that provide web-based mailing list-style functionality.
The most common attack performed with cross-site scripting involves the disclosure of information stored
in user cookies. In some circumstances, it can be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

7.7.4 Avoiding the vulnerability or mitigating its effects
To avoid the vulnerability or mitigate its ill effects, software developers can:

— carefully check each input parameter against a rigorous positive specification (inclusion-list) defining
the specific characters and format allowed;

© ISO/IEC 2024 - All rights reserved
111

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

— sanitize all input, not just parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL (Uniform Resource Locator) itself, etc.;

NOTE
expecte

A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are

d to be redisplayed by the site.

— validate all parts of the HTTP (Hypertext Transfer Protocol) request, including fields that were not
expected to have changed in the client or fields that were anticipated for future growth;

7.8 URL

where the base system is a SQL database, follow the recommendations of 7.9 Injection [RST].

redirection to untrusted site ("open redirect") [PYQ]

7.8.1 De

A web appl
link in a red

7.8.2 Rel
CWEIZ] 601

7.8.3 Me

An http pa
specified U
scam and s
phishing at

7.8.4 Avo¢iding the vulnerability or mitigating its effects

To avoid th
assumsg

usq
stn
eit
thd

scription of application vulnerability

cation accepts a user-controlled input that specifies a link to an external site, and thg
irect without checking that the URL points to a trusted location. This simplifies‘phish

ated coding guidelines

. URL Redirection to Untrusted Site ("Open Redirect")

chanism of failure

rameter can contain a URL value and cause the web application to redirect the reg
RL. By modifying the URL value to a malicious site, an attacker can successfully launc
teal user credentials. Since the server name in the-thodified link is identical to the
tempts have a more trustworthy appearance.

e vulnerability or mitigate its ill effects, software developers can:
 all input is malicious and take appropriate action, including:

e an acknowledged input validation strategy such as an inclusion list of acceptable
ictly conform to specifications;

her reject any input that does not strictly conform to specifications or transform it intg
t does;

av
an

ust
tha

id relying exclusively on searching for malicious or malformed inputs (for example, da
exclusion list);

e exclusion lists for detecting potential attacks or determining which inputs are so
t they,are rejected outright;

3

n uses that

ing attacks.

uest to the
a phishing
iginal site,

inputs that

something

notrely on

malformed

consider all potentially relevant properties, including length, type of input, the full range of acceptable

values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules.

NOTE

characters, but it is not valid if a colour such as red or blue was expected.

© ISO/IEC 2024 - All rights reserved
112

As an example of business rule logic, boat can be syntactically valid because it only contains alphanumeric

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

7.9

ISO/IEC 24772-1:2024(en)

Injection [RST]

7.9.1 Description of application vulnerability

Injection problems span a wide range of instantiations. The basic form of this weakness involves the
software allowing injection of additional data in input data to alter the control flow of the process. Command
injection problems are a subset of injection problems, in which the process can be tricked into calling
external processes of an attacker’s choice through the injection of command syntax into the input data.
Multiple leading/internal/trailing special elements injected into an application through input can be used
to compromise a system. As data are parsed, multiple leading special elements that are improperly handled
can cause the process to take unexpected actions that result in an attack. Software that is not programmed
to identify the situation can allow the 1n]ect10n of spec1al elements that are non-typical but equivalent to

typical spegis

itself again
file thatis I
an applicat

Many injec
and usefulr
to a remotgq
of a given ¢
of data intq
writing. Of

SQL injecti
into input t

5t spec1a1 element 1n]ect10n Slmllarly, software can allow 1nputs to be fed dlrectly int
dter processed as code, such as a library file or template. Line or section delimiters’i1
on can be used to compromise a system.

ion attacks involve the disclosure of important information — in termsyof/both data
ess in further exploitation. In some cases, injectable code controls authentication, wh
vulnerability. Injection attacks are characterized by the ability to Sighificantly chan
rocess, and in some cases, to the execution of arbitrary code. Data injection attacks
grity in nearly all cases as the control-plane data injected is dlways incidental to d3
en the actions performed by injected control code are not lggged.

bn attacks are a common instantiation of injection attack; in which SQL commands ¢

data, loss

SQL commands are used to check usernames and passwords) it is possible to connect to a systemn

confidentiality is a frequent problem with SQL injéction vulnerabilities. If poorly in

protected
an output

O
jected into

sensitivity
ch can lead
ge the flow
lead to loss
ta recall or

ire injected

b effect the execution of predefined SQL commands.,Sin¢e SQL databases generally holld sensitive

hplemented
as another

user with njp previous knowledge of the password. If autherization information is held in a SQL daftabase, this

information can be changed through the successful exploitation of the SQL injection vulnerabili

is possible
with a SQL

Injection p
important |
of control (
by sending
and many
only for th
terms of bo
authenticat

7.9.2 Rel
CWEIZI

injection attack.

ssue to note is that all injectionproblems share one common trait — they allow for t
lata into the user-controllediddta. This means that the execution of the process carn
code in through legitimate’data channels, using no other mechanism. While buffe
bther flaws involve the.uise of some further issue to gain execution, injection pro
e data to be parsedsMany injection attacks involve the disclosure of important infq
th data sensitivity~aid usefulness in further exploitation. In some cases, injectable co
ion, which can{ead to a remote vulnerability.

ated coding guidelines

74. Failureto Sanitize Data into a Different Plane ("Injection™)

roblems encompass a wide variety~of issues — all mitigated in very different wayj.

Ly. Just as it

Fo read sensitive information, it is also pessible to make changes or even delete this information

The most
he injection
be altered
- overflows
blems need
rmation in
de controls

76. Fail

ure to Resolve Equivalent Special Elements into a Different Plane

78. Failure to Sanitize Data into an OS Command (aka "OS Command Injection")

89: Improper Neutralization of Special Elements used in an SQL Command ("SQL Injection")

90. Failure to Sanitize Data into LDAP Queries (aka "LDAP Injection")

91. XML Injection (aka Blind XPath Injection)

92. Cus

tom Special Character Injection

95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka "Eval Injection")

© ISO/IEC 2024 - All rights reserved
113

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

97. Failure to Sanitize Server-Side Includes (SSI) Within a Web Page

98. Insufficient Control of Filename for Include/Require Statement in PHP Program (aka "PHP File

Inclusi

99. Ins

on")

ufficient Control of Resource Identifiers (aka "Resource Injection")

14.4. Failure to Sanitize Line Delimiters

145. Failure to Sanitize Section Delimiters

161. Failure to Sanitize Multiple Leading Special Elements

163. Failure to Sanitize Multiple Trailing Special Elements

165. Fafilure to Sanitize Multiple Internal Special Elements

166. Fdilure to Handle Missing Special Element

167. Fa

168. Fdlilure to Resolve Inconsistent Special Elements
564. S(
CERT C Sec

7.9.3

A softward

as system(

execute comnmands with the elevated privileges of the,executing process. Command injection is

problem w
If a malicio
beginning
pleases.

