
Programming languages — Avoiding
vulnerabilities in programming
languages —
Part 1:
Language-independent catalogue of
vulnerabilities
Langages de programmation — Conduite pour éviter les
vulnérabilités dans les langages de programmation —
Partie 1: Catalogue de vulnérabilités indépendant du langage

International
Standard

ISO/IEC 24772-1

First edition
2024-10

Reference number
ISO/IEC 24772-1:2024(en) © ISO/IEC 2024

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ii

ISO/IEC 24772-1:2024(en)

﻿
© ISO/IEC 2024 – All rights reserved

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2024
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://www.iso.org
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Foreword... xv
Introduction.. xvii
1	 Scope.. 1
2	 Normative references.. 1
3	 Terms and definitions... 1

3.1	 Communication..1
3.2	 Execution model..1
3.3	 Properties...2
3.4	 Safety and security...3
3.5	 Vulnerabilities...3
3.6	 Specific vulnerabilities..3

4	 Using this document.. 4
4.1	 Purpose of this document...4
4.2	 Applying this document...5
4.3	 Structure of this document...6

5	 General vulnerability issues and primary avoidance mechanisms... 7
5.1	 General vulnerability issues...7

5.1.1	 Predictable execution..7
5.1.2	 Sources of unpredictability in language specification...8
5.1.3	 Sources of unpredictability in language usage...9

5.2	 Primary avoidance mechanisms..9
6	 Programming language vulnerabilities... 11

6.1	 General..11
6.2	 Type system [IHN].. 12

6.2.1	 Description of application vulnerability... 12
6.2.2	 Related coding guidelines.. 12
6.2.3	 Mechanism of failure.. 12
6.2.4	 Applicable language characteristics... 13
6.2.5	 Avoiding the vulnerability or mitigating its effects.. 13
6.2.6	 Implications for language design and evolution...14

6.3	 Bit representations [STR]..14
6.3.1	 Description of application vulnerability..14
6.3.2	 Related coding guidelines...14
6.3.3	 Mechanism of failure.. 15
6.3.4	 Applicable language characteristics... 15
6.3.5	 Avoiding the vulnerability or mitigating its effects.. 15
6.3.6	 Implications for language design and evolution...16

6.4	 Floating-point arithmetic [PLF]...16
6.4.1	 Description of application vulnerability..16
6.4.2	 Related coding guidelines...16
6.4.3	 Mechanism of failure...16
6.4.4	 Applicable language characteristics..17
6.4.5	 Avoiding the vulnerability or mitigating its effects...17
6.4.6	 Implications for language design and evolution...18

6.5	 Enumerator issues [CCB]..18
6.5.1	 Description of application vulnerability..18
6.5.2	 Related coding guidelines...19
6.5.3	 Mechanism of failure...19
6.5.4	 Applicable language Characteristics...19
6.5.5	 Avoiding the vulnerability or mitigating its effects.. 20
6.5.6	 Implications for language design and evolution.. 20

6.6	 Conversion errors [FLC]... 20
6.6.1	 Description of application vulnerability... 20

iii

﻿
© ISO/IEC 2024 – All rights reserved

Contents� Page

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.6.2	 Related coding guidelines.. 20
6.6.3	 Mechanism of failure...21
6.6.4	 Applicable language characteristics..21
6.6.5	 Avoiding the vulnerability or mitigating its effects...21
6.6.6	 Implications for language design and evolution.. 22

6.7	 String termination [CJM]... 22
6.7.1	 Description of application vulnerability... 22
6.7.2	 Related coding guidelines.. 22
6.7.3	 Mechanism of failure.. 22
6.7.4	 Applicable language characteristics... 22
6.7.5	 Avoiding the vulnerability or mitigating its effects.. 23
6.7.6	 Implications for language design and evolution.. 23

6.8	 Buffer boundary violation (buffer overflow) [HCB]... 23
6.8.1	 Description of application vulnerability... 23
6.8.2	 Related coding guidelines.. 23
6.8.3	 Mechanism of failure...24
6.8.4	 Applicable language characteristics..24
6.8.5	 Avoiding the vulnerability or mitigating its effects...24
6.8.6	 Implications for language design and evolution.. 25

6.9	 Unchecked array indexing [XYZ]... 25
6.9.1	 Description of application vulnerability... 25
6.9.2	 Related coding guidelines.. 25
6.9.3	 Mechanism of failure.. 25
6.9.4	 Applicable language characteristics... 26
6.9.5	 Avoiding the vulnerability or mitigating its effects.. 26
6.9.6	 Implications for language designers... 26

6.10	 Unchecked array copying [XYW]..27
6.10.1	 Description of application vulnerability..27
6.10.2	 Related coding guidelines...27
6.10.3	 Mechanism of failure...27
6.10.4	 Applicable language characteristics..27
6.10.5	 Avoiding the vulnerability or mitigating its effects.. 28
6.10.6	 Implications for language design and evolution.. 28

6.11	 Pointer type conversions [HFC].. 28
6.11.1	 Description of application vulnerability... 28
6.11.2	 Related coding guidelines.. 28
6.11.3	 Mechanism of failure.. 29
6.11.4	 Applicable language characteristics... 29
6.11.5	 Avoiding the vulnerability or mitigating its effects.. 29
6.11.6	 Implications for language design and evolution.. 29

6.12	 Pointer arithmetic [RVG]... 29
6.12.1	 Description of application vulnerability... 29
6.12.2	 Related coding guidelines.. 29
6.12.3	 Mechanism of failure.. 29
6.12.4	 Applicable language characteristics... 30
6.12.5	 Avoiding the vulnerability or mitigating its effects.. 30
6.12.6	 Implications for language design and evolution.. 30

6.13	 Null pointer dereference [XYH]... 30
6.13.1	 Description of application vulnerability... 30
6.13.2	 Related coding guidelines.. 30
6.13.3	 Mechanism of failure.. 30
6.13.4	 Applicable language characteristics... 30
6.13.5	 Avoiding the vulnerability or mitigating its effects.. 30
6.13.6	 Implications for language design and evolution...31

6.14	 Dangling reference to heap [XYK]..31
6.14.1	 Description of application vulnerability..31
6.14.2	 Related coding guidelines...31
6.14.3	 Mechanism of failure...31
6.14.4	 Applicable language characteristics..32

iv

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.14.5	 Avoiding the vulnerability or mitigating its effects...32
6.14.6	 Implications for language design and evolution...32

6.15	 Arithmetic wrap-around error [FIF].. 33
6.15.1	 Description of application vulnerability... 33
6.15.2	 Related coding guidelines.. 33
6.15.3	 Mechanism of failure.. 33
6.15.4	 Applicable language characteristics... 34
6.15.5	 Avoiding the vulnerability or mitigating its effects.. 34
6.15.6	 Implications for language design and evolution.. 34

6.16	 Using shift operations for multiplication and division [PIK].. 34
6.16.1	 Description of application vulnerability... 34
6.16.2	 Related coding guidelines.. 34
6.16.3	 Mechanism of failure.. 34
6.16.4	 Applicable language characteristics... 34
6.16.5	 Avoiding the vulnerability or mitigating its effects.. 35
6.16.6	 Implications for language design and evolution.. 35

6.17	 Choice of clear names [NAI].. 35
6.17.1	 Description of application vulnerability... 35
6.17.2	 Related coding guidelines.. 36
6.17.3	 Mechanism of Failure... 36
6.17.4	 Applicable language characteristics... 36
6.17.5	 Avoiding the vulnerability or mitigating its effects.. 36
6.17.6	 Implications for language design and evolution...37

6.18	 Dead store [WXQ]...37
6.18.1	 Description of application vulnerability..37
6.18.2	 Related coding guidelines...37
6.18.3	 Mechanism of failure...37
6.18.4	 Applicable language characteristics..37
6.18.5	 Avoiding the vulnerability or mitigating its effects.. 38
6.18.6	 Implications for language design and evolution.. 38

6.19	 Unused variable [YZS]... 38
6.19.1	 Description of application vulnerability... 38
6.19.2	 Related coding guidelines.. 38
6.19.3	 Mechanism of failure.. 38
6.19.4	 Applicable language characteristics... 38
6.19.5	 Avoiding the vulnerability or mitigating its effects.. 38
6.19.6	 Implications for language design and evolution.. 39

6.20	 Identifier name reuse [YOW]... 39
6.20.1	 Description of application vulnerability... 39
6.20.2	 Related coding guidelines.. 39
6.20.3	 Mechanism of failure.. 39
6.20.4	 Applicable language characteristics... 40
6.20.5	 Avoiding the vulnerability or mitigating its effects.. 40
6.20.6	 Implications for language design and evolution.. 40

6.21	 Namespace issues [BJL]...41
6.21.1	 Description of application vulnerability..41
6.21.2	 Related coding guidelines...41
6.21.3	 Mechanism of Failure..41
6.21.4	 Applicable language characteristics..41
6.21.5	 Avoiding the Vulnerability or Mitigating its Effects..42
6.21.6	 Implications for language design and evolution...42

6.22	 Missing initialization of variables [LAV]..42
6.22.1	 Description of application vulnerability..42
6.22.2	 Related coding guidelines...42
6.22.3	 Mechanism of failure...43
6.22.4	 Applicable language characteristics..43
6.22.5	 Avoiding the vulnerability or mitigating its effects...43
6.22.6	 Implications for language design and evolution.. 44

6.23	 Operator precedence and associativity [JCW]... 44

v

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.23.1	 Description of application vulnerability... 44
6.23.2	 Related coding guidelines.. 44
6.23.3	 Mechanism of failure...45
6.23.4	 Applicable language characteristics..45
6.23.5	 Avoiding the vulnerability or mitigating its effects...45
6.23.6	 Implications for language design and evolution...45

6.24	 Side-effects and order of evaluation of operands [SAM]...45
6.24.1	 Description of application vulnerability..45
6.24.2	 Related coding guidelines.. 46
6.24.3	 Mechanism of failure.. 46
6.24.4	 Applicable language characteristics..47
6.24.5	 Avoiding the vulnerability or mitigating its effects...47
6.24.6	 Implications for language design and evolution...47

6.25	 Likely incorrect expression [KOA]...47
6.25.1	 Description of application vulnerability..47
6.25.2	 Related coding guidelines...47
6.25.3	 Mechanism of failure.. 48
6.25.4	 Applicable language characteristics... 48
6.25.5	 Avoiding the vulnerability or mitigating its effects.. 48
6.25.6	 Implications for language design and evolution.. 48

6.26	 Dead and deactivated code [XYQ]... 49
6.26.1	 Description of application vulnerability... 49
6.26.2	 Related coding guidelines.. 49
6.26.3	 Mechanism of failure.. 49
6.26.4	 Applicable language characteristics... 50
6.26.5	 Avoiding the vulnerability or mitigating its effects.. 50
6.26.6	 Implications for language design and evolution.. 50

6.27	 Switch statements and lack of static analysis [CLL]..51
6.27.1	 Description of application vulnerability..51
6.27.2	 Related coding guidelines...51
6.27.3	 Mechanism of failure...51
6.27.4	 Applicable language characteristics..51
6.27.5	 Avoiding the vulnerability or mitigating its effects...51
6.27.6	 Implications for language design and evolution...52

6.28	 Non-demarcation of control flow [EOJ]...52
6.28.1	 Description of application vulnerability..52
6.28.2	 Related coding guidelines...52
6.28.3	 Mechanism of failure...52
6.28.4	 Applicable language characteristics..52
6.28.5	 Avoiding the vulnerability or mitigating its effects...52
6.28.6	 Implications for language design and evolution.. 53

6.29	 Loop control variable abuse [TEX]... 53
6.29.1	 Description of application vulnerability... 53
6.29.2	 Related coding guidelines.. 53
6.29.3	 Mechanism of failure.. 54
6.29.4	 Applicable language characteristics... 54
6.29.5	 Avoiding the vulnerability or mitigating its effects.. 54
6.29.6	 Implications for language design and evolution.. 54

6.30	 Off-by-one error [XZH].. 54
6.30.1	 Description of application vulnerability... 54
6.30.2	 Related coding guidelines.. 55
6.30.3	 Mechanism of failure.. 55
6.30.4	 Applicable language characteristics... 55
6.30.5	 Avoiding the vulnerability or mitigating its effects.. 55
6.30.6	 Implications for language design and evolution.. 55

6.31	 Unstructured programming [EWD].. 56
6.31.1	 Description of application vulnerability... 56
6.31.2	 Related coding guidelines.. 56
6.31.3	 Mechanism of failure.. 56

vi

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.31.4	 Applicable language characteristics... 56
6.31.5	 Avoiding the vulnerability or mitigating its effects.. 56
6.31.6	 Implications for language design and evolution...57

6.32	 Passing parameters and return values [CSJ]..57
6.32.1	 Description of application vulnerability..57
6.32.2	 Related coding guidelines...57
6.32.3	 Mechanism of failure...57
6.32.4	 Applicable language characteristics... 58
6.32.5	 Avoiding the vulnerability or mitigating its effects.. 58
6.32.6	 Implications for language design and evolution...59

6.33	 Dangling references to stack frames [DCM]...59
6.33.1	 Description of application vulnerability..59
6.33.2	 Related coding guidelines...59
6.33.3	 Mechanism of failure...59
6.33.4	 Applicable language characteristics... 60
6.33.5	 Avoiding the vulnerability or mitigating its effects.. 60
6.33.6	 Implications for language design and evolution.. 60

6.34	 Subprogram signature mismatch [OTR]..61
6.34.1	 Description of application vulnerability..61
6.34.2	 Related coding guidelines...61
6.34.3	 Mechanism of failure...61
6.34.4	 Applicable language characteristics..61
6.34.5	 Avoiding the vulnerability or mitigating its effects...62
6.34.6	 Implications for language design and evolution...62

6.35	 Recursion [GDL]..62
6.35.1	 Description of application vulnerability..62
6.35.2	 Related coding guidelines...62
6.35.3	 Mechanism of failure...62
6.35.4	 Applicable language characteristics... 63
6.35.5	 Avoiding the vulnerability or mitigating its effects.. 63
6.35.6	 Implications for language design and evolution.. 63

6.36	 Ignored error status and unhandled exceptions [OYB]... 63
6.36.1	 Description of application vulnerability... 63
6.36.2	 Related coding guidelines.. 63
6.36.3	 Mechanism of failure.. 63
6.36.4	 Applicable language characteristics... 64
6.36.5	 Avoiding the vulnerability or mitigating its effects.. 64
6.36.6	 Implications for language design and evolution.. 65

6.37	 Type-breaking reinterpretation of data [AMV].. 65
6.37.1	 Description of application vulnerability... 65
6.37.2	 Related coding guidelines.. 65
6.37.3	 Mechanism of failure.. 66
6.37.4	 Applicable language characteristics... 66
6.37.5	 Avoiding the vulnerability or mitigating its effects.. 66
6.37.6	 Implications for language design and evolution...67

6.38	 Deep vs. shallow copying [YAN]..67
6.38.1	 Description of application vulnerability..67
6.38.2	 Related coding guidelines...67
6.38.3	 Mechanism of failure...67
6.38.4	 Applicable language characteristics..67
6.38.5	 Avoiding the vulnerability or mitigating its effects.. 68
6.38.6	 Implications for language design and evolution.. 68

6.39	 Memory leaks and heap fragmentation [XYL]... 68
6.39.1	 Description of application vulnerability... 68
6.39.2	 Related coding guidelines.. 68
6.39.3	 Mechanism of failure.. 68
6.39.4	 Applicable language characteristics... 69
6.39.5	 Avoiding the vulnerability or mitigating its effects.. 69
6.39.6	 Implications for language design and evolution.. 69

vii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.40	 Templates and generics [SYM]..70
6.40.1	 Description of application vulnerability..70
6.40.2	 Related coding guidelines...70
6.40.3	 Mechanism of failure...70
6.40.4	 Applicable language characteristics..71
6.40.5	 Avoiding the vulnerability or mitigating its effects...71
6.40.6	 Implications for language design and evolution...71

6.41	 Inheritance [RIP]...71
6.41.1	 Description of application vulnerability..71
6.41.2	 Related coding guidelines...71
6.41.3	 Mechanism of failure.. 72
6.41.4	 Applicable language characteristics... 72
6.41.5	 Avoiding the vulnerability or mitigating its effects.. 72
6.41.6	 Implications for language design and evolution.. 73

6.42	 Violations of the Liskov substitution principle or the contract model [BLP]... 73
6.42.1	 Description of application vulnerability... 73
6.42.2	 Related coding guidelines.. 73
6.42.3	 Mechanism of failure...74
6.42.4	 Applicable language characteristics..74
6.42.5	 Avoiding the vulnerability or mitigating its effects...74
6.42.6	 Implications for language design and evolution...74

6.43	 Redispatching [PPH]..74
6.43.1	 Description of application vulnerability..74
6.43.2	 Related coding guidelines.. 75
6.43.3	 Mechanism of failure.. 75
6.43.4	 Applicable language characteristics... 75
6.43.5	 Avoiding the vulnerability or mitigating its effects.. 75
6.43.6	 Implications for language design and evolution.. 75

6.44	 Polymorphic variables [BKK].. 75
6.44.1	 Description of application vulnerability... 75
6.44.2	 Related coding guidelines...76
6.44.3	 Mechanism of failure...76
6.44.4	 Applicable language characteristics..76
6.44.5	 Avoiding the vulnerability or mitigating its effects.. 77
6.44.6	 Implications for language design and evolution.. 77

6.45	 Extra intrinsics [LRM]... 77
6.45.1	 Description of application vulnerability... 77
6.45.2	 Related coding guidelines.. 77
6.45.3	 Mechanism of failure.. 77
6.45.4	 Applicable language characteristics... 77
6.45.5	 Avoiding the vulnerability or mitigating its effects.. 78
6.45.6	 Implications for language design and evolution.. 78

6.46	 Argument passing to library functions [TRJ]... 78
6.46.1	 Description of application vulnerability... 78
6.46.2	 Related coding guidelines.. 78
6.46.3	 Mechanism of failure.. 78
6.46.4	 Applicable language characteristics... 78
6.46.5	 Avoiding the vulnerability or mitigating its effects.. 79
6.46.6	 Implications for language design and evolution.. 79

6.47	 Inter-language calling [DJS].. 79
6.47.1	 Description of application vulnerability... 79
6.47.2	 Related coding guidelines.. 79
6.47.3	 Mechanism of failure.. 79
6.47.4	 Applicable language characteristics... 80
6.47.5	 Avoiding the vulnerability or mitigating its effects.. 80
6.47.6	 Implications for language design and evolution.. 81

6.48	 Dynamically-linked code and self-modifying code [NYY]... 81
6.48.1	 Description of application vulnerability... 81
6.48.2	 Related coding guidelines.. 81

viii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.48.3	 Mechanism of failure.. 81
6.48.4	 Applicable language characteristics... 81
6.48.5	 Avoiding the vulnerability or mitigating its effects.. 82
6.48.6	 Implications for language design and evolution.. 82

6.49	 Library signature [NSQ].. 82
6.49.1	 Description of application vulnerability... 82
6.49.2	 Related coding guidelines.. 82
6.49.3	 Mechanism of failure.. 82
6.49.4	 Applicable language characteristics... 83
6.49.5	 Avoiding the vulnerability or mitigating its effects.. 83
6.49.6	 Implications for language design and evolution.. 83

6.50	 Unanticipated exceptions from library routines [HJW].. 83
6.50.1	 Description of application vulnerability... 83
6.50.2	 Cross reference.. 83
6.50.3	 Related coding guidelines.. 83
6.50.4	 Applicable language characteristics... 83
6.50.5	 Avoiding the vulnerability or mitigating its effects.. 84
6.50.6	 Implications for language design and evolution.. 84

6.51	 Pre-processor directives [NMP]... 84
6.51.1	 Description of application vulnerability... 84
6.51.2	 Related coding guidelines.. 84
6.51.3	 Mechanism of failure.. 84
6.51.4	 Applicable language characteristics... 85
6.51.5	 Avoiding the vulnerability or mitigating its effects.. 85
6.51.6	 Implications for language design and evolution.. 85

6.52	 Suppression of language-defined run-time checking [MXB].. 85
6.52.1	 Description of application vulnerability... 85
6.52.2	 Related coding guidelines.. 86
6.52.3	 Mechanism of Failure... 86
6.52.4	 Applicable language characteristics... 86
6.52.5	 Avoiding the vulnerability... 86
6.52.6	 Implications for language design and evolution.. 86

6.53	 Provision of inherently unsafe operations [SKL]... 86
6.53.1	 Description of application vulnerability... 86
6.53.2	 Related coding guidelines.. 87
6.53.3	 Mechanism of Failure... 87
6.53.4	 Applicable language characteristics... 87
6.53.5	 Avoiding the vulnerability or mitigating its effect.. 87
6.53.6	 Implications for language design and evolution.. 87

6.54	 Obscure language features [BRS].. 87
6.54.1	 Description of application vulnerability... 87
6.54.2	 Related coding guidelines.. 88
6.54.3	 Mechanism of failure.. 88
6.54.4	 Applicable language characteristics... 88
6.54.5	 Avoiding the vulnerability or mitigating its effects.. 88
6.54.6	 Implications for language design and evolution.. 89

6.55	 Unspecified behaviour [BQF].. 89
6.55.1	 Description of application vulnerability... 89
6.55.2	 Related coding guidelines.. 89
6.55.3	 Mechanism of failure.. 89
6.55.4	 Applicable language characteristics... 90
6.55.5	 Avoiding the vulnerability or mitigating its effects.. 90
6.55.6	 Implications for language design and evolution.. 90

6.56	 Undefined behaviour [EWF].. 90
6.56.1	 Description of application vulnerability... 90
6.56.2	 Related coding guidelines.. 90
6.56.3	 Mechanism of failure...91
6.56.4	 Applicable language characteristics..91
6.56.5	 Avoiding the vulnerability or mitigating its effects...91

ix

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.56.6	 Implications for language design and evolution...91
6.57	 Implementation-defined behaviour [FAB]..91

6.57.1	 Description of application vulnerability..91
6.57.2	 Related coding guidelines.. 92
6.57.3	 Mechanism of failure.. 92
6.57.4	 Applicable language characteristics... 92
6.57.5	 Avoiding the vulnerability or mitigating its effects.. 92
6.57.6	 Implications for language design and evolution.. 93

6.58	 Deprecated language features [MEM]... 93
6.58.1	 Description of application vulnerability... 93
6.58.2	 Related coding guidelines.. 93
6.58.3	 Mechanism of failure.. 93
6.58.4	 Applicable language characteristics... 94
6.58.5	 Avoiding the vulnerability or mitigating its effects.. 94
6.58.6	 Implications for language design and evolution.. 94

6.59	 Concurrency – Activation [CGA]... 94
6.59.1	 Description of application vulnerability... 94
6.59.2	 Related coding guidelines.. 94
6.59.3	 Mechanism of Failure... 95
6.59.4	 Applicable language characteristics... 95
6.59.5	 Avoiding the vulnerability or mitigating its effects.. 95
6.59.6	 Implications for language design and evolution.. 96

6.60	 Concurrency – Directed termination [CGT]... 96
6.60.1	 Description of application vulnerability... 96
6.60.2	 Related coding guidelines.. 96
6.60.3	 Mechanism of failure.. 96
6.60.4	 Applicable language characteristics... 97
6.60.5	 Avoiding the vulnerability or mitigating its effect.. 97
6.60.6	 Implications for language design and evolution.. 97

6.61	 Concurrent data access [CGX]... 97
6.61.1	 Description of application vulnerability... 97
6.61.2	 Related coding guidelines.. 97
6.61.3	 Mechanism of failure.. 98
6.61.4	 Applicable language characteristics... 98
6.61.5	 Avoiding the vulnerability or mitigating its effect.. 98
6.61.6	 Implications for language design and evolution.. 98

6.62	 Concurrency – Premature termination [CGS].. 99
6.62.1	 Description of application vulnerability... 99
6.62.2	 Related coding guidelines.. 99
6.62.3	 Mechanism of failure.. 99
6.62.4	 Applicable language characteristics.. 100
6.62.5	 Avoiding the vulnerability or mitigating its effect... 100
6.62.6	 Implications for language design and evolution... 100

6.63	 Lock protocol errors [CGM].. 100
6.63.1	 Description of application vulnerability.. 100
6.63.2	 Related coding guidelines... 101
6.63.3	 Mechanism of failure... 101
6.63.4	 Applicable language characteristics.. 102
6.63.5	 Avoiding the vulnerability or mitigating its effect... 102
6.63.6	 Implications for language design and evolution... 102

6.64	 Reliance on external format strings [SHL]... 103
6.64.1	 Description of application vulnerability.. 103
6.64.2	 Related coding guidelines... 103
6.64.3	 Mechanism of failure... 103
6.64.4	 Applicable language characteristics.. 103
6.64.5	 Avoiding the vulnerability or mitigating its effects... 104
6.64.6	 Implications for language design and evolution... 104

6.65	 Modifying constants [UJO].. 104
6.65.1	 Description of application vulnerability.. 104

x

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.65.2	 Related coding guidelines... 104
6.65.3	 Mechanism of failure... 104
6.65.4	 Applicable language characteristics.. 105
6.65.5	 Avoiding the vulnerability or mitigating its effects... 105
6.65.6	 Implications for language design and evolution... 105

7	 Application vulnerabilities..105
7.1	 General.. 105
7.2	 Unrestricted file upload [CBF]... 105

7.2.1	 Description of application vulnerability.. 105
7.2.2	 Related coding guidelines... 105
7.2.3	 Mechanism of failure... 106
7.2.4	 Avoiding the vulnerability or mitigating its effects... 106

7.3	 Download of code without integrity check [DLB].. 106
7.3.1	 Description of application vulnerability.. 106
7.3.2	 Related coding guidelines... 107
7.3.3	 Mechanism of failure... 107
7.3.4	 Avoiding the vulnerability or mitigating its effects... 107

7.4	 Executing or loading untrusted code [XYS].. 107
7.4.1	 Description of application vulnerability.. 107
7.4.2	 Related coding guidelines... 107
7.4.3	 Mechanism of failure... 107
7.4.4	 Avoiding the vulnerability or mitigating its effects... 108

7.5	 Inclusion of functionality from untrusted control sphere [DHU].. 108
7.5.1	 Description of application vulnerability.. 108
7.5.2	 Related coding guidelines... 108
7.5.3	 Mechanism of failure... 108
7.5.4	 Avoiding the vulnerability or mitigating its effects... 108

7.6	 Use of unchecked data from an uncontrolled or tainted source [EFS].. 109
7.6.1	 Description of application vulnerability.. 109
7.6.2	 Related coding guidelines... 109
7.6.3	 Mechanism of failure... 109
7.6.4	 Avoiding the vulnerability or mitigating its effects... 109

7.7	 Cross-site scripting [XYT]..110
7.7.1	 Description of application vulnerability...110
7.7.2	 Related coding guidelines..110
7.7.3	 Mechanism of failure..110
7.7.4	 Avoiding the vulnerability or mitigating its effects... 111

7.8	 URL redirection to untrusted site ("open redirect") [PYQ].. 112
7.8.1	 Description of application vulnerability.. 112
7.8.2	 Related coding guidelines... 112
7.8.3	 Mechanism of failure... 112
7.8.4	 Avoiding the vulnerability or mitigating its effects... 112

7.9	 Injection [RST].. 113
7.9.1	 Description of application vulnerability.. 113
7.9.2	 Related coding guidelines... 113
7.9.3	 Mechanism of failure..114
7.9.4	 Avoiding the vulnerability or mitigating its effects... 115

7.10	 Unquoted search path or element [XZQ].. 115
7.10.1	 Description of application vulnerability.. 115
7.10.2	 Related coding guidelines... 115
7.10.3	 Mechanism of failure..116
7.10.4	 Avoiding the vulnerability or mitigating its effects..116

7.11	 Path traversal [EWR]..116
7.11.1	 Description of application vulnerability...116
7.11.2	 Related coding guidelines..116
7.11.3	 Mechanism of failure..117
7.11.4	 Avoiding the vulnerability or mitigating its effects... 118

7.12	 Resource names [HTS]... 118

xi

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.12.1	 Description of application vulnerability.. 118
7.12.2	 Related coding guidelines..119
7.12.3	 Mechanism of Failure...119
7.12.4	 Avoiding the vulnerability or mitigating its effects..119

7.13	 Resource exhaustion [XZP]...119
7.13.1	 Description of application vulnerability...119
7.13.2	 Related coding guidelines... 120
7.13.3	 Mechanism of failure... 120
7.13.4	 Avoiding the vulnerability or mitigating its effects... 120

7.14	 Authentication logic error [XZO]... 121
7.14.1	 Description of application vulnerability.. 121
7.14.2	 Related coding guidelines... 121
7.14.3	 Mechanism of failure... 121
7.14.4	 Avoiding the vulnerability or mitigating its effects... 122

7.15	 Improper restriction of excessive authentication attempts [WPL]... 122
7.15.1	 Description of application vulnerability.. 122
7.15.2	 Related coding guidelines... 122
7.15.3	 Mechanism of failure... 122
7.15.4	 Avoiding the vulnerability or mitigating its effects... 123

7.16	 Hard-coded credentials [XYP]... 123
7.16.1	 Description of application vulnerability.. 123
7.16.2	 Related coding guidelines... 123
7.16.3	 Mechanism of failure... 123
7.16.4	 Avoiding the vulnerability or mitigating its effects... 124

7.17	 Insufficiently protected credentials [XYM].. 124
7.17.1	 Description of application vulnerability.. 124
7.17.2	 Related coding guidelines... 124
7.17.3	 Mechanism of failure... 124
7.17.4	 Avoiding the vulnerability or mitigating its effects... 124

7.18	 Missing or inconsistent access control [XZN].. 125
7.18.1	 Description of application vulnerability.. 125
7.18.2	 Related coding guidelines... 125
7.18.3	 Mechanism of failure... 125
7.18.4	 Avoiding the vulnerability or mitigating its effects... 125

7.19	 Incorrect authorization [BJE]... 125
7.19.1	 Description of application vulnerability.. 125
7.19.2	 Related coding guidelines... 125
7.19.3	 Mechanism of failure... 125
7.19.4	 Avoiding the vulnerability or mitigating its effects... 126

7.20	 Adherence to least privilege [XYN]... 126
7.20.1	 Description of application vulnerability.. 126
7.20.2	 Related coding guidelines... 126
7.20.3	 Mechanism of failure... 126
7.20.4	 Avoiding the vulnerability or mitigating its effects... 126

7.21	 Privilege sandbox issues [XYO].. 127
7.21.1	 Description of application vulnerability.. 127
7.21.2	 Related coding guidelines... 127
7.21.3	 Mechanism of failure... 127
7.21.4	 Avoiding the vulnerability or mitigating its effects... 128

7.22	 Missing required cryptographic step [XZS].. 128
7.22.1	 Description of application vulnerability.. 128
7.22.2	 Related coding guidelines... 128
7.22.3	 Mechanism of failure... 128
7.22.4	 Avoiding the vulnerability or mitigating its effects... 128

7.23	 Improperly verified signature [XZR]... 129
7.23.1	 Description of application vulnerability.. 129
7.23.2	 Related coding guidelines... 129
7.23.3	 Mechanism of failure... 129
7.23.4	 Avoiding the vulnerability or mitigating its effects... 129

xii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.24	 Use of a one-way hash without a salt [MVX]... 129
7.24.1	 Description of application vulnerability.. 129
7.24.2	 Related coding guidelines... 129
7.24.3	 Mechanism of failure... 129
7.24.4	 Avoiding the vulnerability or mitigating its effects... 129

7.25	 Inadequately secure communication of shared resources [CGY].. 130
7.25.1	 Description of application vulnerability.. 130
7.25.2	 Related coding guidelines... 130
7.25.3	 Mechanism of failure... 130
7.25.4	 Avoiding the vulnerability or mitigating its effect... 131

7.26	 Memory locking [XZX].. 131
7.26.1	 Description of application vulnerability.. 131
7.26.2	 Related coding guidelines... 131
7.26.3	 Mechanism of failure... 131
7.26.4	 Avoiding the vulnerability or mitigating its effects... 132

7.27	 Sensitive information not cleared before use [XZK]... 132
7.27.1	 Description of application vulnerability.. 132
7.27.2	 Related coding guidelines... 132
7.27.3	 Mechanism of failure... 132
7.27.4	 Avoiding the vulnerability or mitigating its effects... 132

7.28	 Time consumption measurement [CCM].. 132
7.28.1	 Description of application vulnerability.. 132
7.28.2	 Related coding guidelines... 133
7.28.3	 Mechanism of failure... 133
7.28.4	 Avoiding the vulnerability or mitigating its effect... 133

7.29	 Discrepancy information leak [XZL].. 133
7.29.1	 Description of application vulnerability.. 133
7.29.2	 Related coding guidelines... 134
7.29.3	 Mechanism of failure... 134
7.29.4	 Avoiding the vulnerability or mitigating its effects... 134

7.30	 Unspecified functionality [BVQ]... 134
7.30.1	 Description of application vulnerability.. 134
7.30.2	 Related coding guidelines... 134
7.30.3	 Mechanism of failure... 135
7.30.4	 Avoiding the vulnerability or mitigating its effects... 135

7.31	 Fault tolerance and failure strategies [REU].. 135
7.31.1	 Description of application vulnerability.. 135
7.31.2	 Related coding guidelines... 136
7.31.3	 Mechanism of failure... 136
7.31.4	 Avoiding the vulnerability or mitigating its effects... 137

7.32	 Distinguished values in data types [KLK].. 137
7.32.1	 Description of application vulnerability.. 137
7.32.2	 Related coding guidelines... 137
7.32.3	 Mechanism of failure... 138
7.32.4	 Avoiding the vulnerability or mitigating its effects... 138

7.33	 Clock issues [CCI]... 139
7.33.1	 Description of application vulnerability.. 139
7.33.2	 Related coding guidelines... 139
7.33.3	 Mechanism of failure... 139
7.33.4	 Avoiding the vulnerability or mitigating its effect..141

7.34	 Time drift and jitter [CDJ]...141
7.34.1	 Description of application vulnerability...141
7.34.2	 Related coding guidelines..142
7.34.3	 Mechanism of failure..142
7.34.4	 Avoiding the vulnerability or mitigating its effect..142

Annex A (informative) Vulnerability taxonomy and list..143
Annex B (informative) Selected principles for language designers...150

xiii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Bibliography...152

xiv

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical activity.
ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are described
in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types
of document should be noted. This document was drafted in accordance with the editorial rules of the ISO/
IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve the
use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or applicability of any
claimed patent rights in respect thereof. As of the date of publication of this document, ISO and IEC had not
received notice of (a) patent(s) which may be required to implement this document. However, implementers
are cautioned that this may not represent the latest information, which may be obtained from the patent
database available at www.iso.org/patents and https://patents.iec.ch. ISO and IEC shall not be held
responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions
related to conformity assessment, as well as information about ISO's adherence to the World Trade
Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.org/iso/foreword.html.
In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

This first edition of ISO/IEC 24772-1 cancels and replaces ISO/IEC TR 24772-1:2019, which has been
technically revised.

The main changes are as follows:

—	 the document now describes avoidance mechanisms rather than providing specific guidance, in order
to clarify that it is the responsibility of the implementation team to create design and coding standards,
and that some of the avoidance mechanisms stated only apply to specific scenarios; "guidance" has been
removed from the title accordingly;

—	 new terms have been added in 3.7 to the terms and definitions clause to address specific vulnerabilities;

—	 Clause 4 has been expanded to explain how this document is used with programming language standards,
safety standards, and security standards;

—	 Clause 5 has been amended to provide general vulnerability issues and primary avoidance mechanisms;

—	 the titles of some Clause 6 vulnerabilities have been renamed to better capture the actual vulnerability;

—	 the clause “Fault tolerance and failure strategies” was moved from 6.37 to 7.31 to reflect that the
vulnerability is more about the system design of fault tolerance and failure recovery strategies than
being language-oriented;

—	 a new language vulnerability "Modifying constants [UJO]" was added in 6.65;

—	 Clause 7 was reorganized to gather similar application vulnerabilities together;

—	 new application vulnerabilities were added to expose issues with time management in real-time systems,
in normal systems and in networked systems;

xv

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://www.iso.org/directives-and-policies.html
https://www.iec.ch/members_experts/refdocs
http://www.iso.org/patents
https://patents.iec.ch/iec/pa.nsf/pa_h.xsp?v=0
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 a new Annex B has been added to collate material from the subclauses in Clause 6 entitled “Avoiding the
vulnerability or mitigating its effect” in a single place.

A list of all parts in the ISO/IEC 24772 series can be found on the ISO and IEC websites.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and
www.iec.ch/national-committees.

xvi

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Introduction

All programming languages contain constructs that are incompletely specified, exhibit undefined behaviour,
are implementation-dependent, or are difficult to use correctly. The use of those constructs can therefore
give rise to vulnerabilities, as a result of which software programs can execute differently than intended
by the writer. In some cases, these vulnerabilities can endanger the safety of a system or be exploited by
attackers to compromise the security or privacy of a system.

This document catalogues software programming language vulnerabilities to be avoided in the development
of systems where assured behaviour is required for security, safety, mission critical or business critical
software. In general, this is applicable to the software developed, reviewed, or maintained for any application.

This document provides users of programming languages with a language-independent overview of potential
vulnerabilities in their usage and ways to avoid or mitigate them. Other parts in the ISO/IEC 24772 series,
such as ISO/IEC 24772-2 for Ada and ISO/IEC 24772-3 for C describe how the language-independent analysis
of this document apply to the specific programming language addressed by that particular document.

This document is intended to catalogue avoidance mechanisms spanning multiple programming languages,
so that application developers will be better able to avoid the programming constructs that lead to
vulnerabilities in software written in their chosen language and their attendant consequences. These
mechanisms can also be used by developers to select source code evaluation tools that can discover and
eliminate some constructs that can lead to vulnerabilities in their software or to select a programming
language that avoids anticipated problems.

The intended audience for this document consists of parties who are concerned with assuring the predictable
execution of the software of their system; that is, those who are developing, qualifying, or maintaining a
software system and are required by their organization to avoid language and design constructs that can
cause the software to execute in a manner other than intended.

Developers of applications that have clear safety, security or mission-criticality requirements are expected to
be aware of the risks associated with their code and can use this document to ensure that their development
practices address the issues presented by the chosen programming languages, for example by subsetting or
providing coding guidelines.

Specific audiences for this document include developers, maintainers and regulators of:

—	 safety-critical applications that can cause loss of life, human injury, or damage to the environment;

—	 security-critical applications that must ensure properties of confidentiality, integrity, and availability;

—	 mission-critical applications that must avoid loss or damage to property or finance;

—	 business-critical applications where correct operation is essential to the successful operation of the
business;

—	 scientific, modeling and simulation applications that require high confidence in the results of possibly
complex, expensive and extended calculation.

This document can be relevant to other developers as well. A weakness in a non-critical application can
provide the route by which an attacker gains control of a system or otherwise disrupts co-hosted applications
that are critical. All developers can use this document to ensure that common vulnerabilities are removed or
at least minimized from all applications.

This document does not address software engineering and management issues such as how to design and
implement programs, use configuration management tools, use managerial processes, and perform process
improvement. Furthermore, the specification of properties and applications to be assured are not treated.
While this document does not discuss specification or design issues, there is recognition that boundaries
among the various activities are not clear-cut. This document seeks to avoid the debate about where low-
level design ends and implementation begins by treating selected issues that some consider design issues
rather than coding issues.

xvii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

This document is inherently incomplete, as it is not possible to provide a complete list of programming
language vulnerabilities because new weaknesses are discovered continually. Any such report can only
describe those that have been found, characterized, and determined to have sufficient probability and
consequence.

xviii

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

International Standard ISO/IEC 24772-1:2024(en)

Programming languages — Avoiding vulnerabilities in
programming languages —

Part 1:
Language-independent catalogue of vulnerabilities

1	 Scope

This document enumerates approaches and techniques to avoid software programming language
vulnerabilities in the development of systems where assured behaviour is required for security, safety,
mission-critical and business-critical software. In general, the description of the vulnerabilities and
description of avoidance mechanisms are applicable to the software developed, reviewed, or maintained for
any application.

Vulnerabilities are described in a generic manner that is applicable to a broad range of programming
languages.

2	 Normative references

There are no normative references in this document.

3	 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO and IEC terminology databases
and in this clause apply.

