

INTERNATIONAL
STANDARD

IEC
62243

 First edition
2005-07

 IEEE 1232 

Artificial intelligence exchange and service tie
to all test environments (AI-ESTATE)

Reference number
IEC 62243(E):2005

IEEE Std. 1232(E):2002

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Publication numbering

As from 1 January 1997 all IEC publications are issued with a designation in the
60000 series. For example, IEC 34-1 is now referred to as IEC 60034-1.

Consolidated editions

The IEC is now publishing consolidated versions of its publications. For example,
edition numbers 1.0, 1.1 and 1.2 refer, respectively, to the base publication, the
base publication incorporating amendment 1 and the base publication incorporating
amendments 1 and 2.

Further information on IEC publications

The technical content of IEC publications is kept under constant review by the IEC,
thus ensuring that the content reflects current technology. Information relating to
this publication, including its validity, is available in the IEC Catalogue of
publications (see below) in addition to new editions, amendments and corrigenda.
Information on the subjects under consideration and work in progress undertaken
by the technical committee which has prepared this publication, as well as the list
of publications issued, is also available from the following:

• IEC Web Site (www.iec.ch)

• Catalogue of IEC publications

The on-line catalogue on the IEC web site (www.iec.ch/searchpub) enables you to
search by a variety of criteria including text searches, technical committees
and date of publication. On-line information is also available on recently issued
publications, withdrawn and replaced publications, as well as corrigenda.

• IEC Just Published

This summary of recently issued publications (www.iec.ch/online_news/ justpub)
is also available by email. Please contact the Customer Service Centre (see
below) for further information.

• Customer Service Centre

If you have any questions regarding this publication or need further assistance,
please contact the Customer Service Centre:

Email: custserv@iec.ch
Tel: +41 22 919 02 11
Fax: +41 22 919 03 00

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IE

C 62
24

3:2
00

5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Artificial intelligence exchange and service tie
to all test environments (AI-ESTATE)

INTERNATIONAL
STANDARD

IEC
62243

 First edition
2005-07

 IEEE 1232

Commission Electrotechnique Internationale
International Electrotechnical Commission
Международная Электротехническая Комиссия

© IEEE 2005  Copyright - all rights reserved
IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics Engineers, Inc.

No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the publisher.

International Electrotechnical Commission, 3, rue de Varembé, PO Box 131, CH-1211 Geneva 20, Switzerland
Telephone: +41 22 919 02 11 Telefax: +41 22 919 03 00 E-mail: inmail@iec.ch Web: www.iec.ch

The Institute of Electrical and Electronics Engineers, Inc, 3 Park Avenue, New York, NY 10016-5997, USA
Telephone: +1 732 562 3800 Telefax: +1 732 562 1571 E-mail: stds-info@ieee.org Web: www.standards.ieee.org

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1. Overview...7

1.1 Scope ..8

1.2 Purpose ..8

1.3 Conventions used in this standard... 9

2. References ...9

3. Definitions and acronyms ...9

3.1 Definitions...9

3.2 Acronyms ...11

4. Description of AI-ESTATE...11

4.1 AI-ESTATE architecture ...11

4.2 Interchange format...14

4.3 Binding strategy ...14

4.4 Extensibility..15

4.5 Status codes.. 16

4.6 Conformance.. 17

4.7 Service order dependence... 18

5. Models.. 21

5.1 Common Element Model... 21

5.2 Diagnostic Inference Model... 54

5.3 Dynamic Context Model ... 58

5.4 Enhanced Diagnostic Inference Model.. 89

5.5 Fault Tree Model... 93

6. Services... 97

6.1 Model management services .. 98

6.2 Reasoner manipulation services ..103

Annex A (informative) Bibliography ... 111

Annex B (informative) Overview of EXPRESS... 113

CONTENTS

FOREWORD ... 3
IEEE Introduction .. 6

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 2 –

Annex C (informative) List of Participants.. 120

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ARTIFICIAL INTELLIGENCE EXCHANGE AND SERVICE TIE
TO ALL TEST ENVIRONMENTS (AI-ESTATE)

FOREWORD

1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization
comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to
promote international co-operation on all questions concerning standardization in the electrical and
electronic fields. To this end and in addition to other activities, IEC publishes International Standards,
Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter
referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National
Committee interested in the subject dealt with may participate in this preparatory work. International,
governmental and non-governmental organizations liaising with the IEC also participate in this preparation.
IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with
conditions determined by agreement between the two organizations.

2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an
international consensus of opinion on the relevant subjects since each technical committee has
representation from all interested IEC National Committees.

3) IEC Publications have the form of recommendations for international use and are accepted by IEC National
Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC
Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any
misinterpretation by any end user.

4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications
transparently to the maximum extent possible in their national and regional publications. Any divergence
between any IEC Publication and the corresponding national or regional publication shall be clearly
indicated in the latter.

5) IEC provides no marking procedure to indicate its approval and cannot be rendered responsible for any
equipment declared to be in conformity with an IEC Publication.

6) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of
patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

International Standard IEC/IEEE 62243 has been processed through IEC technical
committee 93: Design automation.

The text of this standard is based on the following documents:

IEEE Std FDIS Report on voting

1232 (2002) 93/214/FDIS 93/220/RVD

Full information on the voting for the approval of this standard can be found in the report on
voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives.

The committee has decided that the contents of this publication will remain unchanged
until 2007.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 3 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

IEC/IEEE Dual Logo International Standards
This Dual Logo International Standard is the result of an agreement between the IEC and the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). The original IEEE Standard was submitted to the IEC for
consideration under the agreement, and the resulting IEC/IEEE Dual Logo International Standard has been
published in accordance with the ISO/IEC Directives.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards
through a consensus development process, approved by the American National Standards Institute, which
brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers
are not necessarily members of the Institute and serve without compensation. While the IEEE administers the
process and establishes rules to promote fairness in the consensus development process, the IEEE does not
independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEC/IEEE Dual Logo International Standard is wholly voluntary. The IEC and IEEE disclaim liability for
any personal injury, property or other damage, of any nature whatsoever, whether special, indirect,
consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon
this, or any other IEC or IEEE Standard document.

The IEC and IEEE do not warrant or represent the accuracy or content of the material contained herein, and
expressly disclaim any express or implied warranty, including any implied warranty of merchantability or fitness
for a specific purpose, or that the use of the material contained herein is free from patent infringement.
IEC/IEEE Dual Logo International Standards documents are supplied “AS IS”.

The existence of an IEC/IEEE Dual Logo International Standard does not imply that there are no other ways to
produce, test, measure, purchase, market, or provide other goods and services related to the scope of the
IEC/IEEE Dual Logo International Standard. Furthermore, the viewpoint expressed at the time a standard is
approved and issued is subject to change brought about through developments in the state of the art and
comments received from users of the standard.

Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a
document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents,
although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to
determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEC and IEEE are not suggesting or rendering
professional or other services for, or on behalf of, any person or entity. Neither the IEC nor IEEE is undertaking
to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other
IEC/IEEE Dual Logo International Standards or IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations – Occasionally questions may arise regarding the meaning of portions of standards as they relate
to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will
initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned
interests, it is important to ensure that any interpretation has also received the concurrence of a balance of
interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are
not able to provide an instant response to interpretation requests except in those cases where the matter has
previously received formal consideration.

Comments for revision of IEC/IEEE Dual Logo International Standards are welcome from any interested party,
regardless of membership affiliation with the IEC or IEEE. Suggestions for changes in documents should be in
the form of a proposed change of text, together with appropriate supporting comments. Comments on standards
and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA and/or
General Secretary, IEC, 3, rue de Varembé, PO Box 131, 1211 Geneva 20, Switzerland.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the
Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright
Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy
portions of any individual standard for educational classroom use can also be obtained through the Copyright
Clearance Center.

NOTE – Attention is called to the possibility that implementation of this standard may require use of subject
matter covered by patent rights. By publication of this standard, no position is taken with respect to the
existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for
identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the
legal validity or scope of those patents that are brought to its attention.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 4 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

IEEE Standard for Artificial Intelligence

Exchange and Service

Tie to All Test Environments

(AI-ESTATES)

Sponsor

IEEE Standards Coordinating Committee 20

Approved 13 November 2002

American National Standards Institute

Approved 13 June 2002

IEEE-SA Standards Board

Abstract: AI-ESTATE is a set of specifications for data interchange and for standard services for the
test and diagnostic environment. The purpose of AI-ESTATE is to standardize interfaces between
functional elements of an intelligent diagnostic reasoner and representations of diagnostic knowledge
and data for use by such diagnostic reasoners. Formal information models are defined to form the
basis for a format to facilitate exchange of persistent diagnostic information between two reasoners,
and also to provide a formal typing system for diagnostic services. This standard then defines the
services to manipulate diagnostic information and to control a diagnostic reasoner.
Keywords: AI-ESTATE, diagnosis, diagnostic interference, diagnostic model, diagnostic services,
dynamic content, fault tree, knowledge exchange, system test

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 5 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

This AI-ESTATE standard provides a formal framework for exchanging diagnostic knowledge and
constructing diagnostic reasoners. The intent is to provide a standard framework for identifying
required information for diagnosis and defining the diagnostic information in a machine-processable
way. In addition, software interfaces are defined whereby diagnostic tools can be developed to process
the diagnostic information in a consistent and reliable way.

IEEE Introduction

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 6 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Artificial intelligence exchange and service

1. Overview

The Artificial Intelligence Exchange and Service Tie to All Test Environments (AI-ESTATE) standard
was developed by the Diagnostic and Maintenance Control (D & MC) Subcommittee of the IEEE
Standards Coordinating Committee 20 (SCC 20) on Test and Diagnosis for Electronic Systems to
serve as a standard for the application of artificial intelligence to system test and diagnosis. This
AI-ESTATE standard defines interfaces among reasoners and reasoning system users, test information
knowledge bases, and more conventional databases. In addition to interface standards, the AI-
ESTATE standard includes a set of formal data specifications to facilitate the exchange of system
under test related diagnostic information.

This standard describes a set of formal data and knowledge specifications consisting of the logical
representation of devices, their constituents, the failure modes of those constituents, and tests of those
constituents. The data and knowledge specification provides a standard representation of the common
data elements required for system test and diagnosis. This will facilitate portability of test-related
knowledge bases for intelligent system test and diagnosis.