Dynamical

command injection attacks. An attacker-can insert operating system commands or modifiers
input that ¢

and lead to
attacker ca

There are f

The first sc

Me

data en

lure to Handle Additional Special Element

)L Injection: Hibernate

ure Coding Standard[41l: FI030-C

chanism of failure

system that accepts and executes input in the form of operating system comm

, exec(), open()) can allow an attacker with lesser privileges than the target {

th wrapper programs. Often, parts of the;command to be run are controllable by t
s user injects a character (such as a semi-colon) that delimits the end of one commj
fanother, he/she can then insert an entirely new and unrelated command to do what

y generating operating system-commands that include user input as parameters
an cause the request to/behave in an unsafe manner. Such vulnerabilities can be very

h execute any command on the system the application has the privilege to access.

ment in which the command executes (the attacker implicitly controls what the commj
bnario where an attacker explicitly controls the command that is executed can occur w

tets the application from an untrusted source;

ands (such
oftware to
a common
e end user.
ind and the
bver he/she

ran lead to
in the user
dangerous

data and system compromise. If no validation of the parameter to the exec command exists, an

wo forms of command injection vulnerabilities. An attacker can change the commajnd that the
program executes (the attacker explicitly controls what the command is). Alternatively, an attacker
the environ

can change
ind means).
hen:

— the data are part of a string that is executed as a command by the application;

— by executing the command, the application gives an attacker a privilege or capability that the attacker

would n

ot otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a function (such as eva1) that
dynamically evaluates and executes the input as code, usually in the same interpreted language that the
product uses. Eval injection is prevalent in handler/dispatch procedures that can invoke a large number of
functions, or set a large number of variables.

A PHP file inclusion occurs when a PHP product uses require or include statements, or equivalent
statements, that use attacker-controlled data to identify code or HTML (HyperText Markup Language) to be
directly processed by the PHP interpreter before inclusion in the script.

© ISO/IEC 2024 - All rights reserved
114

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

A resource injection issue occurs when the following two conditions are met:

— an attacker can specify the identifier used to access a system resource, for example specifying part of the

name of a file to be opened or a port number to be used;

by specifying the resource, the attacker gains a capability that would not otherwise be
For example, the program can give the attacker the ability to overwrite the specified file,
configuration controlled by the attacker, or transmit sensitive information to a third-party s

NOTE Resource injection that involves resources stored on the file system goes by the

permitted.
run with a
erver.

name path

manipulation and is reported in separate category. See 7.11 “Path Traversal [EWR]” for further details of this
vulnerability. Allowing user input to control resource identifiers can enable an attacker to access or modify

otherwise protected system resources.

Line or sedtion delimiters injected into an application can be used to compromise a system., |
parsed, an injected/absent/malformed delimiter can cause the process to take unexpected acfion
in an attack. One example of a section delimiter is the boundary string in a multipart MIME (M

Internet Mgil Extensions) message. In many cases, doubled line delimiters can serve as asection

\s data are
t that result
Liltipurpose
delimiter.

7.9.4 Avo¢iding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

— assumg all input is malicious and use an appropriate combination of.exclusion lists and inclufion lists to
ensurelonly valid, expected and appropriate input is processed by.the system;

— narrowly define the set of safe characters based on the expected values of the parameter in the request;

— anticippte that delimiters and special elements would Be)ihjected/removed/manipulated in the input
vectorg of their software system and program appropriate mechanisms to handle them;

— implenjent SQL strings using prepared statements thiat bind variables;

— use vigorous inclusion-list style checking on any user input that can be used in a SQL commalnd;

NOTE Rather than escape meta-characters, it is safest to disallow them entirely since the latef use of data
that haye been entered in the database capneglect to escape meta-characters before use.

— follow |the principle of least privilege when creating user accounts to a SQL database, $ince if the
requir¢ments of the system indicate that users are permitted to read and modify their own data, then
limit tHeir privileges so they eannot read/write others’ data;

— assign permissions to the software system that prevents the user from accessing/opening privileged files;

— restrudture code so_that there is not a need to use the eval () utility.

7.10 Unquoted search path or element [XZQ]

7.10.1 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary

commands.

7.10.2 Related coding guidelines
CWEIZl: 428. Unquoted Search Path or Element
CERT C Secure Coding Standard[#1l: ENV04-C

© ISO/IEC 2024 - All rights reserved
115

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

7.10.3 Me

ISO/IEC 24772-1:2024(en)

chanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing
white-spaces in identifiers, an attacker can potentially execute arbitrary commands. This vulnerability
covers “c:\Program Files” and space-in-search-path issues. Theoretically, this can apply to any operating

system, especially ones that make it easy for spaces to be in filenames or folders names.

7.10.4 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects by examining strings that are to be
interpreted to ensure that they do not contain constructs designed to exploit the system, such as separators.

7.11 Path

7.11.1 De

The softwg
sequence s
symbolic li
attacker ca

7.11.2 Rel

CWEIZI;
22. Imy
24. Pat
25. Pat
26. Pat
27. Pat
28. Pat
29. Pat
30. Pat
31. Pat
32. Pat
33. Pat
34. Pat

traversal [F\AID}

scription of application vulnerability

re constructs a path that contains relative traversal sequence such as

«w n

or an ab

solute path

ich as “/path/here.” Attackers run the software in a particular directory\so'that the hard link or
1k used by the software accesses a file that the attacker has under theit eontrol. In do

h escalate their privilege level to that of the running process.

ated coding guidelines

roper limitation of a pathname to a restricted direetory (Path Traversal)

h Traversal: - “../filedir’

h Traversal: /../filedir’

h Traversal: ‘/dir/../filename’
 Traversal: ‘dir/../../filename’
h Traversal: ‘.\filedir’

h Traversal: ‘\.\filenameg’

h Traversal: ‘\dir\..\filename’
h Traversal: ‘dir\.;\v\filename’
h Traversal;“\" (Triple Dot)

h Traversal: "..." (Multiple Dot)

h Traversal: '...//'

ng this, the

35. Path Traversal: ".../...//"

37. Path Traversal:

‘/absolute/pathname/here’

38. Path Traversal: ‘ \absolute\pathname\here’

39. Path Traversal: 'C:dirname’

40. Path Traversal: "\\UNC\share\name\ (Windows UNC Share)

61. UNIX®4 Symbolic Link (Symlink) Following

4) UNIX® is a registered trademark of the Open Group. This information is given for the convenience of users of this

document and does not constitute an endorsement by ISO or IEC of this product.

