INTERNATIONAL STANDARD ## ISO/IEC 10373-7 First edition 2001-05-15 ## Identification cards — Test methods — Part 7: Vicinity cards Cartes d'identification — Méthodes d'essai — Partie 7: Cartes de voisinage Cick to vienn the full properties de la company l #### **PDF** disclaimer This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat accepts no liability in this area. Adobe is a trademark of Adobe Systems Incorporated. Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below. ECNORM. Cick to View the full PDF of ESOINEC 10373-7-2001 #### © ISO/IEC 2001 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.ch Web www.iso.ch Printed in Switzerland Page ## Contents | Forewo | ord | V | |---|---|---------------------------------------| | 1 | Scope | 1 | | 2 | Normative references | 1 | | 3
3.1
3.2 | Terms and definitions, abbreviations and symbols | 2 | | 4
4.1
4.2
4.3
4.4
4.5 | Abbreviations and symbols. Default items applicable to the test methods Test environment. Pre-conditioning. Default tolerance. Spurious Inductance Total measurement uncertainty | 3 | | 5
5.1
5.2
5.3 | Static electricity test Apparatus Procedure Test report | 4
4 | | 6
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.4
7 | Test apparatus and test circuits | 5
5
6
67
7
7
8
8 | | 7.1
7.2
7.3 | Test procedure | 8 | | 8
8.1
8.1.1
8.1.2
8.1.3
8.2
8.2.1
8.2.2
8.2.3
8.3 | Functional test - VCD VCD field strength and Power transfer Purpose Test procedure Modulation index and waveform Purpose Test procedure Test procedure Load modulation reception (informative only) | 9
9
10
10
10 | | Annex
A.1 | A (normative) Test VCD Antenna Test VCD Antenna layout including impedance matching network | | #### ISO/IEC 10373-7:2001(E) | A.2 | Impedance matching network | 13 | |-------|---------------------------------------------------------|----| | Annex | B (informative) Test VCD Antenna tuning | 14 | | Annex | C (normative) Sense coil | 16 | | C.1 | Sense coil layout | 16 | | C.2 | Sense coil assembly | 17 | | Annex | D (normative) Reference VICC for VCD power test | 18 | | Annex | E (informative) Reference VICC for load modulation test | 19 | | Annex | F (informative) Program for evaluation of the spectrum | 20 | ECHORN.COM. Cick to view the full politic for some control of the #### **Foreword** ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in the development of International Standards through technical committees established by the respective organization to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also take part in the work. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives Part 3. In the field of information technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as an International Standard requires approval by at least 75 % of the national bodies casting a vote. Attention is drawn to the possibility that some of the elements of this part of ISO/IEC 10373 may be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. International Standard ISO/IEC 10373-7 was prepared by Joint Technical Committee ISO/IEC JTC 1, *Information technology*, Subcommittee SC 17, *Identification cards and related devices*. ISO/IEC 10373 consists of the following parts, under the general title *Identification cards* — *Test methods*: - Part 1: General characteristics tests - Part 2: Cards with magnetic stripes - Part 3: Integrated circuit(s) cards with confacts and related interface devices - Part 4: Close-coupled cards - Part 5: Optical memory cards - Part 6: Proximity cards - Part 7: Vicinity cards Annexes A, C and D form a normative part of this part of ISO/IEC 10373. Annexes B, E and F are for information only. ## Identification cards — Test methods — ## Part 7: ## Vicinity cards #### 1 Scope This International Standard defines test methods for characteristics of identification cards according to the definition given in ISO/IEC 7810. Each test method is cross-referenced to one or more base standards, which may be ISO/IEC 7810 or one or more of the supplementary standards that define the information storage technologies employed in identification cards applications. NOTE Criteria for acceptability do not form part of this International Standard but will be found in the International Standards mentioned above. NOTE Test methods described in this International Standard are intended to be performed separately. A given card is not required to pass through all the tests sequentially. This part of ISO/IEC 10373 deals with test methods, which are specific to contactless integrated circuit(s) cards technology (vicinity cards). ISO/IEC 10373-1, General characteristics, deals with test methods which are common to one or more ICC technologies and other parts deal with other technology-specific tests. Unless otherwise specified, the tests in this part of ISO/IEC 10373 shall be applied exclusively to Vicinity cards defined in ISO/IEC 15693-1 and ISO/IEC 15693-2. #### 2 Normative references The following normative documents contain provisions which, through reference in this text, constitute provisions of this part of ISO 10373. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. However, parties to agreements based on this part of ISO 10373 are encouraged to investigate the possibility of applying the most recent editions of the normative documents indicated below. For undated references, the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO/IEC 7810, Identification cards – Physical characteristics. ISO/IEC 15693-1:2000, Identification cards — Contactless integrated circuit(s) cards — Vicinity cards — Part 1: Physical characteristics. ISO/IEC 15693-2:2000, Identification cards — Contactless integrated circuit(s) cards — Vicinity cards — Part 2: Air interface and initialization. ISO/IEC 15693-3:2001, Identification cards — Contactless integrated circuit(s) cards — Vicinity cards — Part 3: Anti-collision and transmission protocol. IEC 61000-4-2:1995, Electromagnetic compatibility (EMC) — Part 4: Testing and measurement techniques — Section 2: Electrostatic discharge immunity test. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1993, Guide to the Expression of Uncertainty in Measurement (Gum). #### Terms and definitions, abbreviations and symbols 3 For the purposes of this part of ISO 10373, the following terms and definitions and abbreviations apply. #### Terms and definitions #### 3.1.1 #### base standard standard which the test method is used to verify conformance to #### 3.1.2 #### testably functional surviving the action of some potentially destructive influence to the extent that any integrated circuit(s) present in the card continues to show a response¹⁾ as defined in ISO/IEC 15693-3 which conforms to the base standard If other technologies exist on the same card they shall be testably functional in accordance with their respective NOTE standard. #### 3.1.3 #### test method method for testing characteristics of identification cards for the purpose of confirming their compliance with withe full PDF of 150 International Standards #### Abbreviations and symbols 3.2 DUT Device under test **ESD** Electrostatic Discharge fc: Frequency of the operating field fs1, fs2 Frequencies of the subcarriers Maximum fieldstrength of the VCD antenna field H_{max} Minimum fieldstrength of the VCD antenna field H_{\min} **VCD** Vicinity Coupling Device VICC Vicinity Card ### Default items applicable to the test methods #### Test environment Unless otherwise specified, testing shall take place in an environment of temperature 23 °C ± 3 °C (73 °F ± 5 °F) and of relative humidity 40 % to 60 %. #### Pre-conditioning Where pre-conditioning is required by the test method, the identification cards to be tested shall be conditioned to the test environment for a period of 24 h before testing. ¹⁾ This International Standard does not define any test to establish the complete functioning of integrated circuit(s) cards. The test methods require only that the minimum functionality (testably functional) be verified. This may, in appropriate circumstances, be supplemented by further, application specific functionality criteria which are not available in the general case. #### 4.3 Default tolerance Unless otherwise specified, a default tolerance of \pm 5 % shall be applied to the quantity values given to specify the characteristics of the test equipment (e.g. linear dimensions) and the test method procedures (e.g. test equipment adjustments). #### 4.4 Spurious Inductance Resistors and capacitors should have negligible inductance. #### 4.5 Total measurement uncertainty The total measurement uncertainty for each quantity determined by these test methods shall be stated in the test report. Basic information is given in Gum, 1993. #### 5 Static electricity test The purpose of this test is to check the behavior of the card IC in relation to electrostatic discharge (ESD) exposure of the test sample. The card under test is exposed to a simulated electrostatic discharge (ESD, human body model) and its basic operation checked following the exposure. Figure 1 — ESD test