The goals of this standard are summarized as follows:

— Incorporate domain specific terminology
— Facilitate portability of diagnostic knowledge
— Permit extensibility of diagnostic knowledge
— Enable the consistent exchange and integration of diagnostic capabilities

This standard provides a controlled extension mechanism to allow inclusion of new diagnostic
technology outside the scope of the AI-ESTATE specification.

One of the purposes of this standard is to define information models for knowledge bases to be used in
the context of test and diagnosis and, from these models, to derive a data interchange format. The
specifications in this standard shall support fully portable diagnostic knowledge. No host computer
dependence is contained in the AI-ESTATE standard.

tie to all test environments
(Al-ESTATE)

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 7 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

AI-ESTATE defines key data and knowledge specification formats. Implementations that use only
these specification formats will be portable. This does not preclude use of AI-ESTATE interfaces with
nonconformant specification formats; however, such implementations may not be portable. As shown
in Figure 1, a diagnostic model can be moved from one AI-ESTATE implementation to another by
translating it into the interchange format. Another AI-ESTATE implementation can then utilize this
information as a complete package by translating the data and knowledge from the interchange
format to its own internal form.

The translation step is not a requirement; an AI-ESTATE implementation may use the interchange
format for its own internal form.

Software specifications defined in this standard will ensure the interchangeability of diagnostic
reasoners through the definition of encapsulated services. This will allow diagnostic reasoners to be
interchanged within an AI-ESTATE conformant system with no effect on the other elements of the
system.

1.1 Scope

The AI-ESTATE standard defines formal specifications for supporting system diagnosis. These
specifications support the exchange and processing of diagnostic information and the control of
diagnostic processes. Diagnostic processes include, but are not limited to, testability analysis,
diagnosability assessment, diagnostic reasoning, maintenance support, and diagnostic maturation.

1.2 Purpose

The AI-ESTATE standard provides formal models of diagnostic information to ensure unambiguous
access to an understanding of the information supporting system test and diagnosis. The standard
unifies and expands on the specifications published in IEEE Std 1232TM-1995 [B3],1 IEEE Std
1232.1TM-1997 [B4], and IEEE Std 1232.2TM-1998 [B5].

Figure 1—An example of AI-ESTATE’s portability mechanism for data and knowledge

1The numbers in brackets correspond to those of the bibliography in Annex A.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 8 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1.3 Conventions used in this standard

This standard specifies information models using the EXPRESS language and uses the following
conventions in their presentation:

All specifications in the EXPRESS language are given in the Courier type font. This includes
references to entity and attribute names in the supporting text. The EXPRESS models found in
Clause 5 include comment delimiters ‘‘(*’’ and ‘‘*),’’ thus allowing extraction of the models from an
electronic version of the standard for direct use.

Each entity of each EXPRESS schema is presented in a separate subclause. Within a schema,
subclauses are listed in alphabetical order by constants, types, enumerated types, select types, entities,
and then functions. The subclause structure begins with the actual EXPRESS specification, then each
attribute of the entity is described below the attribute definition heading. If any constraints have been
specified, these are described below the formal propositions heading.

This standard uses the vocabulary and definitions of relevant IEEE standards. In case of conflict of
definitions, the following precedence shall be observed: 1) AI-ESTATE definitions (Clause 3);
2) SCC20 documentation and standards; and 3) IEEE 100TM, The Authoritative Dictionary of IEEE
Standards Terms, Seventh Edition [B2].

Clause 6 of this standard presents the formal specification of the encapsulated services of this standard.
EXPRESS is used to represent the interface of each individual service defining the semantics and type
of the required value to be returned.

2. References

This standard shall be used in conjunction with the following publications.

ISO 10303-11:1994, Industrial Automation Systems and Integration—Product Data Representation
and Exchange—Part 11: Description Methods: The EXPRESS Language Reference Manual.2

ISO 10303-21:2002, Industrial Automation Systems and Integration—Product Data Representation
and Exchange—Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure.

3. Definitions and acronyms

For the purposes of this standard, the following terms and definitions apply. IEEE 100, The
Authoritative Dictionary of IEEE Standards Terms, Seventh Edition [B2], should be referenced for
terms not defined in this clause.

3.1 Definitions

3.1.1 ambiguity: In fault isolation, the inability to localize to a single diagnosis for a repair level, given
a set of test results, observations, or other information.

3.1.2 ambiguity group: The collection of all diagnoses that are in ambiguity.

2ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de Varembé, CH-1211, Genéve 20,

Switzerland/Suisse (http://www.iso.ch/). ISO publications are also available in the United States from the Sales Department,

American National Standards Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA (http://www.ansi.org/).

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 9 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

3.1.3 application executive: A software component (or the role of a software component) that admin-
isters, and coordinates services to other components within a test system.

3.1.4 diagnosis: The conclusion(s) inferred from tests, observations, or other information.

3.1.5 diagnostic procedure: A structured sequence of tests, observations, and other information used
to localize a fault or faults.

3.1.6 element: The smallest entity of an Artificial Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE) model. For example, in a particular model, the smallest test, the smallest
diagnosis, and the no-fault conclusion are all elements.

3.1.7 failure: The loss of ability of a repair item, equipment, or system to perform a required function.
The manifestation of a fault. Within AI-ESTATE models, a manifestation is given by the outcome of
a test.

3.1.8 false alarm: An indicated fault where no fault exists.

3.1.9 fault: A defect or flaw in a hardware or software component.

3.1.10 fault isolation: The process of reducing the set of diagnoses in ambiguity to a degree sufficient
to undertake an appropriate corrective action.

3.1.11 fault localization: The reduction of ambiguity by the application of tests, observations, or
other information.

3.1.12 interoperability: The ability of two or more systems or elements to exchange information and
to use the information that has been exchanged.

3.1.13 knowledge base: A combination of structure, data, and function used by reasoning systems.

3.1.14 level of maintenance: A level at which test, diagnosis, and repair operates (e.g., maintenance
depot, factory, in the field).

3.1.15 portability: The capability of being moved between systems.

3.1.16 protocol: A set of conventions or rules that govern the interactions of processes or applica-
tions within a computer system or network.

3.1.17 reasoning system: A system that can combine elements of information and knowledge to draw
conclusions.

3.1.18 replaceable unit: A collection of one or more parts considered as a single part for the purposes
of replacement and repair due.

3.1.19 resource: Any capability that is to be scheduled, assigned, or controlled by the underlying
implementation to assure nonconflicting usage by processes.

3.1.20 service: A software interface providing a means for communicating information between two
applications. An action or response initiated by a process (i.e., server) at the request of some other
process (i.e., client).

3.1.21 system: 1) A collection of interacting, interrelated, or interdependent elements forming a
collective, functioning entity; 2) a set of objects or phenomena grouped together for classification
or analysis; 3) a collection of hardware or software components necessary for performing a high-
level function.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 10 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

3.1.22 test: A set of stimuli, either applied or known, combined with a set of observed responses and
criteria for comparing these responses to a known standard.

3.1.23 test strategy: An approach taken to combine factors including constraints, goals, and other
considerations to be applied to the testing of a system under test.

3.2 Acronyms

AI-ESTATE Artificial Intelligence Exchange and Service Tie to All Test Environments
BIT Built-In Test
CEM Common Element Model
DCM Dynamic Context Model
DIM Diagnostic Inference Model
EDIM Enhanced Diagnostic Inference Model
FTM Fault Tree Model
SNMP Simple Network Management Protocol
UTC Coordinated Universal Time

4. Description of AI-ESTATE

4.1 AI-ESTATE architecture

This standard provides the following:

— Overview of the AI-ESTATE architecture
— Formal definition of diagnostic models for systems under test
— Formal definition of encapsulated software services for diagnostic reasoners

AI-ESTATE focuses on two distinct aspects of the stated purpose. The first aspect concerns the need
to exchange data and knowledge between conformant systems. Two approaches can be taken to
address this need: providing interchangeable files and providing services for retrieving the required
data or knowledge through an information management system. AI-ESTATE is structured such that
either approach can be used. The second aspect concerns the need for functional elements of an
AI-ESTATE conformant system to interact and interoperate. The AI-ESTATE architectural concept
provides for the functional elements to communicate with one another via a ‘‘communication
pathway’’ as depicted in Figure 2. Essentially, this pathway is an abstraction of the services provided
by the functional elements to one another. Thus, the implemented services provide a communication
pathway between the reasoner and the rest of the test system.

Services are provided by reasoners to the other functional elements of an AI-ESTATE conformant
system. Reasoners can include (but are not necessarily limited to) diagnostic systems, test sequencers,
maintenance data feedback analyzers, intelligent user interfaces, and intelligent test programs.
AI-ESTATE will not specify services between functional elements that do not incorporate artificial
intelligence capabilities. Thus, services are provided by a reasoner to the test system, the human
presentation system, a maintenance data/knowledge collection system, and possibly the system under
test. The reasoner shall use services provided by these other systems as required. Note that these
services shall not be specified by the AI-ESTATE standard.

Data interchange formats are specified to provide a means for exchanging knowledge bases between
conformant systems without the need to apply an information management system. Recognizing that

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 11 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

some applications may provide services for extracting required data or knowledge, services are
specified to permit an application to query the diagnostic system for this purpose.

This standard facilitates the use of standard representations of diagnostic data and knowledge within
the context of an AI-ESTATE implementation. In specifying data and knowledge for these domains, a
structure has been constructed, as shown in Figure 3. At the top level is the Common Element Model
that specifies elements common to the AI-ESTATE domain of equipment test and diagnosis in its
entirety. Examples of common element constructs are diagnosis (diagnostic conclusions about the
system under test), repair_item (the physical entity being repaired), resource, and test. These
constructs are characterized by attributes such as costs and failure rates, which are also specified in the
Common Element Model.

Below this top layer is a layer of application-specific data and knowledge formats (i.e., the Diagnostic
Inference Model, the Enhanced Diagnostic Inference Model, and the Fault Tree Model). These models
take advantage of the constructs in the Common Element Model and tailor the constructs to the
application’s particular reasoning requirements.

Other data and knowledge specification formats are envisioned and will be included in future revisions
of this standard. Examples include a constraint-based model, a Bayesian network model, and a neural
network model. The Common Element Model has been specified such that other data and knowledge
specification formats can also utilize its constructs as base elements that are tailored to the particular
application’s needs.