ISO and IEC maintain terminology databases for use in standardization at the following addresses:

—	 ISO Online browsing platform: available at https://​www​.iso​.org/​obp

—	 IEC Electropedia: available at https://​www​.electropedia​.org/​

3.1	 Communication

3.1.1
protocol
set of rules and supporting structures for the interaction of concurrent entities, such as tightly embedded
interactions of threads or loosely coupled arrangements such as message communication spanning computer
systems and networks

3.1.2
stateless protocol
communication or cooperation between threads where no state is preserved in the protocol (3.1.1) itself,
such as the HTTP protocol or direct access to a shared resource

3.2	 Execution model

3.2.1
thread
sequential stream of execution such as a single thread in a process or a process in an operating system

1

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://www.iso.org/obp/ui
https://www.electropedia.org/
https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

3.2.2
thread activation
creation and setup of a thread (3.2.1) up to the point where the thread begins execution

3.2.3
activated thread
thread (3.2.1) that is created and then begins execution as a result of the thread activation (3.2.1)

3.2.4
activating thread
thread (3.2.1) that exists first and makes the library calls or contains the language syntax that causes
another thread to be activated

3.2.5
static thread activation
creation and initiation of a thread (3.2.1) at program initiation, by an operating system or runtime kernel, or
by another thread as part of a declarative part of the thread before it begins execution

3.2.6
dynamic thread activation
creation and initiation of a thread (3.2.1) by another thread (including the main program) as an executable,
repeatable command, statement or subprogram call

3.2.7
thread abort
request to stop and shut down a thread (3.2.1) immediately, whether that request comes from an operating
system, another thread via the operating system, or a request via shared data or communicating channel to
have the thread cease execution

3.2.8
termination directing thread
thread (3.2.1), including an operating system thread, that requests the termination of one or more threads

3.2.9
thread termination
completion and orderly shutdown of a thread (3.2.1), where the thread is permitted to make data objects
consistent, release any acquired resources, and notify any dependent threads that it is terminating

3.2.10
terminated thread
thread (3.2.1) that has been halted from any further execution

3.2.11
master thread
thread (3.2.1) that initiates other threads and that eventually waits for one or all terminated threads (3.2.10)
before it can take further execution steps, including termination of itself

3.2.12
process
single execution of a program, or portion of an application, which is permitted to execute independently,
or which can interact in programmed ways with other processes, and which can share resources such as
memory, processor and filing system with other processes

3.3	 Properties

3.3.1
predictable execution
property of the program such that all possible executions have results that can be predicted from the source code

2

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

3.4	 Safety and security

3.4.1
safety hazard
potential source of material or environmental damage, physical injury, or damage to the health of people

3.4.2
safety-critical
type of software or application where failure can cause very serious consequences such as human injury or death

3.4.3
salt
randomized value that is additional input to a cryptographic algorithm

3.5	 Vulnerabilities

3.5.1
application vulnerability
security vulnerability (3.5.3) or safety hazard (3.4.1) or defect

3.5.2
language vulnerability
property or feature of a programming language that through its presence or absence can contribute to, or
that is strongly correlated with, application vulnerabilities in programs written in that language

3.5.3
security vulnerability
weakness in an information system, system security procedures, internal controls, or implementation that
can be exploited or triggered by a threat

3.6	 Specific vulnerabilities

3.6.1
failure
malfunction of the system or component which has as subcategories: omission failure (3.6.2), commission
failure (3.6.3), timing failure (3.6.4) and value failure (3.6.5)

3.6.2
omission failure
service that is requested but never rendered

3.6.3
commission failure
service that initiates unexpected actions

3.6.4
timing failure
service that is not rendered before an imposed deadline

3.6.5
value failure
service that delivers incorrect or tainted results

3.6.6
dangling reference
reference to an object whose lifetime has ended due to explicit deallocation or the stack frame in which the
object resided has been freed due to exiting the dynamic scope

3.6.7
unspecified functionality
code that can be executed, but whose behaviour does not contribute to the requirements of the application

3

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

4	 Using this document

4.1	 Purpose of this document

This document describes programming language vulnerabilities and application design vulnerabilities, as
well as mechanisms to avoid them. Programming language vulnerabilities can be design or programming
mistakes, problematic language features, or the absence of a language feature.

As an example of the absence of a feature, encapsulation (control of where names can be referenced from)
is generally considered beneficial since it narrows the interface between modules and can help prevent
data corruption. The absence of encapsulation from a programming language can thus be regarded as a
vulnerability. A property together with its complement can both be considered language vulnerabilities. For
example, automatic storage reclamation (garbage collection) can be a vulnerability since it can interfere
with time predictability and result in a safety hazard (see IEC 61508-1 for electrical system safety process
requirements and IEC 61508-3 for software safety processes). On the other hand, the absence of automatic
storage reclamation can also be a vulnerability since programmers can mistakenly free storage prematurely,
resulting in dangling references.

This document can be used by the following:

—	 Programmers familiar with the vulnerabilities of a specific language can reference this document for
more generic descriptions and their manifestations in less familiar languages.

—	 Tool vendors can select from this document vulnerabilities to be addressed by their tools.

—	 Individual organizations planning to write their own coding standards to reduce the number of
vulnerabilities in their software products can use this document to assist in the identification of
vulnerabilities to be addressed in their coding standards and the selection of coding guidelines to be
enforced.

—	 Organizations or individuals selecting a language for use in a project and considering the vulnerabilities
inherent in various candidate languages.

—	 Scientists, engineers, economists, statisticians, or others who write computer programs can read this
document to become more familiar with the issues that can adversely affect their work.

—	 Educators can use the document as a reference for dangerous vulnerabilities in programming and for
guidance to avoid or mitigate them.

There are several ways to avoid a vulnerability:

—	 Coding guidelines can steer programmers away from constructs found to be problematic.

—	 Static analysis tools can be used to detect anomalous situations such as usage of a tool that refuses to pass
a harmful construct. For instance, this includes a compiler that provides error messages or warnings if a
construct is problematic.

—	 A programming language can be chosen that avoids or mitigates a class of vulnerabilities.

—	 Specific runtime checks can be written to detect situations that can lead to problematic behaviour.

—	 Automated analysis tools can be used to enforce coding standards.

—	 Verification and validation methods such as focused human review of code can be undertaken.

This document gathers descriptions of programming language vulnerabilities, as well as selected
application vulnerabilities, which have occurred in the past and are likely to occur again. Every vulnerability
discussed here has been experienced in at least one programming language or runtime environment. Some
vulnerabilities occur in all programming languages, while others are mitigated by the features or capabilities
of some programming environments.

4

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Each vulnerability and its possible mitigations are described in this document in a language-independent
manner, though illustrative examples are often language specific. In addition, separate language-specific
documents have been developed or are under development for particular languages, such as Ada, C, Python,
and Fortran that describe the vulnerabilities and their mitigations in a manner specific to each language. For
example, ISO/IEC TR 24772-2 describes programming language vulnerabilities for the Ada programming
language. The language-dependent documents should be read in conjunction with this language-independent
document, as its advice is usually applicable but not replicated in the language-dependent documents.

Throughout this document, avoidance mechanisms are specified to each vulnerability listed to prevent
the vulnerabilities from occurring. Readers should be aware, however, that suggested avoidance
mechanisms can be contradictory to each other as they provide alternatives to choose from according
to project requirements.

As new vulnerabilities are always being discovered, new descriptions can be necessary in future editions
to identify the new vulnerabilities. For that reason, a scheme of unique, random identifiers was chosen as
permanent identification as opposed to subclause numbering which can change between editions. Each
description has been assigned an arbitrarily generated, unique three-letter code. Tool vendors can use the
three-letter codes as a succinct way to “profile” the selection of vulnerabilities considered by their tools.

4.2	 Applying this document

This document is expected to be used in the creation of software that is safe, secure and trusted within the
context of the system in which it is fielded. IEC 61508–3 defines safety-related software as software that
is used to implement safety functions in a safety-related system. Notwithstanding that in some domains
a distinction is made between safety-related software (that can lead to harm) and safety-critical software
(that can be life threatening), this document uses the term safety-critical for all vulnerabilities that can
result in safety hazards. Similar to the security-related systems defined in ISO/IEC 27001, this document
uses the term security-critical systems in the description of all vulnerabilities that can result in security
hazards.

This document is expected to be used in conjunction with some of the following documents, depending upon
the planned application of the software:

—	 IEC 61508-1 and IEC 61508-3 on functional safety;

—	 ISO/IEC 27001 and ISO/IEC 27002 on security, and application-related standards produced by
ISO/IEC/JTC 1/SC 27;

—	 national safety or security standards;

—	 sector-specific standards such as MISRA C for automotive sector;[3]

—	 corporate or organizational standards and directives.

In particular, this document provides answers for questions raised in the construction of:

—	 safety-critical applications;

—	 security-critical applications;

—	 mission-critical/ business-critical applications;

—	 scientific, modelling and simulation applications that have social impact.

Organizations can use this document for system or application development following the relevant standards
in their safety, security or application domains, in order to:

—	 determine the criticality of the system, including safety levels, security and privacy;

—	 analyse failure modes of the system, including omission failures, commission failures, value and timing
failures;

5

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 identify and analyse external events and how they can affect the system; or

—	 identify and analyse attack surfaces of the system.

To use this document effectively, organizations are expected to:

—	 identify the programming language(s) to be used in programming the applications in the system;

—	 identify and analyse weaknesses in the product or system, including systems, subsystems, modules, and
individual components;

—	 identify and analyse sources of programming errors;

—	 determine acceptable programming paradigms and practices to avoid vulnerabilities using the
documentation provided in 5.2, Clause 6 and Clause 7;

—	 map the identified acceptable programming practices into organizational coding standards;

—	 select and deploy tooling and processes to enforce coding rules or practices;

—	 implement controls (in keeping with the requirements of the safety, security and privacy needs of the
system) that enforce these practices and procedures to ensure that the vulnerabilities do not affect the
safety and security of the system under development.

In choosing avoidance and mitigation mechanisms, organizations should consult the language-dependent
documents of the ISO/IEC 24772 series applicable to their chosen programming language(s), such as
ISO/IEC TR 24772-2 for Ada (ISO/IEC 8652) and ISO/IEC TR 24772-3 for C (ISO/IEC 9899).

Tool vendors that follow this document provide tools that diagnose the vulnerabilities described in this
document.

Programmers and software designers that follow this document adopt the architectural and coding
guidelines of their organization and choose appropriate mitigation techniques when a vulnerability is not
avoidable.

4.3	 Structure of this document

The rest of the document is organized as follows:

Clause 5 explains how many of the vulnerabilities common to programming languages occur. The
issues discussed are not vulnerabilities but are language characteristics that can lead to mistakes and
vulnerabilities that can be exploited. Table 1 provides a summary list of the top 20 approaches to avoid
the most common vulnerabilities with references to the applicable more detailed descriptions provided in
Clauses 6 and 7. For many that cannot invest the resources to research all of the vulnerabilities documented
in Clauses 6 and 7, implementing the documented mechanisms in Table 1 already provides significant benefit
to their projects.

Clause 6 provides language-independent descriptions of vulnerabilities in programming languages that can
lead to application vulnerabilities. Each description provides a summary of the vulnerability, characteristics
of languages where the vulnerability can be found, typical mechanisms of failure, techniques that
programmers can use to avoid the vulnerability, and ways that language designers can modify language
specifications in the future to help programmers mitigate the vulnerability. In using Clause 6, it is important
to be aware of how a listed vulnerability is presented by the programming language, the tool environment,
and the operating system that is being used.

This document will rarely be used in isolation, as every program is written in one or more programming
languages. Therefore, this document is supported by a set of standards or technical reports, i.e.
ISO/IEC TR 24772-2 (for Ada), ISO/IEC TR 24772-3 (for C), that can provide additional specific documentation
on the application of this document to the specific language in question.

Clause 7 provides descriptions of selected vulnerabilities, generally unrelated to programming language
features, which have been found and exploited in a number of applications. These vulnerabilities result from

6

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

design decisions made by coders in the absence of suitable language library routines or other mechanisms
but have known mitigation techniques. For these vulnerabilities, each description provides:

—	 a summary of the vulnerability,

—	 typical mechanisms of failure, and

—	 techniques that programmers can use to avoid the vulnerability.

Mitigations for vulnerabilities listed in Clause 7 generally do not include the use of programming language-
specific features or choices but consist of alternate design choices or programming techniques.

Annex A is a categorization of the vulnerabilities of this document by general topic areas.

Annex B summarizes information for language designers cited in the subclauses of Clause 6 entitled
“Implications for language design and evolution”.

Throughout this document, the font courier is used for tokens typically present in programming languages,
such as false and true, but also for representative program samples from actual programming languages.

5	 General vulnerability issues and primary avoidance mechanisms

5.1	 General vulnerability issues

5.1.1	 Predictable execution

There are many reasons why software does not execute as expected by its developers, its users or other
stakeholders. Reasons include incorrect specifications, configuration management errors and a myriad of
others. This document focuses on the usage of programming languages in ways that render the execution
of the code less predictable, or the usage of design paradigms that weaken the application and make it
susceptible to attack.

Achieving predictable execution is complicated by that fact that software is often used:

—	 on unanticipated platforms (for example, ported to a different processor),

—	 in unanticipated ways (as usage patterns change),

—	 in unanticipated contexts (for example, software reuse and system-of-system integrations), and

—	 by unanticipated users (for example, those seeking to exploit and penetrate a software system).

Furthermore, the ubiquitous connectivity of software systems virtually guarantees that most software will
be attacked — either because it is a target for penetration or because it offers a springboard for penetration
of other software. Accordingly, it is crucial that programmers take additional care to ensure predictable
execution despite the new challenges.

Software vulnerabilities are characteristics of software that permit software to execute in ways that are
unexpected. Programmers introduce vulnerabilities into software by using language features that are
inherently unpredictable in the various circumstances outlined above or by using features in a manner that
reduces predictability. Although, complete predictability is an ideal (particularly because new vulnerabilities
are often discovered through experience), programmers can improve predictability by carefully avoiding
the introduction of known vulnerabilities into code.

This document focuses on a particular class of vulnerabilities: language vulnerabilities. These are
properties of programming languages that can contribute to (or are strongly correlated with) application
vulnerabilities, security weaknesses, safety hazards, or defects.

Here is an example to clarify the relationship. The programmer’s use of a string copying function that does
not check length can be exploited by an attacker to place incorrect return values on the program stack, hence
passing control of the execution to code provided by the attacker. The string copying function is the language

7

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

vulnerability and the resulting weakness of the program in the face of the stack attack is the application
vulnerability. The programming language vulnerability enables the application vulnerability. The language
vulnerability can be avoided by using a string copying function that sets and enforces appropriate bounds
on the length of the string to be copied. By using a bounded copy function, the programmer improves the
predictability of the code’s execution.

The primary purpose of this document is to survey common programming language vulnerabilities; which is
done in Clause 6. Each description explains how an application vulnerability can result and provides various
mitigations and avoidance mechanisms that can prevent the vulnerability from appearing in a program.

Clause 7 documents vulnerabilities that do not directly result from language vulnerabilities. For example,
it is possible that a programmer stores a password in plain text (see 7.17 “Insufficiently protected stored
credentials [XYM]”) because the programming language does not provide a suitable library function for
storing the password in a non-recoverable format.

In addition to considering the individual vulnerabilities, it is instructive to consider the sources of
uncertainty that can decrease the predictability of software. These sources are briefly considered in the
remainder of this clause.

5.1.2	 Sources of unpredictability in language specification

5.1.2.1	 Incomplete or evolving specification

The design and specification of a programming language involves considerations that are very different
from the use of the language in programming. Language specifiers often require compatibility with older
versions of the language to be maintained, even to the extent of retaining inherently vulnerable features.
Sometimes the full implications and the interactions of new or complex features are not completely known,
especially when used in combination with other features.

5.1.2.2	 Undefined behaviour

It is simply not possible for the specifier of a programming language to describe every possible behaviour.
For example, the result of using a variable to which no value has been assigned is left undefined by many
languages. In such cases, a program can do anything, including crashing with no diagnostic or executing
with wrong data, leading to incorrect results.

5.1.2.3	 Unspecified behaviour

The language specification incompletely specifies the behaviour of some features, leaving the language
implementer to choose from a finite set of choices, but the choice is not always apparent to the programmer.
In such cases, different compilers or the same compiler with different options processing the code selected
can lead to different results, with possible harmful results.

5.1.2.4	 Implementation-defined behaviour

In some cases, the results of execution depend upon characteristics of the compiler that was used, the
processor upon which the software is executed, or the other systems with which the software has interfaces.
In principle, it is possible to predict the execution with sufficient knowledge of the implementation, but such
knowledge is sometimes difficult to obtain. Furthermore, dependence on a specific implementation-defined
behaviour leads to problems when a different processor or compiler is used — sometimes even if different
compiler options are used.

5.1.2.5	 Difficult features

Some language features can be difficult to understand or to use appropriately, either due to complicated
semantics (for example, floating point in numerical analysis applications) or human limitations (for example,
deeply nested program constructs or expressions). Sometimes simple typing errors can lead to major
changes in behaviour without a diagnostic (for example in C-based languages, typing “=” for assignment
when one really intended “==” for comparison).

8

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

5.1.2.6	 Inadequate language support

No language is suitable for every possible application. Furthermore, programmers sometimes do not have
the freedom to select the language that is most suitable for the task at hand. In many cases, libraries are
used to supplement the functionality of the language. Then, the library itself becomes a potential source of
uncertainty reducing the predictability of execution.

5.1.3	 Sources of unpredictability in language usage

5.1.3.1	 Porting and interoperation

The behaviour of a program can change when it is recompiled using a different compiler, recompiled
using different compilation options, executed with different libraries, executed on a different platform,
or even interfaced with different systems. Such changes result from different choices for unspecified
and implementation-defined behaviour, differences in library function, and differences in underlying
hardware and operating system support. The problem is far worse if the original programmer chose to use
implementation-dependent extensions to the language rather than staying with the standardized language.

5.1.3.2	 Compiler selection and usage

Nearly all software has defects and compilers are no exception. Therefore, the compiler should be carefully
selected from trusted sources and qualified prior to use. Perhaps less obvious, though, is the use of
compiler options. Different compiler options can cause differences in generated code. A careful selection of
settings can improve the predictability of code, such as a setting that causes the flagging of any usage of an
implementation-defined behaviour.

5.2	 Primary avoidance mechanisms

Each vulnerability listed in Clauses 6 and 7 provides a set of ways that the vulnerability can be avoided or
mitigated. Many of the mitigations and avoidance mechanisms are common. Table 1 documents the most
effective mitigations, together with references to which vulnerabilities they apply.

9

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Table 1 — Primary avoidance mechanisms for software developers

Number Avoidance mechanism Applicable vulnerabilities
1 Validate input, not make assumptions about the values of param-

eters and check parameters for valid ranges and values in the
calling and/or called functions before performing any operations.

6.6[FLC]	 7.13[XZP]
7.18[XZN]	 7.28[CCM]

2 When functions return error values, check the error return values
before processing any other returned data.

6.36[OYB]
6.60[CGT]

3 Enable compiler static analysis checking and resolve compiler
warnings.

6.8 [HBC]	 6.10[XYW]	
6.14[XYK]	 6.15 [FIF]	
6.16[PIK]	 6.17[NIA]	
6.18[WXQ]	 6.19[YZS]	
6.22[LAV]	 6.25[KOA]	
6.26[XYQ]	 6.27[CLL]	
6.29[TEX]	 6.30 [XZH]	
6.34[QTR]	 6.36[OYB]
6.38[YAN]	 6.39[XYL]
6.47[DJS]	 6.54[BRS]
6.56[EWF]	 6.57[FAB]
6.60[CGT]	 6.61[CGX]	
6.62[CGS]	 7.28[CCM]

4 Run a static analysis tool to detect anomalies not caught by the
compiler.

6.3[STR] 	 6.6[FLC]
6.7[CJM]	 6.8[HBC]	
6.10[XYW]	 6.14[XYK]	
6.15[FIF] 	 6.16[PIK]	
6.17[NIA]	 6.18[WXQ]	
6.19[YZS]	 6.22[LAV]	
6.25[KOA]	 6.26[XYQ]	
6.27[CLL]	 6.29[TEX]	
6.30 [XZH]	 6.34[QTR]	
6.36[OYB]	 6.38[YAN]	
6.39[XYL]	 6.47[DJS]	
6.54[BRS]	 6.56[EWF]	
6.57[FAB]	 6.60[CGT]	
6.61[CGX]	 6.62[CGS]	
7.28[CCM]

5 Perform explicit range checking: when it cannot be shown stat-
ically that ranges will be obeyed; when range checking is not
provided by the implementation; or if automatic range checking is
disabled.

6.6[FLC]
6.8[HBC]
6.16[PIK]

6 Allocate and free resources, such as memory, threads or locks, at
the same level of abstraction.

6.14[XYK]

7 Avoid constructs that have unspecified but bounded behaviour,
and if the construct is needed, test for all possible behaviours.

6.24[XYK]
6.56[EWF]

8 Make error detection, error reporting, error correction, and re-
covery an integral part of a system design.

6.36[OYB]

9 Use only those features of the programming language that enforce
a logical structure on the program.

6.31[EWD]

10 Avoid using features of the language which are not specified to an
exact behaviour or that are undefined, implementation-defined or
deprecated.

6.55[BQF]	 6.56[EWF]
6.57[FAB]	 6.58[MEM]
6.59[CGA]

11 Avoid using libraries without proper signatures. 6.34[QTR]
12 Prohibit the modification of loop control variables inside the loop

body.
6.29[TEX]

13 Prohibit assignments within Boolean expressions, even if allowed
by the language.

6.25[KOA]

10

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Number Avoidance mechanism Applicable vulnerabilities
14 Prohibit dependence on side effects of a term in the expression

itself.
6.31[EWD]
6.24[SAM]

15 Use names that are clear and visually unambiguous and be con-
sistent in choosing names.

6.17[NIA]

16 Use careful programming practice when programming border
cases.

6.6[FLC]	 6.29[TEX]
6.30 [XZH]

17 Beware of short-circuiting behaviour when expressions with side
effects are used on the right side of a short-circuited Boolean
expression, since a left-hand expression evaluating to false, dic-
tates that the right-hand expression, including function calls with
side effects, will not be evaluated.

6.24[SAM]
6.25[KOA]

18 Avoid fall-through from one case (or switch) statement into the
following case statement: if a fall-through is necessary then pro-
vide a comment to inform the reader that it is intentional.

6.27[CLL]

19 Avoid using floating-point arithmetic when integers would suffice,
especially for counters associated with program flow, such as loop
control variables.

6.4[PLF]

20 Sanitize, erase, or encrypt data that will be visible to others (for
example, freed memory, transmitted data).

7.11[EWR]
7.12[HTS]

6	 Programming language vulnerabilities

6.1	 General

This clause provides language-independent descriptions of vulnerabilities in programming languages that
can lead to application vulnerabilities. Each description provides:

—	 a summary of the vulnerability,

—	 characteristics of languages where the vulnerability can be found,

—	 typical mechanisms of failure,

—	 techniques that programmers can use to avoid the vulnerability, and

—	 ways that language designers can modify language specifications in the future to help programmers
mitigate the vulnerability.

Descriptions of how vulnerabilities are manifested in particular programming languages are provided in
the other parts of the ISO/IEC 24772 series. In each language-specific part of the ISO/IEC 24772 series, such
as ISO/IEC TR 24772-2 (Ada), the behaviour of the programming language is assumed to be as specified by
the language standard cited in the respective part of the ISO/IEC 24772 series. Clearly, programs can have
different vulnerabilities in a non-standard implementation. Examples of non-standard implementations
include:

—	 compilers written to implement some specification other than the standard,

—	 use of non-standard vendor extensions to the language, and

—	 use of compiler switches providing alternative semantics.

The vulnerability descriptions in this document are written in a language-independent manner except
when specific languages are used in examples. Language-specific vulnerability descriptions and avoidance
mechanisms are found in the respective language-specific parts of the ISO/IEC 24772 series (e.g.
ISO/IEC TR 24772-2 for the Ada programming language), which mirror the structure of this document.

Table 1 (continued)Table 1 (continued)

11

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Where applicable, cross-references to existing coding guidelines or rules are provided in the subclauses
entitled “Related coding guidelines”.

In general, this clause will use the terminology that is most natural to the description of each individual
vulnerability. Hence, terminology can differ from description to description.

6.2	 Type system [IHN]

6.2.1	 Description of application vulnerability

When data values are converted from one data type to another, even when done intentionally, unexpected
results can occur.

6.2.2	 Related coding guidelines

JSF AV Rules[34]: 148 and 183

MISRA C[39]: 4.6, 10.1, 10.3, and 10.4

MISRA C++[40]: 3-9-2, 5-0-3 to 5-0-14

CERT C Secure Coding Standard [41]: DCL07-C, DCL11-C, DCL35-C, EXP05-C and EXP32-C

Ada Quality and Style Guide[1]: 3.43.4

6.2.3	 Mechanism of failure

The type of a data object informs the compiler how values are represented, and which operations are
available. The "type system" of a language is the set of rules used by the language to structure and organize
its collection of types. Any attempt to manipulate data objects with inappropriate operations is a type error.
A program is said to be type safe (or type secure) if it can be demonstrated that it has no type errors.

Every programming language has some sort of type system. A language is statically typed if the type of
every expression is known at compile time. The type system is considered to be strong if it guarantees type
safety and weak if it does not. There are strongly typed languages that are not statically typed because they
enforce type safety with runtime checks.

In practical terms, nearly every language falls short of being strongly typed (in an ideal sense) because of
the inclusion of mechanisms to bypass type safety in particular circumstances. For that reason and because
every language has a different type system, this description will focus on taking advantage of whatever
features for type safety are available in the chosen language.

Sometimes it is appropriate for a data value to be converted from one type to another compatible type. For
example, consider the following program fragment, written in no specific language:

 float a;
 integer i;
 a:= a + i;

The variable i is of integer type. It is converted to the float type before it is added to the data value. This is
an implicit type conversion. If, on the other hand, the conversion is required by the programming language
to be specified by the program, for example,

 a:= a + float(i)

then it is an explicit type conversion.

Type equivalence is the strictest form of type compatibility; two types are equivalent if they are compatible
without using implicit or explicit conversion. Type equivalence is usually characterized in terms of "name
type equivalence" — two variables have the same type if they are declared in the same declaration or
declarations that use the same type name — or "structure type equivalence" — two variables have the same
type if they have identical structures. There are variations of these approaches and most languages use

12

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

different combinations of them, such as the C bounds-checking interface (see ISO/IEC TR 15942). Therefore,
a programmer skilled in one language can very well code inadvertent type errors when using a different
language.

Programs should be type-safe because the application of operations to operands of an inappropriate type
often produce unexpected results. In addition, the presence of type errors can reduce the effectiveness of
static analysis for other problems. Searching for type errors is a valuable exercise because their presence
often reveals design errors as well as coding errors. Many languages check for type errors — some at
compile-time, others at run-time. Obviously, compile-time checking is more valuable because it can catch
errors that are not executed by a particular set of test cases.

Making the most use of the type system of a language is useful in two ways. First, data conversions always
bear the risk of changing the value. For example, a conversion from integer to float risks the loss of significant
digits while the inverse conversion risks the loss of any fractional value. Conversion of an integer value from
a type with a longer representation to a type with a shorter representation risks the loss of significant digits.
This can produce particularly puzzling results if the value is used to index an array. Conversion of a floating-
point value from a type with a longer representation to a type with a shorter representation risks the loss of
precision. This can be particularly severe in computations where the number of calculations increases as a
power of the problem size.

Similar surprises can occur when an application is retargeted to a machine with different representations of
numeric values.

Second, a programmer can use the type system to increase the probability of catching design errors or
coding blunders. For example, the following Ada (ISO/IEC 8652) fragment declares two distinct floating-
point types:

 type Celsius is new Float;
 type Fahrenheit is new Float;

The declarations make it impossible by the language rules to add a value of type Celsius to a value of
type Fahrenheit without explicit conversion. Of course, explicit conversions require additional numeric
calculations that respect the relationship of the real-world units being converted. For example, F = CC
(where F is Fahrenheit and CC is Celsius) only works in the special case when CC = −40, otherwise it is
necessary to have:

 F = Convert_to_Fahrenheit(CC)

where the function Convert_To_Fahrenheit performs 9*C/5+32.

As another example, the following Pascal code

 type AltitudeInFeet = −1500.. 45000;

defines the operating range of a plane and lets the compiler decide on the appropriate underlying
representation in contrast to a predefined type integer which will be represented in 16 bits, 32 bits or 64
bits depending on the target architecture. In this case, 16 bit integers are insufficient.

6.2.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages that support multiple types and allow conversions
between types.

6.2.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 take advantage of any facility offered by the programming language to declare distinct types and use
any mechanism provided by the language processor and related tools to check for or enforce type
compatibility, such as the C ec-checking interface, ISO/IEC TR 24731;

13

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 use available language and tool capabilities to preclude or detect the occurrence of implicit type
conversions, such as those in mixed type arithmetic. If this is not possible, human review can assist in
searching for implicit conversions;

—	 avoid explicit type conversion of data values except when there is no alternative. Documenting such
occurrences makes the justification available to maintainers;

—	 use the most restricted data type that suffices to accomplish the job; for example, using an enumeration
type to select from a limited set of choices (such as a switch statement or the discriminant of a union
type) rather than a more general type, such as integer, enables tooling to check if all possible choices have
been covered;

—	 respect the implied unit systems, when converting explicitly from one numeric type to another;

—	 treat every compiler, tool, or run-time diagnostic concerning type compatibility as a serious issue and
avoid resolution of the issue by modifying the code to include an explicit conversion, without further
analysis. Instead, examine the underlying design to determine if the type error is a symptom of a deeper
problem;

—	 identify all instances of implicit type conversion, and for each case, if the conversion is necessary, change
it to an explicit conversion and document the rationale for the maintainers;

—	 analyse the problem to be solved to learn the magnitudes and/or the precisions of the quantities needed
as auxiliary variables, partial results and final results;

—	 create types that more accurately model the problem domain, with corresponding safe operations and
conversions in lieu of using primitive types;

—	 minimize the use of predefined numeric types whose ranges and precisions are implementation-defined,
instead using types whose ranges and precision are guaranteed.

6.2.6	 Implications for language design and evolution

In future language design and evolution activities, software designers should consider the following items:

—	 standardizing on a common, uniform terminology to describe their type systems so that programmers
experienced in other languages can reliably learn the type system of a language that is new to them;

—	 providing a mechanism for selecting data types with sufficient capability for the problem at hand;

—	 providing a way for the computation to determine the limits of the data types actually selected;

—	 providing compiler options or other mechanisms to provide the highest possible degree of checking for
type errors.

6.3	 Bit representations [STR]

6.3.1	 Description of application vulnerability

Interfacing with hardware, other systems and protocols often requires access to one or more bits in a
single computer word, or access to bit fields that can cross computer words for the machine in question.
Mistakes can be made as to what bits are accessed because of the "endianness" of the processor (whether
the highest order bit is called bit 0 or bit n) or because of miscalculations. Access to those specific bits can
affect surrounding bits in ways that compromise their integrity. This can result in the wrong information
being read from hardware, incorrect data or commands being given, or information being mangled, which
can result in arbitrary effects on components attached to the system.

6.3.2	 Related coding guidelines

JSF AV Rules[34] 147, 154 and 155

14

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

MISRA C[39]: 1.1, 6.1, 6.2, and 10.1

MISRA C++[40]: 5-0-21, 5-2-4 to 5-2-9, and 9-5-1

CERT C++ Secure Coding Standard[6]: EXP38-C, INT00-C, INT07-C, INT12-C, INT13-C, and INT14-C

See also Hogaboom.[12]

6.3.3	 Mechanism of failure

Computer languages frequently provide a variety of sizes for integer variables, such as short, integer, long,
and even big integers. Interfacing with protocols, device drivers, embedded systems, low-level graphics or
other external constructs often require each bit or set of bits to have a particular meaning. Those bit sets
can but do not always coincide with the sizes supported by a particular language implementation. When
they do not, it is common practice to pack all bits into one word. Masking and shifting of the word using
powers of two to pick out individual bits or using sums of powers of 2 to pick out subsets of bits (for example,
using 28 = 24 +23+22 to create the mask 11100) provides a way of extracting those bits. Knowledge of the
underlying bit storage is usually not necessary to accomplish simple extractions such as these. Problems can
arise when programmers mix their techniques (e.g. arithmetic and logical operations) to reference the bits
or output the bit, since storage ordering of the bits need not be what the programmer expects.

For the C programming language (ISO/IEC 9899), Hogaboom[12] discusses generic bit manipulation in C. The
C++ programming language, ISO/IEC 14882, also shares many of C’s characteristics but also provides higher
level constructs that help the programmer avoid associated vulnerabilities.

Packing of bits in an integer is not inherently problematic, however, an understanding of the intricacies of
bit-level programming is crucial to correct programming of the algorithm. Some computers or other devices
number the bits smallest-to-largest while others number them largest-to-smallest.

NOTE	 Some programmers think of this as left-to-right and right-to-left. Common terminology discusses shifting
bits left-to-right or right-to-left where the sign bit (if present) is considered to be the left-most bit.

Storage organization can cause problems when interfacing with external devices that number the bits in
opposite order. One problem arises when incorrect assumptions are made when interfacing with external
data sources or sinks and the ordering of the bits or words are not the same on both sides. Programmers
can inadvertently use the sign bit in a bit field but not be aware that an arithmetic shift (sign extension) is
being performed when right shifting causing the sign bit to be extended into other fields. Alternatively, a left
shift can cause the sign bit to be one. Bit manipulations can also be problematic when the manipulations are
done on binary encoded records that span multiple words. Knowledge of the storage and ordering of the bits
is essential when doing bit-wise operations across multiple words, as bytes can be stored in big-endian or
little-endian format.

6.3.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow bit manipulations.

6.3.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 explicitly document any reliance on bit ordering such as explicit bit patterns, shifts, or bit numbers;

—	 understand the way bit ordering is done on the host system and on the systems with which the bit
manipulations will be interfaced;

—	 where supported by the language, use bit fields in preference to binary, octal, or hexadecimal
representations;

—	 avoid bit operations on signed operands;

—	 localize and document code associated with explicit manipulation of bits and bit fields;

15

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 use static analysis tools that identify and report reliance upon bit ordering or bit representation.

6.3.6	 Implications for language design and evolution

In future language design and evolution activities, for languages that are commonly used for bit
manipulations, consideration should be given to creating a standardized application programming interface
(API) for bit manipulations that is independent of word size and machine instruction set.

6.4	 Floating-point arithmetic [PLF]

6.4.1	 Description of application vulnerability

Most real numbers cannot be represented exactly in a computer. To represent real numbers, most computers
use ISO/IEC 60559. If ISO/IEC 60559 is not followed, then the bit representation for a floating-point
number can vary from compiler to compiler and on different platforms, however, relying on a particular
representation can cause problems when a different compiler is used, or the code is reused on another
platform.

Regardless of the representation, many real numbers can only be approximated since representing the real
number using a binary representation often requires an endlessly repeating string of bits or more binary
digits than are available for representation. A floating-point number is only an approximation, albeit an
extremely good one. Floating-point representation of a real number or a conversion to floating-point can
cause surprising results and unexpected consequences to those unaccustomed to the idiosyncrasies of
floating-point arithmetic.

Many algorithms that use floating point can have anomalous behaviour when used with certain values. The
most common results are erroneous results or algorithms that never terminate for certain segments of the
numeric domain, or for isolated values. Those without training or experience in numerical analysis are often
not aware of the algorithms, or the domain values for a particular algorithm that require attention.

In some hardware, precision for intermediate floating-point calculations can be different than that suggested
by the data type, causing different rounding results when moving to standard precision modes.

6.4.2	 Related coding guidelines

JSF AV Rules[34]: 146, 147, 184, 197, and 202

MISRA C[39]: 1.1 and 14.1

MISRA C++[40]: 0-4-3, 3-9-3, and 6-2-2

CERT C Secure Coding Standard[41]: FLP00-C, FP01-C, FLP02-C and FLP30-C

Ada Quality and Style Guide[1]:

—	 5.5 subsection “Accuracy of Operations with Real Numbers”

—	 7.2 subsection “Accuracy Model”

6.4.3	 Mechanism of failure

Floating-point numbers are generally only an approximation of the actual value. Expressed in base 10 world,
the value of 1/3 is 0.333333… The same type of situation occurs in the binary world, but the numbers that can
be represented with a limited number of digits in base 10, such as 1/10 = 0.1 become endlessly repeating
sequences in the binary world. So, 1/10 represented as a binary number is:

0.0001100110011001100110011001100110011001100110011…

16

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

which is 0*1/2 + 0*1/4 + 0*1/8 + 1*1/16 + 1*1/32 + 0*1/64 … and no matter how many digits are used,
the representation will still only be an approximation of 1/10. Therefore, when adding 1/10 10 times, it is
possible that the final result is not exactly 1.

Accumulating floating point values through the repeated addition of values, particularly relatively small
values, can provide unexpected results. Using an accumulated value to terminate a loop can result in an
unexpected number of iterations. Rounding and truncation can cause tests of floating-point numbers against
other values to yield unexpected results. Another cause of floating-point errors is reliance upon comparisons
of floating-point values or the comparison of a floating-point value with zero. Tests of equality or inequality
can vary due to rounding or truncation errors, which can propagate far from the operation of origin. Even
comparisons of constants can fail when a different rounding mode was employed by the compiler and by
the application. Differences in magnitudes of floating-point numbers can result in no change of a very large
floating-point number when a relatively small number is added to or subtracted from it.

Manipulating bits in floating-point numbers is also very implementation dependent if the implementation is
not ISO/IEC 60559 compliant or in the interpretation of NAN’s. Typically, special representations are specified
for positive zero and negative zero; infinity and subnormal numbers are specified very close to zero. Relying
on a particular bit representation is inherently problematic, especially when a new compiler is introduced,
or the code is reused on another platform. The uncertainties arising from floating-point can be divided into
uncertainty about the actual bit representation of a given value (such as big-endian or little-endian) and the
uncertainty arising from the rounding of arithmetic operations (for example, the accumulation of errors
when imprecise floating-point values are used as loop indices).

Most floating-point implementations are binary. Decimal floating-point numbers are available on some
hardware and that capability has been standardized in ISO/IEC 60559 but one should aware what precision
guarantees the implementation programming language makes. In general, fixed-point arithmetic is often a
better solution to common problems involving decimal fractions (such as financial calculations).

Implementations (libraries) for different precisions are often implemented in the highest precision. This
can yield different results in algorithms such as exponentiation than if the programmer had performed the
calculation directly.

Floating-point systems have more than one rounding mode. “Round to the nearest even number” is the
default for almost all implementations. The other rounding modes “Round toward zero” and “Round away
from zero” can result in a more significant loss of precision and can cause unexpected outcome.

Some floating-point functions can return an arbitrary sign when the result is exactly zero. Tests that use the
sign of a number rather than its relationship to zero can return unexpected results.

See also Goldberg.[9]

6.4.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages with floating-point operations,
since floating-point variables can be subject to rounding or truncation errors.

6.4.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 unless the program’s use of floating-point is trivial, obtain the assistance of an expert in numerical
analysis and in the hardware properties of the target system to check the stability and accuracy of the
algorithm employed;

—	 avoid the use of floating-point expressions in a Boolean test for equality unless it can be shown that
the logic implemented by the equality test cannot be affected by prior rounding errors. Instead, use
coding that determines the difference between the two values to determine whether the difference is
acceptably small enough so that two values can be considered equal. If the two values are very large, the
“small enough” difference can be a very large number;

17

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 verify that the underlying implementation is compliant with ISO/IEC 60559 or that it includes subnormal
numbers (fixed point numbers that are close to zero); and be aware that implementations that do not
have this capability can underflow to zero in unexpected situations;

—	 be aware that infinities, NAN and subnormal numbers are possible and give special consideration to
tests that check for those conditions before using them in floating point calculations;

—	 use library functions with known numerical characteristics;

—	 avoid the use of a floating-point variable as a loop counter, but if it is necessary to use a floating-point
value for loop control, use inequality to determine the loop control (that is, < , <= , > or >=);

—	 understand the floating-point format used to represent the floating-point numbers to provide some
understanding of the underlying idiosyncrasies of floating-point arithmetic;

—	 avoid manipulating the bit representation of a floating-point number; instead prefer built-in language
operators and functions that are designed to extract the mantissa, exponent, or sign;

—	 avoid the use of floating-point for exact values such as monetary amount, and instead use floating-point
only when necessary, such as for fundamentally inexact values such as measurements or values of diverse
magnitudes;

—	 consider the use of fixed-point arithmetic /libraries or decimal floating point when appropriate;

—	 use known precision modes to implement algorithms;

—	 avoid changing the rounding mode from RNE (round nearest even);

—	 prohibit reliance on the sign of the floating-point Min and Max operations when both numbers are zero;

—	 when adding (or subtracting) sequences of floating-point numbers, sort and add (or subtract) them from
smallest to largest in absolute value or use a suitable compensated summation algorithm to avoid loss of
precision.