circuit #### 5.1 Apparatus Refer to IEC 61000-4-2:1995. - a) Main specifications of the ESD generator - energy storage capacitance: 150 pF ± 10 % - discharge resistance: 330 Ohm ± 10 % - charging resistance: between 50 MOhm and 100 MOhm - rise time: 0,7 to 1 ns - b) Selected specifications from the optional items - type of equipment: table top equipment #### ISO/IEC 10373-7:2001(E) - discharge method: direct and contact discharge to the equipment under test - discharge electrodes of the ESD generator: Round tip probe of 8 mm diameter (to avoid damaging surface of card). #### 5.2 Procedure Connect the ground pin of the apparatus to the conductive plate upon which the card is placed. Apply the discharge successively in normal polarity to each of the 20 test zones shown in figure 2. Then repeat the same procedure with reversed polarity. Allow a cool-down period between successive pulses of at least 10 s. WARNING — If the card includes contacts, the contacts shall be face up and the zone which includes contacts shall not be exposed to this discharge. Check that the card remains testably functional (see clause 3) at the end of the test. Figure 2 — Test zones on card for ESD test #### 5.3 Test report The test report shall state whether or not the card remains testably functional. #### 6 Test apparatus and test circuits This clause defines the test apparatus and test circuits for verifying the operation of a VICC or a VCD according to ISO/IEC 15693-2. The test apparatus includes: - Calibration coil (see 6.1) - Test VCD assembly (see 6.2) - Reference VICC (see 6.3) - Digital sampling oscilloscope (see 6.4). These are described in the following clauses. #### 6.1 Calibration coil This clause defines the size, thickness and characteristics of the calibration coil. #### 6.1.1 Size of the Calibration coil card The Calibration coil card consists of an area, which has the height and width defined in ISO/IEC 7810 for ID-1 type containing a single turn coil concentric with the card outline. Figure 3 — Calibration coil #### 6.1.2 Thickness and material of the Calibration coil card The thickness of the calibration coil card shall be 0,76 mm \pm 10 %. It shall be constructed of a suitable insulating material. #### 6.1.3 Coil characteristics The coil on the Calibration coil card shall have one turn. The outer size of the coil shall be 72 mm (\pm 2 %) \times 42 mm (\pm 2 %) with corner radius 5 mm. NOTE The area over which the field is integrated is approximately 3000 mm². The coil is made as a printed coil on PCB plated with 35 μ m copper. Track width shall be 500 μ m \pm 20 %. The size of the connection pads shall be 1,5 mm \times 1,5 mm. NOTE At 13,56 MHz the approximate inductance is 200 nH and the approximate resistance is 0,25 Ohm. © ISO/IEC 2001 – All rights reserved A high impedance oscilloscope probe (e.g. > 1MOhm, < 14pF) shall be used to measure the (open circuit) voltage in the coil. The resonance frequency of the whole set (calibration coil, connecting leads and probe) shall be above 60 MHz. NOTE A parasitic capacitance of the probe assembly of less than 35 pF normally ensures a resonant frequency for the whole set of greater than 60 MHz. The open circuit calibration factor for this coil is 0,32 Volts (rms) per A/m (rms) [Equivalent to 900 mV (peak-to-peak) per A/m (rms)]. #### 6.2 Test VCD assembly The test VCD assembly for load modulation consists of a 150 mm diameter VCD antenna and two parallel sense coils: sense coil a and sense coil b. The test set-up is shown in figure 4. The sense coils are connected such that the signal from one coil is in opposite phase to the other. The 50 Ohm potentiometer P1 serves to fine adjust the balance point when the sense coils are not loaded by a VICC or any magnetically coupled circuit. The capacitive load of the probe including its parasitic capacitance shall be less than 14pF. NOTE The capacitance of the connections and oscilloscope probe should be kept to a minimum for reproducibility. Figure 4 — Test set-up (principle) NOTE The length of 150 mm of the twisted pairs takes the wider spacing of the sense coils in comparison to the set-up in ISO/IEC 10373-6 into account. #### 6.2.1 Test VCD antenna The Test VCD antenna shall have a diameter of 150 mm and its construction shall conform to the drawings in Annex A. The tuning of the antenna may be accomplished with the procedure given in Annex B. #### 6.2.2 Sense coils The size of the sense coils is 100×70 mm. The sense coil construction shall conform to the drawings in Annex