Figure 2—AI-ESTATE architectural concept

Figure 3—Hierarchical structure of AI-ESTATE models

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 12 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

This standard also defines the encapsulated services to be provided by a diagnostic reasoner in an
AI-ESTATE conformant implementation. All of the basic services are defined relative to the entities
and attributes of the information models. These services can be thought of as reasoner responses to
client requests from the other components of the system architecture, which include the human
presentation (or user interface) system, the maintenance data/knowledge collection (or information
management) system, other reasoners, and test controller(s), as shown in Figure 4. As can be seen in
Figure 4, each of the elements that interface with the reasoner will provide their own set of encapsulated
services to their respective clients, but those service definitions are beyond the scope of this document.

The definition of these services was performed by first creating accessor services for the static
information models. As the specification of these services became clearer, it became apparent that to
define useful services adequately for an active diagnostic reasoner new entities would have to defined.
These entities represent the context within which reasoning is performed and thereby maintain the
state of the diagnostic process. Thus evolved the Dynamic Context Model as specified in 5.3 of this
standard. Model management and reasoner manipulation services are defined in Clause 6 to provide a
more manageable interface for interacting with the reasoner.

The definition of encapsulated services provides a means for hiding the details of any particular
reasoner implementation. Such services encompass an abstraction of that behavior which is common
to all diagnostic reasoners, regardless of implementation details. Therefore, it is the mechanism of
encapsulation that provides for the interchangeability of diagnostic reasoners within an AI-ESTATE
conformant system.

It should be noted that to be conformant, a reasoner implementation should provide, at the least, a
status indicator (see 4.5) as a response to any service request defined by this specification. The
diagnostic reasoner shown in Figure 5 becomes AI-ESTATE conformant when it provides the services
specified by this standard to the application executive client.

In defining the behavior of the diagnostic reasoner, it is reasonable to expect applications to be
developed whereby multiple models are used by a single reasoner or multiple reasoners interact. For
the latter, it is assumed that the application executive will be responsible for managing these reasoners
and reconciling information provided by the reasoners. For the single reasoner, it is assumed that the
reasoner will manage the models and that this management will be based on definition of a consistent

Figure 4—AI-ESTATE client server view

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 13 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

name-space with proper scoping defined by the models’ contexts. For reasoners, responsible for
merging information in multiple models (or for editing tools that merge models), it is assumed that
such a merger will be conducted either through low-level model management services or through some
proprietary mechanism. This standard does not define how model merging is to be accomplished, and
no specific merger service is provided.

4.2 Interchange format

AI-ESTATE models are intended to facilitate data interchange in the context of test and diagnosis.
The data interchange format will permit exchange of diagnostic models, using a neutral standard
format, thus providing portability of diagnostic knowledge across applications. The inter-
change format used for the models defined in this standard is derived from ISO 10303-21:2002.
Given this exchange structure, it is assumed that one and only one model will be contained in any
given file.

The version of this standard used shall be noted in the header of the exchange file, e.g., IEEE Std
1232-2002.

4.3 Binding strategy

The intent of the binding strategy is to guide software developers in the creation of a binding layer that
will expose an interface that matches the interface of the AI-ESTATE services as they are specified in
this standard. The binding layer will thus insulate the application and the diagnostic reasoner from any
non-AI-ESTATE details such as connectivity technology, memory management, etc.

An AI-ESTATE software system will consist of at least two components—the application and a
diagnostic reasoner. The diagnostic reasoner will present an interface conformant to IEEE Std
1232-2002; the application will use AI-ESTATE services as needed by calls to this interface.

For each AI-ESTATE service there will be a corresponding function in the binding layer that will be
written in the implementation language. The interfaces provided by the functions should correspond
exactly to the interfaces of the services they implement (or as closely as possible given the constraints
of the implementation language). All other details should be hidden from the client. This implies
that the binding layer provides data-type definitions that correspond to the types specified in this
standard.

The application and diagnostic reasoner programs can be written in different languages as long as the
translation is handled transparently to the two programs, i.e., in the binding layer or lower. When
publishing the interface, it is recommended that documentation of traceability of the elements of the
interface to the services specified in the standard be provided.

Figure 5—IEEE Std 1232-2002 interface layer

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 14 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

For example, consider the get_name service as specified in EXPRESS:

FUNCTION get_name
(ID_entity : entity_id):
name_type;

END_FUNCTION;

It has the name get_name, accepts one argument of entity_id, and returns a name_type. The
declaration of a corresponding binding function written in C would be

name_type get_name (entity_id ID_entity);

This might exist in a C header file and would provide the client code with an interface corresponding
exactly to that of the EXPRESS form. For example,

name_type get_name (entity_id ID_entity)
{

name_type name;
..
.

name ¼ . . .; /* Could be a call to a function in the */
/* server-side binding layer.*/

..

.

return name;
}

The following C data types could be defined to correspond to the AI-ESTATE types:

typedef char* name_type;
typedef void* entity_id;

For pure object-oriented languages such as JavaTM, the interface shall be presented as methods in
objects. It is suggested that the information model be used to start building the class hierarchy.

4.4 Extensibility

4.4.1 Extending information models

The data and knowledge specification should be sufficiently flexible to allow for differences in the
common tools that might use it, yet also remain formal and rigid enough to support porting of an
AI-ESTATE exchange file to any AI-ESTATE conformant application. This flexibility is achieved by
using the EXTEND schema. In general, an extended schema will not be usable by other AI-ESTATE
conformant applications. In applying the EXTEND schema, the following rules shall apply:

a) An IEEE Std 1232-2002 information model can be extended for any single model, hereafter
referred to as the extended model, by inclusion of one or more schemata that define all entities
used in the extended model. The schemata shall be legal EXPRESS and shall be syntactically
and semantically correct. Further, extensions shall not be used to rename or redefine data in the
standard schemata.

b) Data contained in a model definition with an EXTEND schema shall include only entity types
that are declared in IEEE Std 1232-2002, or are legal, previously defined extension entities, as
defined in subsequent requirements.

c) An EXTEND schema entity shall be declared to be a subtype of an entity defined in IEEE Std
1232-2002 or a previously defined EXTEND schema entity.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 15 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

d) A model defined with EXTEND schemata shall not cause an application to reach an invalid
conclusion when processing the model with the extended entities removed. In other words, any
conclusion drawn by a conformant reasoner using an extended model without the extended
entities will be consistent with the information contained in the nonextended model. Further,
consistency cannot be achieved through extension.

e) All schema, entity, type, function, and procedure identifiers declared within the EXTEND
schema shall begin with the prefix ‘‘extend_.’’

f) The EXTEND schema shall use the EXPRESS reference interface specification, ‘‘REFER-
ENCE FROM,’’ to allow visibility of the entities within the EXTEND schema.

The following is an example of EXTEND schema:

SCHEMA extend_schema_a;

REFERENCE FROM common_element_model (outcome, cost);

TYPE extend_attribute_type1 ¼ STRING;
END_TYPE;

TYPE extend_attribute_type2 ¼ REAL;
END_TYPE;

ENTITY extend_ent_a
SUBTYPE OF (cost);
att1 : extend_attribute_type1;
att2 : extend_attribute_type2;

END_ENTITY;

ENTITY extend_ent_b
SUPERTYPE OF (extend_ent_c);
SUBTYPE OF (outcome);
att3 : extend_attribute_type1;

END_ENTITY;

ENTITY extend_ent_c
SUBTYPE OF (extend_ent_b);
att4 : extend_attribute_type1;
att5 : SET OF [0:?] cost;

END_ENTITY;

END_SCHEMA;

4.4.2 Extending services

Any application can provide services beyond those defined in this standard; however, such services will
not be recognized as conforming to the standard.

4.5 Status codes

An AI-ESTATE diagnostic reasoner shall provide a means for its clients to determine the
success or failure of service requests. This shall be implemented by means of the exception

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 16 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

entity within the Dynamic Context Model. This entity will assume one of the following mnemonic
values:

Operation_completed_successfully
Nonexistent_data_element_requested
Missing_or_invalid_argument
Operation_out_of_sequence
Invalid_model_schema
Service_not_available
Unknown_exception_raised

The actual mapping will be provided by the implementation.

4.6 Conformance

This subclause defines the requirements for conformance with IEEE Std 1232-2002. It defines the
minimum capabilities that are required and what subsets and extensions are allowed. This standard
specifies minimal conformance for IEEE Std 1232-2002 conformant model development systems and
IEEE Std 1232-2002 conformant application runtime systems. It is expected that actual implementa-
tions will conform at levels beyond the minimal levels.

Extensions to the information models are only allowed through the facility of the EXTEND schema.
An EXTEND schema shall conform to the formal EXPRESS syntax and semantics found in ISO
10303-11:1994. These extensions shall be clearly identified as specified in 4.4 and should be submitted
to the IEEE D & MC subcommittee. An implementation may extend the data and knowledge
specification defined in this and subsequent clauses provided that the implementation clearly identifies
what extensions have been implemented.

For an application to be IEEE Std 1232-2002 conformant, the specific elements of the standard to
which the application conforms shall be specified and published using the matrix in Table 1. Minimal
requirements for filling out this matrix are provided in 4.6.1 and 4.6.2.

Core model elements are those elements in the information model that exist as required attributes of
some other required entity within the information model. Enhanced model elements are those elements
in the information model that exist as optional attributes of required entities or as any kind of
attribute of optional entities within the information model. Core model management services are those
services that manipulate core entities in the information models. Enhanced model management
services are those services that manipulate enhanced entities in the information model. Core reasoner

Table 1—Conformance matrix format

CEM FTM DIM EDIM DCM

Model exchange Read core model elements

Write core model elements

Read enhanced model elements

Write enhanced model elements

Application services Core model management services

Enhanced model management services

Core reasoner manipulation services

Enhanced reasoner manipulation services

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 17 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

services are those reasoner manipulation services listed within the standard as ‘‘required,’’ and
enhanced reasoner services are those reasoner manipulation services listed within this standard as
‘‘optional.’’

To claim conformance to core model element exchange, at a minimum the core models shall include at
least one of the FTM, DIM, EDIM, or DCM in addition to the CEM.

To claim conformance to core model management services, at a minimum the core services shall
include at least those for one of the FTM, DIM, EDIM, or DCM in addition to those for the CEM.