6.4.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 if a language does not already adhere to or only adheres to a subset of ISO/IEC 60559, it should adhere
completely to ISO/IEC 60559;

—	 providing a means to generate diagnostics for code that attempts to test equality of two floating-point values;

—	 standardizing their data type to ISO/IEC 10967-1:2012 and ISO/IEC 10967-2:2001.

6.5	 Enumerator issues [CCB]

6.5.1	 Description of application vulnerability

Enumerations are a finite list of named entities that contain a fixed mapping from a set of names to a set of
integral values (called the representation) and an order between the members of the set. In some languages,
there are no other operations available except order, equality, first, last, previous, and next; in others, the
full underlying representation operators are available, such as integer + and - and bit-wise operations.

Most languages that provide enumeration types also provide mechanisms to set non-default representations.
If these mechanisms do not enforce whole-type operations and check for conflicts, then it is possible that
some members of the set are not properly specified or have the wrong mappings. If the value-setting
mechanisms are positional only, then there is a risk that improper counts or changes in relative order will
result in an incorrect mapping.

For arrays indexed by enumerations with non-default representations, there is a risk of structures with holes,
and if those indexes can be manipulated numerically, there is a risk of out-of-bound accesses of these arrays.

18

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Most of these errors can be readily detected by static analysis tools with appropriate coding standards,
restrictions, and annotations. Similarly mismatches in enumeration value specification can be detected
statically. Without such rules, errors in the use of enumeration types are computationally hard to detect
statically as well as being difficult to detect by human review.

6.5.2	 Related coding guidelines

MISRA C[39]: 8.12, 9.2, and 9.3

MISRA C++[40]: 8-5-3

CERT C Secure Coding Standard [41]: INT09-C

Ada Quality and Style Guide[1]: 3.4 subsection "Enumeration Types"

See also Holzmann[13] rule 6.

6.5.3	 Mechanism of failure

As a program is developed and maintained, the list of items in an enumeration often changes in three basic
ways: new elements are added to the list; the relationship between the members of the set can change;
representation (the map of values of the items) change; and expressions that depend on the full set or
specific relationships between elements of the set can create value errors that can result in wrong results or
in unbounded behaviours if used as array indices.

Improperly mapped representations can result in some enumeration values being unreachable or having
holes in the representation where values that cannot be defined are propagated.

If arrays are indexed by enumerations containing non-default representations, some implementations can
leave space for values that are unreachable using the enumeration, with a possibility of unnecessarily large
memory allocations or a way to pass information undetected (hidden channel).

When enumerators are set and initialized explicitly and the language permits incomplete initializers, then
changes to the order of enumerators or the addition or deletion of enumerators can result in the wrong
values being assigned or default values being assigned improperly. Subsequent indexing can result in invalid
accesses and possibly unbounded behaviours.

6.5.4	 Applicable language Characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 Languages that permit incomplete mappings between enumerator specification and value assignment,
or that provide a positional-only mapping require additional static analysis tools and annotations to help
identify the complete mapping of every literal to its value.

—	 Languages that provide a trivial mapping to a type such as integer require additional static analysis tools
to prevent mixed type errors. They also cannot prevent invalid values from being placed into variables of
such enumerator types. For example:

 enum Directions {back, forward, stop};
 enum Directions a = forward, b = stop, c = a + b;

In this example, c can have a value not defined by the enumeration, and any further use as that enumeration
will lead to erroneous results.

—	 Some languages provide no enumeration capability, leaving it to the programmer to define named
constants to represent the values and ranges.

19

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.5.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use static analysis tools that will detect inappropriate use of enumerators, such as using them as integers
or bit maps, and that detect enumeration definition expressions that are incomplete or incorrect. For
languages with a complete enumeration abstraction, this is enforced by the compiler;

—	 in code that performs different computations depending on the value of an enumeration, ensure that
each possible enumeration value is covered, or provide a default that raises an error or exception;

—	 use an enumerated type to select from a limited set of choices and use tools that statically detect
omissions of possible values in an enumeration. For languages with a complete enumeration abstraction,
this is enforced by the compiler.

6.5.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 for languages that currently permit arithmetic and logical operations on enumeration types, a mechanism
should be provided to ban such operations program-wide;

—	 for languages that provide automatic defaults or that do not enforce static matching between enumerator
definitions and initialization expressions, a mechanism should be provided to enforce such matching.

6.6	 Conversion errors [FLC]

6.6.1	 Description of application vulnerability

Certain contexts in various languages require exact matches with respect to types.

 aVar:= anExpression
or
 value1 + value2
or
 foo(arg1, arg2, arg3, …, argN)

Type conversion seeks to follow these exact match rules while allowing programmers some flexibility
in using values such as: structurally equivalent types in a name-equivalent language, types whose value
ranges are distinct but intersect (for example, subranges), and distinct types with sensible/meaningful
corresponding values (for example, integers and floats).

Conversions can lead to a loss of data if the target representation is not capable of representing the original
value. For example, converting from an integer type to a smaller integer type can result in truncation if the
original value cannot be represented in the smaller size and converting a floating point to an integer can
result in a loss of precision or an out-of-range value. Converting from a character type to a smaller character
type can result in the misrepresentation of the character.

Type-conversion errors can lead to erroneous data being generated, algorithms that fail to terminate, array
bounds-errors, or arbitrary program execution.

See also 6.44 "Polymorphic variables [BKK]" for up-casting errors.

6.6.2	 Related coding guidelines

CWE[7]: 192. Integer Coercion Error

MISRA C[39]: 7.2, 10.1, 10.3, 10.4, 10.6-10.8, and 11.1-11.8

MISRA C++[40]: 2-13-3, 5-0-3, 5-0-4, 5-0-5, 5-0-6, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-2-5, 5-2-9, and 5-3-2

CERT C Secure Coding Standard [41]: FLP34-C, INT02-C, INT08-C, INT31-C, and INT35-C

20

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.6.3	 Mechanism of failure

Conversion errors result in data integrity issues which can result in a number of safety and security
vulnerabilities.

When the conversion results in no change in representation but a change in value for the new type, this can
result in a value that is not expressible in the new type, or that has a dramatically different order or meaning.
One such situation is the change of sign between the origin and destination (negative - > positive or positive
- > negative), which changes the relative order of members of the two types and can result in memory access
failures if the values are used in address calculations. Numeric type conversions can be less obvious because
some languages will silently convert between numeric types.

Vulnerabilities typically occur when appropriate range checking is not performed, and unanticipated values
are encountered. An Ariane 5[2][39] launcher failure occurred due to an improperly handled conversion error
resulting in the processor being shut down and the destruction of the spacecraft.

Conversion errors can also result in security issues, such as when an attacker inputs a particular numeric
value to exploit a flaw in the program logic. The resulting erroneous value can then be used as an array index,
a loop iterator, a length, a size, state data, or in some other security-critical manner. For example, when a
truncated integer value is used to allocate memory, while the actual length is used to copy information to
the newly allocated memory, this results in a buffer overflow, as specified in ISO/IEC 60559.

Numeric type-conversion errors can lead to undefined states of execution resulting in infinite loops or
crashes. In some cases, integer type-conversion errors can lead to exploitable buffer overflow conditions,
resulting in the execution of arbitrary code. Integer type-conversion errors result in an incorrect value
being stored for the variable in question.

Explicit conversions between entities of different unit systems without the application of the correct
conversion factors can lead to incorrect computations. For example, the first Martian lander failed due to an
improper conversion from metres to feet, resulting in the loss of the lander.

6.6.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that perform implicit type conversion (coercion);

—	 languages that permit conversions between subtypes of a polymorphic type, see 6.44 "Polymorphic
variables [BKK]";

—	 weakly typed languages that do not strictly enforce typing rules;

—	 languages that support logical, arithmetic, or circular shifts on integer values;

—	 languages that do not generate exceptions on problematic conversions.

6.6.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 if range checking is not provided by the language, use explicit range checks, type checks or value checks
to validate the correctness of all values originating from a source that is not trusted.

NOTE	 It is difficult to guarantee that multiple input variables cannot be manipulated to cause an error to occur in
some operation somewhere in a program; see Jones.[33]

—	 use explicit range checks to protect each operation, but pay attention to the large number of integer
operations that are susceptible to these problems and the number of checks required to prevent or
detect exceptional conditions, potentially resulting in prohibitively labour intensive implementation and
expensive computation;

—	 choose a language that generates exceptions on erroneous data conversions;

21

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 design objects and program flow, such that multiple or complex explicit type conversions are unnecessary;

—	 document any explicit type conversion made necessary by the algorithm to reduce the plausibility of
error in use;

—	 use static analysis tools to identify whether or not unacceptable conversions will occur, to the extent
possible;

—	 avoid the use of plausible but wrong default values when a calculation cannot be completed correctly;
instead, either generate an error or produce a value that is out of range and is certain to be detected;

—	 take care that any error processing does not lead to a denial-of-service vulnerability;

—	 respect the implied unit systems, when converting explicitly from one numeric type to another.

6.6.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 providing mechanisms to prevent programming errors due to conversions;

—	 making all type-conversions explicit or at least generating warnings for implicit conversions where loss
of data can occur.

6.7	 String termination [CJM]

6.7.1	 Description of application vulnerability

Some programming languages use a termination character to indicate the end of a string. Relying on the
occurrence of the string termination character without verification can lead to either exploitation or
unexpected behaviour.

6.7.2	 Related coding guidelines

CWE[7]: 170. Improper Null Termination

CERT C Secure Coding Standard[41]: STR03-C, STR31-C, STR32-C, and STR36-C

6.7.3	 Mechanism of failure

String termination errors occur when the termination character is solely relied upon to stop processing on
the string and the termination character is not present. Continued processing on the string can cause an
error or potentially be exploited as a buffer overflow. This can occur because, for a string that is passed as
input or generated by a library, a programmer assumes that it contains a string termination character when
it does not.

If the programmers forget to allocate space for the string termination character, they can expect to be able to
store an n length character string in an array that is n characters long. Doing so can work in some instances
depending on what is stored after the array in memory, but will almost always fail or be exploited at some point.

6.7.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that use a termination character to indicate the end of a string;

—	 languages that do not do bounds checking when accessing a string or array.

22

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.7.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid relying solely on the string termination character;

—	 use library calls that do not rely on string termination characters such as

 strncpy()

instead of

 strcpy()

in the standard C library;

—	 use static analysis tools that detect errors in string termination.

6.7.6	 Implications for language design and evolution

In future language design and evolution activities, consider the following items:

—	 eliminate library calls that make assumptions about string termination characters;

—	 check bounds when an array or string is accessed, such as the C bounds checking interface (see
ISO/IEC TR 15942);

—	 specify a string construct that does not require a string termination character.

6.8	 Buffer boundary violation (buffer overflow) [HCB]

6.8.1	 Description of application vulnerability

A buffer boundary violation arises when, due to unchecked array indexing or unchecked array copying,
storage outside the buffer is accessed. Usually, boundary violations describe the situation where such
storage is then written. Depending on where the buffer is located, logically unrelated portions of the stack
or the heap can be modified maliciously or unintentionally. Usually, buffer boundary violations are accesses
to contiguous memory beyond either end of the buffer data. Hence, access to the region before the beginning
or beyond the end of the buffer data are equally possible, dangerous and maliciously exploitable.

6.8.2	 Related coding guidelines

CWE[7]:

120. Buffer copy without Checking Size of Input (‘Classic Buffer Overflow’)

122. Heap-based Buffer Overflow

124. Boundary Beginning Violation (‘Buffer Underwrite’)

129. Unchecked Array Indexing

131. Incorrect Calculation of Buffer Size

787. Out-of-bounds Write

805. Buffer Access with Incorrect Length Value

JSF AV [34]: Rule 15 and 25

MISRA C[39]: 21.1

MISRA C++[40]: 5-0-15 to 5-0-18

23

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding Standard[41]: ARR30-C, ARR32-C, ARR33-C, ARR38-C, MEM35-C and STR31-C

6.8.3	 Mechanism of failure

The program statements that cause buffer boundary violations are often difficult to find.

In all cases, an exception can be raised if the accessed location is outside of some permitted range of the run-
time environment. Typical kinds of failures are:

—	 A read access will return a value that has no relationship to the intended value, such as, the value of
another variable or uninitialized storage.

—	 An out-of-bounds read access can be used to obtain information that is intended to be confidential.

—	 A write access will not result in the intended value being updated and can result in the value of an
unrelated object (that happens to exist at the given storage location) being modified, including the
possibility of changes in external devices resulting from the memory location being hardware-mapped.

—	 When an array has been allocated storage on the stack, an out-of-bounds write access can modify internal
runtime housekeeping information (e.g. a function's return address) which can change a program’s
control flow.

—	 An inadvertent or malicious overwrite of function pointers in memory can cause them to point to
an unexpected location or an attacker's code. Even in applications that do not explicitly use function
pointers, the run-time will usually store pointers to functions in memory. For example, object methods
in object-oriented languages are generally implemented using function pointers in a data structure or
structures that are kept in memory. The consequence of a buffer boundary violation can be targeted to
cause arbitrary code execution. This vulnerability can be used to subvert any security service.

6.8.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that do not detect and prevent an array being accessed outside of its declared bounds, by
means of an index, by pointer, or by using the physical memory address to access memory locations;

—	 languages that do not automatically allocate storage when accessing an array element for which storage
has not already been allocated;

—	 languages that provide bounds checking but permit the check to be suppressed;

—	 languages that allow a copy or move operation without an automatic length check ensuring that source
and target locations are of at least the same size. The destination target can be larger than the source
being copied.

6.8.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use any implementation-provided functionality to automatically check array element accesses and
prevent out-of-bounds accesses;

—	 use static analysis to verify that all array accesses are within the permitted bounds. Such analysis
often requires that source code contain certain kinds of information, for example, that the bounds of all
declared arrays be explicitly specified, or that pre- and post-conditions be specified;

—	 perform sanity checks on all calculated expressions used as an array index or for pointer arithmetic;

—	 ascertain whether the compiler can insert bounds checks while still meeting the performance
requirements of the program and direct the compiler to insert such checks where appropriate.

24

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

NOTE 1	 Some guideline documents recommend only using variables having an unsigned data type when
indexing an array, on the basis that an unsigned data type can never be negative. This recommendation simply
converts an indexing underflow to an indexing overflow because the value of the variable will wrap to a large
positive value rather than a negative one. Also, some languages support arrays whose lower bound is greater than
zero, so an index can be positive and be less than the lower bound. Some languages support zero-sized arrays, so
any reference to a location within such an array is invalid.

NOTE 2	 In the past, the implementation of array bound checking has sometimes incurred what has been
considered to be a high runtime overhead (often because unnecessary checks were performed). It is now practical
for translators to perform sophisticated analysis that significantly reduces the runtime overhead (because
runtime checks are only made when it cannot be shown statically that no bound violations can occur).

6.8.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 providing safe copying of arrays as built-in operation;

—	 providing array copy routines in libraries that perform checks on the parameters to ensure that no buffer
overrun can occur;

—	 performing automatic bounds checking on accesses to array elements, unless the compiler can statically
determine that the check is unnecessary. It is possible that this capability is optional for performance
reasons;

—	 where pointer types are provided, specifying a standardized feature for a pointer type that would enable
array bounds checking.

6.9	 Unchecked array indexing [XYZ]

6.9.1	 Description of application vulnerability

Unchecked array indexing occurs when a value is used as an index into an array without checking that it falls
within the acceptable index range.

6.9.2	 Related coding guidelines

CWE[7]:

129. Unchecked Array Indexing

676. Use of Potentially Dangerous Function

JSF AV Rules[34]: 164 and 15

MISRA C[39]: 21.1

MISRA C++[40]: 5-0-15 to 5-0-18

CERT C Secure Coding Standard [41]: ARR30-C, ARR32-C, ARR33-C, and ARR38-C

Ada Quality and Style Guide[1]:

—	 5.5 subsection “Array Attributes”

—	 7.6 subsections “Input/Output on Access Types” and “Package Ada.Streams.Stream_IO”

6.9.3	 Mechanism of failure

A single fault can allow both an overflow and underflow of the array index. An index overflow exploit can
use buffer overflow techniques, but this can often be exploited without having to provide “large inputs.”
Array index overflows can also trigger out-of-bounds read operations, or operations on the wrong objects;

25

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

that is, buffer overflows are not always the result. Unchecked array indexing, depending on its instantiation,
can be responsible for any number of related issues. Most prominent of these possible flaws is the buffer
overflow condition, with consequences ranging from denial of service, and data corruption, to arbitrary
code execution.

The most common situation leading to unchecked array indexing is the use of loop index variables as buffer
indexes. If the end condition for the loop is subject to a flaw, the index can grow or shrink unbounded,
therefore causing a buffer overflow or underflow. Another common situation leading to this condition is
the use of a function’s return value, or the resulting value of a calculation directly as an index into a buffer.
Unchecked array indexing can result in the corruption of relevant memory and perhaps the corruption of
instructions. If the memory corrupted contains data, the program can continue to function with improper
values or stop due to some system error, e.g. an access outside the valid memory. If the memory corrupted
contains instructions, then the access can result in arbitrary or malicious changes to the executing program.
If the corrupted memory can be effectively controlled, then the execution of arbitrary code becomes possible,
as with a standard buffer overflow.

Some language implementations statically detect out of bound access and generate a compile-time
diagnostic. At runtime, an implementation that detects the out-of-bound access can provide a notification.
Such a notification can be treatable by the program, or not. Accesses can violate the bounds of the entire
array or violate the bounds of a particular index. It is possible that the former is checked and detected by the
implementation while the latter is not. The information needed to detect the violation can be available, or
not, depending on the context of use. For example, passing an array to a subroutine via a pointer can deprive
the subroutine of information regarding the size of the array.

Aside from bounds checking, some languages have ways of protecting against out-of-bounds accesses. Some
languages automatically extend the bounds of an array to accommodate accesses that can otherwise have
been beyond the bounds. However, if this does not match the programmer’s intent, it can mask errors. Some
languages provide for whole array operations that obviate the need to access individual elements, thus
preventing unchecked array accesses.

6.9.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that do not automatically bounds-check array accesses;

—	 languages that do not automatically extend the bounds of an array to accommodate array accesses.

6.9.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 include sanity checks to ensure the validity of any values used as index variables;

—	 consider choosing a language that is not susceptible to these issues;

—	 when available, use whole array operations whenever possible;

—	 prohibit the suppression of language-provided bounds checks without first statically verifying that the
code is free from out-of-bounds accesses.

6.9.6	 Implications for language designers

In future language design and evolution activities, language designers should consider the following items:

—	 providing compiler switches or other tools to check the size and bounds of arrays and their extents that
are statically determinable;

—	 providing whole array operations that obviate the need to access individual elements;

26

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 providing the capability to generate exceptions or automatically extend the bounds of an array to
accommodate accesses that could otherwise have been beyond the bounds.

6.10	 Unchecked array copying [XYW]

6.10.1	 Description of application vulnerability

When the size and addresses of both the source and destination of an array or compound object are not
checked before the copy operation begins, the results can be catastrophic to program integrity. The classic
case of buffer overflow happens when some number of bytes (or other units of storage) are copied from one
buffer to another and the amount being copied is greater than is allocated for the destination buffer. Data
corruption can also happen when the program, or the programmer, does not check for overlap between the
source and target.

The first situation, overflow of a buffer in a sensitive region of a system, has been exploited as a classic
attack vector to render systems inoperable or to take them over.

The second situation, that of overlap, can result in data corruption, which is likely to result in incorrect
functioning of the system with potentially disastrous consequences to the containing system.

6.10.2	 Related coding guidelines

CWE[7]: 121. Stack-based Buffer Overflow

JSF AV Rules[34]: 15

MISRA C[39]: 21.1

MISRA C++[40]: 5-0-15 to 5-0-18

CERT C Secure Coding Standard[41]: ARR33-C and STR31-C

Ada Quality and Style Guide[1]:

	 7.6 subsection “Input/Output on Access Types”

	 7.6 subsection “Package Ada.Streams.Stream_IO”

6.10.3	 Mechanism of failure

Many languages and some third-party libraries provide functions that efficiently copy the contents of one
area of storage to another area of storage. Most of these libraries do not perform any checks to ensure that
the copied from/to storage area is large enough to accommodate the amount of data being copied.

When the source and target areas overlap, some libraries do not produce the expected outcome of copying
the value of the source area into the target area, because they do not identify the situation and save into a
temporary first to isolate the overlapped ranges.

The arguments to these library functions include the addresses of the contents of the two storage areas and
the number of bytes (or some other measure) to copy. Passing the appropriate combination of incorrect start
addresses or number of bytes to copy makes it possible to read or write outside of the storage allocated to
the source/destination area. When passed incorrect parameters, the library function performs one or more
unchecked array index accesses, as described in 6.9 “Unchecked array indexing [XYZ]”.

6.10.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that contain standard library functions for performing bulk copying of storage areas;

—	 the same range of languages having the characteristics listed in 6.9 “Unchecked array indexing [XYZ]”.

27

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.10.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 only use library functions that perform checks on the arguments to ensure no buffer overrun can occur
and perform checks on the argument expressions prior to calling the standard library function, to ensure
that no buffer overrun will occur;

—	 use static analysis to verify that the appropriate library functions are only called with arguments that do
not result in a buffer overrun or overlap;

NOTE	 Such analysis can require the source code to contain certain kinds of information, for example, that the
bounds of all declared arrays are explicitly specified, or that pre- and post-conditions are specified as annotations
or language constructs.

—	 sanitize all input data so that excessively large input data that can result in overflows is rejected;

—	 prohibit the suppression of any bounds checks provided by the language.

6.10.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 providing libraries that perform checks on the parameters to ensure that no buffer overrun can occur;

—	 providing full array assignment.

6.11	 Pointer type conversions [HFC]

6.11.1	 Description of application vulnerability

The code produced for access via a data or function pointer requires that the type of the pointer is
appropriate for the data or function being accessed. Otherwise, undefined behaviour can occur. Specifically,
access via a data pointer is defined to be “fetch or store indirectly through that pointer” and access via a
function pointer is defined to be “invocation indirectly through that pointer.” The detailed requirements for
the meaning of appropriate type can vary among languages.

Even if the type of the pointer is appropriate for the access, erroneous pointer operations can still cause a fault.

6.11.2	 Related coding guidelines

CWE[7]:

136. Type Errors

188. Reliance on Data/Memory Layout

JSF AV Rules[34]: 182 and 183

MISRA C[39]: 11.1-11.8

MISRA C++[40]: 5-2-2 to 5-2-9

CERT C Secure Coding Standard [41]: INT11-C and EXP36-A

Ada Quality and Style Guide[1]:

—	 7.6 subsection “Input/Output on Access Types”

—	 7.6 subsection “Package Ada.Streams.Stream_IO”

See also Hatton[10] rule 13: Pointer casts.

28

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.11.3	 Mechanism of failure

If a pointer’s type is not appropriate for the data or function being accessed, data can be corrupted, or
privacy can be broken by inappropriate read or write operation using the indirection provided by the pointer
value. With a suitable type-definition, large portions of memory can be maliciously or accidentally read or
modified. Such modification of data objects will generally lead to value faults of the application. Modification
of code elements such as function pointers or internal data structures for the support of object-orientation
can affect control flow. This can make the code susceptible to targeted attacks by causing invocation via a
pointer-to-function that has been manipulated to point to an attacker’s malicious code.

6.11.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 pointers (and/or references) can be converted to different pointer (and/or reference) types;

—	 pointers to functions can be converted to or from pointers to data.

6.11.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 treat all compiler pointer-conversion warnings as serious errors;

—	 adopt programming guidelines, preferably augmented by static analysis, that restrict pointer conversions,
such as the rules itemized above from JSF AV,[34] CERT,[41] Hatton[10] or MISRA C[39];

—	 use other means of assurance such as proofs of correctness, analysis with tools, verification techniques,
or other methods to verify that pointer conversions do not lead to later undefined behaviour.

6.11.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider creating a mode that
provides a runtime check of the validity of all accessed objects before the object is read, written or executed.

6.12	 Pointer arithmetic [RVG]

6.12.1	 Description of application vulnerability

Using pointer arithmetic incorrectly can result in addressing arbitrary locations, which in turn can cause a
program to behave in unexpected ways.

6.12.2	 Related coding guidelines

JSF AV[34] Rule: 215

MISRA C[39]: 18.1-18.4

MISRA C++[40]: 5-0-15 to 5-0-18

CERT C Secure Coding Standard [41]: EXP08-C

6.12.3	 Mechanism of failure

Pointer arithmetic used incorrectly can produce:

—	 addressing arbitrary memory locations, including buffer underflow and overflow;

—	 arbitrary code execution;

—	 addressing memory outside the range of the program.

29

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.12.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow pointer arithmetic.

6.12.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid using pointer arithmetic for accessing anything except composite types;

—	 prefer indexing for accessing array elements rather than using pointer arithmetic in languages that
permit the dual modes of access;

—	 limit pointer arithmetic calculations to the addition and subtraction of integers.

6.12.6	 Implications for language design and evolution

No implications apply.

6.13	 Null pointer dereference [XYH]

6.13.1	 Description of application vulnerability

A null pointer dereference takes place when a pointer with a value of NULL is used as though it pointed to a
valid memory location. This is a special case of accessing storage via an invalid pointer.

6.13.2	 Related coding guidelines

CWE[7]:

476. NULL Pointer Dereference

JSF AV[34]: Rule 174

CERT C Secure Coding Standard[41]: EXP34-C

Ada Quality and Style Guide[1]: 5.4 subsection “Dynamic Data”

6.13.3	 Mechanism of failure

When a pointer with a value of NULL is used as though it pointed to a valid memory location, then a null
pointer dereference is said to take place. This can result in a segmentation fault, unhandled exception, or
accessing unanticipated memory locations.

6.13.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 Languages that permit the use of pointers and that do not check the validity of the location being accessed
prior to the access itself;

—	 Languages that allow the use of a NULL pointer.

6.13.5	 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects by ensuring that prior to
dereferencing a pointer, its value is not equal to NULL.

30

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.13.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider a language feature
that would check a pointer value for NULL before performing an access.

6.14	 Dangling reference to heap [XYK]

6.14.1	 Description of application vulnerability

Memory designated by a dangling reference can be reused as soon as the referenced object has been deleted;
therefore, any subsequent access through the dangling reference can affect an apparently arbitrary location
of memory, corrupting data or code.

This description concerns dangling references to the heap. The description of dangling references to stack
frames can be found in 6.33 “Dangling reference to stack frame [DCM]”. In many languages, references are
called pointers; the issues are identical.

A notable special case of using a dangling reference is calling a deallocator, for example, free(), twice on
the same pointer value. Such a double free can corrupt internal data structures of the heap administration,
leading to faulty application behaviour [such as infinite loops within the allocator, returning the same memory
repeatedly as the result of distinct subsequent allocations, or deallocating memory legitimately allocated to
another request since the first free()call, to name but a few], or it can have no adverse effects at all.

Memory corruption caused by the use of a dangling reference is among the most difficult errors to locate.

With sufficient knowledge about the heap management scheme, which is often provided by the OS (Operating
System) or run-time system documentation, the use of dangling references is an exploitable vulnerability.
This is because the dangling reference provides a way to read or modify valid data in the designated memory
locations after freed memory has been re-allocated by subsequent allocations for other data.

Allocating and freeing memory in different modules and levels of abstraction burdens the programmer with
tracking the lifetime of that block of memory. This can cause confusion regarding when and if a block of
memory has been allocated or freed, leading to programming defects such as double-free vulnerabilities,
accessing freed memory, or dereferencing NULL pointers or pointers that are not initialized.

6.14.2	 Related coding guidelines

CWE[7]:

415. Double Free (Note that Double Free (415) is a special case of Use After Free (416))

416. Use After Free

MISRA C[39]: 18.1-18.6

MISRA C++[40]: 0-3-1, 7-5-1, 7-5-2, 7-5-3, and 18-4-1

CERT C Secure Coding Standard[41]: MEM01-C, MEM30-C, and MEM31.C

Ada Quality and Style Guide[1]:

—	 5.4 subsection “Dynamic Data”

—	 7.2 subsection “Storage Pool Mechanisms

—	 7.6 subsection “Input/Output on Access Types”

6.14.3	 Mechanism of failure

The lifetime of an object is the portion of program execution during which storage is guaranteed to be
reserved for it. An object exists and retains its last-stored value throughout its lifetime. If an object is
referred to outside of its lifetime, the behaviour is undefined. Explicit deallocation of heap-allocated storage

31

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

ends the lifetime of the object residing at this memory location (as does leaving the dynamic scope of a
declared variable). The value of a pointer becomes indeterminate when the object it points to reaches the
end of its lifetime. Such pointers are called dangling references. A deallocation causes all remaining copies of
the reference to become dangling.

The use of dangling references to previously freed memory can have a number of adverse consequences —
ranging from the corruption of valid data to the execution of arbitrary code, depending on the instantiation
and timing of the deallocation, the system's reuse of the freed memory, and of the subsequent usage of a
dangling reference.

Like memory leaks and errors due to double deallocation, the use of dangling references has two common
and sometimes overlapping causes:

—	 an error condition or other exceptional circumstances that unexpectedly cause an object to become
undefined;

—	 developer confusion over which part of the program is responsible for freeing the memory.

If a pointer to previously freed memory is used, it is possible that the referenced memory has been
reallocated. Therefore, assignment using the original pointer has the effect of changing the value of an
unrelated variable. This induces unexpected behaviour in the affected program. If the newly allocated data
happens to hold a class description, in an object-oriented language for example, it is possible that various
function pointers are scattered within the heap data. If one of these function pointers is overwritten with an
address of malicious code, execution of arbitrary code can be achieved.

6.14.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that permit the use of pointers and that permit explicit deallocation by the developer or
provide for alternative means to reallocate memory still pointed to by some pointer value;

—	 languages that permit definitions of constructs that can be parameterized without enforcing the
consistency of the use of parameter at compile time.

6.14.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use an implementation that checks whether a pointer is used that designates a memory location that has
already been freed;

—	 use a coding style that does not permit deallocation;

—	 in complicated error conditions, be sure that clean-up routines respect the state of allocation properly,
such as if the language is object-oriented, ensure that object destructors delete each chunk of memory
only once, and ensure that all pointers are set to NULL once the memory they point to have been freed;

—	 use a static analysis tool that is capable of detecting some situations when a pointer is used after the
storage it refers to is no longer a pointer to valid memory location;

—	 allocate and free memory at the same level of abstraction, and ideally in the same code module.

6.14.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 providing implementations of the free function that can tolerate multiple frees on the same reference/
pointer or frees of memory that was never allocated. Such an operation is called an idempotent operation;

—	 for properties that cannot be checked at compile time, providing an assertion mechanism for checking
properties at run-time, with the option to inhibit assertion checking if efficiency is a concern;

32

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 providing a storage allocation interface that will allow the called function to set the pointer used to
NULL after the referenced storage is deallocated.

6.15	 Arithmetic wrap-around error [FIF]

6.15.1	 Description of application vulnerability

Wrap-around errors can occur whenever a value is incremented past the maximum or decremented past the
minimum value representable in its type and, depending upon whether:

—	 the type is signed or unsigned;

—	 the specification of the language semantics and/or implementation choices;

—	 the computation wraps around to an unexpected value.

This vulnerability is related to 6.16 “Using shift operations for multiplication and division [PIK]”.

6.15.2	 Related coding guidelines

CWE[7]:

128. Wrap-around Error

190. Integer Overflow or Wraparound

JSF AV Rules[34]: 164 and 15

MISRA C[39]: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4

MISRA C++[40]: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1

CERT C Secure Coding Standard [41]: INT30-C, INT32-C, and INT34-C

6.15.3	 Mechanism of failure

Due to how arithmetic is performed by computers, if a variable’s value is increased past the maximum value
representable in its type, it is possible that the system fails to provide an overflow indication to the program.
The most common processor behaviours are to wrap to a very large negative value, to set a condition flag for
overflow or underflow, or saturate at the largest representable value.

Wrap-around often generates an unexpected negative value. This unexpected value can cause a loop to
execute for a long time (because the termination condition requires a value greater than some positive
value) or an array bounds violation. A wrap-around can sometimes trigger buffer overflows that can be used
to execute arbitrary code.

The precise consequences of wrap-around differ depending on:

—	 whether the type is signed or unsigned;

—	 whether the type is a modulus type;

—	 whether the type’s range is violated by exceeding the maximum representable value or falling short of
the minimum representable value;

—	 the semantics of the language specification;

—	 implementation decisions.

However, in all cases, the resulting problem is that the value yielded by the computation is often unexpected.

33

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.15.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that do not trigger an exception
condition when a wrap-around error occurs.

6.15.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range;

—	 analyse the software using static analysis to identify unexpected consequences of arithmetic operations.

6.15.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing facilities
to specify either an error, a saturated value, or a modulo result when numeric overflow occurs. Ideally, the
selection among these alternatives can be made by the programmer.

6.16	 Using shift operations for multiplication and division [PIK]

6.16.1	 Description of application vulnerability

Using shift operations as a surrogate for multiply or divide can produce an unexpected value when the sign
bit is changed or when value bits are lost. This vulnerability is related to 6.15 “Arithmetic wrap-around
error [FIF]”...

6.16.2	 Related coding guidelines

CWE[7]:

128. Wrap-around Error

190. Integer Overflow or Wraparound

JSF AV Rules[34]: 164 and 15

MISRA C[39]: 7.2, 10.1, 10.3, 10.4, 10.6, 10.7, and 12.4

MISRA C++[40]: 2-13-3, 5-0-3 to 5-0-10, and 5-19-1

CERT C Secure Coding Standard [41]: INT30-C, INT32-C, and INT34-C

6.16.3	 Mechanism of failure

Shift operations that are intended to produce results equivalent to multiplication or division will fail to
produce correct results if the shift operation affects the sign bit or if the operation results in the loss of
significant bits from the value.

Such errors often generate an unexpected negative value, which can cause a loop to continue for a long time
(because the termination condition requires a value greater than some positive value) or an array bounds
violation. The error can sometimes trigger buffer overflows that can be used to execute arbitrary code.

6.16.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that permit logical shift operations
on variables of arithmetic type.

34

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.16.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 determine applicable upper and lower bounds for the range of all variables and use language mechanisms
or static analysis to determine that values are confined to the proper range;

—	 analyse the software using static analysis to identify unexpected consequences of shift operations;

—	 avoid using shift operations as a surrogate for multiplication and division as most compilers will use the
correct operation in the appropriate fashion when it is applicable.

6.16.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 not providing logical shifting on arithmetic values;

—	 flagging all occurrences of logical shifts for reviewers.

6.17	 Choice of clear names [NAI]

6.17.1	 Description of application vulnerability

Humans sometimes choose similar or identical names for objects, types, aggregates of types, subprograms
and modules. They tend to use characteristics that are specific to the native language of the software
developer to aid in this effort, such as use of mixed-casing, underscores and periods, or use of plural and
singular forms to support the separation of items with similar names. Similarly, development conventions
sometimes use casing for differentiation (for example, all uppercase for constants).

Human cognitive problems occur when different (but similar) objects, subprograms, types, or constants
differ in name so little that human reviewers are unlikely to distinguish between them, or when the system
maps such entities to a single entity. Typing errors can lead to unintended bindings. The problem is amplified
if a language does not require explicit declarations of names.

Conventions such as the use of capitalization, and singular/plural distinctions often work in small and
medium projects, but there are a number of significant issues to be considered:

—	 large projects often have mixed programming languages, and such conventions are often language-
specific;

—	 many implementations support identifiers that contain international character sets, and some language
character sets have different notions of casing and plurality;

—	 different word-forms tend to be natural language and dialect specific, such as a pidgin, but are meaningless
to humans that speak other dialects.

An important general issue is the choice of names that differ from each other negligibly (in human terms),
for example by differing by only underscores, (none, “_” “__”), plurals (“s”), visually similar characters (such
as “l” and “1”, “O” and “0”), or underscores/dashes (“-”,”_”). There is also an issue where identifiers appear
distinct to a human but identical to the computer, such as FOO, Foo, and foo in some computer languages.
Character sets extended with diacritical marks and non-Latin characters offer additional problems.

Another issue is that some languages or their implementations only require implementations to parse the
first n characters of an identifier, which creates a sense in readers that names that differ in characters
beyond the limit are distinct while the implementation will make them the same name.

The problems described above are different from overloading or overriding where the same name is used
intentionally (and documented) to access closely linked sets of subprograms. This is also different than using
reserved names which can lead to a conflict with the reserved use and the use of which are not necessarily
detected at compile time.

35

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Name confusion can lead to the application executing different code or accessing different objects than the
writer intended, or than the reviewers understood. This can lead to outright errors or leave in place code
that can execute sometime in the future with unacceptable consequences.

Although most such mistakes are unintentional, it is plausible that such usages can be intentional, if masking
surreptitious behaviour is a goal.

6.17.2	 Related coding guidelines

JSF AV Rules[34]: 48, 49, 50, 51,52

MISRA C[39]: 1.1

CERT C Secure Coding Standard [41]: DCL02-C

Ada Quality and Style Guide[1]: 3.2

6.17.3	 Mechanism of Failure

Calls to the wrong subprogram or references to the wrong data element (that was missed by human review)
can result in unintended behaviour. Language processors will not make a mistake in name translation,
but human cognition limitations can cause humans to misunderstand, and therefore be missed in human
reviews.

6.17.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages with relatively flat name spaces are more susceptible. Systems with modules, classes, packages
can use qualification to disambiguate names that originate from different parents;

—	 languages that treat letter case as significant. Some languages do not differentiate between names with
differing case, while others do.

6.17.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use static analysis tools to show the target of calls and accesses and to produce alphabetical lists of
names, and possibly followed with human review to detect the names that are sorted at an unexpected
location or which look almost identical to an adjacent name in the list;

—	 use a language with a requirement to declare names before use or use available tool or compiler options
to enforce such a requirement;

—	 avoid names that conflict with (unreserved) keywords or language-defined library names for the
language being used;

—	 avoid names that only differ by characters that can be confused visually in the alphabet used in
development, such as for the Roman alphabet characters such as "O" and "0", "l" (lower case "L"), "I"
(capital "i") and "1", "S" and "5", "Z" and "2", and "n" and "h";

—	 avoid names that only differ in the use of upper and lower case to other names;

—	 in languages with optional declarations of variables, always use explicit declarations of the variables to
assist compiler checking;

—	 use language features such as preconditions and postconditions or named parameter passing to facilitate
the detection of accidentally incorrect function names.

36

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.17.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 providing an option to impose the declaration of names before use;

—	 requiring that implementations use all the characters of a name when comparing names, instead of some
fixed number of leading characters.

6.18	 Dead store [WXQ]

6.18.1	 Description of application vulnerability

A variable's value is assigned but never subsequently used, either because the variable is not referenced
again, or because a second value is assigned before the first is used. This suggests that the design has been
incompletely or inaccurately implemented, for example, a value has been created and then "forgotten about".

This vulnerability is very similar to 6.19.

6.18.2	 Related coding guidelines

CWE[7]: 563. Unused Variable

MISRA C++[40]: 0-1-4 and 0-1-6

CERT C Secure Coding Standard [41]: MSC13-C

6.18.3	 Mechanism of failure

A variable is assigned a value, but this is never subsequently used. Such an assignment is then generally
referred to as a dead store.

A dead store can be indicative of careless programming or of a design or coding error, as either the use of
the value was forgotten (almost certainly an error) or the assignment was performed even though it was not
needed (at best inefficient). Dead stores can also arise as the result of mistyping the name of a variable, if the
mistyped name matches the name of a variable in an enclosing scope.

There are legitimate uses for apparent dead stores. For example, the value of the variable can be intended
to be read by another execution thread or an external device, or its sensitivity requires destruction after it
is used. In such cases, though, mark the variable as volatile. Common compiler optimization techniques will
remove apparent dead stores if the variables are not marked as volatile, hence causing incorrect execution
or leakage, respectively.

A dead store is justifiable if, for example:

—	 the code has been automatically generated, where it is commonplace to find dead stores introduced to
keep the generation simple and uniform;

—	 the code is initializing a sparse data set, where all members are cleared, and then selected values assigned
a value.

6.18.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to any programming language that provides
assignment or initialized declarations.

37

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.18.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use static analysis to identify any dead stores in the program and to ensure that there is a justification
for each one;

—	 avoid declaring variables of compatible types in nested scopes with similar names;

—	 if variables are intended to be accessed by other execution threads or external devices, mark them as
volatile;

—	 to prevent potential leakage of sensitive information, assign some information-free value to the volatile
object after the last intended read.

6.18.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing (possibly
optional) warning messages for dead store.

6.19	 Unused variable [YZS]

6.19.1	 Description of application vulnerability

An unused variable is one that is declared but neither read nor written in the program. This type of error
suggests that the design has been incompletely or inaccurately implemented.

Unused variables by themselves are innocuous, but can provide memory space that attackers can use in
combination with other techniques.

This vulnerability is similar to 6.18 if the variable is initialized but never used.