C. #### 6.2.3 Assembly of test VCD The sense coils and Test VCD antenna are assembled parallel and with the sense and antenna coils coaxial and such that the distance between the active conductors is 100 mm as in figure 5. The distance between the coil in the DUT and the calibration coil shall be equal with respect to the coil of the test VCD antenna. NOTE The distance of 100 mm reflects larger read distance and 3 mm air spacing avoids parasitic effects such as detuning by closer spacing or ambiguous results due to noise and other environmental effects. Figure 5 — Test VCD assembly #### 6.3 Reference VICCs Reference VICCs are defined - to test H_{min} and H_{max} produced by a VCD (under conditions of loading by a VICC) - to test the ability of a VCD to power a VICC - to detect the minimum load modulation signal from the VICC. #### 6.3.1 Reference VICC for VCD power The schematic for the power test is shown in Annex D. Power dissipation can be set by the resistor R1 or R2 respectively in order to measure H_{max} and H_{min} as defined in 8.1.2. The resonant frequency can be adjusted with C2. #### 6.3.2 Reference VICC for load modulation test A suggested schematic for the load modulation test is shown in Annex E. The load modulation can be chosen to be resistive or reactive. This Reference VICC is calibrated by using the Test VCD assembly as follows: The Reference VICC is placed in the position of the DUT. The load modulation signal amplitude is measured as described in 7.2. This amplitude should correspond to the minimum amplitude at all values of field strength required by the base standard. 7 #### 6.3.3 Dimensions of the Reference VICCs The Reference VICCs consist of an area containing the coils which has the height and width defined in ISO/IEC 7810 for ID-1 type. An area external to this, containing the circuitry which emulates the required VICC functions, is appended in a way as to allow insertion into the test set-ups described below and so as to cause no interference to the tests. The dimensions shall be as in figure 6. Figure 6 — Reference VICC dimensions #### Thickness of the Reference VICC board 6.3.4 The thickness of the Reference VICC active area shall be 0.76 mm \pm 10 %. #### 6.3.5 Coil characteristics The coil in the active area of the Reference VICC shall have 4 turns and shall be concentric with the area outline. The outer size of the coils shall be 77 mm \pm 2 % \times 47 mm \pm 2 % The coil is printed on PCB plated with 35 um copper. Track width and spacing shall be 500 μ m \pm 20 %. At 13,56 MHz the nominal inductance is 3,5 µH and the nominal resistance is 1 Ohm. NOTE #### Digital sampling oscilloscope The digital sampling oscilloscope shall be capable of sampling at a rate of at least 100 million samples per second with a resolution of at least 8 bits at optimum scaling. The oscilloscope should have the capability to output the sampled data as a text file to facilitate mathematical and other operations such as windowing on the sampled data using external software programmes (Annex F). #### Functional test - VICC #### **Purpose** The purpose of this test is to determine the amplitude of the VICC load modulation signal within the operating field range $[H_{min}, H_{max}]$ as specified in 6.2 of the base standard and the functionality of the VICC with the modulation under emitted fields as defined in figure 1 and figure 2 of ISO/IEC 15693-2, 7.1, of the base standard. #### Test procedure Step 1: The load modulation test circuit of figure 4 and the Test VCD assembly of figure 5 are used. The RF power delivered by the signal generator to the test VCD antenna shall be adjusted to the required field strength and modulation waveforms as measured by the calibration coil without any VICC. The output of the load modulation test circuit of figure 4 is connected to a digital sampling oscilloscope. The 50 Ohm potentiometer P1 shall be trimmed to minimise the residual carrier. This signal shall be at least 40 dB lower than the signal obtained by shorting one sense coil. Step 2: The VICC under test shall be placed in the DUT position, concentric with sense coil a. The RF drive into the test VCD antenna shall be re-adjusted to the required field strength. NOTE Care should be taken to apply a proper synchronization method for low amplitude load modulation. Exactly two subcarrier cycles of the sampled modulation waveform shall be Fourier transformed. A discrete Fourier transformation with a scaling such that a pure sinusoidal signal results in