© ISO/IEC 2024 - All rights reserved
116

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

62. UNIX Hard Link
64. Windows Shortcut Following (.LNK)
65. Windows Hard Link

CERT C Secure Coding Standard[#1l: FI002-C

7.11.3 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path traversal. In t
attacker alters the path being used by the software to point to a location that the attacker has c

he first, the
ontrol over.

Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path

A3 ot il 4 1 | L. 4+ |
ULldAUIVUIT UIIdl LIITU dUUAdURUT UUTOS TIdVO CULILTUT' UVUTL.

points to a

For instance, a software system that accepts input in the form of:
.. \fils
N\ i
/direct
directg
.. \fils
N\ i
\direct
directg

name, ;
enme ;
ory/../filename;
ry/../../filename;
name ;

ename';
ory\..\filename;
ry\..\..\filename;
e (m
Lo/
AN

ultiple dots)

/

without ap

Note that .

can be use

bropriate validation can allow an attacker to trayerse the file system to access an ar
.7 is ignored if the current working directory, is the root directory. Some of these {

to cause problems for systems that strip 6t ..’ from input in an attempt to rem

path traverjsal.

There are

veral common ways that an attacker:ean point a file access to a file the attacker has

control. A Joftware system that accepts inputSuch as /absolute/pathname/here Or \absolute
here without appropriate validation can also allow an attacker to traverse the file system to
locations of access arbitrary files. An attacker can inject a drive letter or Windows volume letter
into a software system to potentially fedirect access to an unintended location or arbitrary file.
system thaf accepts input in the fotm'of a backslash absolute path without appropriate validatio
an attacker to traverse the file system to unintended locations or access arbitrary files. An a
inject a Windows UNC [Universal (or Uniform) Naming Convention] share (\\UNC\share\name)
software system to potentially redirect access to an unintended location or arbitrary file. A softw
that allows| POSIX (see ISO/IEC/IEEE 9945) symbolic links (symlink) as part of paths whether
code or thrpugh user/input can allow an attacker to spoof the symbolic link and traverse the fil
unintended locatiofis)or access arbitrary files. The symbolic link can permit an attacker to reg
corrupt a flle thatthey originally did not have permissions to access. The failure of a system t
hard links [can. ‘result in vulnerability to different types of attacks. For example, an attacker ¢

bitrary file.
nput forms
bve relative

under their
\pathname\
unintended
C:dirname)
A software
in can allow
ttacker can

into a
rare system
in internal
e system to
d, write or
o check for
an escalate
nsitive file,

their privilgges if he/she can replace a file used by a privileged program with a hard link to a se

for example, /etc/passwd. When the process opens the file, the attacker can assume the privileges of that

process.

A software system that allows Windows shortcuts (.Ink) as part of paths whether in internal code or through

user input can allow an attacker to spoof the symbolic link and traverse the file system to

unintended

locations or access arbitrary files. The shortcut (file with the .1nk extension) can permit an attacker to read

or write a file that they originally did not have permissions to access.

The failure of a system to check for hard links can result in vulnerability to different types of attacks. For
example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program

with a hard link to a sensitive file (such as etc/passwd). When the process opens the file, the a

ttacker can

assume the privileges of that process or possibly prevent a program from accurately processing data in a

software system.

© ISO/IEC 2024 - All rights reserved
117

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

nn

A sanitizing mechanism can remove characters such as "." and ";" which can be required for some exploits.
An attacker can try to fool the sanitizing mechanism 1nto “cleaning” data into a dangerous form. Suppose
the attacker injects a "." inside a filename (e.g. sensi.tiveFrile) and the sanitizing mechanism removes the
character resulting in the valid filename, sensitiveFrile. If the input data are now assumed to be safe, then
the file can be compromised.

When two or more users, or a group of users, have write permission to a directory, the potential for sharing
and deception is far greater than it is for shared access to a few files. The vulnerabilities that result from
malicious restructuring via hard and symbolic links suggest that it is best to avoid shared directories.

Securely creating temporary files in a shared directory is error-prone and dependent on the version of the
runtime library used, the operating system, and the file system. Code that works for a locally mounted file
system, for example, can be vulnerable when used in combination with a remotely mounted file system.

Mitigate by|converting relative paths into absolute paths and then verifying that the resulting aljsolute path
makes senge with respect to the configuration and rights or permissions. This can include cheekinlg inclusion-
lists and exclusion lists, authorized super user status, access control lists, or other fully trusted status.

7.11.4 Avo¢iding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

assumg all inputis malicious, as attackers can insert paths into input vectors and traverse theffile system;

use an
input is

appropriate combination of exclusion lists and inclusion lists to ensure only valid ar
processed by the system;

d expected

use sarlj

NOTE 1
system

compa
NOTE 2
file owt]
then us
follow

deny a

ensure

restrict

itizers to scrub input for sensitive programs and ensure that sanitizers work properl

« n

For example, a sanitizer can remove “.” Or “
pddress.

ata string beginning, but not in the middle

e multiple attributes of the file requested®oimprove the likelihood that the file is the ex
Files can often be identified by otherattributes in addition to the file name, for example, b

ership or creation time. Information\regarding a file that has been created and closed can b

bd later to validate the identity of.the file when it is reopened.

the principle of least privilége when assigning access rights to files;

cess to a file to prevent an attacker from replacing that file with a link to a sensitive f

good compartméntalization in the system to provide protected areas that can be tru

the use of shared directories; prefer files pulled from configuration management sys

Y

bf a valid file

pected one;

y comparing
e stored and

ile;
bted;

tems;

disallov tempgrary file creation in shared directories.