6.19.2	 Related coding guidelines

CWE[7]: 563. Unused Variable

MISRA C++[40]: 0-1-3

CERT C Secure Coding Standard[41]: MSC13-C

6.19.3	 Mechanism of failure

A variable is declared but never used. The existence of an unused variable can indicate a design or coding error.

As compilers routinely diagnose unused local variables, their presence can be an indication that compiler
warnings are either suppressed or are being ignored.

While unused variables are innocuous, they can provide available memory space to be used by attackers to
exploit other vulnerabilities.

6.19.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that provide variable declarations.

6.19.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 enable detection of unused variables in the compiler;

38

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 use static analysis to identify any unused variables in the program and ensure that there is a documented
justification for them.

6.19.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing (possibly
optional) warning messages for unused variables.

6.20	 Identifier name reuse [YOW]

6.20.1	 Description of application vulnerability

When distinct entities are defined in nested scopes using the same name, it is possible that program logic
will operate on an entity other than the one intended.

When it is not clear which identifier is used, the program can behave in ways that were not predicted by
reading the source code. This can be found by testing, but circumstances can arise (such as the values of
the same-named objects being mostly the same) where harmful consequences occur. This weakness can
also lead to vulnerabilities such as hidden channels where humans believe that important objects are being
rewritten or overwritten when in fact other objects are being manipulated.

6.20.2	 Related coding guidelines

JSF AV Rules[34]: 120, 135, 136 and 137

MISRA C[39]: 5.3, 5.8, 5.9, 21.1, 21.2

MISRA C++[40]: 2-10-2, 2-10-3, 2-10-4, 2-10-5, 2-10-6, 17-0-1, 17-0-2, and 17-0-3

CERT C Secure Coding Standard[41]: DCL01-C and DCL32-C

Ada Quality and Style Guide[1]: 5.6 subsection “Nesting”

6.20.3	 Mechanism of failure

Many languages support the concept of scope. One of the ideas behind the concept of scope is to provide a
mechanism for the independent definition of identifiers that share the same name.

For instance, in the following code fragment:

 int some_var;
 {
 int t_var;
 int some_var; /* definition in nested scope */

 t_var = 3;
 some_var = 2;
 }

an identifier called some_var has been defined in different scopes.

If either the definition of some_var or t_var that occurs in the nested scope is deleted (for example, when
the source is modified) it is necessary to delete all other references to the identifier’s scope. If a developer
deletes the definition of t_var but fails to delete the statement that references it, then most languages
require a diagnostic to be issued (such as reference to undefined variable). However, if the nested definition
of some_var is deleted but the reference to it in the nested scope is not deleted, then no diagnostic will be
issued (because the reference resolves to the definition in the outer scope).

39

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

In some cases, non-unique identifiers in the same scope can also be introduced through the use of identifiers
whose common substring exceeds the length of characters the implementation considers to be distinct. For
example, in the following code fragment:

 extern int global_symbol_definition_lookup_table_a[100];
 ext ern int global_symbol_definition_lookup_table_b[100];

the external identifiers are not unique on implementations where only the first 31 characters are significant.
This situation only occurs in languages that allow multiple declarations of the same identifier (other
languages require a diagnostic message to be issued).

A related problem exists in languages that allow overloading or overriding of keywords or standard library
function identifiers. Such overloading can lead to confusion about which entity is intended to be referenced. For
issues of overriding and overloading methods in object-oriented programming, see 6.41 “Inheritance [RIP]”.

It is an important principle that definitions for new identifiers do not use a name that is already visible
within the scope containing the new definition, or alternatively, that language-specific facilities or other
static analysis tools check for and prevent inadvertent overloading of names being used.

6.20.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

—	 languages that allow the same name to be used for identifiers defined in nested scopes;

—	 languages where unique names can be transformed into non-unique names as part of the normal tool chain.

6.20.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 ensure that a definition of an entity does not occur in a scope where a different entity with the same
name is accessible and can be used in the same context, including using a language-specific project
coding convention to ensure that such errors are detectable with static analysis;

—	 ensure that a definition of an entity does not occur in a scope where a different entity with the same name
is accessible and has a type that permits it to occur in at least one context where the first entity can occur;

—	 use available language features, which explicitly mark definitions of entities that are intended to hide
other definitions;

—	 develop or use tools that identify name collisions or reuse when truncated versions of names cause
conflicts;

—	 ensure that all identifiers differ within the number of characters considered to be significant by the
implementations that are likely to be used and document all assumptions.

6.20.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 requiring mandatory diagnostics for entities with the same name in nested scopes;

—	 requiring mandatory diagnostics for entity names that exceed the length that the implementation uses
to define uniqueness;

—	 requiring mandatory diagnostics for overloading or overriding of keywords or standard library function
identifiers.

40

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.21	 Namespace issues [BJL]

6.21.1	 Description of application vulnerability

If a language provides separate, non-hierarchical namespaces; a user-controlled ordering of namespaces;
and a means to make names declared in these namespaces directly visible to an application, the potential of
unintentional and possible disastrous change in application behaviour can arise when names are added to a
namespace during maintenance.

Namespaces include constructs such as packages, modules, libraries, classes or any other means of grouping
declarations for import into other program units.

6.21.2	 Related coding guidelines

MISRA C++[40]: 7-3-1, 7-3-3, 7-3-5, 14-5-1, and 16-0-2

6.21.3	 Mechanism of Failure

The failure is best illustrated by an example. Namespace N1 provides the name A, but not B. Namespace N2
provides the name B but not A. The application wishes to use A from N1 and B from N2. At this point, there are
no obvious issues. The application chooses to import both namespaces to obtain names for direct usage, for
example:

 use N1, N2; – presumed to make all names in N1 and N2
 -- directly visible in the scope of intended use
 …
 X:= A + B;

The semantics of the above example are intuitive and unambiguous.

Later, during maintenance, the name B is added to N1. The change to the namespace usually implies a
recompilation of dependent units. At this point, two declarations of B are applicable for the use of B in the
above example.

Some languages try to disambiguate the above situation by stating preference rules in case of such ambiguity
among names provided by different name spaces. If, in the above example, N1 is preferred over N2, the
meaning of the use of B changes silently, presuming that no typing error arises. Consequently, the semantics
of the program change silently and unintentionally, since the implementer of N1 cannot assume that all users
of N1 would prefer to take any declaration of B from N1 rather than its previous namespace.

It does not matter what the preference rules actually are, as long as the namespaces are mutable. The above
example is easily extended by adding A to N2 to show a symmetric error situation for a different precedence rule.

If a language supports overloading of subprograms, the notion of "same name" used in the above example
is extended to mean not only the same name, but also the same signature of the subprogram. For
vulnerabilities associated with overloading and overriding, see 6.20 “Identifier name reuse [YOW]” and 6.41
“Inheritance [RIP]”. In the context of namespaces, however, adding signature matching to the name binding
activity merely extends the described problem from simple names to full signatures, but does not alter the
mechanism or quality of the described vulnerability. In particular, overloading does not introduce more
ambiguity for binding to declarations in different name spaces.

This vulnerability not only creates unintentional errors, but it also can be exploited maliciously, if the source
of the application and of the namespaces is known to the aggressor and one of the namespaces is mutable by
the attacker.

6.21.4	 Applicable language characteristics

The vulnerability is applicable to languages that:

—	 support non-hierarchical separate namespaces;

41

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 have the means to import all names of a namespace wholesale for direct use and;

—	 have preference rules to choose among multiple imported direct homographs.

All three conditions are required together for the vulnerability to arise.

6.21.5	 Avoiding the Vulnerability or Mitigating its Effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid wholesale import directives, i.e. directives that give all imported names the same visibility level
as each other and/or the same visibility level as local names (provided that the language offers the
respective capabilities);

—	 use only selective single name import directives or using fully qualified names (provided that the
language offers the respective capabilities).

6.21.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 avoiding preference rules among mutable namespaces;

—	 providing mechanisms such that ambiguities are invalid and avoidable by the user, for example, by using
names qualified by their originating namespace.

6.22	 Missing initialization of variables [LAV]

6.22.1	 Description of application vulnerability

Reading a variable that has not been assigned a value appropriate to its type can cause unpredictable
execution in the block that uses the value of that variable and has the potential to export bad values to
callers, or to cause out-of-bounds memory accesses.

Uninitialized variable usage is frequently not detected until after testing and often when the code in question
is delivered and in use, because happenstance will provide variables with adequate values (such as default
data settings or accidental left-over values) until some other change exposes the defect.

Variables that are declared during module construction (by a class constructor, instantiation, or elaboration)
can have alternate paths that can read values before they are set. This can happen in straight sequential code
but is more prevalent when concurrency or co-routines are present, with the same impacts described above.

Another vulnerability occurs when compound objects are initialized incompletely, as can happen when
objects are incrementally built, or fields are added under maintenance.

When possible and supported by the language, whole-structure initialization is preferable to field-by-field
initialization statements, and named association is preferable to positional, as it facilitates human review
and is less susceptible to error injection under maintenance. For classes, the declaration and initialization
can occur in separate modules. In such cases, it is necessary to show that every field that needs an initial
value receives that value, and to document ones that do not require initial values.

6.22.2	 Related coding guidelines

CWE[7]: 457. Use of Uninitialized Variable

JSF AV Rules[34]: 71, 143, and 147

MISRA C[39]: 9.1, 9.2, and 9.3

MISRA C++[40]: 8-5-1

42

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding Standard[41]: DCL14-C and EXP33-C

Ada Quality and Style Guide[1]: 5.9 subsection “Initialization”

6.22.3	 Mechanism of failure

Uninitialized objects can have invalid values, valid but wrong values, or valid and dangerous values. Wrong
values can cause unbounded branches in conditionals or unbounded loop executions or can simply cause
wrong calculations and results.

There is a special case for pointers or access types. When such a type contains null values, a bound violation
and hardware exception can result. When such a type contains plausible but meaningless values, random
data reads and writes can collect erroneous data or can destroy data that is in use by another part of the
program; when such a type is an access to a subprogram with a plausible (but wrong) value, then either a
bad instruction trap can occur or a transfer to an unknown code fragment can occur. All of these scenarios
can result in undefined behaviour.

Uninitialized variables are difficult to identify and use for attackers, but can be arbitrarily dangerous in
safety situations.

The general problem of showing that all program objects are initialized is intractable.

6.22.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that permit variables to be read
before they are assigned.

6.22.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 carefully structure programs to show that all variables are set before first read on every path throughout
each subprogram;

—	 use static analysis tools to show that all objects are set before use, and since the general problem is
intractable, keep initialization algorithms simple so that they can be analysed;

—	 when declaring and initializing the object together, use compiler diagnostics or static analysis tools to
statically verify that the declarative structure and the initialization structure match;

—	 use dynamic tools where available to detect uninitialized variables during testing.

—	 when an object is visible from multiple modules, identify a module that is required to set the value before
reads can occur from any other module that can access the object, and ensure that the module that sets
the value is executed first;

—	 when an object can be accessed concurrently, including by interrupts and co-routines, identify where
early initialization occurs and show statically that the correct order is set, i.e. via program structure, not
by timing, OS precedence, or chance;

—	 consider initializing each object at declaration, or immediately after subprogram execution commences
and before any branches;

—	 if the algorithm forces the subprogram to commence with conditional statements, show statically that
every variable declared and not initialized earlier is initialized on each branch;

—	 ensure that the initial object value is a sensible value for the logic of the program;

NOTE	 So-called junk initialization (e.g. setting every variable to zero) prevents the use of tools that detect
otherwise uninitialized variables.

43

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 define or reserve fields or portions of the object to only be set when fully initialized, understanding
however, that this approach has the effect of setting the variable to possibly mistaken values while
defeating the use of static analysis to find the uninitialized variables;

—	 when setting compound objects, if the language provides mechanisms to set all components together,
use those in preference to a sequence of initializations as this facilitates coverage analysis; otherwise
use tools that perform such coverage analysis and document the initialization;

—	 avoid performing partial initializations unless there is no choice and document any deviations from full
initialization;

—	 where default assignments of multiple components are performed, explicitly declare all component
names and/or ranges to help static analysis and to identify component changes during maintenance;

—	 use named assignments in preference to positional assignment where the language has named
assignments so that such named assignments can be used to build reviewable assignment structures that
can be analysed by the language processor for completeness; otherwise use comments and secondary
tools to help show correct assignment where the language only supports positional assignment notation.

6.22.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 some languages have ways to determine if modules and regions are elaborated and initialized and to
raise exceptions if this does not occur. Languages lacking these capabilities can consider adding them;

—	 setting aside fields in all objects to identify if initialization has occurred, especially for security and
safety domains;

—	 supporting whole-object initialization.

6.23	 Operator precedence and associativity [JCW]

6.23.1	 Description of application vulnerability

Each language provides rules of precedence and associativity that determine for each expression which
operands bind to which operators. These rules are also known as grouping or binding.

Experience and experimental evidence show that developers can have incorrect beliefs about the relative
precedence of many binary operators, as documented by Jones[33] (see ISO/IEC TR 24718).

6.23.2	 Related coding guidelines

JSF AV Rules[34]: 204 and 213

MISRA C[39]: 10.1, 12.1, 13.2, 14.4, 20.7, 20.10, and 20.11

MISRA C++[40]: 4-5-1, 4-5-2, 4-5-3, 5-0-1, 5-0-2, 5-2-1, 5-3-1, 16-0-6, 16-3-1, and 16-3-2

CERT C Secure Coding Standard[41]: EXP00-C

Ada Quality and Style Guide[1]:

—	 5.5 subsection “Parenthetical Expressions”

—	 5.5 subsection “Short Circuit Forms of the Logical Operators”

—	 7.1 subsection “Arbitrary Order Dependencies”

44

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.23.3	 Mechanism of failure

In C (ISO/IEC 9899) and C++ (ISO/IEC 14882), the bitwise operators (bitwise logical and bitwise shift) are
sometimes thought of by the programmer as having similar precedence to arithmetic operations. Therefore,
just as an individual can correctly write

 x – 1 == 0 //x minus one is equal to zero

a programmer can erroneously write

 x & 1 == 0 // mentally meaning “(x and-ed with 1) is equal to zero”

whereas the operator precedence rules of C and C++ bind the expression as x and (1 == 0),

producing "false", which is interpreted as zero, then bitwise-and the result with x, producing (a constant)
zero, contrary to the programmer’s intent.

Examples from an opposite extreme can be found in programs written in APL, which is noteworthy for the
absence of any distinctions of precedence. One commonly made mistake is to write:

 a * b + c,

intending to produce

 (a * b) + c,

whereas APL’s uniform right-to-left associativity produces

 a * (b + c).

6.23.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages whose precedence and associativity
rules are sufficiently complex that developers often do not fully remember them.

6.23.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 adopt programming guidelines (preferably augmented by static analysis), for example, use the language-
specific rules cross-referenced within 6.24 “Side effects and order of evaluation of operands [SAM]”;

—	 use parentheses around binary operator combinations that are known to be a source of error, such as
mixed arithmetic/bitwise and bitwise/relational operator combinations);

—	 break up complex expressions and use temporary variables to make the intended order clearer.

6.23.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 in the language definition, avoiding the provision of precedence or of a particular associativity for
operators that are not typically ordered with respect to one another in arithmetic;

—	 requiring full parenthesization to avoid misinterpretation.

6.24	 Side-effects and order of evaluation of operands [SAM]

6.24.1	 Description of application vulnerability

Some programming languages allow subexpressions to cause side-effects, such as assignment, increment,
decrement, or broader effects even on the execution environment. For example, some programming

45

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

languages permit such side-effects, and if, within one expression, two or more side-effects modify the same
object, undefined behaviour results, for example, from C:

 i = v[i++].

Some languages allow subexpressions to be evaluated in an unspecified ordering, or even removed during
optimization. If these subexpressions contain side-effects, then the value of the full expression can be
dependent upon the order of evaluation. Furthermore, the objects that are modified by the side-effects can
receive values that are dependent upon the order of evaluation.

For example, in a robot scenario, the logical expression

 Robot.Turn_Left(Angle) and Robot.Drive (Distance)

will have wildly different effects depending upon the order of evaluation of the subexpressions.

If a program contains these unspecified or undefined behaviours, testing the program and seeing that it yields
the expected results can give the false impression that the expression will always yield the expected result.

6.24.2	 Related coding guidelines

JSF AV Rules[34]: 157, 158, 204, 204.1, and 213

MISRA C[39]: 12.1, 13.2, 13.5 and 13.6

MISRA C++[40]: 5-0-1

CERT C Secure Coding Standard[41]: EXP10-C, EXP30-C

Ada Quality and Style Guide[1]:

—	 5.5 subsection “Parenthetical Expressions”

—	 5.5 subsection “Short Circuit forms of the Logical Operators”

—	 7.1 subsection “Arbitrary Order Dependencies”

6.24.3	 Mechanism of failure

When subexpressions with side effects are used within an expression, the unspecified order of evaluation
can result in a program producing different results on different platforms, or even at different times on the
same platform.

All examples here use the syntax of C-based languages; the effects can be created in any language that allows
functions with side-effects in the places where C allows the increment operations.

Consider:

 a = f(b) + g(b);

where f and g both modify b. If f(b) is evaluated first, then the b used as a parameter to g(b) can be a
different value than if g(b) is performed first. Likewise, if g(b) is performed first, f(b) can be called with a
different value of b.

Other examples of unspecified order, or even undefined behaviour, can be manifested, such as:

 a = f(i) + i++;

or

 a[i++] = b[i++];

Parentheses around expressions can assist in removing ambiguity about grouping, but the issues regarding
side-effects and order of evaluation are not changed by the presence of parentheses. Consider:

46

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

 j = i++ * i++;

where even if parentheses are placed around the i++ subexpressions, undefined behaviour still remains.

The unpredictable nature of the calculation means that the program cannot be tested adequately to any
degree of confidence. A knowledgeable attacker can take advantage of this characteristic to manipulate data
values triggering execution that was not anticipated by the developer.

6.24.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that permit expressions to contain subexpressions with side effects;

—	 languages whose subexpressions are computed in an unspecified ordering.

6.24.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 make use of one or more programming guidelines, which (a) prohibit unspecified or undefined behaviours,
and (b) can be enforced by static analysis; (see JSF AV and MISRA rules in this clause);

—	 keep expressions simple to reduce potential side effects, support static analysis, improve human
comprehension, and reduce errors;

—	 ensure that each expression results in the same value (including side effects), regardless of the order of
evaluation or execution of terms of the expression.

6.24.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider language features
that will eliminate or mitigate this vulnerability, such as pure functions.

6.25	 Likely incorrect expression [KOA]

6.25.1	 Description of application vulnerability

Certain expressions are symptomatic of what is likely to be a mistake made by the programmer. The
statement is not contrary to the language standard but is unlikely to be what the programmer intended. It
is possible the statement has no effect and effectively is a null statement, but alternatively it can introduce
an unintended side-effect. A common example arises in languages that use == for equality and = for
assignment and allow assignments as expressions: leading to the use of = in a Boolean expression
where the programmer intended to perform an equality test using == . It is valid and possible that the
programmer intended to do an assignment within the if expression, but due to this being a common error,
a programmer doing so would be using a poor programming practice. A less likely occurrence, but still
possible is the substitution of == for = in what is supposed to be an assignment statement, but which
effectively becomes a null statement. These mistakes can survive testing only to manifest themselves in
deployed code where they can be maliciously exploited.

Other easily confused operators in languages are the logical operators such as && for the bitwise operator &,
or vice versa.

6.25.2	 Related coding guidelines

CWE[7]:

480. Use of Incorrect Operator

481. Assigning instead of Comparing

47

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

482. Comparing instead of Assigning

570. Expression is Always False

571. Expression is Always True

JSF AV Rules[34]: 160

MISRA C[39]: 2.2, 13.3-13.6, and 14.3

MISRA C++[40]: 0-1-9, 5-0-1, 6-2-1, and 6-5-2

CERT C Secure Coding Standard[41]: MSC02-C and MSC03-C

6.25.3	 Mechanism of failure

Substitution of = in place of == in a Boolean test in languages that use this syntax is an easy mistake to
make. Other instances can be the result of intricacies of the language definition that specifies what part of
an expression is evaluated. For instance, having an assignment expression in a Boolean statement is likely
assuming that the complete expression will be executed in all cases. However, this is not always the case as
sometimes the truth-value of the Boolean expression can be determined after only executing some portion
of the expression. Consider:

 if ((a == b) || (c = (d-1)))

If (a == b) is determined to be true, then there is no need for the subexpression (c = (d-1)) to be executed
and as such, the assignment (c = (d-1)) will not occur.

Embedding expressions in other expressions can yield unexpected results. Increment and decrement
operators (++ and –) can also yield unexpected results when mixed into a complex expression.

Incorrectly calculated results can lead to a wide variety of erroneous program execution.

6.25.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to all languages, since all languages are susceptible
to likely incorrect expressions.

6.25.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 simplify expressions;

—	 prohibit assignment expressions in function calls, as sometimes the assignments can be executed in an
unexpected order and instead, perform all assignments before the function call;

—	 prohibit assignments within a Boolean expression, and if intended, move the assignment to before the
Boolean expression for clarity and robustness;

—	 use static analysis tools that detect and warn of expressions that include assignment within an expression;

—	 annotate code that includes assignment within an expression to show that it is intentional and include
rationale for the side effect;

—	 prohibit the use of statements that have no program effect, but if necessary, document with comments
the rationale for the usage in each instance.

6.25.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following:

—	 prohibiting assignments used as function parameters;

48

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 prohibiting assignments within a Boolean expression;

—	 avoiding situations where easily confused symbols (such as = and == , or ; and :, or != and /=) are
valid in the same context.

6.26	 Dead and deactivated code [XYQ]

6.26.1	 Description of application vulnerability

Dead and deactivated code is code that exists in the executable, but which can never be executed, either
because there is no call path that leads to it (for example, a function that is never called), or the path is
semantically infeasible (for example, its execution depends on the state of a conditional that can never be
achieved).

Dead and deactivated code can be undesirable because it can indicate the possibility of a coding error. A
security issue is also possible if a jump target is injected. Many safety standards prohibit dead code because
dead code is not traceable to a requirement.

Also covered in this vulnerability is code that is believed to be dead, but which is inadvertently executed.

Dead and deactivated code is considered separately from the description of 6.19 “Unused variable [YZS]”.

6.26.2	 Related coding guidelines

CWE[7]:

561. Dead Code

570. Expression is Always False

571. Expression is Always True

JSF AV Rules[34]: 127 and 186

MISRA C[39]: 2.1 and 4.4

MISRA C++[40]: 0-1-1 to 0-1-10, 2-7-2, and 2-7-3

CERT C Secure Coding Standard[41]: MSC07-C and MSC12-C

6.26.3	 Mechanism of failure

Dead code in an application can never be executed, either because statically there is no call path to the code
(for example, a function that is never called) or dynamically because the execution paths to the code can
never be executed, as in:

 int i = 0;
 if (i == 0)
 then fun_a();
 else fun_b();

fun_b() is dead code, as only fun_a() can ever be executed.

Compilers that optimize sometimes generate and then remove dead code, including code placed there by the
programmer. The deadness of code can also depend on the linking of separately compiled modules.

The presence of dead code is not in itself an error. There can be legitimate reasons for its presence, for
example:

—	 defensive code, only executed as the result of a hardware failure;

—	 code that is part of a library or template not required in the program in question;

49

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 diagnostic code not executed in the operational environment;

—	 code that is temporarily deactivated with the intention that it will soon be needed. This can occur as a
way to make sure the code is still accepted by the language translator to reduce opportunities for errors
when it is reactivated;

—	 code that is made available so that it can be executed manually via a debugger.

Such code is often referred to as deactivated. That is, dead code that is there by intent.

There is a secondary consideration for dead code in languages that permit overloading of functions and
other constructs that use complex name resolution strategies. It is possible that the developer believed that
some code is not going to be used (deactivated), but its existence in the program means that it appears in
the namespace and can be selected as the best match for some use that was intended to be of an overloading
function. That is, although the developer believes it is never going to be used, in practice it is used in
preference to the intended function.

However, it can be the case that, because of some other error, the code is rendered unreachable. Therefore, it
is important to understand and document why dead code is present.

It is important to be aware that some defensive code, such as that created to catch hardware error, can be
optimized away by the compiler. Use of optimization fences such as volatile accesses (consult language and
compiler manuals) can help.

6.26.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow code to exist in a program
or executable, which can never be executed.

6.26.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 identify any dead code in the application using static analysis or testing with specialized tools;

—	 remove dead code from an application unless its presence serves a documented purpose;

NOTE	 When a developer identifies code that is dead because a conditional consistently evaluates to the
same value, this can be indicative of an earlier bug or indicative of inadequate path coverage in the test regimen.
Investigation can ascertain why the same value is occurring.

—	 for any deactivated code, provide a justification as to why it is present;

—	 ensure that any code that was expected to be unused is documented as deactivated code;

—	 for code that appears to be dead code but is in reality accessible only by asynchronous events or error
handlers, or present for debugging purposes, prevent the optimizations that remove the code in question
through judicious use of volatile attributes, pragmas, or compiler switches and document the rationale;

—	 apply standard branch coverage measurement tools and ensure by 100 % coverage that all branches are
neither dead nor deactivated.

6.26.6	 Implications for language design and evolution

No implications apply.

50

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.27	 Switch statements and lack of static analysis [CLL]

6.27.1	 Description of application vulnerability

Many programming languages provide a construct, such as a C-like switch statement, that chooses among
multiple alternative control flows based upon the evaluated result of an expression. The use of such
constructs can introduce application vulnerabilities if not all possible cases appear within the switch or if
control unexpectedly flows from one alternative to another.

6.27.2	 Related coding guidelines

JSF AV Rules[34]: 148, 193, 194, 195, and 196

MISRA C[39]: 16.3-16.6

MISRA C++[40]: 6-4-3, 6-4-5, 6-4-6, and 6-4-8

CERT C Secure Coding Standard[41]: MSC01-C

Ada Quality and Style Guide[1]: 5.6 subsection “Case Statements”

6.27.3	 Mechanism of failure

The fundamental challenge when using a switch statement is to make sure that all possible cases are, in fact,
treated correctly. In most cases, this is not enforced by the language or the compiler. Possible consequences
include:

—	 not handling a case;

—	 handling a case by a default clause instead of the specific case handling code needed;

—	 not detecting out-of-bounds cases;

—	 jumping to "arbitrary" code.

In particular, the last of these consequences can be exploited by malicious attacks.

An additional vulnerability can occur if the execution of one case includes” flowing through” to the
subsequent case which violates the theory of multiple independent alternatives in the switch statement.

6.27.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that contain a construct, such as a switch statement, that provides a selection among
alternative control flows based on the evaluation of an expression;

—	 languages that do not require full coverage of all possible alternatives of a switch statement;

—	 languages that provide a default case (choice) in a switch statement.

6.27.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 ensure that every valid choice has a branch that covers the choice;

—	 avoid default branches where it can be statically shown that each choice is covered by a branch;

—	 use a default branch that initiates error processing where coverage of all choices by branches cannot be
statically shown;

51

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 use a restricted set of enumeration values to improve coverage analysis where the language provides
such capability;

—	 avoid “flowing through” from one case to another;

—	 in cases where flow-through is necessary and intended, use an explicitly coded branch to clearly mark
the intent and provide comments explaining the intention to help reviewers and maintainers;

—	 perform static analysis to determine if all cases are, in fact, covered by the code;

NOTE	 The use of a default case can hamper the effectiveness of static analysis since the tool cannot determine
if omitted alternatives were or were not intended for default treatment.

—	 use other means of mitigation including manual review, bounds testing, tool analysis, verification
techniques, and proofs of correctness to show coverage.

6.27.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider language
specifications that require compilers to ensure that a complete set of alternatives is provided in cases where
the value set of the switch variable can be statically determined.

6.28	Non-demarcation of control flow [EOJ]

6.28.1	 Description of application vulnerability

Some programming languages explicitly mark the end of an if statement or a loop, whereas other languages
mark only the end of a block of statements. Languages of the latter category are prone to oversights by the
programmer, causing unintended sequences of control flow

6.28.2	 Related coding guidelines

JSF AV[34]: Rules 59 and 192

MISRA C[39]: 15.6 and 15.7

MISRA C++[40]: 6-3-1, 6-4-1, 6-4-2, 6-4-3, 6-4-8, 6-5-1, 6-5-6, 6-6-1 to 6-6-5, and 16-0-2

Ada Quality and Style Guide[1]: 5.6

6.28.3	 Mechanism of failure

Some programmers rely on indentation to determine inclusion of statements within constructs. Testing
of the software does not always reveal that statements that appear to be included in a construct (due to
formatting) but are actually outside of it because of the absence of a terminator. Moreover, for a nested if-
then-else statements where the number of else’s does not match the number of if’s, the programmer can
be confused about which if statement controls the else part directly. This can lead to unexpected results.

6.28.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that contain loops and conditional
statements that are not explicitly terminated by an end construct.

6.28.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 where the language does not provide demarcation of the end of a control structure, adopt a convention
for marking the closing of a construct that can be checked by a tool, to ensure that program structure is
apparent;

52

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 adopt programming guidelines (preferably augmented by static analysis). For example, consider the
rules documented in 6.29.2 "Loop control variable abuse [TEX]”;

—	 use other means of assurance, such as proofs of correctness, analysis with tools, and dynamic verification
techniques;

—	 use pretty-printers and syntax-aware editors to highlight such problems, but also be aware that such
tools sometimes disguise such errors;

—	 where the language permits single statements after loops and conditional statements but permits
optional compound statements, for example

in C

 if (...) statement else statement;

or Pascal

 if expression then statement else statement;

always use the compound version (i.e. C's {... } or Pascal's begin... end).

6.28.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 adding a mode that strictly enforces compound conditional and looping constructs with explicit
termination, such as end if or a closing bracket;

—	 creating syntax for explicit termination of loops and conditional statements;

—	 providing syntax to terminate named loops and conditionals and to determine if the structure as named
matches the structure as inferred.

6.29	 Loop control variable abuse [TEX]

6.29.1	 Description of application vulnerability

Many languages support a looping construct whose number of iterations is controlled by the value of a loop
control variable. Looping constructs provide a method of specifying an initial value for this loop control
variable, a test that terminates the loop and the quantity by which it is decremented or incremented on each
loop iteration.

In some languages, it is possible to modify the value of the loop control variable within the body of the loop.
Experience shows that such value modifications are sometimes overlooked by readers of the source code,
resulting in faults being introduced.

Some languages, such as C-based languages do not explicitly specify which of the variables appearing in a
loop header is the control variable for the loop. MISRA C[39] and MISRA C++[40] have proposed algorithms for
deducing which, if any, of these variables is the loop control variable in the programming languages C and
C++ (these algorithms can also be applied to other languages that support a C-like for-loop).

6.29.2	 Related coding guidelines

JSF AV[34] Rule: 201

MISRA C[39]: 14.2

MISRA C++[40]: 6-5-1 to 6-5-6

53

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.29.3	 Mechanism of failure

The mechanism of failure is that changes to a loop control variable inside the loop body can cause the loop
to unexpectedly:

—	 exit prematurely;

—	 execute forever;

—	 not cover the complete range of values documented by the loop header.

Readers of source code often make assumptions about what has been written. A common assumption is that
a loop control variable is not modified in the body of the loop. A programmer can write incorrect code based
on this assumption. Similarly, reviewers, who are often domain specialists and not programmers, also make
assumptions about written code and assume that loop control variables are not changed by the loop body.

6.29.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow a loop control variable to
be modified in the body of its associated loop.

6.29.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid modifying a loop control variable in the body of its associated loop body;

—	 use a static analysis tool that identifies the modification of a loop control variable.

6.29.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the addition of an
identifier type for loop control that cannot be modified by anything other than the loop control construct.

6.30	 Off-by-one error [XZH]

6.30.1	 Description of application vulnerability

A program uses an incorrect maximum or minimum value that is 1 more or 1 less than the correct value.
This usually arises from one of several situations where the bounds as understood by the developer differ
from the design, such as:

—	 confusion between the need for < and <= or > and >= in a test;

—	 confusion as to the index range of an algorithm, such as: beginning an algorithm at 1 when the underlying
structure is indexed from 0; beginning an algorithm at 0 when the underlying structure is indexed from
1 (or some other start point); using the length of a structure as its bound instead of the sentinel values;

—	 failing to allow for storage of a sentinel value, such as the NUL string terminator that is used in the C
programming language (ISO/IEC 9899) and C++ programming language (ISO/IEC 14882).

These issues arise from mistakes in mapping the design into a particular language, in moving between
languages (such as between languages where all arrays start at 0 and other languages where arrays start at
1), and when exchanging data between languages with different default array bounds.

The error described can cause a bounds violation and the potential reading or writing of data and
corresponding corruption of adjacent data. It can also be a serious security hole as it can permit someone to
surreptitiously provide an unused location (such as 0 or the last element) that can be used for undocumented
features or hidden channels.

54

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.30.2	 Related coding guidelines

CWE[7]: 193. Off-by-one Error

6.30.3	 Mechanism of failure

An off-by-one error can lead to:

—	 an out-of-bounds access to an array (buffer overflow);

—	 incomplete comparisons or calculation mistakes;

—	 a read from the wrong memory location;

—	 an incorrect conditional.

Such incorrect accesses can cause cascading errors or references to invalid locations, resulting in potentially
unbounded behaviour.

Off-by-one errors are not often exploited in attacks because they are difficult to identify and exploit
externally, but the cascading errors and boundary-condition errors can be severe.

6.30.4	 Applicable language characteristics

As this vulnerability arises because of an algorithmic error by the developer, it can in principle arise in any
language; however, it is most likely to occur when:

—	 the language relies on the developer having implicit knowledge of structure start and end indices (for
example, knowing whether arrays start at 0 or 1 – or indeed some other value);

—	 the language relies upon explicit bounds values to terminate variable length arrays.

6.30.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 follow a systematic development process, use development/analysis tools and perform thorough testing
are all common ways of preventing errors, and in this case, off-by-one errors;

—	 use static analysis tools that warn of potential off-by-one errors;

—	 where references are being made to array indices and the languages provide constructs to specify the
whole array or the starting and ending indices explicitly [e.g. Ada (ISO/IEC 8652) provides the attributes
‘First and ‘Last for each dimension], use the language-provided constructs instead of numeric literals.
Where the language does not provide such constructs, declare named constants and use them in
preference to numeric literals;

—	 where the language does not encapsulate variable length arrays, provide encapsulation through library
objects and a coding standard developed that requires such arrays to only be used via those library
objects, so the developer is not burdened with managing bounds values.

6.30.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing
encapsulations for arrays that:

—	 prevent the need for the developer to be concerned with explicit bounds values;

—	 provide the developer with symbolic access to the array start, end, and iterators.

55

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.31	 Unstructured programming [EWD]

6.31.1	 Description of application vulnerability

Programs that have a convoluted control structure are likely to be more difficult to read for humans, less
understandable, harder to maintain, harder to statically analyse, more difficult to match the allocation and
release of resources, and more likely to be incorrect.

6.31.2	 Related coding guidelines

JSF AV Rules[34]: 20, 113, 189, 190, and 191

MISRA C[39]: 15.1-15.3, and 21.4

MISRA C++[40]: 6-6-1, 6-6-2, 6-6-3, and 17-0-5

CERT C Secure Coding Standard[41]: SIG32-C

Ada Quality and Style Guide[1]: 4.1, 5.4, 5.6

6.31.3	 Mechanism of failure

Lack of structured programming can lead to:

—	 memory or resource leaks;

—	 error-prone maintenance;

—	 design that is difficult or impossible to validate;

—	 source code that is difficult or impossible to statically analyse.

6.31.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that allow leaving a loop without consideration for the loop control;

—	 languages that allow local jumps (goto statement);

—	 languages that allow non-local jumps (setjmp/longjmp in the C programming language);

—	 languages that support multiple entry and exit points from a function, procedure, subroutine, or method.

6.31.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 prohibit the use of language features that transfer control of the program flow via a jump, such as goto;

—	 prohibit the use of language features such as continue and break in the middle of loops;

—	 prohibit the use of multiple exit points from a function/procedure/method/subroutine unless it can be
shown that the code with multiple exit points is superior;

—	 prohibit multiple entry points to a function/procedure/method/subroutine;

—	 use only those features of the programming language that enforce a logical structure on the program
and create program flow that follows a simple hierarchical model that employs looping constructs such
as for, repeat, do, and while.

56

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.31.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider supporting and
favouring structured programming enforced through language constructs to the extent possible.

6.32	 Passing parameters and return values [CSJ]

6.32.1	 Description of application vulnerability

NOTE	 For the purpose of this description, the term subprogram will be used.

Nearly every procedural language provides some method of abstraction that permits decomposition of
the flow of control into routines, functions, subprograms, or methods. A subprogram has an effect on the
computation only if it changes data visible to the calling program statement. It can do this by changing
the value of a non-local variable, changing or setting the value of a parameter, or, in the case of a function,
providing a return value. As different languages use different mechanisms with different semantics for
passing parameters, a programmer using an unfamiliar language can obtain unexpected results.

6.32.2	 Related coding guidelines

JSF AV Rules[34]: 20, 116

MISRA C[39]: 8.2, 8.3, 8.13, and 17.1-17.3

MISRA C++[40]: 0-3-2, 7-1-2, 8-4-1, 8-4-2, 8-4-3, and 8-4-4

CERT C Secure Coding Standard[41]: EXP12-C and DCL33-C

Ada Quality and Style Guide[1]: 5.2

6.32.3	 Mechanism of failure

The mechanisms for parameter passing include call by reference, call by copy, and call by name. The last is so
specialized and supported by so few programming languages that it will not be treated in this description.

In call by reference, the calling program passes the addresses of the arguments to the called subprogram.
When the subprogram references the corresponding formal parameter, it is sharing data with the calling
program. If the subprogram changes a formal parameter, then the corresponding actual argument is also
changed. If the actual argument is an expression or a constant, then the address of a temporary location is
passed to the subprogram, which can be an error in some languages.

In call by copy, the called subprogram does not share data with the calling program. Instead, formal
parameters act as local variables. Values are passed between the actual arguments and the formal
parameters by copying.

Some languages control changes to formal parameters based on labels such as in, out, or inout. There are
three cases to consider:

—	 ‘call by value’ for in parameters;

—	 ‘call by result’ for out parameters and function return values;

—	 ‘call by value-result’ for inout parameters.

For call by value, the calling program evaluates the actual arguments and copies the result to the
corresponding formal parameters that are then treated as local variables by the subprogram. For call by
result, the values of the locals corresponding to formal parameters are copied to the corresponding actual
arguments. For call by value-result, the values are copied in from the actual arguments at the beginning of
the subprogram's execution and back out to the actual arguments at its termination.

57

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The obvious disadvantage of call by copy is that extra copy operations are needed, and execution time is
required to produce the copies. Particularly if parameters represent sizable objects, such as large arrays,
the cost of call by copy can be high. For this reason, many languages also provide the call by reference
mechanism.

The disadvantage of call by reference is that the calling program cannot be assured that the subprogram
has not changed data that was intended to be unchanged. For example, if an array is passed by reference
to a subprogram intended to sum its elements, the subprogram can erroneously also change the values of
one or more elements of the array. However, some languages enforce the subprogram's access to the shared
data based on the labelling of actual arguments with modes — such as in, out, or inout or by pointers to
constant objects.

Another problem with call by reference is unintended aliasing. It is possible that the address of one actual
argument is the same as another actual argument or that two arguments overlap in storage. A subprogram,
assuming the two formal parameters to be distinct, can treat them inappropriately. For example, if a
subprogram is coded to swap two values using the exclusive-or method, then a call to swap(x,x) will zero the
value of x. Aliasing can also occur between arguments and non-local objects. For example, if a subprogram
modifies a non-local object as a side-effect of its execution, referencing that object by a formal parameter
will result in aliasing and, possibly, unintended results.

Some languages provide only simple mechanisms for passing data to subprograms, leaving it to the
programmer to synthesize appropriate mechanisms. Often, the only available mechanism is to use call
by copy to pass small scalar values or pointer values containing addresses of data structures. Of course,
the latter amounts to using call by reference with no checking by the language processor. In such cases,
subprograms can pass back pointers to anything whatsoever, including data that is corrupted or absent.

Some languages use call by copy for small objects, such as scalars, and call by reference for large objects,
such as arrays. Some languages permit the choice of mechanism to be implementation-defined. As the two
mechanisms produce different results in the presence of aliasing, it is very important to avoid aliasing.

An additional problem occurs if the called subprogram fails to assign a value to a formal parameter that
the caller expects as an output from the subprogram. In the case of call by reference, the result can be an
uninitialized variable in the calling program. In the case of call by copy, the result can be that a legitimate
initialization value provided by the caller is overwritten by an uninitialized value because the called
program did not make an assignment to the parameter. This error can be difficult to detect through review
because the failure to initialize is hidden in the subprogram.