To claim conformance to enhanced model element exchange, the corresponding core model exchange
conformance shall also be claimed. When claiming conformance to enhanced model exchange, the
specific enhanced elements shall be listed.

To claim conformance to reasoner manipulation services, one indicates conformance under the DCM.

To claim conformance to the enhanced services, the corresponding core service conformance shall also
be claimed. When claiming conformance to enhanced services, the specific services shall be listed.

Note that certain services that operate on elements of the DCM depend on the reasoner being in the
proper state and may depend on other services having been performed first. State dependence tables
are provided in 4.7 (Table 4 and Table 5).

4.6.1 Minimal model development conformance

To claim minimal conformance to IEEE Std 1232-2002 for model development, a conformance matrix
containing at least the following shall be provided, as shown in Table 2.

4.6.2 Minimal runtime environment conformance

To claim minimal conformance to IEEE Std 1232-2002 for the application runtime environment, a
conformance matrix containing at least the items listed in Table 3 shall be provided.

4.7 Service order dependence

The basic execution model for an AI-ESTATE conformant diagnostic reasoner assumes the ability to
manipulate the Dynamic Context Model (DCM) to maintain reasoner state and follows the high-level
state diagram shown in Figure 6.

Table 2—Sample conformance model matrix

CEM FTM DIM EDIM

Read/write core model
elements

All model elements All model elements for at least one model shall be
specified

Read/write enhanced model
elements

Specify which.model
elements

N/Aa

aNot applicable.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 18 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Initially, the reasoner will be in the state indicated by ‘‘No Session.’’ From this state, a process is
started wherein a session within the DCM is created. Upon initiation of the process, the state
transitions to ‘‘Session Started.’’ At this point, for reasoning to occur, the reasoner creates a step
within the DCM and attaches that step to the session. The state then transitions to ‘‘Step Created.’’
From this state, tests are selected, sent to the test system or monitored from a test system, and test
information is captured. Once the test information is captured, the resulting test outcomes are applied
and the state of the DCM is updated to reflect any inferences drawn. At the same time, the state
transitions to ‘‘Step Performed.’’ If additional testing is required, another step is created, and the state
transitions back to ‘‘Step Created.’’ Otherwise, the session and diagnostic process can be closed, and
the state returns to ‘‘No Session.’’ Note that at any point in the process, the session can be closed with
the state transitioning directly to ‘‘No Session.’’

Throughout a diagnostic session, the current step in the session shall be identified as the last
instantiated step in that session. All services related to the DCM are executed within the context of the
associated session. For a given reasoner, one and only one DCM can be instantiated at a time.

Table 3—Sample runtime conformance matrix format

CEM FTM DIM EDIM DCM

Core model management services All services All services for at least one model
shall be specified

All services

Enhanced model management
services

Specify which
services

N/Aa Specify
which
services

Specify
which
services

Specify which
services

Core reasoner manipulation services N/Aa All services

Enhanced reasoner manipulation
services

N/Aa Specify which
services

aNot applicable.

Figure 6—Execution model for an AI-ESTATE conformant diagnostic reasoner

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 19 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

The availability of services is dependent on the reasoner state at any given time. For instance, while
reasoning one cannot alter models other than the DCM. The definition of legal states and order
dependence of the services defined within this standard are given in the service dependence matrix,
shown in Table 4 and Table 5.

Table 4—Core model (CEM, FTM, DIM, EDIM) management services

Service State Subclause Note

create_hentitytypei no-session 6.1.1

delete (ID_hentitytypei : entity_id) no-session 6.1.2

get_hattributenamei all 6.1.3

put_hattributenamei no-session 6.1.4

get_hattribute_namei_count (ID_entity : entity_id) no-session 6.1.5

does_hattribute_namei_exist (ID_entity : entity_id) no-session 6.1.6

get_nth_hattribute_namei all 6.1.7.1

get_last_hattribute_namei all 6.1.7.2

put_nth_hattribute_namei no-session 6.1.7.3

put_last_hattribute_namei no-session 6.1.7.4

insert_in_hattributenamei_list �no-sessiona 6.1.8.1

append_to_hattributenamei_list �no-sessiona 6.1.8.2

remove_from_hattributenamei_list �no-sessiona 6.1.8.3

Add_to_hattributenamei_set no-session 6.1.9.1

remove_from_hattributenamei_set no-session 6.1.9.2

get_type hattributename i all 6.1.10

aThe designation ‘‘�no-session’’ means all states other than ‘‘no-session’’.

Table 5—Dynamic core model management services. A state dependence column is
omitted since all services are available in all states

Service Subclause

create_hentitytypei 6.1.1

delete (ID_hentitytypei : entity_id) 6.1.2

get_hattributenamei 6.1.3

put_hattributenamei 6.1.4

get_hattribute_namei_count (ID_entity : entity_id) 6.1.5

does_hattribute_namei_exist (ID_entity : entity_id) 6.1.6

get_nth_hattribute_namei 6.1.7.1

get_last_hattribute_namei 6.1.7.2

put_nth_hattribute_namei 6.1.7.3

put_last_hattribute_namei 6.1.7.4

insert_in_hattributenamei_list 6.1.8.1

append_to_hattributenamei_list 6.1.8.2

remove_from_hattributenamei_list 6.1.8.3

add_to_hattributenamei_set 6.1.9.1

remove_from_hattributenamei_set 6.1.9.2

get_type hattributenamei 6.1.10

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 20 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5. Models

This clause contains the specifications for all of the information models used within an AI-ESTATE
framework. Each of the models is defined using EXPRESS. A brief overview of EXPRESS and
EXPRESS-G can be found in Annex B of this standard.

(* EXPRESS Specification starts here. *)

(*

5.1 Common Element Model

The Common Element Model permits the definition of the form and relationships of systems under
test and tests at their most basic level. The diagnosis entity corresponds to a diagnostic conclusion
about the system under test. Tests are represented as test entities within the model.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_COMMON_ELEMENT_MODEL;
(*

5.1.1 Constant

EXPRESS specification:

*)
CONSTANT

no_fault :name_type:¼ 'No Fault';
END_CONSTANT;

(*

5.1.2 bound

This defines a type for specifying upper and lower bounds for numeric-based entities.

EXPRESS specification:

*)
TYPE bound ¼ REAL;
END_TYPE;

(*

5.1.3 confidence_value

This defines a type for specifying ‘‘default’’ confidence values. For most uncertainty-based systems,
default confidence is typically taken to be some number near 1.0.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 21 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
TYPE confidence_value ¼ REAL;
WHERE

range : (0.0 <¼ SELF) AND (SELF <¼ 1.0);
END_TYPE;

(*

Formal propositions:

range : The range of legal values for confidence is restricted, and the actual value is restricted
to lie within this legal range.

5.1.4 cost_value

This defines a type for associating predicted values with a numeric attribute.

EXPRESS specification:

*)
TYPE cost_value ¼ REAL;
END_TYPE;

(*

5.1.5 description_type

This type defines means for associating descriptive text with an entity within the model.

EXPRESS specification:

*)
TYPE description_type ¼ STRING;
END_TYPE;

(*

5.1.6 name_type

This type defines a means for associating an identifying name with an entity in the model.

EXPRESS specification:

*)
TYPE name_type ¼ STRING;
END_TYPE;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 22 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.7 non_negative_integer

EXPRESS specification:

*)
TYPE non_negative_integer ¼ INTEGER;
WHERE

non_negative: (SELF >¼ 0);
END_TYPE;

(*

Formal propositions:

non_negative : Ensures that the value is not less than zero.

5.1.8 cost_type

This defines a type for categorizing a cost attribute used to optimize the diagnostic process.

EXPRESS specification:

*)
TYPE cost_type ¼ ENUMERATION OF
(USER_DEFINED_COST,
PERFORMANCE,
SETUP,
ACCESS,
REENTRY);

END_TYPE;
(*

5.1.9 diagnosis_value

This defines a type that enables specification of the type of outcome associated with a diagnosis. For a
particular diagnosis, the set of outcomes shall include, at a minimum, GOOD and CANDIDATE.
Further, no more than one of each is permitted.

EXPRESS specification:

*)
TYPE diagnosis_value ¼ ENUMERATION OF
(GOOD,
CANDIDATE,
USER_DEFINED_DIAGNOSIS_OUTCOME,
DIAGNOSIS_NOT_KNOWN);

END_TYPE;
(*

5.1.10 goal

Type goal defines an enumeration of possible optimization criteria used to guide diagnosis. Example
criteria include minimum cost, minimum expected time, and minimum number of tests.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 23 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
TYPE goal ¼ ENUMERATION OF
(MINIMUM_TESTS,
MINIMUM_NON_TIME_COST,
MINIMUM_TIME_COST,
MINIMUM_EXPECTED_NON_TIME_COST,
MINIMUM_EXPECTED_TIME_COST,
USER_DEFINED_OPTIMIZATION);

END_TYPE;
(*

5.1.11 non_time_unit

This type defines legal units for non-time-related costs. Non-time costs are typically incurred in terms
of monetary amounts; however, the user-defined value allows for other types of non-time costs to be
included.

EXPRESS specification:

*)
TYPE non_time_unit ¼ ENUMERATION OF
(USER_DEFINED_NON_TIME,
U_S_DOLLAR,
POUND_STERLING,
YEN,
EURO,
COUNT);

END_TYPE;
(*

5.1.12 role

This type defines the role associated with a purpose in the required context of a hierarchical element.

EXPRESS specification:

*)
TYPE role ¼ ENUMERATION OF
(TRAINING,
VERIFICATION,
SCHEDULED_MAINTENANCE,
MAINTENANCE_ACTION,
READY_FOR_ISSUE,
USER_DEFINED_ROLE);

END_TYPE;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 24 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.13 severity_category

Enumerated type severity_category is used to assign one of four standard values to the severity
attribute. Values assigned are one of CATASTROPHIC, CRITICAL, MARGINAL, or MINOR (in
decreasing order of severity). Note that this can be used in conjunction with failure probability
information (derived from failure rate) to determine the criticality of a diagnosis.

EXPRESS specification:

*)
TYPE severity_category ¼ ENUMERATION OF

(CATASTROPHIC,
CRITICAL,
MARGINAL,
MINOR);

END_TYPE;
(*

5.1.14 test_value

Type test_value is used to characterize outcomes that are associated with a test.