7.12 Resgurce names [HTS]

7.12.1 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software
executes is very common. Differences in the conventions used by operating systems can result in significant
changes in behaviour when the same program is executed under different operating systems. For instance,
the directory structure, permissible characters, case sensitivity, and so forth can vary among operating
systems and even among variations of the same operating system For example, Windows prohibits “/~,
“&”, M\, AR S “#7 and “%” but POSIX-based operating systems (see
ISO/IEC/IEEE 9945) allow any character except for the reserved character "/" to be used in a filename.

wo n w., " A // 74 AN ‘ n

© ISO/IEC 2024 - All rights reserved
118

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Some operating systems are case sensitive while others are not. On non-case sensitive operating systems,
depending on the software being used, the same filename can be displayed, as filename, Filename oOr
r1LENAME and all would refer to the same file.

Some operating systems, particularly older ones, only rely on the significance of the first n characters of
the file name. n can be unexpectedly small, such as the first 8 characters in the case of Win16 architectures
which would cause filenamel, filename2 and filename3 to all map to the same file filename.

Variations in the filename, named resource or external identifier being referenced can be the basis for
various kinds of problems. Such mistakes or ambiguity can be unintentional, or intentional, and in either
case they can be potentially exploited, if surreptitious behaviour is a goal.

7.12.2 Related coding guidelines

JSF AV Rule

MISRA C[39:

CERT C Sec

7.12.3 Me

The wrong
resource th
access of a

7.12.4 Av¢iding the vulnerability or mitigating its effects

To avoid th

where
extern

analys¢
the ana

ensure
the int
directa
exist af

avoid c
platfor

avoid ¢

s[34]: 46, 51, 53, 54, 55, and 56
1.1
ure Coding Standard[41l: MSC09-C and MSC10-C

chanism of Failure

named resource, such as a file, can be used within a program.in.d form that provideg
at was not intended to be accessed. Attackers can exploit this situation to intentionall
hamed resource to another named resource.

e vulnerability or mitigate its ill effects, softwaré.developers can:

possible, use an API that provides a known,common set of conventions for naming an
il resources, such as POSIX (see ISO/IEC/IEEE 9945);

e the range of intended target systems;'develop a suitable API for dealing with them, an
lysis;

that programs adapt their behaviour to the platform on which they are executing, {

bnded resources are accessed, so that the means that information on such characteri
ry separator string and.hethods of accessing parent directories are parameterized
fixed strings within.a program;

reating resource names that are longer than the guaranteed unique length of all pote
ns;

reating resources, which are differentiated only by the case in their names;

avoid

as docyniented in the ASCII Codes Table.[4]

!

I nan-ASCII Unicode characters and all ASCII control characters in filenames and the

access to a
y misdirect

d accessing

H document

o that only
stics as the
and do not

ntial target

extensions,

7.13 Resource exhaustion [XZP]

7.13.1 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that can
potentially exhaust limited resources, such as memory, file system storage, database connection pool
entries, or CPU. This can ultimately lead to a denial of service that can prevent any other applications from
accessing these resources.

© ISO/IEC 2024 - All rights reserved
119

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	3.1 Communication
	3.2 Execution model
	3.3 Properties
	3.4 Safety and security
	3.5 Vulnerabilities
	3.6 Specific vulnerabilities

	4 Using this document
	4.1 Purpose of this document
	4.2 Applying this document
	4.3 Structure of this document

	5 General vulnerability issues and primary avoidance mechanisms
	5.1 General vulnerability issues
	5.1.1 Predictable execution
	5.1.2 Sources of unpredictability in language specification
	5.1.3 Sources of unpredictability in language usage

	5.2 Primary avoidance mechanisms

	6 Programming language vulnerabilities
	6.1 General
	6.2 Type system [IHN]
	6.2.1 Description of application vulnerability
	6.2.2 Related coding guidelines
	6.2.3 Mechanism of failure
	6.2.4 Applicable language characteristics
	6.2.5 Avoiding the vulnerability or mitigating its effects
	6.2.6 Implications for language design and evolution

	6.3 Bit representations [STR]
	6.3.1 Description of application vulnerability
	6.3.2 Related coding guidelines
	6.3.3 Mechanism of failure
	6.3.4 Applicable language characteristics
	6.3.5 Avoiding the vulnerability or mitigating its effects
	6.3.6 Implications for language design and evolution

	6.4 Floating-point arithmetic [PLF]
	6.4.1 Description of application vulnerability
	6.4.2 Related coding guidelines
	6.4.3 Mechanism of failure
	6.4.4 Applicable language characteristics
	6.4.5 Avoiding the vulnerability or mitigating its effects
	6.4.6 Implications for language design and evolution

	6.5 Enumerator issues [CCB]
	6.5.1 Description of application vulnerability
	6.5.2 Related coding guidelines
	6.5.3 Mechanism of failure
	6.5.4 Applicable language Characteristics
	6.5.5 Avoiding the vulnerability or mitigating its effects
	6.5.6 Implications for language design and evolution

	6.6 Conversion errors [FLC]
	6.6.1 Description of application vulnerability
	6.6.2 Related coding guidelines
	6.6.3 Mechanism of failure
	6.6.4 Applicable language characteristics
	6.6.5 Avoiding the vulnerability or mitigating its effects
	6.6.6 Implications for language design and evolution

	6.7 String termination [CJM]
	6.7.1 Description of application vulnerability
	6.7.2 Related coding guidelines
	6.7.3 Mechanism of failure
	6.7.4 Applicable language characteristics
	6.7.5 Avoiding the vulnerability or mitigating its effects
	6.7.6 Implications for language design and evolution

	6.8 Buffer boundary violation (buffer overflow) [HCB]
	6.8.1 Description of application vulnerability
	6.8.2 Related coding guidelines
	6.8.3 Mechanism of failure
	6.8.4 Applicable language characteristics
	6.8.5 Avoiding the vulnerability or mitigating its effects
	6.8.6 Implications for language design and evolution

	6.9 Unchecked array indexing [XYZ]
	6.9.1 Description of application vulnerability
	6.9.2 Related coding guidelines
	6.9.3 Mechanism of failure
	6.9.4 Applicable language characteristics
	6.9.5 Avoiding the vulnerability or mitigating its effects
	6.9.6 Implications for language designers

	6.10 Unchecked array copying [XYW]
	6.10.1 Description of application vulnerability
	6.10.2 Related coding guidelines
	6.10.3 Mechanism of failure
	6.10.4 Applicable language characteristics
	6.10.5 Avoiding the vulnerability or mitigating its effects
	6.10.6 Implications for language design and evolution

	6.11 Pointer type conversions [HFC]
	6.11.1 Description of application vulnerability
	6.11.2 Related coding guidelines
	6.11.3 Mechanism of failure
	6.11.4 Applicable language characteristics
	6.11.5 Avoiding the vulnerability or mitigating its effects
	6.11.6 Implications for language design and evolution