An additional complication with subprograms occurs when one or more of the arguments are expressions.
In such cases, the evaluation of one argument can have side-effects that result in a change to the value of
another or unintended aliasing. Implementation choices regarding order of evaluation can affect the result
of the computation. This particular problem is described in 6.24 “Side-effects and order of evaluation of
operands [SAM]”.

6.32.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that provide mechanisms for defining
subprograms where the data passes between the calling program and the subprogram via parameters and
return values. This includes methods in many popular object-oriented languages.

6.32.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use available mechanisms to label parameters as constants or with modes like in, out, or inout;

—	 when a choice of mechanisms is available, pass small simple objects using call by copy;

—	 when a choice of mechanisms is available and the computational cost of copying is tolerable, pass larger
objects using call by copy;

58

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 when the choice of language or the computational cost of copying forbids using call by copy, take
safeguards to prevent aliasing, including:

—	 minimize side-effects of subprograms on non-local objects;

—	 when side-effects are coded, ensure that the affected non-local objects are not passed as parameters
using call by reference;

—	 to avoid unintentional aliasing effects, avoid the use of expressions or function calls as actual
arguments, and instead, assign the result of the expression to a temporary local and the local passed;

—	 utilize tools or other forms of analysis to ensure that instances of aliasing are absent;

—	 perform reviews or analysis to determine that called subprograms fulfil their responsibilities to assign
values to all output parameters.

6.32.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing labels,
such as in, out, and inout, that control the subprogram’s access to its formal parameters, and enforce the
controlled access.

6.33	 Dangling references to stack frames [DCM]

6.33.1	 Description of application vulnerability

Many languages allow the address of a local variable to be stored as a value in other variables. Examples
are the application of the address operator in the C (ISO/IEC 9899) or C++ programming languages
(ISO/IEC 14882), or of the ’Access or ’Address attributes in the Ada programming language (ISO/IEC 8652).
In some languages, this facility is also used to model the call-by-reference mechanism by passing the address
of the actual parameter by-value. An obvious safety requirement is that the stored address shall not be used
after the lifetime of the local variable has expired. This situation can be described as a dangling reference to
the stack.

6.33.2	 Related coding guidelines

CWE[7]: 562. Return of Stack Variable Address

JSF AV[34] Rule: 173

MISRA C[39]: 4.1 and 18.6

MISRA C++[40]: 0-3-1, 7-5-1, 7-5-2, and 7-5-3

CERT C Secure Coding Standard[41]: EXP35-C and DCL30-C

6.33.3	 Mechanism of failure

The consequences of dangling references to the stack come in two variants: a deterministically predictable
variant, which therefore can be exploited, and an intermittent, non-deterministic variant, which is next to
impossible to elicit during testing. The following code sample illustrates the two variants; the behaviour is
not language-specific:

 struct s { … };
 typedef struct s array_type[1000];
 array_type* ptr;
 array_type* F()
 {
 struct s Arr[1000];
 ptr = &Arr; // Risk of variant 1;
 return &Arr; // Risk of variant 2;
 }

59

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

 struct s secret;
 array_type* ptr2;
 ptr2 = F();
 secret = (*ptr2)[10]; // Fault of variant 2
 …
 secret = (*ptr)[10]; // Fault of variant 1

The risk of variant 1 is the assignment of the address of Arr to a pointer variable that survives the lifetime
of Arr. The fault is the subsequent use of the dangling reference to the stack, which references memory since
altered by other calls and possibly validly owned by other routines. As part of a call-back, the fault allows
systematic examination of portions of the stack contents without triggering an array-bounds-checking
violation. Thus, this vulnerability is easily exploitable. As a fault, the effects can be most astounding, as
memory gets corrupted by completely unrelated code portions.

A life-time check as part of pointer assignment can prevent the risk, and in many cases, such as the situations
above, the check is statically decidable by a compiler. However, for the general case, a dynamic check is
needed to ensure that the copied pointer value lives no longer than the designated object.

The risk of variant 2 is an idiom “seen in the wild” to return the address of a local variable to avoid an
expensive copy of a function result, if it is consumed before the next routine call occurs. The idiom is based
on the ill-founded assumption that the stack will not be affected by anything until this next call is issued. The
assumption is false, however, if an interrupt occurs and interrupt handling employs a strategy called "stack
stealing", which uses the current stack to satisfy its memory requirements. Thus, the value of Arr can be
overwritten before it can be retrieved after the call on F. As this fault will only occur if the interrupt arrives
after the call has returned but before the returned result is consumed, the fault is highly intermittent and
next to impossible to re-create during testing. Thus, it is unlikely to be exploitable, but also exceedingly hard
to find by testing. It can begin to occur after a completely unrelated interrupt handler has been coded or
altered. Only static analysis can relatively easily detect the danger (unless the code combines it with risks of
variant 1). Some compilers issue warnings for this situation and some forms of static analysis are effective
in identifying such problems.

6.33.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 the address of a local entity (or formal parameter) of a routine can be obtained and stored in a variable
or can be returned by this routine as a result;

—	 no check is made that the lifetime of the variable receiving the address is no longer than the lifetime of
the designated entity.

6.33.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid using the address of locally declared entities as storable, assignable or returnable value (except
where idioms of the language make it unavoidable);

—	 when such an address is stored, ensure that the lifetime of the variable containing the address is
completely enclosed by the lifetime of the designated object;

—	 prohibit the return of the address of a local variable as the result of a function call.

6.33.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 not providing means to obtain the address of a locally declared entity as a storable value;

—	 defining implicit checks to implement the assurance of enclosed lifetime expressed in 6.33.5.

60

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

NOTE	 In many cases, the check is statically decidable, for example, when the address of a local entity is taken
as part of a return statement or expression.

6.34	 Subprogram signature mismatch [OTR]

6.34.1	 Description of application vulnerability

If a subprogram is called with a different number of parameters than it expects, or with parameters of
different types than it expects, then the results will be incorrect. Depending on the language, the operating
environment, and the implementation, the error can be as benign as a diagnostic message or as extreme
as a program continuing to execute with a corrupted stack. The possibility of a corrupted stack provides
opportunities for penetration.

6.34.2	 Related coding guidelines

CWE[7]:

628. Function Call with Incorrectly Specified Arguments

686. Function Call with Incorrect Argument Type

683. Function Call with Incorrect Order of Arguments

JSF AV[34] Rule: 108

MISRA C[39]: 8.2-8.4, 17.1, and 17.3

MISRA C++[40]: 0-3-2, 3-2-1, 3-2-2, 3-2-3, 3-2-4, 3-3-1, 3-9-1, 8-3-1, 8-4-1, and 8-4-2

CERT C Secure Coding Standard[41]: DCL31-C, and DCL35-C

6.34.3	 Mechanism of failure

When a subprogram is called, the actual arguments of the call are pushed on to the execution stack. When
the subprogram terminates, the formal parameters are popped off the stack. If the number and type of the
actual arguments do not match the number and type of the formal parameters, then depending upon the
calling mechanism used by the language translator, the push and the pop will not be consistent and, if so, the
stack will be corrupted.

Stack corruption can lead to unpredictable execution of the program and can provide opportunities for
execution of unintended or malicious code.

The compilation systems for many languages and implementations can check to ensure that the list of actual
parameters and any expected return match the declared set of formal parameters and return value (the
subprogram signature) in both number and type. However, when the call is being made to an externally
compiled subprogram, an object-code library, or a module compiled in a different language, additional checks
are recommended to ensure a match between the expectations of the caller and the called subprogram.

For functions that accept a variable number of parameters, parameter mismatches are particularly likely.

6.34.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that do not require their implementations to ensure that the number and types of actual
arguments are equal to the number and types of the formal parameters;

—	 implementations that permit programs to call subprograms that have been externally compiled (without
a means to check for a matching subprogram signature), subprograms in object code libraries, and any
subprograms compiled in other languages.

61

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.34.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use language or compiler support or static analysis tools to detect mismatches in calling signatures and
the actual subprogram, particularly in multilingual environments;

—	 take advantage of any mechanism provided by the language to ensure that subprogram signatures match;

—	 avoid any language features that permit variable numbers of actual arguments without a method of
enforcing a match for any instance of a subprogram call;

—	 take advantage of any language or implementation feature that guarantees matching the subprogram
signature in linking to other languages or to separately compiled modules;

—	 intensively review subprogram calls where the match is not guaranteed by tooling;

—	 ensure that only a trusted source is used when using non-standard imported modules.

6.34.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 ensuring that the signatures of subprograms match within a single compilation unit;

—	 providing features for asserting and checking the match with externally compiled subprograms.

6.35	 Recursion [GDL]

6.35.1	 Description of application vulnerability

Recursion is an elegant mathematical mechanism for defining the values of some functions. It is tempting to
write code that mirrors the mathematics. However, the use of recursion in a computer can have a profound
effect on the consumption of finite resources, leading to denial of service.

6.35.2	 Related coding guidelines

CWE[7]: 674. Uncontrolled Recursion

JSF AV[34] Rule: 119

MISRA C[39]: 17.2

MISRA C++[40]: 7-5-4

CERT C Secure Coding Standard[41]: MEM05-C

Ada Quality and Style Guide[1]: 5.6 subsection “Recursion and Iteration Bounds”

6.35.3	 Mechanism of failure

Recursion provides for the economical definition of some mathematical functions. However, economical
definition and economical calculation are two different subjects. It is tempting to calculate the value of
a recursive function using recursive subprograms because the expression in the programming language
is straightforward and easy to understand. However, the impact on finite computing resources can be
profound. Each invocation of a recursive subprogram can result in the creation of a new activation record,
complete with local variables. If available memory space is limited, then the calculation of some values will
lead to an exhaustion of resources resulting in the program terminating.

In calculating the values of mathematical functions, the use of recursion in a program is usually obvious,
but this is not true when considering computer operations generally, especially when processing error

62

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

conditions. For example, finalization of a computing context after treating an error condition can result in
recursion (such as attempting to recover resources by closing a file after an error was encountered in closing
the same file). Although such situations often have other problems, they typically do not result in exhaustion
of resources but can otherwise result in a denial of service.

6.35.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to any language that permits the recursive
invocation of subprograms.

6.35.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 minimize the use of recursion;

—	 convert recursive calculations to the corresponding iterative calculation. In principle, any recursive
calculation can be remodelled as an iterative calculation which will have a smaller impact on some
computing resources, but which can be more difficult for a human to comprehend. The tradeoff is the
cost to human understanding versus the practical limits of the computing resource;

—	 use static analysis to detect non-obvious recursive call paths such as indirect and long recursive call cycles;

—	 restrict recursion to cases where the depth of recursion can be shown to be statically bounded by a
tolerable number and document this number. Alternatively, monitor the depth of the recursion through
a mechanism such as passing a recursion depth value that is incremented for each level of recursion, and
using explicit comparison against a maximum depth limit to trigger handling of the situation.

6.35.6	 Implications for language design and evolution

No implications apply.

6.36	 Ignored error status and unhandled exceptions [OYB]

6.36.1	 Description of application vulnerability

Unpredicted faults and exceptional situations arise during the execution of code, preventing the intended
functioning of the code. They are detected and reported by the language implementation or by explicit code
written by the user. Different strategies and language constructs are used to report such errors and to take
remedial action. Serious vulnerabilities arise when detected errors are reported but ignored or not properly
handled.

6.36.2	 Related coding guidelines

CWE[7]: 754. Improper Check for Unusual or Exceptional Conditions

JSF AV Rules[34]: 115 and 208

MISRA C[39]: 4.7

MISRA C++[40]: 15-3-2 and 19-3-1

CERT C Secure Coding Standard[41]: DCL09-C, ERR00-C, and ERR02-C

Ada Quality and Style Guide[1]: 4.3

6.36.3	 Mechanism of failure

The fundamental mechanism of failure is that the program does not react to a detected error or reacts
inappropriately to it. Execution can often continue outside the envelope provided by its specification,

63

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

making additional errors or serious malfunction of the software likely to occur. Alternatively, execution can
terminate. The mechanism can be easily exploited to perform denial-of-service attacks.

The specific mechanism of failure depends on the error reporting and handling scheme provided by a
language or applied idiomatically by its users.

In languages that expect routines to report errors via status variables, return codes, or thread-local error
indicators, program misbehaviour can occur if the error indication is not checked after each call. As these
frequent checks cost execution time and clutter the code immensely to deal with situations that occur rarely,
programmers are typically reluctant to apply the scheme systematically and consistently. Failure to check
for and handle an arising error condition continues execution as if the error never occurred. In most cases,
this continued execution in an ill-defined program state will sooner or later fail, possibly catastrophically.

The raising and handling of exceptions was introduced into languages to address these problems by bundling
the error handling code in exception handlers, which do not cost execution time if no error is present, but
will not allow the program to continue execution in the current context when an error occurs. The exception
mechanism achieves this by raising the exception upon discovery of the error, then transferring control of
execution to the closest handler for the exception found on the call stack. The failure mechanism results
from the lack of a handler for a raised exception (unless the language enforces restrictions that guarantees
its existence), resulting in the termination of the current thread of control. A further complication arises
if the handler is not geared to handle the multitude of error situations that are vectored to it. Exception
handling is therefore in practice more complex for the programmer than, for example, the use of status
parameters. Furthermore, different languages provide exception-handling mechanisms that differ in details
of their design, which in turn can lead to misunderstandings by the programmer.

The cause for the failure is usually a mismatch in the expectations of the programmer as to where fault
detection and fault recovery are designed to happen. The opportunity for mishandling recognized errors
increases and creates vulnerabilities when components that employ different fault detection and reporting
strategies are combined in the same program.

Another cause of the failure is the scant attention that many library providers pay to describe all error
situations that can be encountered and reported by calls on their routines. In this case, the caller cannot
possibly react sensibly to, and recover from, all error situations that can arise. Similarly, the error
information provided when the error occurs can be insufficiently complete to allow recovery from the error.

Different error handling mechanisms have different strengths and weaknesses. Dealing with exception
handling in some languages can stress the capabilities of static analysis tools and can, in some cases,
reduce the effectiveness of their analysis. Inversely, the use of error status variables can lead to confusingly
complicated control structures, particularly when recovery is not possible locally. Therefore, for situations
where the highest of reliability is required, the decision for or against exception handling deserves careful
thought. In any case, it is important that exception-handling mechanisms be reserved for truly unexpected
situations and other situations where no local recovery is possible. Situations which are merely unusual, like
the end of file condition, are better treated by explicit testing — either prior to the call which can raise the
error, or immediately afterward.

In general, error detection, reporting, correction, and recovery are problematic if made as a late opportunistic
add-on. They are far more effective if made as an integral part of the system design.

6.36.4	 Applicable language characteristics

Whether supported by the language or not, error reporting and handling is idiomatically present in all
languages. Of course, vulnerabilities caused by exceptions require a language that supports exceptions.

6.36.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 reserve exception-handling mechanisms for truly unexpected situations and other situations where no
local recovery is possible;

64

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 handle exceptions by the exception handlers of an enclosing construct as close as possible to the origin
of the exception but as far out as necessary to be able to deal with the error and consider preventing
implicit exceptions by checking the error condition in the code prior to executing the construct that
causes the exception.

—	 check error return values or auxiliary status variables following a call to a subprogram, unless it is
demonstrated that the error condition is impossible;

—	 when functions return error values, check the error return values before processing any other
returned data;

—	 for each routine, document all error conditions, matching error detection and reporting needs, and
provide sufficient information for handling the error situation;

—	 use static analysis tools to detect and report missing or ineffective error detection or handling;

—	 when execution within a particular context is abandoned due to an exception or error condition, finalize
the context by closing open files, releasing resources, and restoring any invariants associated with the
context;

—	 when it is not appropriate to handle the error locally, retreat to a context where the fault can be completely
handled, after finalizing, closing, and terminating the current context and any intermediate contexts;

—	 always enable error checking provided by the language, the software system, or the hardware in the
absence of a conclusive analysis that the error condition is rendered impossible;

—	 carefully review all error handling mechanisms, because of the complexity of error handling;

—	 in applications with the highest requirements for reliability, use defence-in-depth approaches, for
example, checking and handling errors even if thought to be impossible.

6.36.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider a standardized set of
mechanisms for detecting and treating error conditions, so that all languages to the extent possible can use
them. This does not mean that all languages use the same mechanisms, as there will be a variety, but each of
the mechanisms should be standardized.

6.37	 Type-breaking reinterpretation of data [AMV]

6.37.1	 Description of application vulnerability

In most cases, objects in programs are assigned locations in processor storage to hold their value. If the
same storage space is assigned to more than one object — either statically or temporarily — then a change
in the value of one object will have an effect on the value of the other. Furthermore, if the representation of
the value of an object is reinterpreted as being the representation of the value of an object with a different
type, unexpected results can occur.

6.37.2	 Related coding guidelines

JSF AV Rules[34] 153 and183

MISRA C[39]: 19.1, and 19.2

MISRA C++[40]: 4-5-1 to 4-5-3, 4-10-1, 4-10-2, and 5-0-3 to 5-0-9

CERT C Secure Coding Standard[41]: MEM08-C

Ada Quality and Style Guide[1]: 7.5 subsections “Unchecked Access” and “Unchecked Conversion”

65

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.37.3	 Mechanism of failure

Sometimes there is a legitimate need for applications to place different interpretations upon the same
stored representation of data. The most fundamental example is a program loader that treats a binary
image of a program as data by loading it, and then treats it as a program by invoking it. Most programming
languages permit type-breaking reinterpretation of data; however, some offer less error-prone alternatives
for commonly encountered situations.

Unintentional or malicious reinterpretation of data can cause overwriting or disclosure of arbitrary
memory regions. In addition, type-breaking reinterpretation of representation presents obstacles to human
understanding of the code, the ability of tools to perform effective static analysis, and the ability of code
optimizers to do their job.

Examples include:

—	 providing alternative mappings of objects into blocks of storage performed either statically [such as the
Fortran (ISO/IEC 1539-1) common statement] or dynamically (such as pointers);

—	 operations that permit a stored value to be interpreted as a different type (such as treating the
representation of a pointer as an integer);

—	 union types, particularly unions that do not have a discriminant stored as part of the data structure.

NOTE	 Discriminants are additional components of the data structure that determine the layout of the rest of
the data. If the discriminant capability is not provided by the language, then it is the programmer’s responsibility to
ensure consistency.

In all of these cases, accessing the value of an object can produce an unanticipated result.

It is easier to avoid operations that reinterpret the same stored value as representing a different type when
the language clearly identifies them. For example, Ada (ISO/IEC 8652) forces the programmer to explicitly
declare the conversion to be an instantiation of Unchecked_Conversion.

A much more difficult situation occurs when pointers are used to achieve type reinterpretation. Many
languages perform type-checking of pointers and place restrictions on the ability of pointers to access
arbitrary locations in storage (see 6.11 “Pointer type conversions [HFC]”.).

6.37.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that permit multiple interpretations
of the same bit pattern.

6.37.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid reinterpretation performed as a matter of convenience; for example, avoid an integer pointer
to manipulate character string data. When type-breaking reinterpretation is necessary, document it
carefully in the code;

—	 when using union types, use discriminated unions in preference to non-discriminated unions;

—	 avoid operations that reinterpret the same stored value as representing a different type;

—	 when data are reinterpreted with a different type, use language-defined capabilities to flag and check
such usage (such as Ada’s ‘Valid attribute), or use static analysis to show that the operation always
succeeds;

—	 use static analysis tools to locate situations where unintended reinterpretation occurs;

—	 as the presence of reinterpretation greatly complicates static analysis for other problems, consider
segregating intended reinterpretation operations into distinct subprograms.

66

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.37.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 putting caution labels on operations that permit reinterpretation, because the ability to perform
reinterpretation is sometimes necessary, but the need for it is rare. For example, the operation in Ada
that permits unconstrained reinterpretation is called Unchecked_Conversion.

—	 offering union types that include distinct discriminants with appropriate enforcement of access to
objects, owing to the difficulties with non-discriminated unions.

6.38	 Deep vs. shallow copying [YAN]

6.38.1	 Description of application vulnerability

When structures containing references as data components are copied, a decision is made on whether
the references are copied (shallow copy) or, whether the objects designated by the references are copied
and a reference to the newly created object is used as the component value of the copied structure (deep
copy). Almost all languages define structure-copying operations as shallow copies, i.e. the copied structure
references the same object. Deep copying is algorithmically more challenging, since no object shall be copied
twice although it can be reachable by multiple paths within the graph spanned by the references. Further,
deep copying can be expensive in time and memory consumption. If, however, a shallow copy is made where
a deep copy was needed, serious aliasing problems can arise in the objects that are part of the graphs
spanned by the copied references. Subsequent modification of such an object is visible via both the old and
the new structure.

An identical problem arises when array indices are stored as component values (in lieu of pointers or
references) and used to access objects in an array outside the copied data structure.

6.38.2	 Related coding guidelines

JSF AV[34] Rules: 76, 77, 80

Ada Quality and Style Guide[1]: Sections 5.4

6.38.3	 Mechanism of failure

Problems with shallow copying arise when an object that is a referenced part of a copied structure is assigned
a new value. In a “deep copy”, such an assignment affects only the (original or copied) object assigned to
and leaves the other(s) unchanged. When the structure was copied by a “shallow copy”, such an assignment
results in the value of the object being changed in both the original and the copied structure, which is rarely
the intention of the programmer. The problem often manifests itself only during maintenance when, for the
first time, such an assignment to a contained object is introduced. If shallow copying was originally chosen
for reasons of efficiency but under the premise of absence of assignments, this premise is now violated. The
change in the perceived copy of the graph comes as a surprise.

Knowledge of the use of shallow copying in lieu of deep copying can be exploited in attacks by causing
unintended changes in data structures via the described aliasing effect.

The exposure and effects are similar to any other unintended aliasing, as described in 6.32 "Passing
parameters and return values [CSJ]".

6.38.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that have pointers or references as part of composite data structures;

—	 languages that support arrays.

67

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.38.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use shallow copying only where the aliasing caused is intended and comment usage at the usage point;

—	 use deep copying if there is any possibility that the aliasing of a shallow copy would affect the application
adversely;

—	 use abstractions to ensure deep copies where needed, e.g. by (re-)defining assignment operations,
constructors, and other operations that copy component values.

6.38.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing
mechanisms to create abstractions that guarantee deep copying where needed.

6.39	 Memory leaks and heap fragmentation [XYL]

6.39.1	 Description of application vulnerability

A memory leak occurs when software does not release allocated memory after it ceases to be used. Repeated
occurrences of a memory leak can consume considerable amounts of available memory. A memory leak
can be exploited by attackers to generate denial-of-service by causing the program to execute repeatedly
a sequence that triggers the leak. Moreover, a memory leak can cause any long-running critical program to
shutdown prematurely.

As mitigation, some modern languages provide a concept of “ownership” to simplify the lifetime management
of objects allocated on the heap and to control access (such as writing). Another mitigation is a mechanism,
called a storage pool, which is implemented by some languages. Storage pools are a specialized memory
mechanism where all the memory associated with a class of objects is allocated from a specific bounded
region such that storage exhaustion in one pool does not affect the code operating on other memory.

6.39.2	 Related coding guidelines

CWE[7]: 401. Failure to Release Memory Before Removing Last Reference (aka ‘Memory Leak’)

JSF AV[34] Rule: 206

MISRA C[39]: 4.12

CERT C Secure Coding Standard[41]: MEM00-C and MEM31-C

Ada Quality and Style Guide[1]:

—	 5.4 subsection “Nested Records”

—	 5.4 subsection “Dynamic Data”

—	 5.9 subsection “Unchecked Deallocation”

6.39.3	 Mechanism of failure

As a process or system runs, any memory taken from dynamic memory and not returned or reclaimed (by
the runtime system, the application, or a garbage collector) after it ceases to be used, can result in future
memory allocation requests failing for lack of free space.

Alternatively, memory claimed and returned can cause the heap to fragment into progressively smaller
blocks, which, with the usual allocators, will result in a higher memory consumption and steadily increasing
search times for blocks of suitable size, until the system spends most of the CPU-time for searching the heap
for suitable blocks.

68

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Either condition can thus result in a memory exhaustion exception, progressively slower performance by
the allocating application, program termination or a system crash.

If an attacker can determine the cause of an existing memory leak or can increase the allocation rate for
blocks of different sizes, the attacker will be able to cause the application to leak or fragment quickly and
therefore cause the application to crash or fail to perform within acceptable time limits. Denial-of-Service
attacks can thus occur.

6.39.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that reclaim memory under programmer control can exhibit heap fragmentation and
memory leaks;

—	 languages that support mechanisms to dynamically allocate memory and employ garbage collection can
exhibit memory leaks (and if the garbage collection is not coalescing, heap fragmentation).

6.39.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use garbage collectors that reclaim memory no longer accessible by the application, as some garbage
collectors are part of the language while others are add-ons;

—	 in systems with garbage collectors, set all non-local pointers or references to null, when the designated
data are no longer needed, since the data transitively reachable from such a pointer or reference will not
be garbage-collected otherwise, effectively causing memory leaks;

—	 in systems without garbage collectors, cause deallocation of the data before the last pointer or reference
to the data are lost;

—	 allocate and free memory at the same level of abstraction, and ideally in the same code module;

NOTE	 Allocating and freeing memory in different modules and levels of abstraction can make it difficult
for developers to match requests to free storage with the appropriate storage allocation request. This can cause
confusion regarding when and if a block of memory has been allocated or freed, leading to memory leaks.

—	 when available, take advantage of ownership concepts to manage the heap;

—	 use reference counting techniques or choose languages that use reference-counting techniques to
eliminate storage leaks;

—	 use storage pools when available in combination with strong typing.

—	 use storage pools of equally-sized blocks to avoid fragmentation within each storage pool and if necessary,
provide application-specific (de-)allocators to achieve this functionality;

—	 avoid the use of dynamically allocated storage entirely, or allocate only during system initialization and
never allocate once the main execution commences, particularly in safety-critical systems (and hence for
safety-critical software) and long running systems;

—	 use static analysis, which can sometimes detect when allocated storage is no longer used and has not
been freed.

6.39.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing syntax and semantics to guarantee program-wide that dynamic memory is not used (such as
the configuration pragmas feature offered by some programming languages).

69

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 specifying that implementations document the choices made for dynamic memory management
algorithms, to help designers decide on appropriate usage patterns and recovery techniques as necessary.

6.40	 Templates and generics [SYM]

6.40.1	 Description of application vulnerability

Many languages provide a mechanism that allows objects and/or functions to be defined parameterized
by type and then instantiated for specific types. In C++ (ISO/IEC 14882) and related languages, these are
referred to as templates, and in Ada (ISO/IEC 8652) and Java™,1) generics. To avoid having to keep writing
“templates/generics”, these will simply be referred to collectively as generics.

Used well, generics can make code clearer, more predictable, and easier to maintain. Used badly, they can have
the reverse effect, making code difficult to review and maintain, leading to the possibility of program error.

6.40.2	 Related coding guidelines

JSF AV Rules[34]: 101, 102, 103, 104, and 105

MISRA C++[40]: 14-6-1, 14-6-2, 14-7-1 to 14-7-3, 14-8-1, and 14-8-2

Ada Quality and Style Guide[1]: 8.3 and 8.4 subsection “Using Generic Parameters to Reduce Coupling”

6.40.3	 Mechanism of failure

The value of generics comes from having a single piece of code that supports some behaviour in a type-
independent manner. This simplifies development and maintenance of the code and assists in the
understanding of the code during review and maintenance, by providing the same behaviour for all types
with which it is instantiated.

Problems arise when the use of a generic actual makes the code harder to understand during review and
maintenance, by not providing consistent behaviour.

In most cases, the generic definition will be required to make assumptions about the types with which it
can legally be instantiated. For example, a sort function requires that the elements to be sorted can be
copied and compared. If these assumptions are not met, the result is likely to be a compiler error. Where
misuse of a generic leads to a compiler error, this can be regarded as a development issue, and not a software
vulnerability.

Confusion, and hence potential vulnerability, can arise where the instantiated code is apparently invalid, but
does not result in a compiler error. For example, a generic class defines a set of members, a subset of which
rely on a particular property of the instantiation type (such as a generic container class with a sort member
function, only the sort function relies on the instantiating type having a defined relational operator). In
some languages, such as C++ (ISO/IEC 14882), if the generic is instantiated with a type that does not meet all
the requirements, but the program never subsequently makes use of the subset of members that rely on the
property of the instantiating type, the code will compile and execute (for example, the generic container is
instantiated with a user defined class that does not define a relational operator, but the program never calls
the sort member of this instantiation). When the code is reviewed, the generic class will appear to reference
a member of the instantiating type that does not exist.

Similar confusion can arise if the language permits specific methods of an instance of a generic to be explicitly
defined, rather than using the common code, so that behaviour is not consistent for all instantiations. For
example, for the same generic container class, the sort member normally sorts the elements of the container
into ascending order. In some languages, a special case can be created for the instantiation of the generic
with a particular type, such as the sort member for a float container being explicitly defined to provide
different behaviour, such as sorting the elements into descending order. Specialization that does not affect
the apparent behaviour of the instantiation is not an issue.

1)	 Java™ is the trademark of a product supplied by Oracle. This information is given for the convenience of users of this
document and does not constitute an endorsement by ISO or IEC of the product named.

70

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.40.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages that permit definitions of objects or functions
to be parameterized by type, for later instantiation with specific types, such as Templates in C++
(ISO/IEC 14882), or Generics in Ada (ISO/IEC 8652) or Java.

6.40.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 document the properties of an instantiating type necessary for a generic to be valid;

—	 if an instantiating type has the required properties, ensure that all operations of the generic are either
valid or unavailable, whether or not currently used in the program;

—	 avoid, or carefully document, any special cases where a generic is instantiated with a specific type but
does not behave as it does for other types.

6.40.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 standardizing on a common, uniform terminology to describe generics/templates so that programmers
experienced in one language can reliably learn and refer to the type-system of another language that has
the same concept, but with a different name;

—	 designing generics in such a way that any attempt to instantiate a generic with constructs that do not
provide the required capabilities results in a compile-time error;

—	 providing an assertion mechanism for checking properties at run-time, for those properties that cannot
be checked at compile time, plus the ability to inhibit assertion checking if efficiency is a concern.

6.41	 Inheritance [RIP]

6.41.1	 Description of application vulnerability

Inheritance, the ability to create enhanced and/or restricted object classes based on existing object classes,
can introduce several vulnerabilities, both inadvertent and malicious. Given that inheritance allows the
overriding of methods of the parent class and that object-oriented systems are designed to encapsulate code
and data, it can be difficult to determine where in the hierarchy an invoked method is actually defined. Also,
since an overriding method does not need to call the method in the parent class that has been overridden,
essential initialization and manipulation of class data can be bypassed. This can be especially dangerous in
constructor methods, copy methods, or destructor methods and in particular when private data components
(that is, data components not visible to methods of subclasses) of the parent class are left uninitialized or
unchanged. Serious violations of type invariants can arise as a consequence.

Languages that allow multiple inheritance add additional complexities to the resolution of method
invocations. Some languages can resolve the method identity to different classes, based on how the
inheritance tree is traversed.

6.41.2	 Related coding guidelines

JSF AV Rules[34]: 78, 79, 80, 81, 86, 87, 88, 89, 89, 90, 91, 92, 93, 94, 95, 96 and 97

MISRA C++[40]: 0-1-12, 8-3-1, 10-1-1 to 10-1-3, and 10-3-1 to 10-3-3

Ada Quality and Style Guide[1]: 9

71

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.41.3	 Mechanism of failure

The use of inheritance can lead to an exploitable application vulnerability or negatively impact system safety
in several ways:

—	 execution of malicious redefinitions, which can occur through the insertion of a class into the class
hierarchy that overrides commonly called methods in the parent classes;

—	 accidental redefinition, where a method is defined that inadvertently overrides a method that has already
been defined in a parent class;

—	 accidental failure of redefinition, when a method is incorrectly named or the parameters are not defined
properly, and thus does not override a method in a parent class;

—	 breaking of class invariants, which can be caused by redefining methods that initialize, copy, destroy
or validate class data without including that initialization, copying, destruction, or validation in the
overriding methods. This applies particularly to class invariants involving data of the parent class not
visible in methods of the subclass. Inherited methods of the parent that have access to these “private”
components will likely fail if the components are left uninitialized or set inappropriately;

—	 direct reading and writing of visible class members instead of using inherited getter and setter member
functions, thus missing additional functionality provided by these member functions.

These vulnerabilities can increase dramatically as the complexity of the hierarchy increases, especially in
the use of multiple inheritance.

As methods are inherited from multiple chains of ancestors, the determination of which methods
implementations exist and are being called, becomes increasingly more difficult for the programmer.
Understanding which methods and data components apply to a given (sub)class becomes exceedingly
difficult if these methods or components are inherited homographs (i.e. data components with identical
names or methods with identical signatures). Different languages have different rules to resolve the
resulting ambiguities. Misunderstandings lead to inadvertent coding errors. The complexity increases
even more when multiple inheritance is used to model "has-a" relationships (see 6.42 “Violations of the
Liskov substitution principle [BPL]"); methods never intended to be applicable to instances of a subclass
are inherited nevertheless. For example, an instance of class aircraftCarrier lets it be “turn”ed merely
because it obtained its propulsion screw by a "has-a"-inheritance with “turn” being an obviously meaningful
method for the class of propulsionScrew. Meanwhile, the user has a quite different expectation of what it
means to turn an aircraft carrier. The complications increase if the carrier inherits twice from the class
propulsionScrew because it has two propulsion screws.

Finally, if ambiguities in method or component namings are resolved by preference rules, changes in the
execution of methods can be introduced by adding yet another unrelated but homographic method or data
declaration anywhere is the hierarchies of ancestor classes during maintenance of the code. Malicious
implementations can thus be added with each release of an object-oriented library and affect the behaviour
of previously verified code (see 6.42 “Violations of the Liskov substitution principle [BPL]").

The mechanism of failure for these additional dangers caused by multiple inheritance is the inadvertent use
of the wrong data components or methods. Knowledge of such incorrect use can be exploitable, as instances
of the affected (sub)class can be corrupted by inappropriate operations.

6.41.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that allow single or multiple
inheritances.

6.41.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid the use of multiple inheritance whenever possible;

72

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 avoid accessing data components when getting and setting functions are available for them;

—	 provide complete documentation of all encapsulated data, and how each method affects that data for
each object in the hierarchy;

—	 inherit only from trusted sources, and, whenever possible, check the version of the parent classes during
compilation and/or initialization;

—	 prohibit the use of visible inheritance for “has-a” relationships;

—	 use components of the respective class for “has-a” relationships;

—	 delegate initialization, copy, or destruction of the parent’s data components by calling the corresponding
operation of the parent type, and in particular when the parent has data components not visible to
methods of the subclass.

6.41.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing a compiler option to report the class in which a resolved method resides;

—	 providing for runtime environments a trace of all runtime method resolutions.

6.42	 Violations of the Liskov substitution principle or the contract model [BLP]

6.42.1	 Description of application vulnerability

Object orientation typically allows polymorphic variables containing values of subclasses of the declared
class of the variable. Methods of the declared class of a receiving object can be invoked and the caller has the
right to expect that the semantics of the interface called upon are observed regardless of the precise nature
of the value of the receiving object. Similarly, it is important that the existence of accessed components of
the declared class be ensured. Instances of subclasses become both technically and logically specialized
instances of the parent class. This is the basis of the Liskov substitution principle.

The Liskov substitution principle states that an instance of a subclass is always an instance of the superclass
as well if one ignores the added specializations. It implies that inheritance is used only if there is a logical
“is-a”-relationship between the subclass and the superclass. Moreover, preconditions of methods can at most
be weakened and never strengthened as they are redefined for a subclass. Inversely, postconditions can at
most be strengthened and never be weakened by such a redefinition. The caller of an interface guarantees
only the preconditions of the interface and is allowed to rely on its postconditions. The rules stated make
sure of this property which is also known as the Contract Model.

Violations of the Liskov substitution principle or the Contract Model can result in system malfunctions as
additional preconditions of redefinitions or promised postconditions of interfaces are not met.

An alternative inheritance semantics is that of “has-a”-relationships, usually appearing in programs in
languages with multiple inheritance, where the paradigm is sometimes referred to as a “mix-in”. It is in stark
conflict with the Liskov Principle, since a polymorphic variable motor of class engine should not be able to
hold a car, merely because the subclass car was created by a mix-in of the class engine to the class vehicle.

The principles stated above apply to implicit as well as explicit preconditions and postconditions. Explicit
conditions permit formal reasoning tools to be applied.

6.42.2	 Related coding guidelines

JSF AV Rules[34]: 89, 91, 92, 93

73

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.42.3	 Mechanism of failure

When a client calls the method of a class which dispatches to the implementation of a subclass with
a strengthened precondition, the client has no mechanism to know about the added preconditions to be
satisfied. Hence, the call can fail on a violated precondition. Similarly, if the called implementation has a
weaker postcondition, it is possible that the postcondition asserted to the client is not satisfied. As a
consequence, the client can fail. Failing to meet preconditions or to guarantee postconditions is bound to
cause exceptions or system failures. The specific scenarios are extensive and range from faults that happen
to be handled by the system to complete loss of security and safety.

Using visible inheritance to implement a “has-a”-relationships deteriorates class design and thereby can be
the cause of consequential errors. There is no immediate failure mode, however.

6.42.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that have polymorphic variables, particularly object-oriented languages;

—	 languages that provide inheritance among classes.

6.42.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 obey all preconditions and postconditions of each method, whether they are specified in the language or not;

—	 prohibit the strengthening of preconditions (specified or not) by redefinitions of methods;

—	 prohibit the weakening of postconditions (specified or not) by redefinitions of methods;

—	 prohibit the use of visible inheritance for “has-a” relationships and use components of the respective
class for “has-a”-relationships instead;

—	 use static analysis tools that identify misuse of inheritance in the contract model.

6.42.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing
language mechanisms to formally specify preconditions and postconditions, including class-wide
preconditions and postconditions.

6.43	 Redispatching [PPH]

6.43.1	 Description of application vulnerability

When very similar functionality is provided by methods or interfaces with varying parameter structures, a
frequently found implementation strategy is to designate one of them as the work horse and have all others
call on it to perform the (common) work. A prime example are constructor or initialization methods where
different sets of initial values for certain components are provided and the remaining components are set to
default values.

When the semantics of inner calls of dispatching methods ask for dispatching in turn, the call is said to
be “redispatching”. In this case, the following scenario can evolve: in class C, the implementation of
method A dispatches to method B, the work horse. In a derived class CD, the decision is made to change the
implementation of B. The programmer finds the signature of the inherited method A matching the needs
of the new call and calls A as part of the redefinition of B. The outcome of a previously correct dispatching
call on B in C for a polymorphic variable of class C holding a reference to an object of class CD now causes
infinite recursion between the redefined method B and the inherited method A of class CD.

74

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

This vulnerability is not restricted to the example above but can happen whenever the design calls for
multiple services converging to a single implementation.

6.43.2	 Related coding guidelines

Ada Quality and Style Guide[1]: 9.3 subsections “Primitive Operations and Redispatching” and
“Polymorphism”

6.43.3	 Mechanism of failure

The mechanism is the intrinsic call semantics of the language. If the call semantics demand dispatching for
nested method calls, the failure scenario is guaranteed. While the example above is tractable, the infinite
recursion can involve multiple objects along a reference chain and, thus, it becomes quickly undecidable
whether such a situation exists or not. Even for simple cases, avoidance requires knowledge about the
implementation of all called methods inherited from superclasses and needs to apply this knowledge
transitively. Such a requirement is diametrically opposed to fundamental software engineering axioms.

It has been shown that released libraries have contained many instances of infinite recursions.

Malicious exploit of the vulnerability adds a subclass that contains this infinite recursion conditionally on
some trigger value. The recursion can be sufficiently obscured so that no analysis tool or reviewer can detect
it with any certainty. The system can then be caused to fault with a stack overflow anytime this trigger is
used. The vulnerability can thus be used for Denial-of-Service (DoS) attacks.

6.43.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that demand or allow dispatching for
calls within dispatching operations.

6.43.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 enforce a principle that, even across class hierarchies, converging services use a consistent implementation;

—	 agree on and document a redispatch hierarchy within groups of methods, such as initializers or
constructors, and use it consistently throughout the class hierarchy;

—	 avoid dispatching calls in methods where possible. See upcast consequences in 6.44 “Polymorphic
Variables [BKK]”...

6.43.6	 Implications for language design and evolution

None.