EXPRESS specification:

*)
TYPE test_value ¼ ENUMERATION OF
(PASS,
FAIL,
TEST_NOT_KNOWN,
TEST_NOT_AVAILABLE,
USER_DEFINED_TEST_OUTCOME);

END_TYPE;
(*

5.1.15 time_basis

This type permits specification of the basis for recording time-related information. Specifically, it
permits specification of operating time, clock time, or some user-defined version of time.

EXPRESS specification:

*)
TYPE time_basis ¼ ENUMERATION OF
(NOT_KNOWN,
OPERATING_TIME,
CLOCK_TIME,
USER_DEFINED_BASIS);

END_TYPE;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 25 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.16 time_unit

This type defines legal units for time-related costs. The most common units of time (as derived from
IEEE Std 716TM-1995 [B9], which is referred to as the ATLAS standard) are specified; however, the
user-defined value allows for other types of time costs to be included.

EXPRESS specification:

*)
TYPE time_unit ¼ ENUMERATION OF
(USER_DEFINED_TIME,
HOURS,
MINUTES,
SECONDS,
MSEC,
USEC,
NSEC,
PSEC);

END_TYPE;
(*

5.1.17 action

Entity action is a specific action taken either to test or repair an item. Actions are the primary
entities against which costs are associated. Ultimately, the diagnosis and repair processes are
concerned with optimizing the sequence of actions required to return a unit to service.

EXPRESS specification:

*)
ENTITY action;

has_name : name_type;
has_description : description_type;
has_cost : OPTIONAL SET [1:?] OF cost;
required_resource : OPTIONAL SET [1:?] OF resource;
action_frequency : OPTIONAL frequency;
order_constraint : OPTIONAL order_operator;

UNIQUE
one_name : has_name;

END_ENTITY;
(*

Attribute definitions:

has_name : Provides a unique name for the action.
has_description : Provides a description of the action.
has_cost : A set of costs associated with the action represented by this entity; the

set is optional but, if specified, shall include at least one cost attribute.
required_resource : Identifies the resources required to perform a given action. This

attribute is optional with a minimum cardinality of one, should
it exist.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 26 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

action_frequency : Specifies, for periodic actions, how frequently a given action needs to
be performed.

order_constraint : Attribute order_constraint identifies an ordering precondition
that must be satisfied for a particular action to be performed.

5.1.18 atom

Entity atom is a primitive element within the first-order logic. An atom can be either a constant (e.g.,
TRUE, FALSE, or some number) or a variable that takes on some value. This is a subtype of
logic_element and a supertype of one of variable or const.

EXPRESS specification:

*)
ENTITY atom

ABSTRACT SUPERTYPE OF (ONEOF(variable, const))
SUBTYPE OF(logic_element);

END_ENTITY;
(*

5.1.19 const

A constant within the first-order logic. This is a subtype of atom and has an associated value.

EXPRESS specification:

*)
ENTITY const

SUBTYPE OF(atom);
constant_value : name_type;

END_ENTITY;
(*

Attribute definitions:

constant_value : Specifies the particular value to be taken on by a constant.

5.1.20 cost

Costs are categorized by the type of cost to which they relate. One dimension of the cost set identifies
whether the cost is a measure of time in seconds (or some other unit), or if it is a calculated cost. A time-
related cost is a measure of the time it takes to perform a task. A non-time-related cost is an expense that
is computed, perhaps in financial terms or by an objective function. The second dimension to the cost
group is based on the task to which the cost pertains: performance, setup, access, re-entry.

Each cost has an associated unit to enable consistent processing of included values. Two types of units
are defined as enumerated types and include time_unit and non_time_unit. Time_unit is an
enumerated type that defines the time units to be associated with a time-related cost. non_time_unit

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 27 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

is an enumerated type covering predominant international currencies and defines types of cost units to be
associated with non_time_related_costs.

EXPRESS specification:

*)
ENTITY cost

ABSTRACT SUPERTYPE OF (ONEOF(time_cost, non_time_cost));
cost_element : OPTIONAL cost_type;
upper : OPTIONAL bound;
lower : OPTIONAL bound;
predicted_value : OPTIONAL cost_value;
criterion : SET [1:?] OF cost_category;

WHERE
valid_bound : NOT(EXISTS(upper)) OR

NOT(EXISTS(lower)) OR
(lower <¼ upper);

valid_upper_bound : NOT(EXISTS(predicted_value)) OR
NOT(EXISTS(upper)) OR

(predicted_value <¼ upper);
valid_lower_bound : NOT(EXISTS(predicted_value)) OR

NOT(EXISTS(lower)) OR
(lower <¼ predicted_value);

END_ENTITY;
(*

Attribute definitions:

cost_element : An attribute that specifies what type of cost is being defined. The type is
an enumeration consisting of user_defined, performance, setup, access, and
re-entry. One of these cost types shall be specified.

upper : An optional attribute providing the nominal upper bound for the value of the
cost entity.

lower : An optional attribute providing the nominal lower bound for the value of the
cost entity.

predicted_value : An attribute providing the nominal, expected, or some other predicted value
for the cost entity.

criterion : Attribute criterion identifies the cost criterion that will be used to classify
the cost parameter. For example, criterion can identify skill level as a non-
time cost. This attribute is a set because a particular cost item can represent
multiple criteria.

Formal propositions:

valid_bound : When they exist, the lower and upper attributes are constrained to values
such that the value of the lower attribute is less than or equal to the
upper attribute. This constraint permits only one of the bounds to exist.

valid_upper_bound : When they exist, the expected_value and upper attributes are
constrained to values such that the value of the expected_value
attribute is less than or equal to the upper attribute.

valid_lower_bound : When they exist, the expected_value and lower attributes are
constrained to values such that the value of the lower attribute is less
than or equal to the expected_value attribute.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 28 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.21 cost_category

EXPRESS specification:

*)
ENTITY cost_category;

description : description_type;
name : name_type;

UNIQUE
one_name : name;

END_ENTITY;
(*

Attribute definitions:

description : Attribute description is used to provide an elaborated description of what the
cost category is.

name : Attribute name provides a means for identifying the cost category.

5.1.22 cost_rate

In addition to providing basic time and cost units, it may be necessary to associate a cost_rate with
an entity (e.g., resource). The cost_rate attribute defines a ratio of non-time cost to some unit of
time and can be used, e.g., to specify labor rates or rental rates.

EXPRESS specification:

*)
ENTITY cost_rate;

time_cost_unit : time_unit;
denominator : cost_value;

WHERE
denominator_is_non_zero : SELF.denominator <> 0;

END_ENTITY;
(*

Attribute definitions:

time_cost_unit : An attribute to provide the time units for computing the cost rate. In other
words, this attribute will provide the time part of cost per unit time.

denominator : An attribute that provides a divisor for the cost_rate, thus permitting
values other than unity.

Formal propositions:

denominator_is_non_zero : Since the cost_rate entity defines a ratio that permits
specification of the denominator, this rule constrains
the denominator to be nonzero, thus preventing dividing
by zero.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 29 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.23 diagnosis

Diagnosis can be used for the representation of a lattice of diagnostic conclusions. Typically, a
diagnosis consists of failures or fault. The diagnoses can be interconnected in a lattice to classify
constituent units, e.g., by function. This construct provides a generalized grouping mechanism for
the constituents of the unit under test and their failure modes. The diagnosis lattice resulting from using
a structure of these entities shall not be cyclic, in the sense that no diagnosis be an ancestor of itself.

Example: A diagnosis might be of system under test #4 (flight computer), consisting of a diagnosis
of BOARD #1 (A/D converter), BOARD #2 (CPU), BOARD #3 (Display), etc. A diagnosis of
BOARD #3 may consist of diagnoses of CHIP #1, CHIP #2, CHIP #3, and all may be at different
levels.

EXPRESS specification:

*)
ENTITY diagnosis

SUPERTYPE OF (ONEOF(failure, fault))
SUBTYPE OF(hierarchical_element);
has_outcome : OPTIONAL SET [2:?] OF diagnosis_outcome;
has_rate : OPTIONAL failure_rate;
mechanism : OPTIONAL SET [1:?] OF failure_mode;
severity : OPTIONAL severity_category;

WHERE
outcomes_required_for_atomic_diagnosis : (SIZEOF(SELF.members) >

0) OR EXISTS(has_outcome);
minimal_outcomes : (NOT(EXISTS(has_outcome))) XOR

((SIZEOF(QUERY(tmp <* has_outcome |
tmp.standard_diagnosis_value ¼ GOOD))¼ 1) AND

(SIZEOF(QUERY (tmp <* has_outcome |
tmp.standard_diagnosis_value ¼ CANDIDATE)) ¼ 1));

mechanism_at_leaves : NOT(EXISTS(mechanism)) OR (SIZEOF(members) ¼ 0);
faults_at_leaves :(NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.fault' IN

TYPEOF(SELF))) OR
(SIZEOF(members) ¼ 0);

children_same_type : QUERY(tmp <* SELF.members |
NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.diagnosis'

IN TYPEOF(tmp))) ¼ [];
END_ENTITY;

(*

Attribute definitions:

has_outcome : A set of two or more outcomes that are the expected outcomes of the
diagnosis. An outcome is a characterization of the logical value for the
corresponding truth or falsity of the diagnosis applying to the current
state. This attribute is shown to be optional; however, it is constrained
such that it is required if the diagnosis has no member diagnoses. Since
diagnosis outcomes are the basis for determining the final conclusions
in AI-ESTATE, outcomes shall be available.
NOTE—Diagnoses in the data model are not restricted to two outcomes; any number of

outcomes are permitted for a test, but at least two outcomes are required.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 30 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

has_rate : A value indicating the measure of the expected failure rate of the
diagnosis, i.e., the number of failures per time span. This value can be
converted to a probability of failure.

mechanism : Identifies the failure mode or modes associated with this diagnosis.
severity : Attribute severity associates a level of severity for the given

diagnosis. This attribute is optional since not all models need to use
this information. Criticality can be derived by selecting all
of the diagnoses at a particular severity level and then ranking
them by their failure probabilities, which are derived from the failure
rates.