	6.12 Pointer arithmetic [RVG]
	6.12.1 Description of application vulnerability
	6.12.2 Related coding guidelines
	6.12.3 Mechanism of failure
	6.12.4 Applicable language characteristics
	6.12.5 Avoiding the vulnerability or mitigating its effects
	6.12.6 Implications for language design and evolution

	6.13 Null pointer dereference [XYH]
	6.13.1 Description of application vulnerability
	6.13.2 Related coding guidelines
	6.13.3 Mechanism of failure
	6.13.4 Applicable language characteristics
	6.13.5 Avoiding the vulnerability or mitigating its effects
	6.13.6 Implications for language design and evolution

	6.14 Dangling reference to heap [XYK]
	6.14.1 Description of application vulnerability
	6.14.2 Related coding guidelines
	6.14.3 Mechanism of failure
	6.14.4 Applicable language characteristics
	6.14.5 Avoiding the vulnerability or mitigating its effects
	6.14.6 Implications for language design and evolution

	6.15 Arithmetic wrap-around error [FIF]
	6.15.1 Description of application vulnerability
	6.15.2 Related coding guidelines
	6.15.3 Mechanism of failure
	6.15.4 Applicable language characteristics
	6.15.5 Avoiding the vulnerability or mitigating its effects
	6.15.6 Implications for language design and evolution

	6.16 Using shift operations for multiplication and division [PIK]
	6.16.1 Description of application vulnerability
	6.16.2 Related coding guidelines
	6.16.3 Mechanism of failure
	6.16.4 Applicable language characteristics
	6.16.5 Avoiding the vulnerability or mitigating its effects
	6.16.6 Implications for language design and evolution

	6.17 Choice of clear names [NAI]
	6.17.1 Description of application vulnerability
	6.17.2 Related coding guidelines
	6.17.3 Mechanism of Failure
	6.17.4 Applicable language characteristics
	6.17.5 Avoiding the vulnerability or mitigating its effects
	6.17.6 Implications for language design and evolution

	6.18 Dead store [WXQ]
	6.18.1 Description of application vulnerability
	6.18.2 Related coding guidelines
	6.18.3 Mechanism of failure
	6.18.4 Applicable language characteristics
	6.18.5 Avoiding the vulnerability or mitigating its effects
	6.18.6 Implications for language design and evolution

	6.19 Unused variable [YZS]
	6.19.1 Description of application vulnerability
	6.19.2 Related coding guidelines
	6.19.3 Mechanism of failure
	6.19.4 Applicable language characteristics
	6.19.5 Avoiding the vulnerability or mitigating its effects
	6.19.6 Implications for language design and evolution

	6.20 Identifier name reuse [YOW]
	6.20.1 Description of application vulnerability
	6.20.2 Related coding guidelines
	6.20.3 Mechanism of failure
	6.20.4 Applicable language characteristics
	6.20.5 Avoiding the vulnerability or mitigating its effects
	6.20.6 Implications for language design and evolution

	6.21 Namespace issues [BJL]
	6.21.1 Description of application vulnerability
	6.21.2 Related coding guidelines
	6.21.3 Mechanism of Failure
	6.21.4 Applicable language characteristics
	6.21.5 Avoiding the Vulnerability or Mitigating its Effects
	6.21.6 Implications for language design and evolution

	6.22 Missing initialization of variables [LAV]
	6.22.1 Description of application vulnerability
	6.22.2 Related coding guidelines
	6.22.3 Mechanism of failure
	6.22.4 Applicable language characteristics
	6.22.5 Avoiding the vulnerability or mitigating its effects
	6.22.6 Implications for language design and evolution

	6.23 Operator precedence and associativity [JCW]
	6.23.1 Description of application vulnerability
	6.23.2 Related coding guidelines
	6.23.3 Mechanism of failure
	6.23.4 Applicable language characteristics
	6.23.5 Avoiding the vulnerability or mitigating its effects
	6.23.6 Implications for language design and evolution

	6.24 Side-effects and order of evaluation of operands [SAM]
	6.24.1 Description of application vulnerability
	6.24.2 Related coding guidelines
	6.24.3 Mechanism of failure
	6.24.4 Applicable language characteristics
	6.24.5 Avoiding the vulnerability or mitigating its effects
	6.24.6 Implications for language design and evolution

	6.25 Likely incorrect expression [KOA]
	6.25.1 Description of application vulnerability
	6.25.2 Related coding guidelines
	6.25.3 Mechanism of failure
	6.25.4 Applicable language characteristics
	6.25.5 Avoiding the vulnerability or mitigating its effects
	6.25.6 Implications for language design and evolution

	6.26 Dead and deactivated code [XYQ]
	6.26.1 Description of application vulnerability
	6.26.2 Related coding guidelines
	6.26.3 Mechanism of failure
	6.26.4 Applicable language characteristics
	6.26.5 Avoiding the vulnerability or mitigating its effects
	6.26.6 Implications for language design and evolution

	6.27 Switch statements and lack of static analysis [CLL]
	6.27.1 Description of application vulnerability
	6.27.2 Related coding guidelines
	6.27.3 Mechanism of failure
	6.27.4 Applicable language characteristics
	6.27.5 Avoiding the vulnerability or mitigating its effects
	6.27.6 Implications for language design and evolution

	6.28 Non-demarcation of control flow [EOJ]
	6.28.1 Description of application vulnerability
	6.28.2 Related coding guidelines
	6.28.3 Mechanism of failure
	6.28.4 Applicable language characteristics
	6.28.5 Avoiding the vulnerability or mitigating its effects
	6.28.6 Implications for language design and evolution

	6.29 Loop control variable abuse [TEX]
	6.29.1 Description of application vulnerability
	6.29.2 Related coding guidelines
	6.29.3 Mechanism of failure
	6.29.4 Applicable language characteristics
	6.29.5 Avoiding the vulnerability or mitigating its effects
	6.29.6 Implications for language design and evolution

	6.30 Off-by-one error [XZH]
	6.30.1 Description of application vulnerability
	6.30.2 Related coding guidelines
	6.30.3 Mechanism of failure
	6.30.4 Applicable language characteristics
	6.30.5 Avoiding the vulnerability or mitigating its effects
	6.30.6 Implications for language design and evolution

	6.31 Unstructured programming [EWD]
	6.31.1 Description of application vulnerability
	6.31.2 Related coding guidelines
	6.31.3 Mechanism of failure
	6.31.4 Applicable language characteristics
	6.31.5 Avoiding the vulnerability or mitigating its effects
	6.31.6 Implications for language design and evolution