6.44	 Polymorphic variables [BKK]

6.44.1	 Description of application vulnerability

Object-oriented languages allow polymorphic variables, in which values of different classes can be stored
at different times. In most of these languages, variables are declared to be of some class, while the actual
value can be of a more specialized subclass. Polymorphic variables go hand in hand with method selection
at run time, when the method defined for the actual subclass of the receiving object or controlling argument
is invoked. This approach is safe, as method implementation and actual type of the object match by
construction. If, however, the language permits casting of the polymorphic reference to process the object as
if it were of the class casted to, several vulnerabilities arise. Casts are distinguished as follows:

—	 upcasts, where the cast is to a superclass;

75

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 downcasts, where the cast is to a subclass and a check is made that the object is indeed of the target class
of the cast (or a subclass thereof);

—	 unsafe casts, where there is no assurance that the object is of the casted class.

Distinct vulnerabilities arise for each of these cast types.

—	 Upcasts are needed so that redefined methods can call upon the corresponding method of the parent
class to achieve the respective portion of the needed functionality and then complete it for the extensions
added by the subclass. Without calling the parent’s implementation of a method in the redefined method,
the private components of the parent class are inaccessible to the redefined method. Hence, there is a
risk that they are no longer consistent with the overall state of the object. Inversely, if the issue is avoided
by inheriting rather than redefining the method for a subclass, there is the risk that the subclass-specific
parts are inconsistent with the overall state of the object or even uninitialized.

—	 Downcasts carry the risk that the object is not of the correct class. If checked by the language, as language-
defined downcasts typically are, an exception will occur in this case.

—	 Unsafe casts allow arbitrary breaches of safety and security similar to the breaches described in 6.11
“Pointer type conversions [HFC]”.

Some languages also have implicit upcasts and downcasts as part of the language semantics. The same
issues apply to implicit casts as for explicit casts.

6.44.2	 Related coding guidelines

JSF AV Rules[34]:

67 Make all data members private

78 Virtual method and virtual destructor

94 redefinition of an inherited non-virtual function

178 Limited downcast

179 Pointer casts

185 Use C++ upcasts in place of C casts

6.44.3	 Mechanism of failure

Objects left in an inconsistent state by means of an upcast and a subsequent legitimate method call of the
parent class can be exploited to cause system malfunctions.

Exceptions raised by failing downcasts allow Denial-of-Service attacks. Typical scenarios include the
addition of objects of some unexpected subclasses in generic containers.

Unsafe casts to classes with the needed components allow reading and modifying arbitrary memory areas.
See 6.11 “Pointer type conversions [HFC]”.

6.44.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that have polymorphic variables, particularly object-oriented languages;

—	 languages that permit upcasts, downcasts, or unsafe casts.

76

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.44.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 forbid the use of unsafe casts;

—	 when upcasting:

—	 ensure functional consistency of the subclass-specific data to the changes affected via the upcasted
reference;

—	 use type invariants if provided to detect semantic violations caused by upcasts;

—	 try to avoid downcasts, and where a downcast is necessary:

—	 make sure that any resulting error situations are handled;

—	 precede downcasts by an appropriate membership test, as needed, to avoid possible errors or
exceptions.

6.44.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider forbidding unsafe casts.

6.45	 Extra intrinsics [LRM]

6.45.1	 Description of application vulnerability

Most languages define intrinsic procedures, which are easily available, or always simply available, to any
translation unit. If a translator extends the set of intrinsics beyond those defined by the standard, and
the standard specifies that intrinsics are selected before procedures of the same signature defined by the
application, a different procedure can be unexpectedly used when switching between translators.

6.45.2	 Related coding guidelines

No guidelines apply.

6.45.3	 Mechanism of failure

Most standard programming languages define a set of intrinsic procedures that can be used in any
application. Some language standards allow a translator to extend this set of intrinsic procedures. Some
language standards specify that intrinsic procedures are selected ahead of an application procedure of the
same signature. This can cause a different procedure to be used when switching between translators.

For example, most languages provide a routine to calculate the square root of a number, usually named
sqrt(). If a translator also provided, as an extension, a cube root routine, say named cbrt(), that extension
can override an application defined procedure of the same signature. If the two different cbrt() routines
chose different branch cuts when applied to complex arguments, the application can unpredictably go wrong.

If the language standard specifies that application defined procedures are selected ahead of intrinsic
procedures of the same signature, the use of the wrong procedure can mask a linking error.

6.45.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to any language where translators can extend
the set of intrinsic procedures and where intrinsic procedures are selected ahead of application defined (or
external library defined) procedures of the same signature.

77

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.45.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use whatever language features are available to mark a procedure as language defined or application
defined;

—	 avoid using procedure signatures matching those defined by the translator as extending the standard set.

6.45.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing mechanisms to document whether translators can extend the set of intrinsic procedures or not;

—	 providing mechanisms to document the precedence for resolving collisions;

—	 providing mechanisms to mark a subprogram signature as being the intrinsic or an application provided
procedure;

—	 implementing a diagnostic to be issued when an application procedure matches the signature of an
intrinsic procedure.

6.46	 Argument passing to library functions [TRJ]

6.46.1	 Description of application vulnerability

Libraries that supply objects or functions are in most cases not required to check the validity of parameters
passed to them. In those cases where parameter validation is required, it is possible that there is no adequate
parameter validation.

6.46.2	 Related coding guidelines

CWE[7]: 114. Process Control

JSF AV Rules[34] 16, 18, 19, 20, 21, 22, 23, 24, and 25

MISRA C[39]: 1.3, 4.11, 21.2-21.8, and 21.10

MISRA C++[40]: 17-0-1, 17-0-5, 18-0-2, 18-0-3, 18-0-4, 18-2-1, 18-7-1 and 27-0-1

CERT C Secure Coding Standard[41]: INT03-C and STR07-C

6.46.3	 Mechanism of failure

When calling a library, either the calling function or the library can make assumptions about parameters. For
example, a library assumes that a parameter is non-zero so division by that parameter is performed without
checking the value. Sometimes, some validation is performed by the calling function, but the library can use
the parameters in ways that were unanticipated by the calling function resulting in a potential vulnerability.
Even when libraries do validate parameters, their response to an invalid parameter is usually undefined and
can cause unanticipated results.

6.46.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that provide or use libraries that do
not validate the parameters accepted by functions, methods and objects.

78

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.46.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use libraries that validate any values passed to the library functions before the value is used;

—	 develop wrappers around library functions that check the parameters before calling the function;

—	 demonstrate statically that the parameters are never invalid using static analysis tools capable of
detecting data validation routines;

—	 use only libraries that are known to have been developed with consistent and validated interface
requirements.

NOTE	 Some of these approaches work best if used in conjunction with other approaches.

6.46.6	 Implications for language design and evolution

In future language design and evolution activities, consider the following items:

—	 ensuring that all library functions defined operate as intended over the specified range of input values
and react in a defined manner to values that are outside the specified range;

—	 defining libraries that provide the capability to validate parameters during compilation, during execution
or by static analysis;

—	 implementing language-defined libraries that provide the preconditions and postconditions for each call
so that function arguments can be validated during compilation, execution or via other static analysis tools.

6.47	 Inter-language calling [DJS]

6.47.1	 Description of application vulnerability

When an application is developed using more than one programming language, complications arise. The
calling conventions, data layout, error handing and return conventions all differ between languages; if
these are not addressed correctly, stack overflow/underflow, data corruption, and memory corruption are
possible.

In multi-language development environments, it is also difficult to reuse data structures and object code
across the languages.

6.47.2	 Related coding guidelines

No guidelines apply.

6.47.3	 Mechanism of failure

When calling a function that has been developed using a language different from the calling language,
consider the call convention and the return convention used. If these conventions are not handled correctly,
there is a good chance the calling stack will be corrupted, (see 6.34“Subprogram signature mismatch
[OTR]”). The call convention covers how the language invokes the call and how the parameters are handled
(see 6.32 “Passing parameters and return values [CSJ").

Many languages restrict the length of identifiers, the type of characters that can be used as the first
character, and the case of the characters used. In addition, modules developed in different languages or
using different compilers, can map names differently, causing mistakes to be made during program build.
All of these restrictions should be considered when invoking a routine written in a language other than the
calling language. Otherwise, the identifiers can bind in a manner different than intended.

Character and aggregate data types require special treatment in a multi-language development environment.
Consideration of the data layout of all languages that are to be used, including padding and alignment, is

79

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

extremely important. If these data types are not handled correctly, the data can be corrupted, the memory
can be corrupted, or both can become corrupt. This can happen by writing/reading past either end of the
data structure, see 6.8 “Buffer boundary violation (buffer overflow) [HCB]”. For example, a Pascal STRING
data type

 VAR str: STRING(10);

corresponds to a C structure (to capture the length information)

 struct {
 int length;
 char str [10];
 };

and not to the C structure

 char str [10]

where length contains the actual length of STRING. The second C construct is implemented with a physical
length that is different from the physical length of the Pascal STRING and assumes a NUL terminator.

Most numeric data types have counterparts across languages, but the layouts can differ and only those types
that match the in the different languages be used. For example, in some implementations of C++ a

 signed char

would match a Fortran (ISO/IEC 1539-1)

 integer(1)

and would match a Pascal

 PACKED −128..127

These correspondences can be implementation-defined, necessitating verification.

Sophisticated error-handling mechanisms, such as exception handling, often do not work across language
boundaries. Consequently, very simple error reporting mechanisms are needed across such boundaries,
restricting the sophisticated mechanisms for use only within the bounds of a single language.

6.47.4	 Applicable language characteristics

The vulnerability is applicable to all high-level programming languages and low-level programming
languages, since all are susceptible to this vulnerability when used in a multi-language development
environment.

6.47.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use the inter-language methods and syntax specified by the applicable language standard(s);

NOTE	 For example, Fortran (ISO/IEC 1539-1) and Ada (ISO/IEC 8652) specify how to call C (ISO/IEC 9899)
functions.

—	 understand the calling conventions of all languages and language processors used;

—	 for items comprising the inter-language interface:

—	 understand the data layout of all data types used;

—	 understand the return conventions of all languages used;

—	 prefer that the language in which error check occurs is the one that handles the error;

80

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 avoid assuming that the language makes (or does not make) a distinction between upper case and
lower-case letters in identifiers;

—	 avoid using a special character as the first character in identifiers;

—	 avoid using long identifier names.

6.47.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider developing standard
provisions for inter-language calling to languages most often used with the programming language under
consideration.

6.48	 Dynamically-linked code and self-modifying code [NYY]

6.48.1	 Description of application vulnerability

Code that is dynamically linked can be different from the code that was tested. This can be the result of
replacing a library with another of the same name or by altering an environment variable such as LD_LIBRARY_
PATH on the (Portable Operating System Interface) POSIX®-compliant2) platforms (see ISO/IEC/IEEE 9945)
so that a different directory is searched for the library file. Executing code that is different than that which
was tested can lead to unanticipated errors or intentional malicious activity.

On some platforms, and in some languages, instructions can modify other instructions in the code space.
Historically self-modifying code was needed for software to overcome limitations of the hardware, such as
running on a platform with very limited memory. It is now often used (or misused) to hide functionality of
software and make it more difficult to reverse engineer, or for speciality applications such as graphics where
the algorithm is tuned at runtime to give better performance or just-in-time (JIT) compilation to replace
interpreted code with compiled code. Apart from automatically-generated benign code, self-modifying
code can be difficult to write correctly and even more difficult to test and maintain correctly leading to
unanticipated errors.

6.48.2	 Related coding guidelines

JSF AV[34] Rule: 2

6.48.3	 Mechanism of failure

Through the alteration of a library file or environment variable, the code that is dynamically linked can be
different from the code which was tested resulting in different functionality.

On some platforms, a pointer-to-data can erroneously be given an address value that designates a location
in the instruction space. If subsequently a modification is made through that pointer, then an unanticipated
behaviour can result.

6.48.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that allow a pointer-to-data to be assigned an address value that designates a location in the
instruction space;

—	 languages that allow execution of code that exists in data space;

—	 languages that permit the use of dynamically linked or shared libraries;

—	 languages that execute on an OS that permits program memory to be both writable and executable.

2)	 POSIX® is a registered trademark of the Institute of Electrical and Electronic Engineers (IEE), Inc. This information is
given for the convenience of users of this document and does not constitute an endorsement by ISO or IEC of this product.

81

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.48.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 verify that the dynamically linked or shared code being used is the same as that which was tested;

—	 retest the application before use when it is possible that the dynamically linked or shared code has
changed;

—	 prohibit self-modifying code except in rare instances. Most software applications should never have a
requirement for self-modifying code;

—	 in those extremely rare instances where its use is justified, limit the amount of self-modifying code and
heavily document them.

6.48.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider providing a
mechanism so that a program can implicitly or explicitly check that the digital signature of a library matches
the one in the compile/test environment.

6.49	 Library signature [NSQ]

6.49.1	 Description of application vulnerability

Programs written in modern languages can use libraries written in other languages than the program
implementation language. If the library is large, the effort of adding signatures for all of the functions use by
hand is tedious and error prone. Portable cross-language signatures will require detailed understanding of
both languages, which some programmers lack.

Integrating two or more programming languages into a single executable relies upon knowing how to
interface the function calls, argument list and global data structures so the symbols match in the object code
during linking.

Byte alignment can be a source of data corruption if memory boundaries between the programming
languages are different. Each language can also align structure data differently.

6.49.2	 Related coding guidelines

MISRA C[39]: 1.1

MISRA C++[40]: 1-0-2

6.49.3	 Mechanism of failure

When the library and the application in which it is intended to be used are written in different languages,
the specification of signatures is complicated by inter-language issues.

As used in this vulnerability description, the term library includes the interface to the operating system, which
can be specified only for the language used to code the operating system itself, such as in C (ISO/IEC 9899).
In this case, any program written in any other language faces the inter-language interoperability issue of
creating a fully-functional signature.

When the application language and the library language are different, then the ability to specify signatures
according to either standard can be absent or can be very difficult. Thus, a translator-by-translator solution
is often necessary, which increases the probability of incorrect signatures, since the solution is recreated for
each translator pair. It is possible that incorrect signatures are not caught during the linking phase.

82

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.49.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages that do not specify how to describe
signatures for subprograms written in other languages.

6.49.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use tools to create the signatures;

—	 avoid using translator options or language features to reference library subprograms that do not have
proper signatures.

6.49.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing correct linkage even in the absence of correctly specified procedure signatures
(this can be very difficult where the original source code is unavailable);

—	 providing specified means to describe the signatures of subprograms.

6.50	 Unanticipated exceptions from library routines [HJW]

6.50.1	 Description of application vulnerability

A library in this context means a set of software routines produced outside the control of the main application
developer, usually by a third party, and where the application developer often does not have access to the
source. In such circumstances, the application developer has limited knowledge of the library functions,
other than from their behavioural interface.

While the use of libraries can present several vulnerabilities, the focus of this vulnerability is any undesirable
behaviour that a library routine exhibits, in particular the generation of unexpected exceptions.

6.50.2	 Cross reference

JSF AV[34] Rule: 208

MISRA C[39]: 4.11

MISRA C++[40]: 15-3-1, 15-3-2, 17-0-4

Ada Quality and Style Guide[1]: 5.8 and 7.5

6.50.3	 Related coding guidelines

In some languages, unhandled exceptions lead to implementation-defined behaviour. This can include
immediate termination, without for example, releasing previously allocated resources. If a library routine
raises an unanticipated exception, this undesirable behaviour can result.

Considerations of 6.36 “Ignored error status and unhandled exceptions [OYB]”, are also relevant here.

6.50.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that can link previously developed library code (where the developer and compiler do not
have access to the library source);

—	 languages that permit exceptions to be thrown but do not require handlers for them.

83

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.50.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 wrap all library calls within a "catch-all" exception handler (if the language supports such a construct),
so that any unanticipated exceptions can be caught and handled appropriately;

NOTE	 This wrapping can be done for each library function call or for the entire behaviour of the program, for
example, having the exception handler in main for C++ (ISO/IEC TR 24731-1). However, the latter is not a complete
solution, as static objects are constructed before main is entered and are destroyed after it has been exited.
Consequently, MISRA C++[40] bars class constructors and destructors from throwing exceptions (unless handled
locally).

—	 alternatively, use only library routines for which all possible exceptions are specified.

6.50.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing a mechanism for catching all possible exceptions (for example, a "catch-all" handler).

—	 fully defining the behaviour of the program when encountering an unhandled exception, see 6.51 “Pre-
processor directives [NMP]”.

6.51	 Pre-processor directives [NMP]

6.51.1	 Description of application vulnerability

Pre-processor replacements happen before any source code syntax check, therefore there is no type checking
– this is especially important in function-like macro parameters.

If great care is not taken in the writing of macros, the expanded macro can have an unexpected meaning.
In many cases if explicit delimiters are not added around the macro text and around all macro arguments
within the macro text, unexpected expansion is the result.

Source code that relies heavily on complicated pre-processor directives can result in obscure and hard to
maintain code since the syntax they expect can be different from the expressions programmers regularly
expect in a given programming language.

6.51.2	 Related coding guidelines

Holzmann[13] rule 8

JSF AV[34] Rules: 26, 27, 28, 29, 30, 31, and 32

MISRA C[39]: 1.3, 4.9, 20.5, and 20.6

MISRA C++[40]: 16-0-3, 16-0-4, and 16-0-5

CERT C Secure Coding Standard[41]: PRE01-C, PRE02-C, PRE10-C, and PRE31-C

6.51.3	 Mechanism of failure

Readability and maintainability can be greatly decreased if pre-processing directives are used instead of
language features.

While static analysis can identify many problems early; heavy use of the pre-processor can limit the
effectiveness of many static analysis tools, which typically work on the pre-processed source code.

84

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

In many cases where complicated macros are used, the program does not do what is intended. For example:

define a macro as follows,

 #define CD(x, y) (x + y - 1) / y

whose purpose is to divide. Then suppose it is used as follows

 a = CD (b & c, sizeof (int));

which expands into

 a = (b & c + sizeof (int) - 1) / sizeof (int);

which most times will not do what is intended. Defining the macro as

 #define CD(x, y) ((x) + (y) - 1) / (y)

will provide the desired result.

6.51.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that have a lexical-level pre-processor;

—	 languages that allow unintended groupings of arithmetic statements;

—	 languages that allow cascading macros;

—	 languages that allow duplication of side effects;

—	 languages that allow macros that reference themselves;

—	 languages that allow nested macro calls;

—	 languages that allow complicated macros.

6.51.5	 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects by not using pre-processor
directives where it is possible to achieve the desired functionality without their usage.

6.51.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 reducing or eliminating dependence on lexical-level pre-processors for essential functionality (such as
conditional compilation);

—	 providing capabilities to inline functions and procedure calls, to reduce the need for pre-processor macros.

6.52	Suppression of language-defined run-time checking [MXB]

6.52.1	 Description of application vulnerability

Some languages provide runtime checking to detect errors that can lead to vulnerabilities, and thus prevent
them. Canonical examples are bounds or length checks on array operations or null-value checks upon
dereferencing pointers or references. In most cases, the reaction to a failed check is the raising of a language-
defined exception.

85

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

As run-time checking requires execution time and as some project guidelines exclude the use of exceptions,
languages often provide a mechanism to optionally suppress such checking for regions of the code or for the
entire program. Analogously, compiler options can be used to achieve this effect.

6.52.2	 Related coding guidelines

No coding guidelines apply.

6.52.3	 Mechanism of Failure

Vulnerabilities that could have been prevented by the run-time checks are undetected, resulting in memory
corruption, propagation of incorrect values or unintended execution paths.

6.52.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that define runtime checks to prevent certain vulnerabilities;

—	 languages that allow runtime checks to be suppressed;

—	 languages or compilers that suppress checking by default, or whose compilers or interpreters provide
options to omit the above checks.

6.52.5	 Avoiding the vulnerability

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 prohibit the suppressing of checks, or restrict the suppression of checks to regions of the code that have
been proven to be performance-critical;

—	 if the default behaviour of the compiler or the language is to suppress checks, then explicitly enable
those checks;

—	 where checks are suppressed, statically verify that each suppressed check cannot fail, and if the decision
is made to suppress language-defined checks, use explicit checks at appropriate places in the code to
ensure that errors are detected before any processing that relies on the correct values;

—	 clearly identify code sections where checks are suppressed.

6.52.6	 Implications for language design and evolution

No implications apply.

6.53	 Provision of inherently unsafe operations [SKL]

6.53.1	 Description of application vulnerability

Languages define semantic rules to be obeyed by conforming programs. Compilers enforce these rules and
diagnose violating programs.

A canonical example is illustrated through the rules of type checking, intended among other reasons to
prevent semantically incorrect assignments, such as characters to pointers, meter to feet, euro to dollar, real
numbers to Booleans, or complex numbers to two-dimensional coordinates.

Occasionally, it is necessary to step outside the rules of the type model to achieve needed functionality. One
such situation is explicit type conversion of memory as part of the implementation of a heap allocator to the
type of object for which the memory is allocated. A type-safe assignment is impossible for this functionality.
Thus, a capability for unchecked explicit type conversion between arbitrary types to interpret the bits in

86

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

a different fashion is a necessary but inherently unsafe operation, without which the type-safe allocator
cannot be programmed.

Another example is the provision of operations known to be inherently unsafe, such as the deallocation of
heap memory without prevention of dangling references.

A third example is any interfacing with another language, since the checks ensuring type-safeness rarely
extend across language boundaries.

These inherently unsafe operations constitute a vulnerability, since they can (and will) be used by
programmers in situations where their use is neither necessary nor appropriate.

The vulnerability is eminently exploitable to violate program security.

6.53.2	 Related coding guidelines

No coding guidelines apply.

6.53.3	 Mechanism of Failure

The use of inherently unsafe operations or the suppression of checking circumvents the features that are
normally applied to ensure safe execution. Control flow, data values, and memory accesses can be corrupted
as a consequence of unsafe operations. Depending on the circumstances and the unsafe operation used,
most of the vulnerabilities described in this document can result.

6.53.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that allow compile-time checks for the prevention of vulnerabilities to be suppressed by
compiler or interpreter options or by language constructs;

—	 languages that provide inherently unsafe operations.

6.53.5	 Avoiding the vulnerability or mitigating its effect

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 restrict the suppression of compile-time checks to where the suppression is functionally essential;

—	 use inherently unsafe operations only when they are functionally essential and document each usage at
the site of that usage;

—	 clearly identify program code that suppresses checks or uses unsafe operations to permit the focusing of
review effort to examine whether the function can be performed in a safer manner;

—	 use static analysis tools that detect and report the use of unsafe features.

6.53.6	 Implications for language design and evolution

No implications apply.

6.54	 Obscure language features [BRS]

6.54.1	 Description of application vulnerability

Every programming language has features that are obscure, difficult to understand, or difficult to use
correctly. The problem is compounded if a software design is reviewed by people who are not language
experts, such as hardware engineers, human-factors engineers, or safety officers.

87

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Even if the design and code are initially correct, it is often the case that maintainers of software do not fully
understand the intent.

The consequences of the above problems are more severe if the software is intended to be used in trusted
applications, such as safety-critical or mission-critical ones.

Misunderstood language features or misunderstood code sequences can lead to application vulnerabilities
in development or in maintenance.

6.54.2	 Related coding guidelines

JSF AV Rules[34]: 84, 86, 88, and 97

MISRA C[39]: 1.1, 10.4, 13.4, 13.6, 18.5, 21.4, 21.5, 21.6, 21.7 and 21.8

MISRA C++[40]: 0-2-1, 2-3-1, and 12-1-1

CERT C Secure Coding Standard[41]: FIO03-C, MSC05-C, MSC30-C, and MSC31-C.

ISO/IEC TR 15942:2000, 5.4.2, 5.6.2 and 5.9.3

6.54.3	 Mechanism of failure

The use of obscure language features can lead to an application vulnerability in several ways:

—	 the original programmer misunderstands the correct usage of the feature and utilizes it incorrectly in
the design or code it incorrectly;

—	 reviewers of the design and code misunderstand the intent or the usage and thereby overlook problems;

—	 maintainers of the code do not fully understand the intent or the usage and introduce problems during
maintenance.

6.54.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to any language.

6.54.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 avoid the use of language features that are obscure or difficult to use, especially in combination with
other difficult language features;

—	 adopt coding standards that discourage use of such features or show how to use them correctly;

—	 avoid the use of complicated features of a language;

—	 avoid the use of rarely used constructs that can be difficult for entry-level maintenance personnel to
understand;

—	 use tool-based static analysis to find incorrect usage of obscure language features and to determine that
features forbidden by coding standards are not used.

NOTE	 Consistency in coding is desirable for each of review and maintenance. Therefore, the desirability of
the particular alternatives chosen for inclusion in a coding standard is not expected to be empirically proven.

To avoid the vulnerability or mitigate its ill effect, organizations can:

—	 when developing software with critically important requirements, adopt a mechanism to monitor which
language features are correlated with failures during the development process and during deployment;

88

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 adopt or develop stereotypical idioms for the use of difficult language features, codify them in
organizational standards, and enforce them via review processes.

6.54.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 removing or deprecating obscure, difficult to understand, or difficult to use features;

—	 providing language directives that optionally disable obscure language features;

—	 providing precise descriptions of complex features in the language standard;

—	 being attentive to ease of use of features.

6.55	Unspecified behaviour [BQF]

6.55.1	 Description of application vulnerability

Language specifications do not always uniquely define the behaviour of a construct. When an instance of
a construct that is not uniquely defined is encountered (this can be at any of compile, link, or run time)
implementations are permitted to choose from the set of behaviours allowed by the language specification.
The phrase "unspecified behaviour" is sometimes applied to such behaviours, (language specific guidelines
must analyse and document the terms used by their respective language).

The external behaviour of a program whose source code contains one or more instances of constructs
having unspecified behaviour cannot be deterministically predicted. A typical example in many languages
is the order of evaluation of expressions and statements in the presence of side effects.

6.55.2	 Related coding guidelines

JSF AV Rules[34]: 17, 18, 19, 20, 21, 22, 23, 24, 25

MISRA C[39]: 1.1, 1.3, 19.1, and 20.2

MISRA C++[40]: 5-0-1, 5-2-6, 7-2-1, and 16-3-1

CERT C Secure Coding Standard[41]: MSC15-C

6.55.3	 Mechanism of failure

A developer uses a construct in a context where its behaviour is unspecified and presumes that the obtained
behaviour will be consistently reproduced by the translator. Consistent behaviour depends on the translator
always selecting this expected behaviour; the equally valid choice of a different behaviour is a frequent
source of program failure.

Many language constructs can have unspecified behaviour, but unconditionally recommending against
any use of these constructs is impractical. For instance, in many languages the order of evaluation of the
operands appearing on the left- and right-hand side of an assignment is unspecified, but in most cases the set
of possible behaviours always produce the same result.

The appearance of unspecified behaviour in a language specification is the recognition by the language
designers that in some cases flexibility is needed by software developers, and that it can provide a
worthwhile benefit for language translators; this usage is not a defect in the language.

The important characteristic is not the internal behaviour exhibited by a construct (such as the sequence
of machine code generated by a translator) but its external behaviour (that is, the one visible to a user of a
program). If the set of possible unspecified behaviours permitted for a specific use of a construct all produce
the same external effect when the program containing them is executed, then rebuilding the program cannot
result in a change of behaviour for that specific usage of the construct.

89

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

For instance, while the following assignment statement contains unspecified behaviour in many languages
(that is, it is possible to evaluate either the A or B operand first, followed by the other operand):

 A = B;

in most cases the order in which A and B are evaluated does not affect the external behaviour of a program
containing this statement.

6.55.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages whose specification allows a finite set of more
than one behaviour for how a translator handles some construct, where two or more of the behaviours can
result in differences in external program behaviour.

6.55.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use language constructs that have specified behaviour;

—	 use static analysis tools that identify conditions that can result in unspecified behaviour;

—	 ensure that a specific use of a construct having unspecified behaviour produces a result that is the same
for all of the possible behaviours permitted by the language specification;

—	 for situations where the order of evaluation or the number of evaluations is unspecified, use only
operations with no side-effects, to avoid the vulnerability;

—	 when developing coding guidelines for a specific language, identify all constructs that have unspecified
behaviour and, for each construct where the set of possible behaviours can vary, mandate that all
alternatives are considered.

6.55.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 minimizing the amount of unspecified behaviours;

—	 minimizing the number of possible behaviours for any given unspecified choice;

—	 documenting the difference in external effect associated with different choices.

6.56	Undefined behaviour [EWF]

6.56.1	 Description of application vulnerability

Language specifications often categorize the behaviour of a language construct as undefined rather than as
a semantic violation, that is, an erroneous use of the language. In this case, no specific behaviour is required
and the translator or runtime system is at liberty to do anything it pleases.

The external behaviour of a program containing an instance of a construct having undefined behaviour, as
defined by the language specification, is not predictable.

6.56.2	 Related coding guidelines

JSF AV Rules[34]: 17, 18, 19, 20, 21, 22, 23, 24, 25

MISRA C[39]: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2

MISRA C++[40]: 2-13-1, 5-2-2, 16-2-4, and 16-2-5

90

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

CERT C Secure Coding guidelines[41]: MSC15-C

6.56.3	 Mechanism of failure

The behaviour of a program built from successfully translated source code containing a construct having
undefined behaviour is not predictable. For example, in some languages the value of a variable is undefined
before it is initialized. Hence, the behaviour of the program can be surprising to the programmer and the
user and can result in destructive malfunctions.

6.56.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

—	 languages that do not fully define the extent to which the use of a particular construct is a violation of the
language specification;

—	 languages that do not fully define the behaviour of constructs during compile, link and program execution.

6.56.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 ensure that undefined language constructs are not used;

—	 ensure that a use of a construct having undefined behaviour does not operate within the domain in
which the behaviour is undefined;

NOTE 1	 When it is not possible to completely verify the domain of operation during translation, runtime checks
can be performed, as appropriate.

—	 use static analysis tools that identify conditions that can result in undefined behaviour.

To avoid the vulnerability or mitigate its ill effects, organizations can:

—	 when developing coding guidelines for a specific language, document all constructs that have undefined
behaviour.

NOTE 2	 The items on this list can be classified by the extent to which the behaviour is likely to have some critical
impact on the external behaviour of a program (the criticality can vary between different implementations, for
example, whether conversion between object and function pointers has well defined behaviour).

6.56.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 minimizing undefined behaviours to the extent possible and practical;

—	 enumerating all cases of undefined behaviour;

—	 providing mechanisms that permit the disabling or diagnosing of constructs that produce undefined
behaviour.

6.57	 Implementation-defined behaviour [FAB]

6.57.1	 Description of application vulnerability

Language specifications do not always fully define the behaviour of a construct, and thus leave compiler
implementations to decide how the construct will operate. When an instance of a construct that is not
uniquely defined is encountered (this can be at translation, link-time, or during program execution)
implementations are permitted to choose from a set of behaviours. The only difference from unspecified
behaviour is that implementations are required to document how they behave.

91

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The behaviour of a program, whose source code contains one or more instances of constructs having
implementation-defined behaviour, can change when the source code is recompiled or relinked.

6.57.2	 Related coding guidelines

JSF AV Rules[34]: 17, 18, 19, 20, 21, 22, 23, 24, 25

MISRA C[39]: 1.1, 1.3, 5.4, 18.2, 18.3, and 20.2

MISRA C++[40]: 5-2-9, 5-3-3, 7-3-2, and 9-5-1

CERT Secure C coding guidelines[41]: MSC15-C

ISO/IEC TR 15942:2000, 5.9

Ada Quality and Style Guide[1]: 7.1

6.57.3	 Mechanism of failure

A developer uses a construct in a way that depends on a particular implementation-defined behaviour
occurring. The behaviour of a program containing such a usage is dependent on the translator used to build
it always selecting the expected behaviour.

Some implementations provide a mechanism for changing an implementation's implementation-defined
behaviour (for example, use of pragma in source code). Use of such a change mechanism creates the potential
for additional human error if a developer is unaware that a change of behaviour was requested earlier in the
source code and writes code that depends on the implementation-defined behaviour that occurred prior to
that explicit change of behaviour.

Some language constructs have implementation-defined behaviour, but unconditionally recommending
against any use of these constructs can be impractical. For instance, in many languages the number of
significant characters in an identifier is implementation-defined. In this case, enforcing a maximum length,
N, for identifiers project-wide and using only translators that distinguish the identifiers based on at least N
characters will resolve the problem.

The appearance of implementation-defined behaviour in a language specification is recognition by the
language designers that in some cases implementation flexibility provides a worthwhile benefit for language
translators; this usage is not a defect in the language.

6.57.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages with the following characteristics:

—	 languages whose specification allows some variation in how a translator handles some construct, where
reliance on one form of this variation can result in differences in external program behaviour;

—	 languages whose implementations are not required to provide a mechanism for controlling
implementation-defined behaviour.

6.57.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 document the set of implementation-defined features an application depends upon, so that upon a change
of translator, development tools, or target configuration, it can be ensured that those dependencies are
still met;

—	 ensure that a specific use of a construct having implementation-defined behaviour produces an external
behaviour that is the same for all of the possible behaviours permitted by the language specification;

92

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 use a language implementation whose implementation-defined behaviours are within an acceptable
subset of all implementation-defined behaviours;

—	 create highly visible documentation (perhaps at the start of a source file) that the default implementation-
defined behaviour is changed within the current file;

—	 when developing coding guidelines for the use of constructs that have implementation-defined behaviour,
disallow all uses in which the variations of possible behaviours can produce undesirable results;

—	 verify code behaviour using at least two different compilers with two different technologies.

6.57.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing a list of implementation-defined behaviours for portability guidelines for a specific language;

—	 enumerating all cases of implementation-defined behaviour;

—	 providing language directives that optionally disable language features that have implementation-
defined behaviours.

6.58	 Deprecated language features [MEM]

6.58.1	 Description of application vulnerability

Most languages evolve over time. Sometimes new features are added making other features extraneous.
Languages have some features that are frequently the basis for security or safety problems. The deprecation
of these features indicates that there is a better way of accomplishing the desired functionality. However,
there is always a time lag between the acknowledgement that a particular feature is the source of safety or
security problems, the decision to remove or replace the feature, and the generation of warnings or error
messages by compilers that the feature should not be used. Given that software systems can take many
years to develop, it is possible and even likely that a language standard will change causing some of the
features used to be suddenly deprecated. Modifying the software can be costly and time consuming to
remove the deprecated features. However, if the schedule and resources permit, this would be prudent as
future vulnerabilities can result from leaving the deprecated features in the code. Ultimately, it is likely
that the deprecated features will be required to be removed from the code when the deprecated language
features are removed during a language revision.

6.58.2	 Related coding guidelines

JSF AV Rules[34]: 8 and 11

MISRA C[39]: 1.1 and 4.2

MISRA C++[40]: 1-0-1, 2-3-1, 2-5-1, 2-7-1, 5-2-4, and 18-0-2

Ada Quality and Style Guide[1]: 7.1 subsection “Obsolescent Features”

6.58.3	 Mechanism of failure

Ideally all code conforms to the current standard for the respective language. In reality however, a language
standard can change during the creation of a software system or suitable compilers and development
environments are still unavailable for the new standard for some period of time after the standard is
published. To smooth the process of evolution, features that are no longer needed or which serve as the
root cause of or contributing factor for safety or security problems are often deprecated to temporarily
allow their continued use, but also to indicate that those features are planned for removal in the future. The
deprecation of a feature is a strong indication from the language architects that it should not be used. Other
features, although not formally deprecated, are rarely used and there exist other more common ways of

93

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

expressing the same function. Use of such features can lead to problems when others are assigned the task
of debugging or modifying the code containing those features.

6.58.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 all languages that have standards, though some only have de facto standards;

—	 all languages that evolve over time and as such can potentially have deprecated features at some point.

6.58.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 adhere to the latest published standard for which a suitable compiler and development environment is
available;

—	 use multiple compilers and other static analysis tools to help identify and eliminate deprecated features;

—	 avoid the use of deprecated features of the language;

—	 stay abreast of language discussions in language user groups and standards groups.

6.58.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider the following items:

—	 removing obscure language features for which there are commonly used alternatives;

—	 removing language features that have routinely been found to be the root cause of safety or security
vulnerabilities, or that are routinely disallowed in software guidance documents or project-specific
coding standards;

—	 providing language mechanisms that optionally disable deprecated language features.

6.59	 Concurrency – Activation [CGA]

6.59.1	 Description of application vulnerability

A vulnerability can occur if an attempt has been made to activate a thread, but a programming error or the
lack of some resource prevents the activation from completing. It is possible that the activating thread lacks
sufficient visibility or awareness into the execution of the activated thread to determine if the activation
has been successful. The unrecognized activation failure can cause a protocol failure in the activating
thread or in other threads that rely upon some action by a not yet activated thread. This can cause the other
thread(s) to wait forever for some event from the not yet activated thread, or can cause an unhandled event
or exception in the other threads.

6.59.2	 Related coding guidelines

CWE[7]: 364. Signal Handler Race Condition

See also Hoare,[11] Holzmann,[14] Larsen, Peterson, and Wang,[34] Guide to using the Ravenscar Tasking
Profile in high integrity systems, ISO/IEC TR 24718, and the specification of the Ravenscar tasking profile
specified in ISO/IEC 8652:2023, D.13.

94

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.59.3	 Mechanism of Failure

The context of the problem is that thread activation occurs for all threads except the main thread by program
steps of another thread. The activation of each thread requires that dedicated resources be created for that
thread, such as a thread stack, thread attributes, and communication ports.

If all activation in a program is static activation, static analysis can determine exactly how many threads will
be created and how much resource, in terms of memory, processors, CPU cycles, priority ranges and inter-
thread communication structures, will be needed by the executing program before the program begins. If
the activation of any thread in the program is dynamic activation, then runtime queries are required to
determine if all threads successfully started.

If insufficient resources remain when the activation attempt is made, the activation will fail. Similarly, if
there is a program error in the activated thread or if the activated thread detects an error that causes it to
terminate before beginning its main work, then it can appear to have failed during activation. When static
task activation occurs, resources have been preallocated, so activation failure because of a lack of resources
will not occur. However, errors can occur for reasons other than resource allocation and the results of an
activation failure will be similar. If the activation is dynamic activation, the resources are allocation from
the dynamic computational resources such as dynamic memory (heap).

If the activating thread waits for each activated thread, then the activating thread will likely be notified of
activation failures (if the particular construct or capability supports activation failure notification) and can
be programmed to take alternate action. If notification occurs but alternate action is not programmed, then
the program will execute erroneously. If the activating thread is loosely coupled with one or more not yet
activated threads, and the activating thread does not receive notification of a failure to activate, then it can
wait indefinitely for the not yet activated thread to do its work or can make wrong calculations because of
incomplete data.

Activation of a single thread is a special case of activations of collections of threads simultaneously. This
paradigm (activation of collections of threads) can be used in languages that parallelise calculations and
create anonymous threads to execute each slice of data. In such situations, the activating thread is unlikely
to individually monitor each activated thread, so a failure of some to activate without explicit notification to
the activating thread can result in erroneous calculations.

If the rest of the application is unaware that an activation has failed, an incorrect execution of the application
algorithm can occur, such as deadlock of threads waiting for the activated thread, or possibly causing errors
or incorrect calculations.

6.59.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages that permit concurrency within the language, or
to languages that use support libraries and operating systems [such as POSIX (see ISO/IEC/IEEE 9945)
or Windows®3)] that provide concurrency control mechanisms. In essence, all traditional languages on
fully functional operating systems (such as POSIX-compliant OS or Windows) can access the OS-provided
mechanisms.

6.59.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 always check error return codes on operating system commands, library provided or language thread
activation mechanisms before processing any other parameters or attempting to access any activated
threads;

—	 use static analysis tools to verify that return codes are checked;

—	 handle errors and exceptions that occur on activation;

3)	 Windows® is the trademark of a product supplied by Microsoft. This information is given for the convenience of users
of this document and does not constitute an endorsement by ISO or IEC of the product named. Equivalent products may
be used if they can be shown to lead to the same results.

95

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 create explicit synchronization protocols, to ensure that all activations have occurred before beginning
the parallel algorithm, if not provided by the language or by the threading subsystem;

—	 use programming language provided features or thread-library provided features that couple the
activated thread with the activating thread to detect activation errors so that errors can be reported
and recovery can be made;

—	 use static thread activation in preference to dynamic thread activation so that static analysis can
guarantee correct activation of threads.

6.59.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 including automatic synchronization of thread initiation as part of the concurrency model;

—	 providing a mechanism permitting query of activation success.

6.60	 Concurrency – Directed termination [CGT]

6.60.1	 Description of application vulnerability

This discussion is associated with the effects of unsuccessful or late termination of a thread. For a discussion
of premature termination, see 6.62 “Concurrency – Premature termination [CGS]”.

A directed termination request is asynchronous if it comes from another thread, or synchronous if from the
thread itself. The effect of the abort request (such as whether it is treated as an exception) and its immediacy
(that is, how long the thread continues to execute before it is shut down) depend on language-specific rules.
Immediate shutdown minimizes latency but can leave shared data structures in a corrupted state.