Formal propositions:

outcomes_required_for_atomic_diagnosis : Determines whether or not outcomes
are associated with a diagnosis and
requires that an atomic diagnosis (i.e., a
diagnosis for which there are no sub-
diagnoses) have outcomes. The cardin-
ality on the diagnosis_outcome set
ensures that, should outcomes exist,
there are at least two of them. Note that
nonatomic diagnoses are permitted, but
not required, to have diagnostic out-
comes.

minimal_outcomes : Requires that either the set of outcomes
not be defined, or that the set of
outcomes include, at a minimum, ex-
actly one outcome of value GOOD and
exactly one outcome of value CANDI-
DATE.

mechanism_at_leaves : This rule ensures that a mechanism
(i.e., a cause) for a given diagnosis to be
true only occurs at the leaf of the
diagnosis lattice. Note that the leaf is
not required to provide the mechanism.

faults_at_leaves : This rule ensures that a diagnosis of
type fault can only exist at the leaf of
the diagnosis lattice. Note that the leaf
of the lattice is not required to be of
type fault.

children_same_type : Ensures that all children (i.e., members)
of a diagnosis are also of type diagnosis.

5.1.24 diagnosis_outcome

Entity diagnosis_outcome is a set of outcomes associated with any diagnosis in a model.
Diagnosis outcomes associate discrete values to ranges of states in the diagnosis definition and form
the basis for the diagnostic process. For any given diagnosis in an AI-ESTATE model, at least two
outcomes shall be defined. Thus, at a minimum, outcomes corresponding, e.g., to good/candidate
should be provided with a given specification. At times more than two outcomes may be appropriate,
e.g., good/suspect/candidate/bad.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 31 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY diagnosis_outcome

SUBTYPE OF(outcome);
standard_diagnosis_value : diagnosis_value;

INVERSE
for_diagnosis : diagnosis FOR has_outcome;

END_ENTITY;
(*

Attribute definitions:

standard_diagnosis_value : This attribute identifies whether the outcome is a standard
value from the perspective of traditional diagnostic
outcomes. In most model-based systems, the standard
values are GOOD and CANDIDATE. A third value,
USER_DEFINED_DIAGNOSIS_OUTCOME, is used to
indicate whether additional outcomes have been defined.

for_diagnosis : Links the outcome to the specific diagnosis with that
outcome.

5.1.25 diagnostic_model

Diagnostic reasoning involves drawing conclusions from test outcomes. The relationships between test
outcomes and diagnostic conclusions are defined in diagnostic models. A diagnostic model is a
collection of entities that provide information about the system under test. A diagnostic_model
refers to some AI-ESTATE conformant model as specified in this standard. Entities from the
Common Element Model are referenced as required by those diagnostic models.

EXPRESS specification:

*)
ENTITY diagnostic_model;

name : name_type;
description : description_type;
model_element : SET [3:?] OF hierarchical_element;
orders_steps : OPTIONAL SET [1:?] OF order_operator;

UNIQUE
one_name : name;

WHERE
one_diagnosis_is_no_fault : (SIZEOF(QUERY(tmp <* model_element |

tmp.name ¼ 'no_fault')) ¼ 1);
element_is_rollup : element_rollup(SELF,SELF.model_element);

END_ENTITY;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 32 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

name : An attribute used to identify the entity uniquely.
description : Attribute used to provide an elaborated explanation of the model.
model_element : An attribute to identify the various model elements in a diagnostic model.

Model elements are any of the hierarchical elements as defined by the
information model (i.e., tests, diagnoses, repairs, resources, functions).

orders_steps : This attribute identifies an optional set of ordering operators to override
any optimization process that may be applied for diagnosis.

Formal propositions:

one_diagnosis_is_no_fault : This rule verifies that one of the diagnosis entities defined
in the model has a name that corresponds to the constant
no_fault. This rule ensures that any AI-ESTATE
conformant model explicitly defines a special diagnostic
conclusion indicating no fault found.

element_is_rollup : This rule verifies that all of the hierarchical elements refer-
enced at this level are defined as being part of this
model. There is a companion rule for the hierarchical
elements to ensure that they are listed in the rollup at this
level.

5.1.26 failure

A failure is a manifestation of a fault within a system. When considering a functional model, it is the
failure of the system under test to perform some intended function.

EXPRESS specification:

*)
ENTITY failure

SUBTYPE OF(diagnosis);
failed_item : OPTIONAL func;

END_ENTITY;
(*

Attribute definitions:

failed_item : Identifies the specific element (i.e., function) that has failed. This is a direct tie
to the functional part of the system associated with a diagnosis.

5.1.27 failure_mode

A failure mode is a specific mode or means by which a unit or system can fail. The specific failure mode
is associated, first with the diagnosis, then (by way of the appropriate subtype) to the item that has
failed.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 33 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY failure_mode;

name : name_type;
description : description_type;

UNIQUE
one_name : name;

END_ENTITY;
(*

Attribute definitions:

name : Used to identify the failure mode uniquely.
description : Attribute used to provide an elaborated explanation of what the failure mode is.

5.1.28 failure_rate

This entity indicates the rate of occurrence of a diagnosis (including its subtypes fault and failure). The
failure_rate can either be an actual observed value or an estimate. To specify failure_rate, a
time_basis shall be defined. Time_basis is used in the context of determining the computational
basis for failure rate statistics.

EXPRESS specification:

*)
ENTITY failure_rate;

description : description_type;
basis : time_basis;

END_ENTITY;
(*

Attribute definitions:

description : Attribute used to provide an elaborated explanation of the failure rate.
basis : An attribute to define the basis for computing the failure rate. In particular,

this attribute identifies if the failure_rate is computed based on
operation time or clock time.

5.1.29 fault

A fault is the physical cause of anomalous behavior within a system. A fault typically corresponds to
some physical breakdown in the system under test.

EXPRESS specification:

*)
ENTITY fault

SUBTYPE OF(diagnosis);
failed_item : OPTIONAL repair_item;

END_ENTITY;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 34 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

failed_item : Identifies the specific element (i.e., repair item) that has failed. This is a direct
tie to the physical part of the system associated with a diagnosis.

5.1.30 frequency

Frequency is the rate (i.e., the number of times something occurs per unit time).

EXPRESS specification:

*)
ENTITY frequency;

time_span : time_cost;
action_count : non_negative_integer;

END_ENTITY;
(*

Attribute definitions:

time_span : Attribute time_span identifies the span of time between periodic actions.
While this attribute is of type time_cost note that the semantics of this type
are identical to a time-related entity.

action_count : Attribute action_count identifies the number of times in a time span the
action is performed.

5.1.31 func

A function corresponds to any ‘‘functional behavior’’ represented within a system. The func entity is
intended to provide a placeholder for functional information in the event the diagnostic or testability
model is function-oriented. Note the type of entity cannot be ‘‘function’’ since this is a reserved word
in EXPRESS.

EXPRESS specification:

*)
ENTITY func

SUBTYPE OF(hierarchical_element);

INVERSE
implemented_by : SET [1:?] OF repair_item FOR includes_function;

WHERE
children_same_type : QUERY(tmp <* SELF.members |

NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.func'
IN TYPEOF(tmp)))¼[];

END_ENTITY;
(*

Attribute definitions:

implemented_by : This attribute identifies the repair item or items used to implement a par-
ticular function within a system.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 35 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Formal propositions:

children_same_type : Ensures any children (i.e., members) of func are of type func.

5.1.32 hierarchical_element

A hierarchical element is an abstract entity containing a name, description, and associated lattice
structure. It is intended to roll up common attributes of entities such as test, diagnosis,
repair_item, func, and resource.

EXPRESS specification:

*)
ENTITY hierarchical_element

ABSTRACT SUPERTYPE OF (ONEOF(diagnosis, repair, resource, test, func,
repair_item));

name : name_type;
description : description_type;
members : SET OF hierarchical_element;
at_indenture_level : OPTIONAL level;
must_occur_in : SET OF required_context;

INVERSE
part_of_model : SET [1:?] OF diagnostic_model FOR model_element;
parents : SET OF hierarchical_element FOR members;

UNIQUE
one_name : name;

WHERE
graph_is_acyclic : element_dag(members,parents);
parent_level_consistent : ((NOT(EXISTS(at_indenture_level))) AND

(SIZEOF(QUERY(tmp<*parents|EXISTS(at_indenture_level)))¼
0)) XOR
(SIZEOF(QUERY (tmp <* parents |

(SELF.at_indenture_level¼ tmp.at_indenture_level)
OR

(SELF.at_indenture_level.predecessor ¼
tmp.at_ indenture_level))) ¼

SIZEOF(SELF.parents));
END_ENTITY;

(*

Attribute definitions:

name : An attribute used to identify uniquely the particular hierarchical
element.

description : Attribute used to provide an elaborated explanation of what the
hierarchical element is.

members : The set of constituent elements of which this entity is composed.
This attribute is required but the set can be empty (e.g., if the
element is at the lowest level of indenture).

at_indenture_level : Identifies the specific level of indenture for a particular hierarchical
element.

must_occur_in : Attribute must_occur_in provides a list of context items re-
quired for a hierarchical element to be considered. This attribute

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 36 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

is defined to be a set. If the set is empty, then the corresponding
hierarchical element is available in all contexts.

part_of_model : A pointer to a set of models that reference a given hierarchical
element. This attribute provides a mechanism for linking models
based on hierarchical elements identified during the diagnostic
process.

parents : The set of elements that have the current element as a member.
This attribute is required but the set can be empty (e.g., if the
element is at the highest level of indenture).

Formal propositions:

graph_is_acyclic : The structure of hierarchical_element is referred to as a
lattice and corresponds to a directed acyclic graph. In
other words, traversing the member relationships from a
hierarchical_element should not result in returning to
the same hierarchical_element. This constraint is
verified by using the function element_dag, which traverses
the hierarchical_element structure.

parent_level_consistent : This proposition ensures that either no indenture levels exist
from the hierarchy or that the indenture levels are consistent.
Specifically, the constraint is imposed that the level of the
parent elements are the same as the current element or are
predecessors to the current element.

5.1.33 level

This entity refers to the level of indenture for a particular hierarchical element. This defines a common
level for purposes of constraining diagnosis or analysis for testability and diagnosability assessment. A
total order of levels is defined for a particular model/system.