	6.32 Passing parameters and return values [CSJ]
	6.32.1 Description of application vulnerability
	6.32.2 Related coding guidelines
	6.32.3 Mechanism of failure
	6.32.4 Applicable language characteristics
	6.32.5 Avoiding the vulnerability or mitigating its effects
	6.32.6 Implications for language design and evolution

	6.33 Dangling references to stack frames [DCM]
	6.33.1 Description of application vulnerability
	6.33.2 Related coding guidelines
	6.33.3 Mechanism of failure
	6.33.4 Applicable language characteristics
	6.33.5 Avoiding the vulnerability or mitigating its effects
	6.33.6 Implications for language design and evolution

	6.34 Subprogram signature mismatch [OTR]
	6.34.1 Description of application vulnerability
	6.34.2 Related coding guidelines
	6.34.3 Mechanism of failure
	6.34.4 Applicable language characteristics
	6.34.5 Avoiding the vulnerability or mitigating its effects
	6.34.6 Implications for language design and evolution

	6.35 Recursion [GDL]
	6.35.1 Description of application vulnerability
	6.35.2 Related coding guidelines
	6.35.3 Mechanism of failure
	6.35.4 Applicable language characteristics
	6.35.5 Avoiding the vulnerability or mitigating its effects
	6.35.6 Implications for language design and evolution

	6.36 Ignored error status and unhandled exceptions [OYB]
	6.36.1 Description of application vulnerability
	6.36.2 Related coding guidelines
	6.36.3 Mechanism of failure
	6.36.4 Applicable language characteristics
	6.36.5 Avoiding the vulnerability or mitigating its effects
	6.36.6 Implications for language design and evolution

	6.37 Type-breaking reinterpretation of data [AMV]
	6.37.1 Description of application vulnerability
	6.37.2 Related coding guidelines
	6.37.3 Mechanism of failure
	6.37.4 Applicable language characteristics
	6.37.5 Avoiding the vulnerability or mitigating its effects
	6.37.6 Implications for language design and evolution

	6.38 Deep vs. shallow copying [YAN]
	6.38.1 Description of application vulnerability
	6.38.2 Related coding guidelines
	6.38.3 Mechanism of failure
	6.38.4 Applicable language characteristics
	6.38.5 Avoiding the vulnerability or mitigating its effects
	6.38.6 Implications for language design and evolution

	6.39 Memory leaks and heap fragmentation [XYL]
	6.39.1 Description of application vulnerability
	6.39.2 Related coding guidelines
	6.39.3 Mechanism of failure
	6.39.4 Applicable language characteristics
	6.39.5 Avoiding the vulnerability or mitigating its effects
	6.39.6 Implications for language design and evolution

	6.40 Templates and generics [SYM]
	6.40.1 Description of application vulnerability
	6.40.2 Related coding guidelines
	6.40.3 Mechanism of failure
	6.40.4 Applicable language characteristics
	6.40.5 Avoiding the vulnerability or mitigating its effects
	6.40.6 Implications for language design and evolution

	6.41 Inheritance [RIP]
	6.41.1 Description of application vulnerability
	6.41.2 Related coding guidelines
	6.41.3 Mechanism of failure
	6.41.4 Applicable language characteristics
	6.41.5 Avoiding the vulnerability or mitigating its effects
	6.41.6 Implications for language design and evolution

	6.42 Violations of the Liskov substitution principle or the contract model [BLP]
	6.42.1 Description of application vulnerability
	6.42.2 Related coding guidelines
	6.42.3 Mechanism of failure
	6.42.4 Applicable language characteristics
	6.42.5 Avoiding the vulnerability or mitigating its effects
	6.42.6 Implications for language design and evolution

	6.43 Redispatching [PPH]
	6.43.1 Description of application vulnerability
	6.43.2 Related coding guidelines
	6.43.3 Mechanism of failure
	6.43.4 Applicable language characteristics
	6.43.5 Avoiding the vulnerability or mitigating its effects
	6.43.6 Implications for language design and evolution

	6.44 Polymorphic variables [BKK]
	6.44.1 Description of application vulnerability
	6.44.2 Related coding guidelines
	6.44.3 Mechanism of failure
	6.44.4 Applicable language characteristics
	6.44.5 Avoiding the vulnerability or mitigating its effects
	6.44.6 Implications for language design and evolution

	6.45 Extra intrinsics [LRM]
	6.45.1 Description of application vulnerability
	6.45.2 Related coding guidelines
	6.45.3 Mechanism of failure
	6.45.4 Applicable language characteristics
	6.45.5 Avoiding the vulnerability or mitigating its effects
	6.45.6 Implications for language design and evolution

	6.46 Argument passing to library functions [TRJ]
	6.46.1 Description of application vulnerability
	6.46.2 Related coding guidelines
	6.46.3 Mechanism of failure
	6.46.4 Applicable language characteristics
	6.46.5 Avoiding the vulnerability or mitigating its effects
	6.46.6 Implications for language design and evolution

	6.47 Inter-language calling [DJS]
	6.47.1 Description of application vulnerability
	6.47.2 Related coding guidelines
	6.47.3 Mechanism of failure
	6.47.4 Applicable language characteristics
	6.47.5 Avoiding the vulnerability or mitigating its effects
	6.47.6 Implications for language design and evolution

	6.48 Dynamically-linked code and self-modifying code [NYY]
	6.48.1 Description of application vulnerability
	6.48.2 Related coding guidelines
	6.48.3 Mechanism of failure
	6.48.4 Applicable language characteristics
	6.48.5 Avoiding the vulnerability or mitigating its effects
	6.48.6 Implications for language design and evolution

	6.49 Library signature [NSQ]
	6.49.1 Description of application vulnerability
	6.49.2 Related coding guidelines
	6.49.3 Mechanism of failure
	6.49.4 Applicable language characteristics
	6.49.5 Avoiding the vulnerability or mitigating its effects
	6.49.6 Implications for language design and evolution

	6.50 Unanticipated exceptions from library routines [HJW]
	6.50.1 Description of application vulnerability
	6.50.2 Cross reference
	6.50.3 Related coding guidelines
	6.50.4 Applicable language characteristics
	6.50.5 Avoiding the vulnerability or mitigating its effects
	6.50.6 Implications for language design and evolution