When a thread is working cooperatively with other threads and is directed to terminate, there are several
error situations that can lead to compromise of the system. Error situations arise when the termination-
directing thread requests that another thread abort, but the to-be-terminated thread:

—	 is not in a state such that the termination can occur;

—	 ignores the direction to terminate; or

—	 takes longer to terminate than is tolerable to the application.

 In any case, in most systems, a thread will not terminate until it is next scheduled for execution.

Unexpectedly delayed termination or the consumption of resources by the termination itself can cause a
failure to meet deadlines, which, in turn, can lead to other failures.

6.60.2	 Related coding guidelines

CWE[7]: 364. Signal Handler Race Condition

See also Hoare,[11] Holzmann, [14], Larsen, Peterson, and Wang,[36] and the Ravenscar Tasking Profile,
specified in ISO/IEC 8652:2023, D.13, “The Guide to using the Ravenscar tasking profile”, specified in
ISO/IEC TR 24718.

6.60.3	 Mechanism of failure

The abort of a thread does not happen because a thread is in an abort-deferred region and does not leave
that region (for whatever reason) after the abort directive is given. Similarly, if abort is implemented as an
event sent to a thread, and if the thread is permitted to ignore such events, and it does so, then the abort will
not be obeyed.

96

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The termination of a thread often does not happen if the thread ignores the directive to terminate, or if the
finalization of the thread to be terminated does not complete.

If the termination directing thread continues, using the false assumption that termination has completed, then
arbitrary failure can occur, up to and including unbounded behaviours, see 6.56 “Undefined behaviour [EWF]”.

6.60.4	 Applicable language characteristics

This vulnerability is intended to be applicable to all languages that permit concurrency within the language,
or support libraries and operating systems (such as POSIX-compliant or Windows operating systems) that
provide hooks for concurrency control. In essence, all traditional languages on fully functional operating
systems (such as POSIX-compliant OS or Windows) can access the OS-provided mechanisms.

6.60.5	 Avoiding the vulnerability or mitigating its effect

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use mechanisms of the language or system to determine that aborted threads or threads directed to
terminate have successfully terminated;

NOTE	 These mechanisms include direct communication, runtime-level checks, explicit dependency
relationships, or progress counters in shared communication code to verify progress.

—	 provide mechanisms to detect and/or recover from failed termination;

—	 use static analysis techniques, such as CSP or model-checking to show that thread termination is safely
handled;

—	 where appropriate, use scheduling models where threads never terminate;

—	 where possible, avoid using forced termination.

6.60.6	 Implications for language design and evolution

In future language design and evolution activities, programming language designers should consider
providing a mechanism (either a language mechanism or a service call) to signal either another thread or an
entity that can be queried by other threads when a thread terminates.

6.61	 Concurrent data access [CGX]

6.61.1	 Description of application vulnerability

Concurrency presents a significant challenge to program correctly and has many possible ways for failures
to occur, quite a few known attack vectors, and many possible but undiscovered attack vectors. In particular,
data visible from more than one thread and not protected by a sequential access lock can be corrupted by
out-of-order accesses. This, in turn, can lead to incorrect computation, premature program termination,
livelock, or system corruption.

6.61.2	 Related coding guidelines

CWE[7]:

214. Information Exposure Through Process Environment

362. Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')

366. Race Condition Within a Thread

368. Context Switching Race Conditions

413. Improper Resource Locking

97

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

764. Multiple Locks of a Critical Resource

765. Multiple Unlocks of a Critical Resource

820. Missing Synchronization

821. Incorrect Synchronization

See also Burns and Wellings,[5] and Hoare.[11]

6.61.3	 Mechanism of failure

Reading and updating shared data directly, i.e., without locking mechanisms, in more than one thread
circumvents any access lock protocol. Some concurrent programs do not use access lock mechanisms but
rely upon other mechanisms such as timing or other program state to determine if shared data can be
read or updated by a thread. Regardless, direct visibility to shared data permits direct access to such data
concurrently. Arbitrary behaviour of any kind can result if such actions are not performed atomically.

6.61.4	 Applicable language characteristics

The vulnerability is intended to be applicable to all languages that provide concurrent execution and data
sharing, whether as part of the language or by use of underlying operation system facilities, including
facilities such as event handlers and interrupt handlers.

6.61.5	 Avoiding the vulnerability or mitigating its effect

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 place all data in memory accessible to only one thread at a time;

—	 use languages and those language features that provide a robust synchronization mechanism to protect
against data corruption;

—	 use operating system primitives, such as the POSIX (see ISO/IEC/IEEE 9945) locking primitives, for
synchronization, to develop a protocol following the principles of the Ada protected or Java synchronized
paradigms;

—	 where order of access is important for correctness, implement blocking and releasing paradigms, or
provide a test in the same protected region to check for correct order and generate errors if the test fails;

—	 where facilities for atomic access exist, use such mechanisms to prevent simultaneous access (see also
6.63 Lock protocol errors [CGM]).

6.61.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 for languages that do not presently consider concurrency, creating primitives that let applications specify
regions of sequential access to data;

NOTE	 Mechanisms such as protected regions, Hoare monitors or synchronous message passing between
threads result in significantly fewer resource access mistakes in a program.

—	 providing the possibility of selecting alternative concurrency models that support static analysis, such
as one of the models that are known to have safe properties. For examples, see Einarsson.[8]

98

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.62	 Concurrency – Premature termination [CGS]

6.62.1	 Description of application vulnerability

When a thread is working cooperatively with other threads and terminates prematurely for whatever
reason but unknown to other threads, then the portion of the interaction protocol between the terminated
thread and other threads is damaged. This can result in:

—	 indefinite blocking of the other threads as they wait for the terminated thread if the interaction protocol
was synchronous;

—	 other threads receiving wrong or incomplete results if the interaction was asynchronous;

—	 deadlock if all other threads were depending upon the terminated thread for some aspect of their
computation before continuing.

6.62.2	 Related coding guidelines

CWE[7]: 364. Signal Handler Race Condition

See also Hoare,[11] Larsen, Peterson, and Wang,[36] "The Ravenscar Tasking Profile", specified in
ISO/IEC 8652:2023, D.13 , Guide to using the Ravenscar tasking profile, specified in ISO/IEC TR 24718.

6.62.3	 Mechanism of failure

There are a number of steps in the termination of a thread as listed below. However, depending upon the
multithreading model, some steps can be combined, explicitly programmed, or missing. The steps in the
termination of a thread include:

—	 the termination of programmed execution of the thread, including termination of any synchronous
communication;

—	 the finalization of the local objects of the thread;

—	 waiting for any threads that depend on the thread to terminate;

—	 finalization of any state associated with dependent threads;

—	 notification that finalization is complete, including possible notification of the activating task;

—	 removal and clean-up of thread control blocks and any state accessible by the thread or by other threads
in outer scopes.

If a thread terminates prematurely, threads that depend upon services from the terminated thread (in the
sense of waiting exclusively for a specific action before continuing) can wait forever since held locks can be
left in a locked state resulting in waiting threads never being released or messages or events expected from
the terminated thread will never be received.

If a thread depends on the terminating thread and receives notification of termination, but the dependent
thread ignores the termination notification, then a protocol failure will occur in the dependent thread. For
asynchronous termination events, an unexpected event can cause immediate transfer of control from the
execution of the dependent thread to another (possible unknown) location, resulting in corrupted objects or
resources; or can cause termination in the master thread, which can also cause the failure to propagate to
child threads.

These conditions can result in:

—	 premature shutdown of the system;

—	 corruption or arbitrary execution of code;

—	 livelock;

99

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 deadlock;

depending on how other threads handle the termination errors.

If the thread termination is the result of an abort and the abort is immediate, there is nothing that can
be done within the aborted thread to prepare data for return to the master thread, except possibly the
management thread (or operating system) notifying other threads that the event occurred. If the aborted
thread was holding resources or performing active updates when aborted, then any direct access by other
threads to such locks, resources or memory can result in corruption of those threads or of the complete
system, up to and including arbitrary code execution.

Static analysis techniques, specifically model checking, can be used to statically verify several concurrency
properties, including correct data access and termination protocols.

6.62.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages that permit concurrency within the language, or
support libraries and operating systems that provide hooks for concurrency control.

6.62.5	 Avoiding the vulnerability or mitigating its effect

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use concurrency mechanisms that are known to be robust;

—	 if possible, avoid forcing immediate termination externally;

—	 at appropriate times use mechanisms of the language or system to determine that necessary threads are
still operating;

NOTE	 Such mechanisms can be direct communication, runtime-level checks, explicit dependency
relationships, or progress counters in shared communication code to verify progress.

—	 handle events and exceptions resulting from termination;

—	 provide manager threads to monitor progress and to organize and recover from improper terminations
or abortions of threads;

—	 use static analysis techniques, such as model checking, to show that thread termination is safely handled.

6.62.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 providing a mechanism to preclude the abort of a thread from another thread during critical pieces of
code. Some languages (for example, Ada or Real-Time Java) provide a notion of an abort-deferred region;

—	 providing a mechanism to signal another thread (or an entity that can be queried by other threads) when
a thread terminates;

—	 providing a mechanism that, within critical pieces of code, defers the delivery of asynchronous exceptions
or asynchronous transfers of control.

6.63	 Lock protocol errors [CGM]

6.63.1	 Description of application vulnerability

Concurrent programs use protocols to control:

—	 the way that threads interact with each other,

—	 how to schedule the relative rates of progress,

100

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 how threads participate in the generation and consumption of data,

—	 the allocation of threads to the various roles,

—	 the preservation of data integrity,

—	 the detection and correction of incorrect operations.

When protocols are not correct, or when a vulnerability lets an exploit destroy a protocol, then the
concurrent portions fail to work co-operatively and the system behaves incorrectly.

This vulnerability is related to 6.61 Concurrent data access [CGX]”, which discusses situations where the
protocol to control access to resources is explicitly visible to the participating partners and makes use of
visible shared resources. In comparison, this vulnerability examines scenarios where such resources are
protected by protocols and considers ways that the protocol itself can be misused.

6.63.2	 Related coding guidelines

CWE[7]:

413. Improper Resource Locking

414. Missing Lock Check

609. Double Checked Locking

667. Improper Locking

821. Incorrect Synchronization

833. Deadlock

See also Hoare,[11] Larsen, Peterson, and Wang,[36] "the Ravenscar Tasking Profile", specified in
ISO/IEC 8652:2023, D.13 and the Guide to using the Ravenscar tasking profile, specified in ISO/IEC TR 24718.

6.63.3	 Mechanism of failure

Threads use locks and protocols to schedule their work, control access to resources, exchange data, and to
effect communication with each other. Protocol errors occur when the expected rules for co-operation are
not followed, or when the order of lock acquisitions and release causes the threads to quit working together.
These errors can be as a result of:

—	 deliberate termination of one or more threads participating in the protocol;

—	 disruption of messages or interactions in the protocol;

—	 errors or exceptions raised in threads participating in the protocol;

—	 errors in the programming of one or more threads participating in the protocol.

In such situations, there are a number of possible consequences:

—	 deadlock, where some sets (possibly all) of threads eventually stop computing as they wait for results
from another thread, and no further progress in the system is made;

—	 livelock, where one or more threads commandeer all of the computing resource and effectively lock out
the other portions, no further progress in the system is made;

—	 data can be corrupted or lack currency (timeliness);

—	 one or more threads detect an error associated with the protocol and terminate prematurely, leaving the
protocol in an unrecoverable state.

101

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

The potential damage from attacks on protocols depends upon the nature of the system using the protocol
and the protocol itself. Self-contained systems using private protocols can be disrupted, but it is highly
unlikely that predetermined executions (including arbitrary code execution) can be obtained. On the
other extreme, threads communicating openly between systems using well-documented protocols can
be disrupted in any arbitrary fashion with effects such as the destruction of system resources (such as a
database), the generation of wrong but plausible data, or arbitrary code execution. In fact, many documented
client-server-based attacks consist of some abuse of a protocol such as SQL transactions.

6.63.4	 Applicable language characteristics

The vulnerability is intended to be applicable to languages with the following characteristics:

—	 languages that support concurrency directly;

—	 languages that permit calls to operating system primitives to obtain concurrent behaviours;

—	 languages that permit IO or other interaction with external devices or services;

—	 languages that support interrupt handling directly or indirectly (via the operating system).

6.63.5	 Avoiding the vulnerability or mitigating its effect

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 consider the use of synchronous protocols, such as defined by CSP, Petri Nets or by the Ada rendezvous
protocol since these can be statically shown to be free from protocol errors such as deadlock and livelock;

—	 consider the use of simple asynchronous protocols that exclusively use concurrent threads and protected
regions, such as defined by the Ravenscar Tasking Profile (see ISO/IEC 9899 and ISO/IEC TR 24718),
which can also be shown statically to have correct behaviour using model checking technologies, as
shown by Asplund and Lundqvist;[38]

—	 when static verification is not possible, consider the use of detection and recovery techniques using simple
mechanisms and protocols that can be verified independently from the main concurrency environment.
Watchdog timers coupled with checkpoints constitute one such approach;

—	 use high-level synchronization paradigms, for example monitors, rendezvous, or critical regions;

—	 design the architecture of the application to ensure that some threads or tasks never block, and can be
available for detection of concurrency error conditions and for recovery initiation;

—	 use model checkers to model the concurrent behaviour of the complete application and check for states
where progress fails;

—	 place all locks and releases in the same subprograms, and ensure that the order of locking and releasing
of multiple locks is correct;

—	 on a single processor, make use of a scheduling regime based on ceiling protocols with delays prohibited
while priority is elevated; this is guaranteed to be deadlock free (if the tasks and resources are assigned
the correct priorities);

—	 for multicore systems, consider assigning all interacting tasks to the same CPU then treat each such
group as a separate process;

—	 minimize the use of dynamic priorities and dynamic ceiling priorities (so that the static values can be
verified).

6.63.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 raising the level of abstraction for concurrency services;

102

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 designing concurrency services that help to avoid typical failures such as deadlock;

—	 providing services or mechanisms to detect and recover from protocol lock failures.

6.64	 Reliance on external format strings [SHL]

6.64.1	 Description of application vulnerability

Many languages use format string to control how output is generated or input acquired. If the contents of
the format string can be influenced by external data, there is an opportunity for an attacker to gain access
to what was intended to be private data, to execute arbitrary code, or to cause resource exhaustion or buffer
overrun. Even without an attacker, mistakes in format strings can cause serious program errors.

6.64.2	 Related coding guidelines

CWE[7]: 134. Uncontrolled Format String

6.64.3	 Mechanism of failure

Format strings are parameters of input or output functions. They consist of fixed text and control sequences
that are associated with other parameters of the function, and which control how the parameters are
displayed or loaded.

There are several mechanisms relating to format strings that can lead to safety and security problems.

1)	 For an output function, the format string controls what is written to an output channel (file or printer)
or a character buffer. In the latter case, particularly there is the possibility of buffer overrun, when the
format string causes data to be written beyond the end of the buffer. In most languages that provide I/O
control using format strings, it is possible for control sequences in the format string to control the size
of the value written (e.g. the control sequence %6d in C-based languages means write an integer value
in a 6 character field, padding with spaces if necessary). If the size of the target field is accidentally or
maliciously increased (say to %6000d) at runtime, then buffer overrun or resource exhaustion can occur.

2)	 As the format string controls what is written to an output channel, if an attacker can influence the
format string, then they can control what is written to a buffer, including executable code. If the attacker
can then cause corruption of the program stack, it becomes possible to execute this code.

3)	 As the format string is interpreted at run-time and expects to find a parameter for each control sequence,
if the format string has more control sequences than supplied parameters, it is likely that additional
values will be read off the stack. This can lead to values being output that can leak sensitive information.

4)	 Format strings are able to modify data values passed for output, with the result that values generated
by the application can be arbitrarily changed, with serious consequences for applications that rely upon
the output. Again, using C-based languages as an example, the %n control sequence means write the
number of characters output so far by this function to the value pointed to by the associated parameter.
If the function is intended to output the value of an object whose address is supplied by a pointer, and
the control sequence %n is added to apply to the object, then the object is not output but is modified to
the number of bytes output so far.

5)	 The programmer rarely intends for a format string to be user controlled. However, this weakness
frequently occurs in code that reads log messages from a file. Such messages can safely be output using
a format string that is interpreted as "output a string", but it is not unknown for the programmer to omit
the format string and use the message to be output as the format string, expecting it to consist solely
of literal text. If the message has been corrupted so that it includes control sequences, any of the issues
mentioned in 1) to 4) above can occur.

6.64.4	 Applicable language characteristics

This vulnerability is intended to be applicable to languages that support format strings for input/output
functions.

103

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.64.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 ensure that all format string functions are passed as static string which cannot be controlled by the user
and that the proper number of arguments is always sent to that function;

—	 always supply an expected format string, even if it is the apparently redundant "write a string";

—	 never let a non-static text string be output as the format string;

—	 ensure all control sequences used to format I/O match the associated parameter.

6.64.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider mechanisms to
ensure that all format strings are verified to be correct in regard to the associated arguments or parameters.

6.65	 Modifying constants [UJO]

6.65.1	 Description of application vulnerability

Many programming languages allow the user to specify some declared entity to be constant. The constant
qualification assists in static verification and optimization of the code, and hence is very useful.

However, some of these languages allow alteration of the value of this entity in some cases after all. The
semantics then range from legitimate and deterministic behaviour to implementation-defined or undefined
behaviour. Often, the alterations are performed by means of indirection.

6.65.2	 Related coding guidelines

CERT C Secure Coding Standard[41]: DCL52-CPP, ES.50, EXP 40-C, EXP55-CPP, EXP05-C

MISRA C[39]: 11.8

MISRA C++[40]: 5.2.5, 7-1-1, 9-3-3

6.65.3	 Mechanism of failure

In code reviews and manual code inspections, users tend to rely on the belief that an entity declared to be
constant does not change its value during the execution of the program (regardless of the exact semantics of
the language). The initializing value is taken to be its value throughout the execution. For example, the upper
bound of a ring buffer array can be declared as a constant. If, however, the value can be changed during
the execution, the belief in immutability can be falsified. In the example, after changing the upper-bound
constant, insufficiently large buffer allocations or out-of-bounds buffer accesses, seemingly checked against
the constant upper bound, can occur.

Even the well-meant alteration of constants is very risky if the language permits optimizations based on
the known initial value of the constant entity. Optimization constant propagation can replace uses of the
constant by its initializing value. The alteration of the value at run-time then has no effect on this use of
the constant, while it changes other uses of the constant where constant propagation did not take place.
Moreover, different compilers or even the same compiler under different switch setting can optimize
different uses of the constant differently, leading to non-deterministic executions that often result in
dangerous malfunctions.

The vulnerability can be exploited if the modification of constants is known to the attacker and the code that
modifies the constant can be triggered by the attacker.

The vulnerability can be difficult to detect if levels of indirection are involved in the modification of the
constant.

104

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

6.65.4	 Applicable language characteristics

This vulnerability description is intended to be applicable to languages with the following characteristics:

—	 languages that allow the specification of an entity to be constant and, at the same time, legitimize or
tolerate changes of its value.

6.65.5	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 qualify entities that are not changed within their scope as constants;

—	 prohibit changing the value of entities declared to be constant;

—	 prohibit creating references or pointers to entities declared to be constant since this includes passing
constants as actual parameters by reference, unless immutability of the formal parameter is ensured;

—	 use static analysis tools that detect the alteration of constant entities.

6.65.6	 Implications for language design and evolution

In future language design and evolution activities, language designers should consider:

—	 avoiding language constructs that allow the modification of constant entities;

—	 ensuring that the property to be immutable cannot be changed by language operations such as assignment
or conversion.

7	 Application vulnerabilities

7.1	 General

This clause provides descriptions of selected application vulnerabilities which have been found and exploited
in a number of applications and which have well known mitigation techniques, and which result from design
decisions made by coders in the absence of suitable language library routines or other mechanisms. For
these vulnerabilities, each description provides:

—	 a summary of the vulnerability;

—	 typical mechanisms of failure;

—	 techniques that programmers can use to avoid the vulnerability.

These vulnerabilities are application-related rather than language-related. They are written in a language-
independent manner, and consequently there are no corresponding sections in the language-specific parts,
such as ISO/IEC 24772-2 for Ada and ISO/IEC 24772-3 for C.

7.2	 Unrestricted file upload [CBF]

7.2.1	 Description of application vulnerability

A first step often used in an attack is to get an executable developed by the attacker loaded on the system
under attack. Then the attack determines how to execute this code. Many times, this first step is accomplished
by unrestricted file upload. In many of these attacks, the malicious code can obtain the same privilege of
access as the application, or even administrator privilege.

7.2.2	 Related coding guidelines

CWE[7]: 434. Unrestricted Upload of File with Dangerous Type

105

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.2.3	 Mechanism of failure

There are several failures associated with an uploaded file:

—	 executing arbitrary code;

—	 phishing page added to a website;

—	 defacing a website;

—	 creating a vulnerability for other attacks;

—	 browsing the file system;

—	 creating a denial of service;

—	 uploading a malicious executable to a server, which can be executed with administrator privilege.

7.2.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 allow only certain file extensions;

—	 disallow certain file extensions;

—	 use a utility to check the type of the file;

—	 check the content-type in the header information of all files that are uploaded;

NOTE 1	 The purpose of the content-type field is to describe the data contained in the body completely enough
that the receiving agent can pick an appropriate agent or mechanism to present the data to the user, or otherwise
deal with the data in an appropriate manner.

—	 use a dedicated location, which does not have execution privileges, to store and validate uploaded files,
and then serve these files dynamically;

—	 require a unique file extension (named by the application developer), so only the intended type of the file
is used for further processing. Each upload facility of an application can handle a unique file type;

—	 remove all non-American Standard Code for Information Interchange (ASCII) Unicode characters and all
ASCII control characters[4] from the filename and its extension;

—	 set a limit for the filename length; including the file extension within the range of the minimally accepted
lengths set by ISO/IEC 9660;

—	 set upper and lower limits on file size. Setting these limits can help to prevent or weaken denial of service
attacks.

NOTE 2	 All of the above have some shortcomings, for example, a GIF (.gif) file’s free-form comment field is
not always amenable to a sanity check of the file’s contents. An attacker can hide code in a file segment that will
still be executed by the application or server. In many cases, it will take a combination of the techniques from the
above list to avoid this vulnerability.

7.3	 Download of code without integrity check [DLB]

7.3.1	 Description of application vulnerability

Some applications download source code or executables from a remote, and implicitly trusted, location (such
as the application author) and use the source code or invoke the executables without sufficiently verifying
the integrity of the downloaded files.

106

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.3.2	 Related coding guidelines

CWE[7]: 494. Download of Code Without Integrity Check

7.3.3	 Mechanism of failure

An attacker can execute malicious code by compromising the host server used to download code or
executables, performing DNS spoofing, or modifying the code in transit.

7.3.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 perform proper forward and reverse DNS lookups to detect DNS spoofing. Encrypt the code with a
reliable encryption scheme before transmission;

NOTE 1	 This is only a partial solution since it will not prevent target code from being modified on the hosting
site or in transit.

—	 use a vetted library or framework that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid;

NOTE 2	 Specifically, it can be helpful to use tools or frameworks to perform integrity checking on the
transmitted code.

—	 if providing code that is intended to be downloaded, such as for automatic updates of software, then use
cryptographic signatures for the code and document that download clients are required to verify the
signatures.

7.4	 Executing or loading untrusted code [XYS]

7.4.1	 Description of application vulnerability

Executing commands or loading libraries from an untrusted source or in an untrusted environment can
cause an application to execute malicious commands (and payloads) on behalf of an attacker.

7.4.2	 Related coding guidelines

CWE[7]:

114. Process Control

306. Missing Authentication for Critical Function

CERT C Secure Coding Standard[41]: PRE09-C, ENV02-C, and ENV03-C

7.4.3	 Mechanism of failure

Process control vulnerabilities take two forms:

—	 an attacker can change the command that the program executes so that the attacker explicitly controls
what the command is;

—	 an attacker can change the environment in which the command executes so that the attacker implicitly
controls what the command means.

Considering only the first scenario, that is, the possibility that an attacker can control the command that is
executed, process control vulnerabilities occur when:

—	 data enters the application from a source that is not trusted;

107

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 the data are used as or as part of a string representing a command that is executed by the application;

—	 by executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

7.4.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 ensure that libraries that are loaded are well understood and come from a trusted source with a digital
signature, since the application can execute code contained in native libraries, which often contain calls
that are susceptible to other security problems, such as buffer overflows or command injection;

—	 validate all native libraries;

—	 determine if the application requires the use of the native library since it can be very difficult to determine
what these libraries actually do, and the potential for malicious code is high;

—	 validate all input to native calls for content and length to help prevent buffer overflow attacks;

—	 if the native library does not come from a trusted source, review the source code of the library and build
the library from the reviewed source before using it.

NOTE	 Rebuilding from source code can require escrow on the source code for proprietary software.

7.5	 Inclusion of functionality from untrusted control sphere [DHU]

7.5.1	 Description of application vulnerability

The software imports, requires, or includes executable functionality (such as a library) from a source that
is unknown to the user, unexpected or otherwise. Any call or use of the included functionally can result in
unexpected behaviour, up to and including arbitrary execution.

7.5.2	 Related coding guidelines

CWE[7]:

98. Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File Inclusion')

829. Inclusion of Functionality from Untrusted Control Sphere

7.5.3	 Mechanism of failure

When including third-party functionality, such as a web widget, library, or other source of functionality, the
software effectively trusts that functionality. Without sufficient protection mechanisms, the functionality
can be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified
in transit from a trusted source). The functionality can also contain its own weaknesses or grant access to
additional functionality and state information that was intended to be kept private to the base system, such
as system state information, sensitive application data, or the DOM of a web application.

This can lead to many different consequences depending on the included functionality, but some examples
include injection of malware, information exposure by granting excessive privileges or permissions to the
untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware.

7.5.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 use a vetted library or framework that does not allow this weakness to occur or provide constructs that
make this weakness easier to avoid;

108

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 when the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from
a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs;

—	 for any security checks that are performed on the client side, ensure that these checks are duplicated on
the server side, in order to avoid CWE-602[7] as described in 7.14 "Authentication logic error [XZO]", 7.7
"Cross-site scripting [XYT]", and 7.9 "Injection [RST]".

7.6	 Use of unchecked data from an uncontrolled or tainted source [EFS]

7.6.1	 Description of application vulnerability

This vulnerability covers a general class of behaviours, the identification of which is referred to as "taint
analysis".

Whenever a program gets data from an external source, there is a possibility that that data could have been
tampered with by an attacker attempting to induce the program into performing some damaging action, or
could have been corrupted accidently leading to the same result. Such data are called "tainted".

The general principle is that before tainted data are used, checks are completed to ensure they are within
acceptable bounds or have an appropriate structure. Otherwise, they can be accepted as untainted, and
therefore safe to use.

7.6.2	 Related coding guidelines

No coding guidelines apply.

7.6.3	 Mechanism of failure

The principal mechanisms of failure are:

—	 use of the data in an arithmetic expression, causing the one of the problems described in Clause 6;

—	 use of the data in a call to a function that executes a system command;

—	 use of the data in a call to a function that establishes a communications connection.

7.6.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

NOTE 1	 Different mechanisms of failure require different mitigations, which also depend on how the tainted data
are to be used.

—	 test potentially tainted data used in an arithmetic expression to ensure that it does not cause arithmetic
overflow, divide by zero or buffer overflow;

—	 check integer data used to allocate memory or other resources to ensure that the size of the integer data
won’t cause resource exhaustion;

—	 check strings passed to system functions to ensure that they are well formed and have an expected
structure.

NOTE 2	 This vulnerability is described as "data from an uncontrolled source", to create a distinction between
data from outside the program that is still trustworthy and data that comes from a source that can credibly be
modified by an attacker, or otherwise corrupted.

NOTE 3	 Data read from a file is usually regarded as trustworthy (untainted) if the file is read-only and inside
a firewall, but potentially tainted if it is from a more generally accessible location. See 7.22 “Missing required
cryptographic step [XZS]”.

109

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.7	 Cross-site scripting [XYT]

7.7.1	 Description of application vulnerability

Cross-site scripting (XSS) occurs when dynamically generated web pages display input, such as login
information that is not properly validated, allowing an attacker to embed malicious scripts into the
generated page and then execute the script on the machine of any user that views the site. If successful,
cross-site scripting vulnerabilities can be exploited to manipulate or steal cookies, create requests that can
be mistaken for those of a valid user, compromise confidential information, or execute malicious code on the
end user systems for a variety of nefarious purposes.

7.7.2	 Related coding guidelines

CWE[7]:

79. Failure to Preserve Web Page Structure ('Cross-site Scripting')

80. Failure to Sanitize Script-Related HTML Tags in a Web Page (Basic XSS)

81. Failure to Sanitize Directives in an Error Message Web Page

82. Failure to Sanitize Script in Attributes of IMG Tags in a Web Page

83. Failure to Sanitize Script in Attributes in a Web Page

84. Failure to Resolve Encoded URI Schemes in a Web Page

85. Doubled Character XSS Manipulations

86. Invalid Characters in Identifiers

87. Alternate XSS Syntax

7.7.3	 Mechanism of failure

Cross-site scripting (XSS) vulnerabilities occur when an attacker uses a web application to send malicious
code, generally JavaScript, to a different end user. When a web application uses input from a user in the
output, it generates without filtering it, an attacker can insert an attack in that input and the web application
sends the attack to other users. The end user trusts the web application, and the attacks exploit that trust to
do things that would not normally be allowed. Attackers frequently use a variety of methods to encode the
malicious portion of the tag, such as using Unicode, so the request looks less suspicious to the user.

XSS attacks can generally be categorized into two categories: stored and reflected. Stored attacks are those
where the injected code is permanently stored on the target servers in a database, message forum, visitor
log, and so forth. Reflected attacks are those where the injected code takes another route to the victim, such
as in an email message, or on some other server. When a user is tricked into clicking a link or submitting
a form, the injected code travels to the vulnerable web server, which reflects the attack back to the user's
browser. The browser then executes the code because it came from a "trusted" server. For a reflected XSS
attack to work, the victim is tricked into submitting the attack to the server. This is still a very dangerous
attack given the number of possible ways to trick a victim into submitting such a malicious request, including
clicking a link on a malicious Website, in an email, or in an inter-office posting.

XSS flaws are very common in web applications, as they require a great deal of developer discipline to
avoid them in most applications. It is relatively easy for an attacker to find XSS vulnerabilities. Some of
these vulnerabilities can be found using scanners, and some exist in older web application servers. The
consequence of an XSS attack is the same regardless of whether it is stored or reflected.

The difference is in how the payload arrives at the server. XSS can cause a variety of problems for the end
user that range in severity from an annoyance to complete account compromise. The most severe XSS attacks
involve disclosure of the user's session cookie, which allows an attacker to hijack the user's session and take

110

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

over their account. Other damaging attacks include the disclosure of end user files, installation of Trojan
horse programs, redirecting the user to some other page or site, and modifying presentation of content.

Cross-site scripting (XSS) vulnerabilities occur when:

—	 data enters a Web application through an untrusted source, most frequently a web request. The data are
included in dynamic content that is sent to a web user without being validated for malicious code;

—	 the malicious content sent to the web browser often takes the form of a segment of JavaScript, but can also
include HTML, Flash or any other type of code that the browser executes. The variety of attacks based
on XSS is almost limitless, but they commonly include transmitting private data like cookies or other
session information to the attacker, redirecting the victim to web content controlled by the attacker, or
performing other malicious operations on the user's machine under the guise of the vulnerable site.

Cross-site scripting attacks can occur wherever an untrusted user has the ability to publish content to a
trusted website. Typically, a malicious user will craft a client-side script, which — when parsed by a web
browser — performs some activity (such as sending all site cookies to a given e–mail address). If the input is
unchecked, this script will be loaded and run by each user visiting the website. Since the site requesting to
run the script has access to the cookies in question, the malicious script does also. There are several other
possible attacks, such as running “Active X” controls from sites that a user perceives as trustworthy; cookie
theft is however by far the most common. All of these attacks are easily prevented by ensuring that no script
tags — or for good measure, HTML tags at all — are allowed in data to be posted publicly.

Specific instances of XSS include the following.

—	 "Basic" XSS involves a complete lack of cleansing of any special characters, including the most fundamental
XSS elements such as “<”, “>”, and “&”.

—	 A web developer displays input on an error page (such as a customized 403 Forbidden page). If an attacker
can influence a victim to view/request a web page that causes an error, then the attack can be successful.

—	 A Web application that trusts input in the form of HTML IMG tags is potentially vulnerable to XSS attacks.
Attackers can embed XSS exploits into the values for IMG attributes (such as SRC) that is streamed and
then executed in a victim's browser. When the page is loaded into a user's browser, the exploit will
automatically execute.

—	 The software does not filter “JavaScript”: or other URI's (Uniform Resource Identifier) from dangerous
attributes within tags, such as onmouseover, onload, onerror, or style.

—	 The web application fails to filter input for executable script disguised with URI encodings.

—	 The web application fails to filter input for executable script disguised using doubling of the involved
characters.

—	 The software does not strip out invalid characters in the middle of tag names, schemes, and other
identifiers, which are still rendered by some web browsers that ignore the characters.

—	 The software fails to filter alternate script syntax provided by the attacker.

Cross-site scripting attacks can occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted website for the consumption of other valid users. The most common
example can be found in bulletin-board websites that provide web-based mailing list-style functionality.
The most common attack performed with cross-site scripting involves the disclosure of information stored
in user cookies. In some circumstances, it can be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

7.7.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 carefully check each input parameter against a rigorous positive specification (inclusion-list) defining
the specific characters and format allowed;

111

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

—	 sanitize all input, not just parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL (Uniform Resource Locator) itself, etc.;

NOTE	 A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are
expected to be redisplayed by the site.

—	 validate all parts of the HTTP (Hypertext Transfer Protocol) request, including fields that were not
expected to have changed in the client or fields that were anticipated for future growth;

—	 where the base system is a SQL database, follow the recommendations of 7.9 Injection [RST].

7.8	 URL redirection to untrusted site ("open redirect") [PYQ]

7.8.1	 Description of application vulnerability

A web application accepts a user-controlled input that specifies a link to an external site, and then uses that
link in a redirect without checking that the URL points to a trusted location. This simplifies phishing attacks.

7.8.2	 Related coding guidelines

CWE[7] 601. URL Redirection to Untrusted Site ("Open Redirect")

7.8.3	 Mechanism of failure

An http parameter can contain a URL value and cause the web application to redirect the request to the
specified URL. By modifying the URL value to a malicious site, an attacker can successfully launch a phishing
scam and steal user credentials. Since the server name in the modified link is identical to the original site,
phishing attempts have a more trustworthy appearance.

7.8.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 assume all input is malicious and take appropriate action, including:

—	 use an acknowledged input validation strategy such as an inclusion list of acceptable inputs that
strictly conform to specifications;

—	 either reject any input that does not strictly conform to specifications or transform it into something
that does;

—	 avoid relying exclusively on searching for malicious or malformed inputs (for example, do not rely on
an exclusion list);

—	 use exclusion lists for detecting potential attacks or determining which inputs are so malformed
that they are rejected outright;

—	 use of an inclusion list of approved URLs or domains can be used to control redirection;

—	 consider all potentially relevant properties, including length, type of input, the full range of acceptable
values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules.

NOTE	 As an example of business rule logic, boat can be syntactically valid because it only contains alphanumeric
characters, but it is not valid if a colour such as red or blue was expected.

112

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.9	 Injection [RST]

7.9.1	 Description of application vulnerability

Injection problems span a wide range of instantiations. The basic form of this weakness involves the
software allowing injection of additional data in input data to alter the control flow of the process. Command
injection problems are a subset of injection problems, in which the process can be tricked into calling
external processes of an attacker’s choice through the injection of command syntax into the input data.
Multiple leading/internal/trailing special elements injected into an application through input can be used
to compromise a system. As data are parsed, multiple leading special elements that are improperly handled
can cause the process to take unexpected actions that result in an attack. Software that is not programmed
to identify the situation can allow the injection of special elements that are non-typical but equivalent to
typical special elements with control implications. This frequently occurs when the product has protected
itself against special element injection. Similarly, software can allow inputs to be fed directly into an output
file that is later processed as code, such as a library file or template. Line or section delimiters injected into
an application can be used to compromise a system.

Many injection attacks involve the disclosure of important information — in terms of both data sensitivity
and usefulness in further exploitation. In some cases, injectable code controls authentication, which can lead
to a remote vulnerability. Injection attacks are characterized by the ability to significantly change the flow
of a given process, and in some cases, to the execution of arbitrary code. Data injection attacks lead to loss
of data integrity in nearly all cases as the control-plane data injected is always incidental to data recall or
writing. Often the actions performed by injected control code are not logged.

SQL injection attacks are a common instantiation of injection attack, in which SQL commands are injected
into input to effect the execution of predefined SQL commands. Since SQL databases generally hold sensitive
data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities. If poorly implemented
SQL commands are used to check usernames and passwords, it is possible to connect to a system as another
user with no previous knowledge of the password. If authorization information is held in a SQL database, this
information can be changed through the successful exploitation of the SQL injection vulnerability. Just as it
is possible to read sensitive information, it is also possible to make changes or even delete this information
with a SQL injection attack.

Injection problems encompass a wide variety of issues — all mitigated in very different ways. The most
important issue to note is that all injection problems share one common trait — they allow for the injection
of control data into the user-controlled data. This means that the execution of the process can be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer overflows
and many other flaws involve the use of some further issue to gain execution, injection problems need
only for the data to be parsed. Many injection attacks involve the disclosure of important information in
terms of both data sensitivity and usefulness in further exploitation. In some cases, injectable code controls
authentication, which can lead to a remote vulnerability.

7.9.2	 Related coding guidelines

CWE[7]:

74. Failure to Sanitize Data into a Different Plane ("Injection")

76. Failure to Resolve Equivalent Special Elements into a Different Plane

78. Failure to Sanitize Data into an OS Command (aka "OS Command Injection")

89: Improper Neutralization of Special Elements used in an SQL Command ("SQL Injection")

90. Failure to Sanitize Data into LDAP Queries (aka "LDAP Injection")

91. XML Injection (aka Blind XPath Injection)

92. Custom Special Character Injection

95. Insufficient Control of Directives in Dynamically Code Evaluated Code (aka "Eval Injection")

113

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

97. Failure to Sanitize Server-Side Includes (SSI) Within a Web Page

98. Insufficient Control of Filename for Include/Require Statement in PHP Program (aka "PHP File
Inclusion")

99. Insufficient Control of Resource Identifiers (aka "Resource Injection")

144. Failure to Sanitize Line Delimiters

145. Failure to Sanitize Section Delimiters

161. Failure to Sanitize Multiple Leading Special Elements

163. Failure to Sanitize Multiple Trailing Special Elements

165. Failure to Sanitize Multiple Internal Special Elements

166. Failure to Handle Missing Special Element

167. Failure to Handle Additional Special Element

168. Failure to Resolve Inconsistent Special Elements

564. SQL Injection: Hibernate

CERT C Secure Coding Standard[41]: FIO30-C

7.9.3	 Mechanism of failure

A software system that accepts and executes input in the form of operating system commands (such
as system(), exec(), open()) can allow an attacker with lesser privileges than the target software to
execute commands with the elevated privileges of the executing process. Command injection is a common
problem with wrapper programs. Often, parts of the command to be run are controllable by the end user.
If a malicious user injects a character (such as a semi-colon) that delimits the end of one command and the
beginning of another, he/she can then insert an entirely new and unrelated command to do whatever he/she
pleases.

Dynamically generating operating system commands that include user input as parameters can lead to
command injection attacks. An attacker can insert operating system commands or modifiers in the user
input that can cause the request to behave in an unsafe manner. Such vulnerabilities can be very dangerous
and lead to data and system compromise. If no validation of the parameter to the exec command exists, an
attacker can execute any command on the system the application has the privilege to access.

There are two forms of command injection vulnerabilities. An attacker can change the command that the
program executes (the attacker explicitly controls what the command is). Alternatively, an attacker can change
the environment in which the command executes (the attacker implicitly controls what the command means).
The first scenario where an attacker explicitly controls the command that is executed can occur when:

—	 data enters the application from an untrusted source;

—	 the data are part of a string that is executed as a command by the application;

—	 by executing the command, the application gives an attacker a privilege or capability that the attacker
would not otherwise have.

Eval injection occurs when the software allows inputs to be fed directly into a function (such as eval) that
dynamically evaluates and executes the input as code, usually in the same interpreted language that the
product uses. Eval injection is prevalent in handler/dispatch procedures that can invoke a large number of
functions, or set a large number of variables.

A PHP file inclusion occurs when a PHP product uses require or include statements, or equivalent
statements, that use attacker-controlled data to identify code or HTML (HyperText Markup Language) to be
directly processed by the PHP interpreter before inclusion in the script.