EXPRESS specification:

*)
ENTITY level;

name : name_type;
description : description_type;
successor : OPTIONAL level;

INVERSE
predecessor : level FOR successor;

UNIQUE
one_name : name;

WHERE
levels_distinct: (NOT(EXISTS(SELF.successor)) XOR

(SELF <> SELF.successor)) AND
(NOT(EXISTS(SELF.predecessor)) XOR
(SELF <> SELF.predecessor));

consistent_level: (NOT(EXISTS(SELF.predecessor)) XOR
(SELF ¼ SELF.predecessor.successor)) AND
(NOT(EXISTS(SELF.successor)) XOR
(SELF ¼ SELF.successor.predecessor));

no_repeats: levels_acyclic(SELF);
END_ENTITY;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 37 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

name : Specifies a unique name for the level of the hierarchical element. This attribute is
intended to provide a means of identifying levels for purposes of determining
applicability of tests, diagnoses, etc., within the model.

description : Attribute used to provide an elaborated explanation of what the level is.
successor : Identifies the ‘‘next’’ level in the total order of levels. This is optional in that the

final level will not have a successor.
predecessor : Identifies the ‘‘previous’’ level in the total order of levels when the previous level

exists.

Formal propositions:

levels_distinct : Ensures that a particular level is distinct from its successor or
predecessor level.

consistent_level : Ensures that the predecessor level points to the current level as
successor and that the successor level points to the current level
as predecessor.

no_repeats : Tests to see if the current entity has the same level appearing in
the successor chain. If so, it creates a cycle in the levels, which
is illegal.

5.1.34 logic_element

The entity logic_element identifies a particular element to be used in a logical expression. This is
an abstract supertype of atom (a primitive element within logic) and function (an n-ary term that
returns a single value).

EXPRESS specification:

*)
ENTITY logic_element

ABSTRACT SUPERTYPE OF (ONEOF(atom, logic_function));
label: name_type;

UNIQUE
one_label: label;

END_ENTITY;
(*

Attribute definitions:

label : Associates an identifying label to the logical element. This label corresponds to, e.g.,
variable names, function names, and predicate names.

5.1.35 logic_function

The entity logic_function is a function used in first-order logic. This is a subtype of
logic_element and a supertype of predicate.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 38 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY logic_function

SUBTYPE OF(logic_element);
argument : LIST OF logic_element;

END_ENTITY;
(*

Attribute definitions:

argument : Specifies a list of logic elements as arguments to the given logic_function.
Note that the argument list can be empty; however, an argument list is required.
The cardinality of set of arguments defines the arity of the function.

5.1.36 mode_of_operation

Entity mode_of_operation specifies a particular mode or state of operation for a unit or system.
For example, for an aircraft, modes of operation may correspond to weight-on-wheels or in-flight.

EXPRESS specification:

*)
ENTITY mode_of_operation;

name : name_type;
description : description_type;

UNIQUE
one_mode : name;

END_ENTITY;
(*

Attribute definitions:

name : Attribute name is a unique attribute used to identify the mode of operation.
description : Attribute description provides a textual description of the specific mode of

operation within which the system is being diagnosed.

5.1.37 non_time_cost

The non_time_cost construct represents cost attributes that are not time related and are computed.
Financial costs as well as costs computed from an objective function fall into this category. Objective
functions typically combine functions of weighted cost parameters that can be temporal, financial, or a
quantification of some other expense of the test. Units for objective function-based costs would
typically be defined as user_defined. The non_time_cost entity inherits all attributes from cost.

EXPRESS specification:

*)
ENTITY non_time_cost

SUBTYPE OF(cost);
non_time_cost_unit : non_time_unit;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 39 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

rate : OPTIONAL cost_rate;
END_ENTITY;

(*

Attribute definitions:

non_time_cost_unit : An attribute to define the non-time units associated with the non-
time-related cost.

rate : An optional attribute to provide a specific non-time cost to be as-
sociated with the rate. In other words, this attribute will provide the
cost part of cost per unit time.

5.1.38 order_operator

Logically equivalent to the STRIPS operator first formalized by Fikes and Nilsson [B1], this defines an
operator by which actions are taken within the test and diagnostic environment. The order operator
(as defined for STRIPS) includes a name, a set of preconditions (i.e., logical conditions that must be
satisfied for the operator to be applied), and a set of effects (i.e., modifications to the truth state of the
problem at hand). The intent is to use these operators in constructing a plan to perform a test and
diagnostic task. Order operators also correspond to actions in this model.

EXPRESS specification:

*)
ENTITY order_operator;

name : name_type;
description : description_type;
precondition : SET OF predicate;
effect : SET OF predicate;

INVERSE
implements_action : action FOR order_constraint;

UNIQUE
one_name : name;

END_ENTITY;
(*

Attribute definitions:

name : Identifies the name of the ordering operator.
description : Provides a textual description of the ordering operator.
precondition : Identifies a set of logical conditions that must be satisfied for the op-

erator to be applied. The set of preconditions corresponds to a
conjunction of the individual predicates.

effect : Identifies a set of logical effects on the truth state of the planning
problem (i.e., diagnostic problem). The effects are a conjuncted set
of predicates now assumed to be true.

implements_action : Associates the ordering operator with a specific action within the
model. Since actions have costs associated with them, this
relationship also facilitates optimal planning. Note that an action
can exist independent of an order operator (as indicated by the
OPTIONAL modifier); however, an order operator CANNOT exist
without an associated action.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 40 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.39 outcome

Associated with any test or diagnosis in a model is a set of outcomes. Outcomes associate discrete
values to ranges of measurements in the definition and form the basis for the diagnostic process. For
any given test or diagnosis in an AI-ESTATE model, at least two outcomes shall be defined. Thus, at a
minimum, outcomes corresponding, e.g., to pass/fail or good/candidate should be provided with a
given specification. At times, more than two outcomes may be appropriate, e.g., pass/fail-low/fail-high
or good/suspect/candidate/bad.

EXPRESS specification:

*)
ENTITY outcome

ABSTRACT SUPERTYPE OF (ONEOF(diagnosis_outcome, test_outcome));
name : name_type;
description : description_type;
confidence : OPTIONAL confidence_value;

UNIQUE
one_name : name;

END_ENTITY;
(*

Attribute definitions:

name : An attribute used to identify the outcome uniquely.
description : Attribute used to provide an elaborated explanation of what the outcome is.
confidence : A measure of the confidence in the test outcome based on characteristics of

performing the test. This measure is used for providing confidence measures
in the diagnoses.

5.1.40 predicate

A predicate is a special kind of function in which the assigned values are limited to either TRUE
or FALSE. This is one of the most common constructs used in sentences within the first-order logic.
A predicate is a subtype of logic_function.

EXPRESS specification:

*)
ENTITY predicate

SUBTYPE OF(logic_function);
END_ENTITY;

(*

5.1.41 purpose

Entity purpose specifies a given purpose for the context. In other words, it states the purpose for the
associated action (i.e., test, diagnosis, or repair).

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 41 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY purpose;

has_role : SET [1:?] OF role;
optimizer : SET [1:?] OF goal;
description : description_type;

END_ENTITY;
(*

Attribute definitions:

has_role : This attribute identifies the associated role of the context within which test/
diagnosis is occurring. For example, the role can be a maintenance test or a
verification test.

optimizer : Attribute optimizer identifies the specific optimization criterion or criteria
used to drive the diagnostic process.

description : Attribute description provides a textual description of the purpose of the
context.

5.1.42 repair

When a repair item has been identified, some repair shall be made to return the unit to service. This
entity associates a repair (with its various repair actions) to a repair item.

EXPRESS specification:

*)
ENTITY repair

SUBTYPE OF(hierarchical_element);
repair_action: LIST [1:?] OF action;

WHERE
children_same_type: QUERY(tmp <* SELF.members |

NOT('AI_ESTATE_COMMON_ ELEMENT_MODEL.repair'
IN TYPEOF(tmp))) ¼ [];

END_ENTITY;
(*

Attribute definitions:

repair_action : Identifies the sequence of actions required to repair the repair item. Note
that if preconditions need to be satisfied for execution of the repair, then an
order operator must be associated with at least the first action in the repair
action list containing the necessary preconditions.

Formal propositions:

children_same_type : Ensures that any children (i.e., members) of a repair are of type ‘‘repair.’’

5.1.43 repair_item

A diagnosis shall point to some part of the system to be adjusted, calibrated, repaired, replaced, etc. In
short, a diagnosis shall lead the maintainer to the object of the maintenance action. The ‘‘physical’’

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 42 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

entity in the system under test corresponding to the diagnosis (thus the entity diagnosis) is the entity
defined by repair item and identifies a failure mode of the system under test.

EXPRESS specification:

*)
ENTITY repair_item

SUBTYPE OF(hierarchical_element);
includes_function : OPTIONAL SET [1:?] OF func;
tested_by : SET OF test;
repaired_by : SET OF repair;

WHERE
children_same_type : QUERY(tmp <* SELF.members |

NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.repair_item'
IN TYPEOF(tmp)))¼[];

END_ENTITY;
(*

Attribute definitions:

includes_function : This attribute identifies the set of functions that are performed by a
given repair item.

tested_by : This attribute identifies a set (possibly empty) of tests available to test
a particular repair item.

repaired_by : This attribute identifies a (possibly empty) set of repairs available to
repair a given repair item.

Formal propositions:

children_same_type : Ensures any children (i.e., members) of a repair_items are of type
repair_item.

5.1.44 required_context

The entity required_context specifies the context required for a diagnostic problem (or portion of
a problem) to be valid. Diagnostic models are generally created with a particular context (or contexts)
in mind. This entity is a supertype of required_test_context AND required_diagnosis_
context AND required_repair_context.

EXPRESS specification:

*)
ENTITY required_context

SUPERTYPE OF (required_test_context AND required_diagnosis_context AND
required_repair_context);

name : name_type;
description : description_type;
occurs_in : SET OF mode_of_operation;
has_purpose : purpose;

UNIQUE
one_name: name;

END_ENTITY;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 43 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

name : Attribute name provides a unique identifier for a particular required context
within the model.

description : Attribute description provides a means of associating descriptive text with
the required context.

occurs_in : Identifies the relevant operational mode within which the particular
maintenance actions are being performed.

has_purpose : Attribute has_purpose identifies the purpose of actions performed in the
given context.

5.1.45 required_diagnosis_context

Entity required_diagnosis_context is a subtype of required_context and specifies the
diagnosis context required for a particular diagnosis (or group of diagnoses) within a model to be valid.