	6.51 Pre-processor directives [NMP]
	6.51.1 Description of application vulnerability
	6.51.2 Related coding guidelines
	6.51.3 Mechanism of failure
	6.51.4 Applicable language characteristics
	6.51.5 Avoiding the vulnerability or mitigating its effects
	6.51.6 Implications for language design and evolution

	6.52 Suppression of language-defined run-time checking [MXB]
	6.52.1 Description of application vulnerability
	6.52.2 Related coding guidelines
	6.52.3 Mechanism of Failure
	6.52.4 Applicable language characteristics
	6.52.5 Avoiding the vulnerability
	6.52.6 Implications for language design and evolution

	6.53 Provision of inherently unsafe operations [SKL]
	6.53.1 Description of application vulnerability
	6.53.2 Related coding guidelines
	6.53.3 Mechanism of Failure
	6.53.4 Applicable language characteristics
	6.53.5 Avoiding the vulnerability or mitigating its effect
	6.53.6 Implications for language design and evolution

	6.54 Obscure language features [BRS]
	6.54.1 Description of application vulnerability
	6.54.2 Related coding guidelines
	6.54.3 Mechanism of failure
	6.54.4 Applicable language characteristics
	6.54.5 Avoiding the vulnerability or mitigating its effects
	6.54.6 Implications for language design and evolution

	6.55 Unspecified behaviour [BQF]
	6.55.1 Description of application vulnerability
	6.55.2 Related coding guidelines
	6.55.3 Mechanism of failure
	6.55.4 Applicable language characteristics
	6.55.5 Avoiding the vulnerability or mitigating its effects
	6.55.6 Implications for language design and evolution

	6.56 Undefined behaviour [EWF]
	6.56.1 Description of application vulnerability
	6.56.2 Related coding guidelines
	6.56.3 Mechanism of failure
	6.56.4 Applicable language characteristics
	6.56.5 Avoiding the vulnerability or mitigating its effects
	6.56.6 Implications for language design and evolution

	6.57 Implementation-defined behaviour [FAB]
	6.57.1 Description of application vulnerability
	6.57.2 Related coding guidelines
	6.57.3 Mechanism of failure
	6.57.4 Applicable language characteristics
	6.57.5 Avoiding the vulnerability or mitigating its effects
	6.57.6 Implications for language design and evolution

	6.58 Deprecated language features [MEM]
	6.58.1 Description of application vulnerability
	6.58.2 Related coding guidelines
	6.58.3 Mechanism of failure
	6.58.4 Applicable language characteristics
	6.58.5 Avoiding the vulnerability or mitigating its effects
	6.58.6 Implications for language design and evolution

	6.59 Concurrency – Activation [CGA]
	6.59.1 Description of application vulnerability
	6.59.2 Related coding guidelines
	6.59.3 Mechanism of Failure
	6.59.4 Applicable language characteristics
	6.59.5 Avoiding the vulnerability or mitigating its effects
	6.59.6 Implications for language design and evolution

	6.60 Concurrency – Directed termination [CGT]
	6.60.1 Description of application vulnerability
	6.60.2 Related coding guidelines
	6.60.3 Mechanism of failure
	6.60.4 Applicable language characteristics
	6.60.5 Avoiding the vulnerability or mitigating its effect
	6.60.6 Implications for language design and evolution

	6.61 Concurrent data access [CGX]
	6.61.1 Description of application vulnerability
	6.61.2 Related coding guidelines
	6.61.3 Mechanism of failure
	6.61.4 Applicable language characteristics
	6.61.5 Avoiding the vulnerability or mitigating its effect
	6.61.6 Implications for language design and evolution

	6.62 Concurrency – Premature termination [CGS]
	6.62.1 Description of application vulnerability
	6.62.2 Related coding guidelines
	6.62.3 Mechanism of failure
	6.62.4 Applicable language characteristics
	6.62.5 Avoiding the vulnerability or mitigating its effect
	6.62.6 Implications for language design and evolution

	6.63 Lock protocol errors [CGM]
	6.63.1 Description of application vulnerability
	6.63.2 Related coding guidelines
	6.63.3 Mechanism of failure
	6.63.4 Applicable language characteristics
	6.63.5 Avoiding the vulnerability or mitigating its effect
	6.63.6 Implications for language design and evolution

	6.64 Reliance on external format strings [SHL]
	6.64.1 Description of application vulnerability
	6.64.2 Related coding guidelines
	6.64.3 Mechanism of failure
	6.64.4 Applicable language characteristics
	6.64.5 Avoiding the vulnerability or mitigating its effects
	6.64.6 Implications for language design and evolution

	6.65 Modifying constants [UJO]
	6.65.1 Description of application vulnerability
	6.65.2 Related coding guidelines
	6.65.3 Mechanism of failure
	6.65.4 Applicable language characteristics
	6.65.5 Avoiding the vulnerability or mitigating its effects
	6.65.6 Implications for language design and evolution

	7 Application vulnerabilities
	7.1 General
	7.2 Unrestricted file upload [CBF]
	7.2.1 Description of application vulnerability
	7.2.2 Related coding guidelines
	7.2.3 Mechanism of failure
	7.2.4 Avoiding the vulnerability or mitigating its effects

	7.3 Download of code without integrity check [DLB]
	7.3.1 Description of application vulnerability
	7.3.2 Related coding guidelines
	7.3.3 Mechanism of failure
	7.3.4 Avoiding the vulnerability or mitigating its effects

	7.4 Executing or loading untrusted code [XYS]
	7.4.1 Description of application vulnerability
	7.4.2 Related coding guidelines
	7.4.3 Mechanism of failure
	7.4.4 Avoiding the vulnerability or mitigating its effects

	7.5 Inclusion of functionality from untrusted control sphere [DHU]
	7.5.1 Description of application vulnerability
	7.5.2 Related coding guidelines
	7.5.3 Mechanism of failure
	7.5.4 Avoiding the vulnerability or mitigating its effects

	7.6 Use of unchecked data from an uncontrolled or tainted source [EFS]
	7.6.1 Description of application vulnerability
	7.6.2 Related coding guidelines
	7.6.3 Mechanism of failure
	7.6.4 Avoiding the vulnerability or mitigating its effects

	7.7 Cross-site scripting [XYT]
	7.7.1 Description of application vulnerability
	7.7.2 Related coding guidelines
	7.7.3 Mechanism of failure
	7.7.4 Avoiding the vulnerability or mitigating its effects