114

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

A resource injection issue occurs when the following two conditions are met:

—	 an attacker can specify the identifier used to access a system resource, for example specifying part of the
name of a file to be opened or a port number to be used;

—	 by specifying the resource, the attacker gains a capability that would not otherwise be permitted.
For example, the program can give the attacker the ability to overwrite the specified file, run with a
configuration controlled by the attacker, or transmit sensitive information to a third-party server.

NOTE	 Resource injection that involves resources stored on the file system goes by the name path
manipulation and is reported in separate category. See 7.11 “Path Traversal [EWR]” for further details of this
vulnerability. Allowing user input to control resource identifiers can enable an attacker to access or modify
otherwise protected system resources.

Line or section delimiters injected into an application can be used to compromise a system. As data are
parsed, an injected/absent/malformed delimiter can cause the process to take unexpected actions that result
in an attack. One example of a section delimiter is the boundary string in a multipart MIME (Multipurpose
Internet Mail Extensions) message. In many cases, doubled line delimiters can serve as a section delimiter.

7.9.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 assume all input is malicious and use an appropriate combination of exclusion lists and inclusion lists to
ensure only valid, expected and appropriate input is processed by the system;

—	 narrowly define the set of safe characters based on the expected values of the parameter in the request;

—	 anticipate that delimiters and special elements would be injected/removed/manipulated in the input
vectors of their software system and program appropriate mechanisms to handle them;

—	 implement SQL strings using prepared statements that bind variables;

—	 use vigorous inclusion-list style checking on any user input that can be used in a SQL command;

NOTE	 Rather than escape meta-characters, it is safest to disallow them entirely since the later use of data
that have been entered in the database can neglect to escape meta-characters before use.

—	 follow the principle of least privilege when creating user accounts to a SQL database, since if the
requirements of the system indicate that users are permitted to read and modify their own data, then
limit their privileges so they cannot read/write others’ data;

—	 assign permissions to the software system that prevents the user from accessing/opening privileged files;

—	 restructure code so that there is not a need to use the eval() utility.

7.10	 Unquoted search path or element [XZQ]

7.10.1	 Description of application vulnerability

Strings injected into a software system that are not quoted can permit an attacker to execute arbitrary
commands.

7.10.2	 Related coding guidelines

CWE[7]: 428. Unquoted Search Path or Element

CERT C Secure Coding Standard[41]: ENV04-C

115

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

7.10.3	 Mechanism of failure

The mechanism of failure stems from missing quoting of strings injected into a software system. By allowing
white-spaces in identifiers, an attacker can potentially execute arbitrary commands. This vulnerability
covers “C:\Program Files” and space-in-search-path issues. Theoretically, this can apply to any operating
system, especially ones that make it easy for spaces to be in filenames or folders names.

7.10.4	 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability or mitigate its ill effects by examining strings that are to be
interpreted to ensure that they do not contain constructs designed to exploit the system, such as separators.

7.11	 Path traversal [EWR]

7.11.1	 Description of application vulnerability

The software constructs a path that contains relative traversal sequence such as “..” or an absolute path
sequence such as “/path/here.” Attackers run the software in a particular directory so that the hard link or
symbolic link used by the software accesses a file that the attacker has under their control. In doing this, the
attacker can escalate their privilege level to that of the running process.

7.11.2	 Related coding guidelines

CWE[7]:

22. Improper limitation of a pathname to a restricted directory (Path Traversal)

24. Path Traversal: - ‘../filedir’

25. Path Traversal: ‘/../filedir’

26. Path Traversal: ‘/dir/../filename’

27. Path Traversal: ‘dir/../../filename’

28. Path Traversal: ‘..\filedir’

29. Path Traversal: ‘\..\filename’

30. Path Traversal: ‘\dir\..\filename’

31. Path Traversal: ‘dir\..\..\filename’

32. Path Traversal: ‘…' (Triple Dot)

33. Path Traversal: '...' (Multiple Dot)

34. Path Traversal: '....//'

35. Path Traversal: '.../...//'

37. Path Traversal: ‘/absolute/pathname/here’

38. Path Traversal: ‘ \absolute\pathname\here’

39. Path Traversal: 'C:dirname'

40. Path Traversal: '\\UNC\share\name\' (Windows UNC Share)

61. UNIX®4) Symbolic Link (Symlink) Following

4)	 UNIX® is a registered trademark of the Open Group. This information is given for the convenience of users of this
document and does not constitute an endorsement by ISO or IEC of this product.

116

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

62. UNIX Hard Link

64. Windows Shortcut Following (.LNK)

65. Windows Hard Link

CERT C Secure Coding Standard[41]: FIO02-C

7.11.3	 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path traversal. In the first, the
attacker alters the path being used by the software to point to a location that the attacker has control over.
Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path
points to a location that the attacker does have control over.

For instance, a software system that accepts input in the form of:

 ..\filename,;
 \..\filenme;
 /directory/../filename;
 directory/../../filename;
 ..\filename;
 \..\filename';
 \directory\..\filename;
 directory\..\..\filename;
 ..;
 ;(multiple dots)
 ...//;
 .../..//

without appropriate validation can allow an attacker to traverse the file system to access an arbitrary file.
Note that ‘..’ is ignored if the current working directory is the root directory. Some of these input forms
can be used to cause problems for systems that strip out ‘..’ from input in an attempt to remove relative
path traversal.

There are several common ways that an attacker can point a file access to a file the attacker has under their
control. A software system that accepts input such as /absolute/pathname/here or \absolute\pathname\
here without appropriate validation can also allow an attacker to traverse the file system to unintended
locations or access arbitrary files. An attacker can inject a drive letter or Windows volume letter (C:dirname)
into a software system to potentially redirect access to an unintended location or arbitrary file. A software
system that accepts input in the form of a backslash absolute path without appropriate validation can allow
an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can
inject a Windows UNC [Universal (or Uniform) Naming Convention] share (\\UNC\share\name)	 into a
software system to potentially redirect access to an unintended location or arbitrary file. A software system
that allows POSIX (see ISO/IEC/IEEE 9945) symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to
unintended locations or access arbitrary files. The symbolic link can permit an attacker to read, write or
corrupt a file that they originally did not have permissions to access. The failure of a system to check for
hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate
their privileges if he/she can replace a file used by a privileged program with a hard link to a sensitive file,
for example, /etc/passwd. When the process opens the file, the attacker can assume the privileges of that
process.

A software system that allows Windows shortcuts (.lnk) as part of paths whether in internal code or through
user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended
locations or access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read
or write a file that they originally did not have permissions to access.

The failure of a system to check for hard links can result in vulnerability to different types of attacks. For
example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program
with a hard link to a sensitive file (such as etc/passwd). When the process opens the file, the attacker can
assume the privileges of that process or possibly prevent a program from accurately processing data in a
software system.

117

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

A sanitizing mechanism can remove characters such as "." and ";" which can be required for some exploits.
An attacker can try to fool the sanitizing mechanism into “cleaning” data into a dangerous form. Suppose
the attacker injects a "." inside a filename (e.g. sensi.tiveFile) and the sanitizing mechanism removes the
character resulting in the valid filename, sensitiveFile. If the input data are now assumed to be safe, then
the file can be compromised.

When two or more users, or a group of users, have write permission to a directory, the potential for sharing
and deception is far greater than it is for shared access to a few files. The vulnerabilities that result from
malicious restructuring via hard and symbolic links suggest that it is best to avoid shared directories.

Securely creating temporary files in a shared directory is error-prone and dependent on the version of the
runtime library used, the operating system, and the file system. Code that works for a locally mounted file
system, for example, can be vulnerable when used in combination with a remotely mounted file system.

Mitigate by converting relative paths into absolute paths and then verifying that the resulting absolute path
makes sense with respect to the configuration and rights or permissions. This can include checking inclusion-
lists and exclusion lists, authorized super user status, access control lists, or other fully trusted status.

7.11.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 assume all input is malicious, as attackers can insert paths into input vectors and traverse the file system;

—	 use an appropriate combination of exclusion lists and inclusion lists to ensure only valid and expected
input is processed by the system;

—	 use sanitizers to scrub input for sensitive programs and ensure that sanitizers work properly;

NOTE 1	 For example, a sanitizer can remove “.” Or “..” at a string beginning, but not in the middle of a valid file
system address.

—	 compare multiple attributes of the file requested to improve the likelihood that the file is the expected one;

NOTE 2	 Files can often be identified by other attributes in addition to the file name, for example, by comparing
file ownership or creation time. Information regarding a file that has been created and closed can be stored and
then used later to validate the identity of the file when it is reopened.

—	 follow the principle of least privilege when assigning access rights to files;

—	 deny access to a file to prevent an attacker from replacing that file with a link to a sensitive file;

—	 ensure good compartmentalization in the system to provide protected areas that can be trusted;

—	 restrict the use of shared directories; prefer files pulled from configuration management systems;

—	 disallow temporary file creation in shared directories.

7.12	 Resource names [HTS]

7.12.1	 Description of application vulnerability

Interfacing with the directory structure or other external identifiers on a system on which software
executes is very common. Differences in the conventions used by operating systems can result in significant
changes in behaviour when the same program is executed under different operating systems. For instance,
the directory structure, permissible characters, case sensitivity, and so forth can vary among operating
systems and even among variations of the same operating system. For example, Windows prohibits “/”,
“?”, “:”, “&”, “\”, “*”, “”, “<”, “>”, “|”, “#” and “%” but POSIX-based operating systems (see
ISO/IEC/IEEE 9945) allow any character except for the reserved character "/" to be used in a filename.

118

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

ISO/IEC 24772-1:2024(en)

Some operating systems are case sensitive while others are not. On non-case sensitive operating systems,
depending on the software being used, the same filename can be displayed, as filename, Filename or
FILENAME and all would refer to the same file.

Some operating systems, particularly older ones, only rely on the significance of the first n characters of
the file name. n can be unexpectedly small, such as the first 8 characters in the case of Win16 architectures
which would cause filename1, filename2 and filename3 to all map to the same file filename.

Variations in the filename, named resource or external identifier being referenced can be the basis for
various kinds of problems. Such mistakes or ambiguity can be unintentional, or intentional, and in either
case they can be potentially exploited, if surreptitious behaviour is a goal.

7.12.2	 Related coding guidelines

JSF AV Rules[34]: 46, 51, 53, 54, 55, and 56

MISRA C[39]: 1.1

CERT C Secure Coding Standard[41]: MSC09-C and MSC10-C

7.12.3	 Mechanism of Failure

The wrong named resource, such as a file, can be used within a program in a form that provides access to a
resource that was not intended to be accessed. Attackers can exploit this situation to intentionally misdirect
access of a named resource to another named resource.

7.12.4	 Avoiding the vulnerability or mitigating its effects

To avoid the vulnerability or mitigate its ill effects, software developers can:

—	 where possible, use an API that provides a known common set of conventions for naming and accessing
external resources, such as POSIX (see ISO/IEC/IEEE 9945);

—	 analyse the range of intended target systems, develop a suitable API for dealing with them, and document
the analysis;

—	 ensure that programs adapt their behaviour to the platform on which they are executing, so that only
the intended resources are accessed, so that the means that information on such characteristics as the
directory separator string and methods of accessing parent directories are parameterized and do not
exist as fixed strings within a program;

—	 avoid creating resource names that are longer than the guaranteed unique length of all potential target
platforms;

—	 avoid creating resources, which are differentiated only by the case in their names;

—	 avoid all non-ASCII Unicode characters and all ASCII control characters in filenames and the extensions,
as documented in the ASCII Codes Table.[4]

7.13	 Resource exhaustion [XZP]

7.13.1	 Description of application vulnerability

The application is susceptible to generating and/or accepting an excessive number of requests that can
potentially exhaust limited resources, such as memory, file system storage, database connection pool
entries, or CPU. This can ultimately lead to a denial of service that can prevent any other applications from
accessing these resources.

119

﻿
© ISO/IEC 2024 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 24
77

2-1
:20

24

https://iecnorm.com/api/?name=8d19ae43a271cad0d4f79e53b61079c9

	Foreword
	Introduction
	1 Scope
	2 Normative references
	3 Terms and definitions
	3.1 Communication
	3.2 Execution model
	3.3 Properties
	3.4 Safety and security
	3.5 Vulnerabilities
	3.6 Specific vulnerabilities

	4 Using this document
	4.1 Purpose of this document
	4.2 Applying this document
	4.3 Structure of this document

	5 General vulnerability issues and primary avoidance mechanisms
	5.1 General vulnerability issues
	5.1.1 Predictable execution
	5.1.2 Sources of unpredictability in language specification
	5.1.3 Sources of unpredictability in language usage

	5.2 Primary avoidance mechanisms

	6 Programming language vulnerabilities
	6.1 General
	6.2 Type system [IHN]
	6.2.1 Description of application vulnerability
	6.2.2 Related coding guidelines
	6.2.3 Mechanism of failure
	6.2.4 Applicable language characteristics
	6.2.5 Avoiding the vulnerability or mitigating its effects
	6.2.6 Implications for language design and evolution

	6.3 Bit representations [STR]
	6.3.1 Description of application vulnerability
	6.3.2 Related coding guidelines
	6.3.3 Mechanism of failure
	6.3.4 Applicable language characteristics
	6.3.5 Avoiding the vulnerability or mitigating its effects
	6.3.6 Implications for language design and evolution

	6.4 Floating-point arithmetic [PLF]
	6.4.1 Description of application vulnerability
	6.4.2 Related coding guidelines
	6.4.3 Mechanism of failure
	6.4.4 Applicable language characteristics
	6.4.5 Avoiding the vulnerability or mitigating its effects
	6.4.6 Implications for language design and evolution

	6.5 Enumerator issues [CCB]
	6.5.1 Description of application vulnerability
	6.5.2 Related coding guidelines
	6.5.3 Mechanism of failure
	6.5.4 Applicable language Characteristics
	6.5.5 Avoiding the vulnerability or mitigating its effects
	6.5.6 Implications for language design and evolution

	6.6 Conversion errors [FLC]
	6.6.1 Description of application vulnerability
	6.6.2 Related coding guidelines
	6.6.3 Mechanism of failure
	6.6.4 Applicable language characteristics
	6.6.5 Avoiding the vulnerability or mitigating its effects
	6.6.6 Implications for language design and evolution

	6.7 String termination [CJM]
	6.7.1 Description of application vulnerability
	6.7.2 Related coding guidelines
	6.7.3 Mechanism of failure
	6.7.4 Applicable language characteristics
	6.7.5 Avoiding the vulnerability or mitigating its effects
	6.7.6 Implications for language design and evolution

	6.8 Buffer boundary violation (buffer overflow) [HCB]
	6.8.1 Description of application vulnerability
	6.8.2 Related coding guidelines
	6.8.3 Mechanism of failure
	6.8.4 Applicable language characteristics
	6.8.5 Avoiding the vulnerability or mitigating its effects
	6.8.6 Implications for language design and evolution

	6.9 Unchecked array indexing [XYZ]
	6.9.1 Description of application vulnerability
	6.9.2 Related coding guidelines
	6.9.3 Mechanism of failure
	6.9.4 Applicable language characteristics
	6.9.5 Avoiding the vulnerability or mitigating its effects
	6.9.6 Implications for language designers

	6.10 Unchecked array copying [XYW]
	6.10.1 Description of application vulnerability
	6.10.2 Related coding guidelines
	6.10.3 Mechanism of failure
	6.10.4 Applicable language characteristics
	6.10.5 Avoiding the vulnerability or mitigating its effects
	6.10.6 Implications for language design and evolution

	6.11 Pointer type conversions [HFC]
	6.11.1 Description of application vulnerability
	6.11.2 Related coding guidelines
	6.11.3 Mechanism of failure
	6.11.4 Applicable language characteristics
	6.11.5 Avoiding the vulnerability or mitigating its effects
	6.11.6 Implications for language design and evolution

	6.12 Pointer arithmetic [RVG]
	6.12.1 Description of application vulnerability
	6.12.2 Related coding guidelines
	6.12.3 Mechanism of failure
	6.12.4 Applicable language characteristics
	6.12.5 Avoiding the vulnerability or mitigating its effects
	6.12.6 Implications for language design and evolution

	6.13 Null pointer dereference [XYH]
	6.13.1 Description of application vulnerability
	6.13.2 Related coding guidelines
	6.13.3 Mechanism of failure
	6.13.4 Applicable language characteristics
	6.13.5 Avoiding the vulnerability or mitigating its effects
	6.13.6 Implications for language design and evolution

	6.14 Dangling reference to heap [XYK]
	6.14.1 Description of application vulnerability
	6.14.2 Related coding guidelines
	6.14.3 Mechanism of failure
	6.14.4 Applicable language characteristics
	6.14.5 Avoiding the vulnerability or mitigating its effects
	6.14.6 Implications for language design and evolution

	6.15 Arithmetic wrap-around error [FIF]
	6.15.1 Description of application vulnerability
	6.15.2 Related coding guidelines
	6.15.3 Mechanism of failure
	6.15.4 Applicable language characteristics
	6.15.5 Avoiding the vulnerability or mitigating its effects
	6.15.6 Implications for language design and evolution

	6.16 Using shift operations for multiplication and division [PIK]
	6.16.1 Description of application vulnerability
	6.16.2 Related coding guidelines
	6.16.3 Mechanism of failure
	6.16.4 Applicable language characteristics
	6.16.5 Avoiding the vulnerability or mitigating its effects
	6.16.6 Implications for language design and evolution

	6.17 Choice of clear names [NAI]
	6.17.1 Description of application vulnerability
	6.17.2 Related coding guidelines
	6.17.3 Mechanism of Failure
	6.17.4 Applicable language characteristics
	6.17.5 Avoiding the vulnerability or mitigating its effects
	6.17.6 Implications for language design and evolution

	6.18 Dead store [WXQ]
	6.18.1 Description of application vulnerability
	6.18.2 Related coding guidelines
	6.18.3 Mechanism of failure
	6.18.4 Applicable language characteristics
	6.18.5 Avoiding the vulnerability or mitigating its effects
	6.18.6 Implications for language design and evolution

	6.19 Unused variable [YZS]
	6.19.1 Description of application vulnerability
	6.19.2 Related coding guidelines
	6.19.3 Mechanism of failure
	6.19.4 Applicable language characteristics
	6.19.5 Avoiding the vulnerability or mitigating its effects
	6.19.6 Implications for language design and evolution

	6.20 Identifier name reuse [YOW]
	6.20.1 Description of application vulnerability
	6.20.2 Related coding guidelines
	6.20.3 Mechanism of failure
	6.20.4 Applicable language characteristics
	6.20.5 Avoiding the vulnerability or mitigating its effects
	6.20.6 Implications for language design and evolution

	6.21 Namespace issues [BJL]
	6.21.1 Description of application vulnerability
	6.21.2 Related coding guidelines
	6.21.3 Mechanism of Failure
	6.21.4 Applicable language characteristics
	6.21.5 Avoiding the Vulnerability or Mitigating its Effects
	6.21.6 Implications for language design and evolution

	6.22 Missing initialization of variables [LAV]
	6.22.1 Description of application vulnerability
	6.22.2 Related coding guidelines
	6.22.3 Mechanism of failure
	6.22.4 Applicable language characteristics
	6.22.5 Avoiding the vulnerability or mitigating its effects
	6.22.6 Implications for language design and evolution

	6.23 Operator precedence and associativity [JCW]
	6.23.1 Description of application vulnerability
	6.23.2 Related coding guidelines
	6.23.3 Mechanism of failure
	6.23.4 Applicable language characteristics
	6.23.5 Avoiding the vulnerability or mitigating its effects
	6.23.6 Implications for language design and evolution

	6.24 Side-effects and order of evaluation of operands [SAM]
	6.24.1 Description of application vulnerability
	6.24.2 Related coding guidelines
	6.24.3 Mechanism of failure
	6.24.4 Applicable language characteristics
	6.24.5 Avoiding the vulnerability or mitigating its effects
	6.24.6 Implications for language design and evolution

	6.25 Likely incorrect expression [KOA]
	6.25.1 Description of application vulnerability
	6.25.2 Related coding guidelines
	6.25.3 Mechanism of failure
	6.25.4 Applicable language characteristics
	6.25.5 Avoiding the vulnerability or mitigating its effects
	6.25.6 Implications for language design and evolution

	6.26 Dead and deactivated code [XYQ]
	6.26.1 Description of application vulnerability
	6.26.2 Related coding guidelines
	6.26.3 Mechanism of failure
	6.26.4 Applicable language characteristics
	6.26.5 Avoiding the vulnerability or mitigating its effects
	6.26.6 Implications for language design and evolution

	6.27 Switch statements and lack of static analysis [CLL]
	6.27.1 Description of application vulnerability
	6.27.2 Related coding guidelines
	6.27.3 Mechanism of failure
	6.27.4 Applicable language characteristics
	6.27.5 Avoiding the vulnerability or mitigating its effects
	6.27.6 Implications for language design and evolution

	6.28 Non-demarcation of control flow [EOJ]
	6.28.1 Description of application vulnerability
	6.28.2 Related coding guidelines
	6.28.3 Mechanism of failure
	6.28.4 Applicable language characteristics
	6.28.5 Avoiding the vulnerability or mitigating its effects
	6.28.6 Implications for language design and evolution

	6.29 Loop control variable abuse [TEX]
	6.29.1 Description of application vulnerability
	6.29.2 Related coding guidelines
	6.29.3 Mechanism of failure
	6.29.4 Applicable language characteristics
	6.29.5 Avoiding the vulnerability or mitigating its effects
	6.29.6 Implications for language design and evolution

	6.30 Off-by-one error [XZH]
	6.30.1 Description of application vulnerability
	6.30.2 Related coding guidelines
	6.30.3 Mechanism of failure
	6.30.4 Applicable language characteristics
	6.30.5 Avoiding the vulnerability or mitigating its effects
	6.30.6 Implications for language design and evolution

	6.31 Unstructured programming [EWD]
	6.31.1 Description of application vulnerability
	6.31.2 Related coding guidelines
	6.31.3 Mechanism of failure
	6.31.4 Applicable language characteristics
	6.31.5 Avoiding the vulnerability or mitigating its effects
	6.31.6 Implications for language design and evolution

	6.32 Passing parameters and return values [CSJ]
	6.32.1 Description of application vulnerability
	6.32.2 Related coding guidelines
	6.32.3 Mechanism of failure
	6.32.4 Applicable language characteristics
	6.32.5 Avoiding the vulnerability or mitigating its effects
	6.32.6 Implications for language design and evolution

	6.33 Dangling references to stack frames [DCM]
	6.33.1 Description of application vulnerability
	6.33.2 Related coding guidelines
	6.33.3 Mechanism of failure
	6.33.4 Applicable language characteristics
	6.33.5 Avoiding the vulnerability or mitigating its effects
	6.33.6 Implications for language design and evolution

	6.34 Subprogram signature mismatch [OTR]
	6.34.1 Description of application vulnerability
	6.34.2 Related coding guidelines
	6.34.3 Mechanism of failure
	6.34.4 Applicable language characteristics
	6.34.5 Avoiding the vulnerability or mitigating its effects
	6.34.6 Implications for language design and evolution

	6.35 Recursion [GDL]
	6.35.1 Description of application vulnerability
	6.35.2 Related coding guidelines
	6.35.3 Mechanism of failure
	6.35.4 Applicable language characteristics
	6.35.5 Avoiding the vulnerability or mitigating its effects
	6.35.6 Implications for language design and evolution

	6.36 Ignored error status and unhandled exceptions [OYB]
	6.36.1 Description of application vulnerability
	6.36.2 Related coding guidelines
	6.36.3 Mechanism of failure
	6.36.4 Applicable language characteristics
	6.36.5 Avoiding the vulnerability or mitigating its effects
	6.36.6 Implications for language design and evolution

	6.37 Type-breaking reinterpretation of data [AMV]
	6.37.1 Description of application vulnerability
	6.37.2 Related coding guidelines
	6.37.3 Mechanism of failure
	6.37.4 Applicable language characteristics
	6.37.5 Avoiding the vulnerability or mitigating its effects
	6.37.6 Implications for language design and evolution

	6.38 Deep vs. shallow copying [YAN]
	6.38.1 Description of application vulnerability
	6.38.2 Related coding guidelines
	6.38.3 Mechanism of failure
	6.38.4 Applicable language characteristics
	6.38.5 Avoiding the vulnerability or mitigating its effects
	6.38.6 Implications for language design and evolution

	6.39 Memory leaks and heap fragmentation [XYL]
	6.39.1 Description of application vulnerability
	6.39.2 Related coding guidelines
	6.39.3 Mechanism of failure
	6.39.4 Applicable language characteristics
	6.39.5 Avoiding the vulnerability or mitigating its effects
	6.39.6 Implications for language design and evolution

	6.40 Templates and generics [SYM]
	6.40.1 Description of application vulnerability
	6.40.2 Related coding guidelines
	6.40.3 Mechanism of failure
	6.40.4 Applicable language characteristics
	6.40.5 Avoiding the vulnerability or mitigating its effects
	6.40.6 Implications for language design and evolution

	6.41 Inheritance [RIP]
	6.41.1 Description of application vulnerability
	6.41.2 Related coding guidelines
	6.41.3 Mechanism of failure
	6.41.4 Applicable language characteristics
	6.41.5 Avoiding the vulnerability or mitigating its effects
	6.41.6 Implications for language design and evolution

	6.42 Violations of the Liskov substitution principle or the contract model [BLP]
	6.42.1 Description of application vulnerability
	6.42.2 Related coding guidelines
	6.42.3 Mechanism of failure
	6.42.4 Applicable language characteristics
	6.42.5 Avoiding the vulnerability or mitigating its effects
	6.42.6 Implications for language design and evolution

	6.43 Redispatching [PPH]
	6.43.1 Description of application vulnerability
	6.43.2 Related coding guidelines
	6.43.3 Mechanism of failure
	6.43.4 Applicable language characteristics
	6.43.5 Avoiding the vulnerability or mitigating its effects
	6.43.6 Implications for language design and evolution

	6.44 Polymorphic variables [BKK]
	6.44.1 Description of application vulnerability
	6.44.2 Related coding guidelines
	6.44.3 Mechanism of failure
	6.44.4 Applicable language characteristics
	6.44.5 Avoiding the vulnerability or mitigating its effects
	6.44.6 Implications for language design and evolution

	6.45 Extra intrinsics [LRM]
	6.45.1 Description of application vulnerability
	6.45.2 Related coding guidelines
	6.45.3 Mechanism of failure
	6.45.4 Applicable language characteristics
	6.45.5 Avoiding the vulnerability or mitigating its effects
	6.45.6 Implications for language design and evolution

	6.46 Argument passing to library functions [TRJ]
	6.46.1 Description of application vulnerability
	6.46.2 Related coding guidelines
	6.46.3 Mechanism of failure
	6.46.4 Applicable language characteristics
	6.46.5 Avoiding the vulnerability or mitigating its effects
	6.46.6 Implications for language design and evolution

	6.47 Inter-language calling [DJS]
	6.47.1 Description of application vulnerability
	6.47.2 Related coding guidelines
	6.47.3 Mechanism of failure
	6.47.4 Applicable language characteristics
	6.47.5 Avoiding the vulnerability or mitigating its effects
	6.47.6 Implications for language design and evolution

	6.48 Dynamically-linked code and self-modifying code [NYY]
	6.48.1 Description of application vulnerability
	6.48.2 Related coding guidelines
	6.48.3 Mechanism of failure
	6.48.4 Applicable language characteristics
	6.48.5 Avoiding the vulnerability or mitigating its effects
	6.48.6 Implications for language design and evolution

	6.49 Library signature [NSQ]
	6.49.1 Description of application vulnerability
	6.49.2 Related coding guidelines
	6.49.3 Mechanism of failure
	6.49.4 Applicable language characteristics
	6.49.5 Avoiding the vulnerability or mitigating its effects
	6.49.6 Implications for language design and evolution

	6.50 Unanticipated exceptions from library routines [HJW]
	6.50.1 Description of application vulnerability
	6.50.2 Cross reference
	6.50.3 Related coding guidelines
	6.50.4 Applicable language characteristics
	6.50.5 Avoiding the vulnerability or mitigating its effects
	6.50.6 Implications for language design and evolution

	6.51 Pre-processor directives [NMP]
	6.51.1 Description of application vulnerability
	6.51.2 Related coding guidelines
	6.51.3 Mechanism of failure
	6.51.4 Applicable language characteristics
	6.51.5 Avoiding the vulnerability or mitigating its effects
	6.51.6 Implications for language design and evolution

	6.52 Suppression of language-defined run-time checking [MXB]
	6.52.1 Description of application vulnerability
	6.52.2 Related coding guidelines
	6.52.3 Mechanism of Failure
	6.52.4 Applicable language characteristics
	6.52.5 Avoiding the vulnerability
	6.52.6 Implications for language design and evolution

	6.53 Provision of inherently unsafe operations [SKL]
	6.53.1 Description of application vulnerability
	6.53.2 Related coding guidelines
	6.53.3 Mechanism of Failure
	6.53.4 Applicable language characteristics
	6.53.5 Avoiding the vulnerability or mitigating its effect
	6.53.6 Implications for language design and evolution

	6.54 Obscure language features [BRS]
	6.54.1 Description of application vulnerability
	6.54.2 Related coding guidelines
	6.54.3 Mechanism of failure
	6.54.4 Applicable language characteristics
	6.54.5 Avoiding the vulnerability or mitigating its effects
	6.54.6 Implications for language design and evolution

	6.55 Unspecified behaviour [BQF]
	6.55.1 Description of application vulnerability
	6.55.2 Related coding guidelines
	6.55.3 Mechanism of failure
	6.55.4 Applicable language characteristics
	6.55.5 Avoiding the vulnerability or mitigating its effects
	6.55.6 Implications for language design and evolution

	6.56 Undefined behaviour [EWF]
	6.56.1 Description of application vulnerability
	6.56.2 Related coding guidelines
	6.56.3 Mechanism of failure
	6.56.4 Applicable language characteristics
	6.56.5 Avoiding the vulnerability or mitigating its effects
	6.56.6 Implications for language design and evolution

	6.57 Implementation-defined behaviour [FAB]
	6.57.1 Description of application vulnerability
	6.57.2 Related coding guidelines
	6.57.3 Mechanism of failure
	6.57.4 Applicable language characteristics
	6.57.5 Avoiding the vulnerability or mitigating its effects
	6.57.6 Implications for language design and evolution

	6.58 Deprecated language features [MEM]
	6.58.1 Description of application vulnerability
	6.58.2 Related coding guidelines
	6.58.3 Mechanism of failure
	6.58.4 Applicable language characteristics
	6.58.5 Avoiding the vulnerability or mitigating its effects
	6.58.6 Implications for language design and evolution

	6.59 Concurrency – Activation [CGA]
	6.59.1 Description of application vulnerability
	6.59.2 Related coding guidelines
	6.59.3 Mechanism of Failure
	6.59.4 Applicable language characteristics
	6.59.5 Avoiding the vulnerability or mitigating its effects
	6.59.6 Implications for language design and evolution

	6.60 Concurrency – Directed termination [CGT]
	6.60.1 Description of application vulnerability
	6.60.2 Related coding guidelines
	6.60.3 Mechanism of failure
	6.60.4 Applicable language characteristics
	6.60.5 Avoiding the vulnerability or mitigating its effect
	6.60.6 Implications for language design and evolution

	6.61 Concurrent data access [CGX]
	6.61.1 Description of application vulnerability
	6.61.2 Related coding guidelines
	6.61.3 Mechanism of failure
	6.61.4 Applicable language characteristics
	6.61.5 Avoiding the vulnerability or mitigating its effect
	6.61.6 Implications for language design and evolution

	6.62 Concurrency – Premature termination [CGS]
	6.62.1 Description of application vulnerability
	6.62.2 Related coding guidelines
	6.62.3 Mechanism of failure
	6.62.4 Applicable language characteristics
	6.62.5 Avoiding the vulnerability or mitigating its effect
	6.62.6 Implications for language design and evolution

	6.63 Lock protocol errors [CGM]
	6.63.1 Description of application vulnerability
	6.63.2 Related coding guidelines
	6.63.3 Mechanism of failure
	6.63.4 Applicable language characteristics
	6.63.5 Avoiding the vulnerability or mitigating its effect
	6.63.6 Implications for language design and evolution

	6.64 Reliance on external format strings [SHL]
	6.64.1 Description of application vulnerability
	6.64.2 Related coding guidelines
	6.64.3 Mechanism of failure
	6.64.4 Applicable language characteristics
	6.64.5 Avoiding the vulnerability or mitigating its effects
	6.64.6 Implications for language design and evolution

	6.65 Modifying constants [UJO]
	6.65.1 Description of application vulnerability
	6.65.2 Related coding guidelines
	6.65.3 Mechanism of failure
	6.65.4 Applicable language characteristics
	6.65.5 Avoiding the vulnerability or mitigating its effects
	6.65.6 Implications for language design and evolution

	7 Application vulnerabilities
	7.1 General
	7.2 Unrestricted file upload [CBF]
	7.2.1 Description of application vulnerability
	7.2.2 Related coding guidelines
	7.2.3 Mechanism of failure
	7.2.4 Avoiding the vulnerability or mitigating its effects

	7.3 Download of code without integrity check [DLB]
	7.3.1 Description of application vulnerability
	7.3.2 Related coding guidelines
	7.3.3 Mechanism of failure
	7.3.4 Avoiding the vulnerability or mitigating its effects

	7.4 Executing or loading untrusted code [XYS]
	7.4.1 Description of application vulnerability
	7.4.2 Related coding guidelines
	7.4.3 Mechanism of failure
	7.4.4 Avoiding the vulnerability or mitigating its effects

	7.5 Inclusion of functionality from untrusted control sphere [DHU]
	7.5.1 Description of application vulnerability
	7.5.2 Related coding guidelines
	7.5.3 Mechanism of failure
	7.5.4 Avoiding the vulnerability or mitigating its effects

	7.6 Use of unchecked data from an uncontrolled or tainted source [EFS]
	7.6.1 Description of application vulnerability
	7.6.2 Related coding guidelines
	7.6.3 Mechanism of failure
	7.6.4 Avoiding the vulnerability or mitigating its effects

	7.7 Cross-site scripting [XYT]
	7.7.1 Description of application vulnerability
	7.7.2 Related coding guidelines
	7.7.3 Mechanism of failure
	7.7.4 Avoiding the vulnerability or mitigating its effects

	7.8 URL redirection to untrusted site ("open redirect") [PYQ]
	7.8.1 Description of application vulnerability
	7.8.2 Related coding guidelines
	7.8.3 Mechanism of failure
	7.8.4 Avoiding the vulnerability or mitigating its effects

	7.9 Injection [RST]
	7.9.1 Description of application vulnerability
	7.9.2 Related coding guidelines
	7.9.3 Mechanism of failure
	7.9.4 Avoiding the vulnerability or mitigating its effects

	7.10 Unquoted search path or element [XZQ]
	7.10.1 Description of application vulnerability
	7.10.2 Related coding guidelines
	7.10.3 Mechanism of failure
	7.10.4 Avoiding the vulnerability or mitigating its effects

	7.11 Path traversal [EWR]
	7.11.1 Description of application vulnerability
	7.11.2 Related coding guidelines
	7.11.3 Mechanism of failure
	7.11.4 Avoiding the vulnerability or mitigating its effects

	7.12 Resource names [HTS]
	7.12.1 Description of application vulnerability
	7.12.2 Related coding guidelines
	7.12.3 Mechanism of Failure
	7.12.4 Avoiding the vulnerability or mitigating its effects

	7.13 Resource exhaustion [XZP]
	7.13.1 Description of application vulnerability
	7.13.2 Related coding guidelines
	7.13.3 Mechanism of failure
	7.13.4 Avoiding the vulnerability or mitigating its effects

	7.14 Authentication logic error [XZO]
	7.14.1 Description of application vulnerability
	7.14.2 Related coding guidelines
	7.14.3 Mechanism of failure
	7.14.4 Avoiding the vulnerability or mitigating its effects

	7.15 Improper restriction of excessive authentication attempts [WPL]
	7.15.1 Description of application vulnerability
	7.15.2 Related coding guidelines
	7.15.3 Mechanism of failure
	7.15.4 Avoiding the vulnerability or mitigating its effects

	7.16 Hard-coded credentials [XYP]
	7.16.1 Description of application vulnerability
	7.16.2 Related coding guidelines
	7.16.3 Mechanism of failure
	7.16.4 Avoiding the vulnerability or mitigating its effects

	7.17 Insufficiently protected credentials [XYM]
	7.17.1 Description of application vulnerability
	7.17.2 Related coding guidelines
	7.17.3 Mechanism of failure
	7.17.4 Avoiding the vulnerability or mitigating its effects

	7.18 Missing or inconsistent access control [XZN]
	7.18.1 Description of application vulnerability
	7.18.2 Related coding guidelines
	7.18.3 Mechanism of failure
	7.18.4 Avoiding the vulnerability or mitigating its effects

	7.19 Incorrect authorization [BJE]
	7.19.1 Description of application vulnerability
	7.19.2 Related coding guidelines
	7.19.3 Mechanism of failure
	7.19.4 Avoiding the vulnerability or mitigating its effects

	7.20 Adherence to least privilege [XYN]
	7.20.1 Description of application vulnerability
	7.20.2 Related coding guidelines
	7.20.3 Mechanism of failure
	7.20.4 Avoiding the vulnerability or mitigating its effects

	7.21 Privilege sandbox issues [XYO]
	7.21.1 Description of application vulnerability
	7.21.2 Related coding guidelines
	7.21.3 Mechanism of failure
	7.21.4 Avoiding the vulnerability or mitigating its effects

	7.22 Missing required cryptographic step [XZS]
	7.22.1 Description of application vulnerability
	7.22.2 Related coding guidelines
	7.22.3 Mechanism of failure
	7.22.4 Avoiding the vulnerability or mitigating its effects

	7.23 Improperly verified signature [XZR]
	7.23.1 Description of application vulnerability
	7.23.2 Related coding guidelines
	7.23.3 Mechanism of failure
	7.23.4 Avoiding the vulnerability or mitigating its effects

	7.24 Use of a one-way hash without a salt [MVX]
	7.24.1 Description of application vulnerability
	7.24.2 Related coding guidelines
	7.24.3 Mechanism of failure
	7.24.4 Avoiding the vulnerability or mitigating its effects

	7.25 Inadequately secure communication of shared resources [CGY]
	7.25.1 Description of application vulnerability
	7.25.2 Related coding guidelines
	7.25.3 Mechanism of failure
	7.25.4 Avoiding the vulnerability or mitigating its effect

	7.26 Memory locking [XZX]
	7.26.1 Description of application vulnerability
	7.26.2 Related coding guidelines
	7.26.3 Mechanism of failure
	7.26.4 Avoiding the vulnerability or mitigating its effects

	7.27 Sensitive information not cleared before use [XZK]
	7.27.1 Description of application vulnerability
	7.27.2 Related coding guidelines
	7.27.3 Mechanism of failure
	7.27.4 Avoiding the vulnerability or mitigating its effects

	7.28 Time consumption measurement [CCM]
	7.28.1 Description of application vulnerability
	7.28.2 Related coding guidelines
	7.28.3 Mechanism of failure
	7.28.4 Avoiding the vulnerability or mitigating its effect

	7.29 Discrepancy information leak [XZL]
	7.29.1 Description of application vulnerability
	7.29.2 Related coding guidelines
	7.29.3 Mechanism of failure
	7.29.4 Avoiding the vulnerability or mitigating its effects

	7.30 Unspecified functionality [BVQ]
	7.30.1 Description of application vulnerability
	7.30.2 Related coding guidelines
	7.30.3 Mechanism of failure
	7.30.4 Avoiding the vulnerability or mitigating its effects

	7.31 Fault tolerance and failure strategies [REU]
	7.31.1 Description of application vulnerability
	7.31.2 Related coding guidelines
	7.31.3 Mechanism of failure
	7.31.4 Avoiding the vulnerability or mitigating its effects

	7.32 Distinguished values in data types [KLK]
	7.32.1 Description of application vulnerability
	7.32.2 Related coding guidelines
	7.32.3 Mechanism of failure
	7.32.4 Avoiding the vulnerability or mitigating its effects

	7.33 Clock issues [CCI]
	7.33.1 Description of application vulnerability
	7.33.2 Related coding guidelines
	7.33.3 Mechanism of failure
	7.33.4 Avoiding the vulnerability or mitigating its effect

	7.34 Time drift and jitter [CDJ]
	7.34.1 Description of application vulnerability
	7.34.2 Related coding guidelines
	7.34.3 Mechanism of failure
	7.34.4 Avoiding the vulnerability or mitigating its effect

	Annex A (informative) Vulnerability taxonomy and list
	Annex B (informative) Selected principles for language designers
	Bibliography