its peak magnitude shall be used. To minimize transient effects, a subcarrier cycle immediately following a non-modulating period must be avoided. In case of two subcarrier frequencies this procedure shall be repeated for the second subcarrier frequency. The resulting amplitudes of the two upper sidebands at fc + fs1 and fc + fs2 and the two lower sidebands at fc - fs1and fc – fs2 respectively shall be above the value defined in 8.1 of the base standard. An appropriate command sequence as defined in ISO/IEC 15693-3 shall be sent by the Reference VCD to obtain a signal or load modulation response from the VICC. #### 7.3 Test report The test report shall give the measured amplitudes of the upper sidebands at fc + fs1 and fc + fs2 and the lower sidebands at fc - fs1 and fc - fs2 and the applied fields and modulations. #### Functional test - VCD 8 #### VCD field strength and Power transfer #### 8.1.1 Purpose Full PDF of 150 This test measures the field strength produced by a VCD with its specified antenna in its operating volume as defined in accordance with the base standard. The test procedure of 8.1.2 is also used to determine that the VCD with its specified antenna generates a field not higher than the value specified in ISO/IEC 15693-1. This test uses a Reference VICC as defined in Annex D to determine that a specific VCD to be tested is able to supply a certain power to a VICC placed anywhere within the defined operating volume. #### 8.1.2 Test procedure Procedure for H_{max} test: 1. Tune the Reference WCC to 13,56 MHz. NOTE The resonance frequency of the Reference VICC is measured by using an impedance analyser or a LCR-meter connected to a calibration coil. The coil of the Reference VICC should be placed on the calibration coil as close as possible, with the axes of the two coils being congruent. The resonance frequency is that frequency at which the reactive part of the measured complex impedance is at maximum. - 2. Set Jumper J1 to position b to activate R2. - 3. Position the Reference VICC within the defined operating volume of VCD under test. - 4. The DC voltage (V_{DC}) across resistor R3 (Annex D) is measured with a high impedance voltmeter and shall not exceed 3 Volts where the load resistor parallel to the coil L set to R2 and the fieldstrength equals H_{max} . 9 #### ISO/IEC 10373-7:2001(E) Procedure for H_{\min} test: - 1. Tune the Reference VICC to 13,56 MHz. - 2. Set Jumper J1 to position a to activate R1. - 3. Position the Reference VICC within the defined operating volume of the VCD under test. - 4. The DC voltage (V_{DC}) across resistor R3 is measured with a high impedance voltmeter and shall exceed 3 Volts where the load resistor parallel to the coil L set to R1 and the fieldstrength equals H_{min} . #### 8.1.3 Test report The test report shall give the measured values for V_{DC} at H_{min} and H_{max} under the defined conditions #### 8.2 Modulation index and waveform #### 8.2.1 Purpose This test is used to determine the index of modulation of the VCD field as well as the rise and fall times and the overshoot values as defined in figure 1 and figure 2 of ISO/IEC 15693-2 within the defined operating volume. #### 8.2.2 Test procedure The Calibration coil is positioned anywhere within the defined operating volume, and the modulation index and waveform characteristics are determined from the induced voltage on the coil displayed on a suitable oscilloscope. #### 8.2.3 Test report The test report shall give the measured modulation index of the VCD field, the rise and fall times and the overshoot values as defined in figure 1 and figure 2 of ISO/IEC 15693-2 within the defined volume. #### 8.3 Load modulation reception (informative only) This test may be used to verify that a VCD correctly detects the load modulation of a VICC which conforms to the base standard. It is supposed that the VCD has means to indicate correct reception of the subcarrier(s) produced by a test VICC. Annex E shows a circuit which can be used in conjunction with the test apparatus to determine the sensitivity of a VCD to load modulation within the defined operating volume. ## Annex A (normative) #### **Test VCD Antenna** #### A.1 Test VCD Antenna layout including impedance matching network Dimensions in millimetres (Drawings are not to scale). The antenna coil track width is 1,8 mm (except for through-plated holes). Starting from the impedance matching network there are crossovers every 45°. PCB: FR4 material thickness 1,6 mm, double sided with 35 μm copper. Figure