	7.8 URL redirection to untrusted site ("open redirect") [PYQ]
	7.8.1 Description of application vulnerability
	7.8.2 Related coding guidelines
	7.8.3 Mechanism of failure
	7.8.4 Avoiding the vulnerability or mitigating its effects

	7.9 Injection [RST]
	7.9.1 Description of application vulnerability
	7.9.2 Related coding guidelines
	7.9.3 Mechanism of failure
	7.9.4 Avoiding the vulnerability or mitigating its effects

	7.10 Unquoted search path or element [XZQ]
	7.10.1 Description of application vulnerability
	7.10.2 Related coding guidelines
	7.10.3 Mechanism of failure
	7.10.4 Avoiding the vulnerability or mitigating its effects

	7.11 Path traversal [EWR]
	7.11.1 Description of application vulnerability
	7.11.2 Related coding guidelines
	7.11.3 Mechanism of failure
	7.11.4 Avoiding the vulnerability or mitigating its effects

	7.12 Resource names [HTS]
	7.12.1 Description of application vulnerability
	7.12.2 Related coding guidelines
	7.12.3 Mechanism of Failure
	7.12.4 Avoiding the vulnerability or mitigating its effects

	7.13 Resource exhaustion [XZP]
	7.13.1 Description of application vulnerability
	7.13.2 Related coding guidelines
	7.13.3 Mechanism of failure
	7.13.4 Avoiding the vulnerability or mitigating its effects

	7.14 Authentication logic error [XZO]
	7.14.1 Description of application vulnerability
	7.14.2 Related coding guidelines
	7.14.3 Mechanism of failure
	7.14.4 Avoiding the vulnerability or mitigating its effects

	7.15 Improper restriction of excessive authentication attempts [WPL]
	7.15.1 Description of application vulnerability
	7.15.2 Related coding guidelines
	7.15.3 Mechanism of failure
	7.15.4 Avoiding the vulnerability or mitigating its effects

	7.16 Hard-coded credentials [XYP]
	7.16.1 Description of application vulnerability
	7.16.2 Related coding guidelines
	7.16.3 Mechanism of failure
	7.16.4 Avoiding the vulnerability or mitigating its effects

	7.17 Insufficiently protected credentials [XYM]
	7.17.1 Description of application vulnerability
	7.17.2 Related coding guidelines
	7.17.3 Mechanism of failure
	7.17.4 Avoiding the vulnerability or mitigating its effects

	7.18 Missing or inconsistent access control [XZN]
	7.18.1 Description of application vulnerability
	7.18.2 Related coding guidelines
	7.18.3 Mechanism of failure
	7.18.4 Avoiding the vulnerability or mitigating its effects

	7.19 Incorrect authorization [BJE]
	7.19.1 Description of application vulnerability
	7.19.2 Related coding guidelines
	7.19.3 Mechanism of failure
	7.19.4 Avoiding the vulnerability or mitigating its effects

	7.20 Adherence to least privilege [XYN]
	7.20.1 Description of application vulnerability
	7.20.2 Related coding guidelines
	7.20.3 Mechanism of failure
	7.20.4 Avoiding the vulnerability or mitigating its effects

	7.21 Privilege sandbox issues [XYO]
	7.21.1 Description of application vulnerability
	7.21.2 Related coding guidelines
	7.21.3 Mechanism of failure
	7.21.4 Avoiding the vulnerability or mitigating its effects

	7.22 Missing required cryptographic step [XZS]
	7.22.1 Description of application vulnerability
	7.22.2 Related coding guidelines
	7.22.3 Mechanism of failure
	7.22.4 Avoiding the vulnerability or mitigating its effects

	7.23 Improperly verified signature [XZR]
	7.23.1 Description of application vulnerability
	7.23.2 Related coding guidelines
	7.23.3 Mechanism of failure
	7.23.4 Avoiding the vulnerability or mitigating its effects

	7.24 Use of a one-way hash without a salt [MVX]
	7.24.1 Description of application vulnerability
	7.24.2 Related coding guidelines
	7.24.3 Mechanism of failure
	7.24.4 Avoiding the vulnerability or mitigating its effects

	7.25 Inadequately secure communication of shared resources [CGY]
	7.25.1 Description of application vulnerability
	7.25.2 Related coding guidelines
	7.25.3 Mechanism of failure
	7.25.4 Avoiding the vulnerability or mitigating its effect

	7.26 Memory locking [XZX]
	7.26.1 Description of application vulnerability
	7.26.2 Related coding guidelines
	7.26.3 Mechanism of failure
	7.26.4 Avoiding the vulnerability or mitigating its effects

	7.27 Sensitive information not cleared before use [XZK]
	7.27.1 Description of application vulnerability
	7.27.2 Related coding guidelines
	7.27.3 Mechanism of failure
	7.27.4 Avoiding the vulnerability or mitigating its effects

	7.28 Time consumption measurement [CCM]
	7.28.1 Description of application vulnerability
	7.28.2 Related coding guidelines
	7.28.3 Mechanism of failure
	7.28.4 Avoiding the vulnerability or mitigating its effect

	7.29 Discrepancy information leak [XZL]
	7.29.1 Description of application vulnerability
	7.29.2 Related coding guidelines
	7.29.3 Mechanism of failure
	7.29.4 Avoiding the vulnerability or mitigating its effects

	7.30 Unspecified functionality [BVQ]
	7.30.1 Description of application vulnerability
	7.30.2 Related coding guidelines
	7.30.3 Mechanism of failure
	7.30.4 Avoiding the vulnerability or mitigating its effects

	7.31 Fault tolerance and failure strategies [REU]
	7.31.1 Description of application vulnerability
	7.31.2 Related coding guidelines
	7.31.3 Mechanism of failure
	7.31.4 Avoiding the vulnerability or mitigating its effects

	7.32 Distinguished values in data types [KLK]
	7.32.1 Description of application vulnerability
	7.32.2 Related coding guidelines
	7.32.3 Mechanism of failure
	7.32.4 Avoiding the vulnerability or mitigating its effects

	7.33 Clock issues [CCI]
	7.33.1 Description of application vulnerability
	7.33.2 Related coding guidelines
	7.33.3 Mechanism of failure
	7.33.4 Avoiding the vulnerability or mitigating its effect

	7.34 Time drift and jitter [CDJ]
	7.34.1 Description of application vulnerability
	7.34.2 Related coding guidelines
	7.34.3 Mechanism of failure
	7.34.4 Avoiding the vulnerability or mitigating its effect

	Annex A (informative) Vulnerability taxonomy and list
	Annex B (informative) Selected principles for language designers
	Bibliography