A.1 — Test VCD antenna layout including impedance matching network (View from front) Figure A.2 — VCD Antenna Layout (View from back) NOTE PCBs and/or Layout may be made available by: arsenal research MIFARE® Certification arsenal research MIFARE® Certification Institute Faradaygasse 3 A-1030 Vienna Austria Phone: +43 50 550-6525 Fax: +43 1 799 19 55 mci@arsenal.ac.at 12 #### A.2 Impedance matching network The antenna impedance (R_{ant} , L_{ant}) is adapted to the signal generator output impedance (Z=50 Ohm) by a matching circuit (see below). The capacitors C1, C2 and C3 have fixed values. The input impedance phase can be adjusted with the variable capacitor C4. NOTE 1 Care has to be taken to keep maximum voltages and maximum power dissipation within the specified limits of the individual components. NOTE 2 The linear low distortion variable output 50 Ohm power driver should be capable of emitting appropriate signal sequences. The modulation index should be adjustable in the ranges of 10 % - 30 % and 95 % - 100 %. The output power should be adjustable to deliver H fields in the range of 150 mA/m - 12 A/m. Care should be taken with the duration of fields above the upper operating range of 5 A/m. ## **Annex B** (informative) #### **Test VCD Antenna tuning** The figures below show the two steps of a simple phase tuning procedure to match the impedance of the antenna to that of the driving generator. After the two steps of the tuning procedure the signal generator shall be directly connected to the antenna output for the tests. #### Step 1: A high precision resistor of 50 Ohm \pm 1 % (e.g. 50 Ohm BNC resistor) is inserted in the signal line between the signal generator output and an antenna connector. The two probes of the oscilloscope are connected to both sides of the serial reference resistor. The oscilloscope displays a Lissajous figure when it is set in Y to X presentation. The signal generator is set to: — Wave form: Sinusoidal — Frequency: 13,56 MHz — Amplitude: 2V (rms) - 5V (rms) The output is terminated with a second high precision resistor of 50 Ohm \pm 1 % (e.g. 50 Ohm BNC terminating resistor). The probe, which is in parallel to the output connector has a small parasitic capacitance C_{probe} . A calibration capacitance C_{cal} in parallel to the reference resistor compensates this probe capacitor if $C_{\text{cal}} = C_{\text{probe}}$. The probe capacitor is compensated when the Lissajous figure is completely closed. Figure B.1 — Calibration set-up (Step 1) NOTE The ground cable has to be run close to the probe to avoid induced voltages caused by the magnetic field. #### Step 2: Using the same values as set for step 1, in the second step the matching circuitry is connected to the antenna output. The capacitor C4 on the antenna board is used to tune the phase to zero. ### **Annex C** (normative) #### Sense coil #### C.1 Sense coil layout Dimensions in millimetres (Drawings are not to scale). The sense coils track width is 0.5 mm with relative tolerance ± 20 % (except for through-plated holes). Sizes of the coils refer to the outer dimensions. PCB: FR4 material thickness 1,6 mm, double sided with 35 µm copper. Figure C.1 — Layout for sense coils a and b NOTE PCBs and/or Layout may be made available by: > arsenal research MIFARE® Certification Institute Faradaygasse 3 A-1030 Vienna Austria Phone: +43 50 550-6525 Fax: +43 1 799 19 55 mci@arsenal.ac.at ### C.2 Sense coil assembly ## Annex D (normative) ## Reference VICC for VCD power test #### **Components list:** | Component | Value | |----------------|---------------------------------------------------------| | L (coil) | see 6.3.5 | | C1 | Stray capacitance < 5pF | | C2 | 2 10 pF | | C3 | 27 pF | | C4 | 10 nF | | D1, D2, D3, D4 | see characteristics in table D.1 (BAR 43 or equivalent) | | R1 | 11 kOhm | | R2 | 91 Ohm | | R3 | 100 kOhm | Figure D.1 — Circuit diagram for Reference VICC Table D.1 — Specification of basic characteristics of D1, D2, D3, D4 | Symbol | Test
Condition at
Tj=25 °C | Тур. | Max. | Unit | |-----------------|--|------|------|------| | V _F | I _F =2mA | | 0,33 | V | | С | V _R =1V,
F=1 MHz | 7 | | pF | | t _{rr} | I _F =10mA,
I _R =10mA,
I _{rr} =1mA | | 5 | ns | | V_{F} | Forward voltage drop | |----------|--------------------------| | V_{R} | Reverse voltage | | I_{F} | Forward current | | I_{R} | Reverse current | | t_{rr} | Reverse recovery time | | I_{rr} | Reverse recovery current | | Tj | Junction temperature | | F | Frequency | | С | Junction capacitance |