EXPRESS specification:

*)
ENTITY required_diagnosis_context

SUBTYPE OF(required_context);
END_ENTITY;

(*

5.1.46 required_repair_context

Entity required_repair_context is a subtype of required_context and specifies the repair
context required for a particular repair item (or group of repair items) within a model to be repaired.

EXPRESS specification:

*)
ENTITY required_repair_context

SUBTYPE OF(required_context);
END_ENTITY;

(*

5.1.47 required_test_context

Entity required_test_context is a subtype of required_context and specifies the test
context required for a particular test (or group of tests) within a model to be performed.

EXPRESS specification:

*)
ENTITY required_test_context

SUBTYPE OF(required_context);
END_ENTITY;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 44 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.48 resource

Any given action in the maintenance process is likely to require some external resource to perform that
action. For example, a test could require test equipment and expendable resources, and a repair action
could also require instrumentation, tools, and expendable resources. For any given action
corresponding to test, a set of resources could be required.

EXPRESS specification:

*)
ENTITY resource

SUBTYPE OF(hierarchical_element);
has_cost: OPTIONAL SET [1:?] OF cost;

WHERE
children_same_type : QUERY(tmp <* SELF.members |

NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.resource'
IN TYPEOF(tmp))) ¼ [];

END_ENTITY;
(*

Attribute definitions:

has_cost : This attribute (optionally) associates a set of costs with this particular resource.

Formal propositions:

children_same_type : Ensures that any children (i.e., members) of a resource are of type
resource.

5.1.49 test

A test typically involves a stimulus that is either supplied or known at the start of the test, and a set of
observed responses. The interpretation of the responses is provided in the form of a test outcome. The
test entity provides a means of defining the logical structure of testing in a diagnostic model and
defines a part–whole hierarchy. A given test can be a member of a collection of tests at another level.
Sequencing constraints for performing these tests are included in a separate constraint specification or
are accessible elsewhere within the AI-ESTATE implementation. Tests are identified symbolically
within the specification.

Details concerning the execution of a specific test are contained in other specifications that can be
referenced symbolically but are not otherwise included in this specification.

EXPRESS specification:

*)
ENTITY test

SUBTYPE OF(hierarchical_element);
has_outcome : OPTIONAL SET [2:?] OF test_outcome;
test_action : LIST [1:?] OF action;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 45 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

WHERE
outcomes_required_for_atomic_test: (SIZEOF(SELF.members) > 0) OR

EXISTS(has_outcome);
minimal_outcomes: (NOT(EXISTS(has_outcome))) XOR

((SIZEOF(QUERY(tmp <* has_outcome |
tmp.standard_test_value¼PASS))¼1) AND

(SIZEOF(QUERY(tmp<*has_outcome |
tmp.standard_test_value ¼ FAIL)) ¼ 1));

children_same_type: QUERY(tmp <* SELF.members |
NOT('AI_ESTATE_COMMON_ELEMENT_MODEL.test'
IN TYPEOF(tmp))) ¼ [];

END_ENTITY;
(*

Attribute definitions:

has_outcome : A set of two or more outcomes that are the expected outcomes of the
test. An outcome is a characterization of the observed response to the
stimulus of a test. This attribute is shown to be optional; however, it is
constrained such that it is required if the test has no member tests. Since
test outcomes are the basis for diagnostic reasoning in AI-ESTATE,
outcomes shall be available.
NOTE—Tests in the data model are not restricted to two outcomes; any number of outcomes

are permitted for a test, but at least two outcomes are required.

Example: All tests of a system might be two-output tests with outcomes
pass and fail, and have standard confidences for each outcome across
all tests. In a model of such a system, two instances of the outcome
entity would exist—one for pass and one for fail. All tests within the model
would reference the same set of two outcomes in the test_outcome
attribute.

test_action : Identifies the sequence of actions required to perform the associated test.
Note that if preconditions need to be satisfied for execution of the test, then
an order operator must be associated with at least the first action in the test
action list containing the necessary preconditions.

Formal propositions:

outcomes_required_for_atomic_test : Determines whether outcomes are associated
with a test and requires that an atomic test
(i.e., a test for which there are no subtests) have
outcomes. The cardinality on the test_
outcome set ensures that, should outcomes
exist, there are at least two of them. Note that
nonatomic test are permitted, but not required,
to have test outcomes.

minimal_outcomes : Requires either that the set of outcomes not
be defined, or that the set of outcomes
include, at a minimum, exactly one of outcome
of value PASS and exactly one outcome of
value FAIL.

children_same_type : Ensures that any children (i.e., members) of a
test are of type ‘‘test.’’

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 46 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.50 test_outcome

Associated with any test in a model is a set of test outcomes. Test outcomes associate discrete
values to ranges of measurements in the test definition and form the basis for the diagnostic
process. For any given test in an AI-ESTATE model, at least two outcomes shall be defined.
Thus, at a minimum, outcomes corresponding, e.g. to pass/fail should be provided with
a given specification. At times more than two outcomes may be appropriate, e.g., pass/fail-low/
fail-high.

EXPRESS specification:

*)
ENTITY test_outcome

SUBTYPE OF(outcome);
standard_test_value : test_value;

INVERSE
for_test : test FOR has_outcome;

END_ENTITY;
(*

Attribute definitions:

standard_test_value : This attribute identifies whether or not the outcome is a
standard value from the perspective of traditional test out-
comes. In most model-based systems, the standard values
are PASS and FAIL. A third value, USER_DEFINED_TEST_
OUTCOME, is used to indicate whether additional outcomes
have been defined.

for_test : Links the outcome to the specific test with that outcome.

5.1.51 time_cost

The time_cost construct represents cost attributes that are time-related. The time_cost entity
inherits all attributes from cost.

EXPRESS specification:

*)
ENTITY time_cost

SUBTYPE OF(cost);
time_cost_unit : time_unit;

END_ENTITY;
(*

Attribute definitions:

time_cost_unit : An attribute to define the time units associated with the time-
related cost.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 47 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.52 variable

An atom within first-order logic that has the feature of being able to have a value assigned to it. It is a
subtype of atom.

EXPRESS specification:

*)
ENTITY variable

SUBTYPE OF(atom);
END_ENTITY;

(*

5.1.53 element_dag

EXPRESS specification:

This function examines the set of hierarchical elements in a model and ensures that no child element is
also a parent. In other words, when traversing the child relations, it ensures that no cycles exist in the
model.

*)
FUNCTION element_dag

(members:SET [0:?] OF hierarchical_element;
parents:SET [0:?] OF hierarchical_element):LOGICAL;
LOCAL

grand_parents : SET [0:?] OF hierarchical_element :¼ [];
END_LOCAL;

IF (SIZEOF(parents) ¼ 0) THEN
RETURN(TRUE);

END_IF;
REPEAT i:¼ LOINDEX(members) TO HIINDEX(members);

IF (members[i] IN parents) THEN
RETURN(FALSE);

ELSE
REPEAT j:¼ LOINDEX(parents) TO HIINDEX(parents);

grand_parents:¼ grand_parents þ parents[j].parents;
END_REPEAT;
RETURN(element_dag(members,grand_parents));

END_IF;
END_REPEAT;

END_FUNCTION;
(*

5.1.54 element_rollup

EXPRESS specification:

This function examines the set of hierarchical elements in a model and ensures that, when considering
each of the ‘‘parts’’ (i.e., children) of a hierarchical element, these children are represented in the

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 48 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

top-level set. Thus, this function ensures that the set of hierarchical elements listed with a model is a
‘‘rollup’’ of all of the hierarchical elements in the model.

*)
FUNCTION element_rollup
(mdl:diagnostic_model;elem:SET [1:?] OF hierarchical_element):BOOLEAN;
LOCAL

check : BOOLEAN;
END_LOCAL;

REPEAT i :¼ LOINDEX(elem) TO HIINDEX(elem);
check : ¼ FALSE;
REPEAT j:¼ LOINDEX(elem[i].part_of_model) TO

HIINDEX(elem[i].part_of_model);
IF (elem[i].part_of_model[j] ¼ mdl) THEN

check : ¼ TRUE;
END_IF;

END_REPEAT;
IF (check ¼ FALSE) THEN

RETURN(FALSE);
END_IF;

END_REPEAT;
RETURN(TRUE);

END_FUNCTION;
(*

5.1.55 levels_acyclic

EXPRESS specification:

This function ensures that, for a particular entity occurring at a level, the chain of levels does not cycle
back on itself.

*)
FUNCTION levels_acyclic

(lvl:level):BOOLEAN;
LOCAL

tst: BOOLEAN: ¼ TRUE;
target: level: ¼ lvl;

END_LOCAL;

REPEAT WHILE (EXISTS(lvl.successor));
IF (target ¼ lvl.successor) THEN

tst: ¼ FALSE;
END_IF;
lvl: ¼ lvl.successor;

END_REPEAT;
RETURN(tst);

END_FUNCTION;
END_SCHEMA;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 49 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.1.56 Common Element Model EXPRESS-G diagrams

name_type

3,1
cost

STRING

1,1(1,2,3,4,5)

3,2
time_cost

1,1
name_type

*diagnostic_model

3,1
cost

INTEGER

description_type

*resource

1,2(1,2,3,4,5)

1,6(2)

1,2
description_type

1,5(2)

4,2
order_operator

2,1
hierarchical_element

*test

4,2
order_operator

frequency

2,4
test_outcome

1,4(4)

action

*repair

*non_negative_integer

1,3(2)

*name

description

model_element S[3:?]

(INV) part_of_model S[1:?]

has_outcome S[2:?]
(INV) for_test

test_action L[1:?]

*has_name

has_description

has_cost S[1:?]

required_resource S[1:?]

has_cost S[1:?]

action_frequency

time_span

action_count

order_constraint

repair_action L[1:?]

orders_steps S[1:?]

Figure 7—Common Element Model EXPRESS-G: Diagram 1 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 50 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1

1

1,1
name_type

1,1
name_type

1,1
name_type

1,2
description_type

1,2
description_type

1,2
description_type

(ABS)
*hierarchical_element

*confidence_value

*level

4,1
diagnosis *func

REAL

2,2(4)*repair_item

test_value

1,3
test

test_outcome

(ABS)
outcome

2,4(1)

2,1(1)

diagnosis_outcome

1,5
resource

diagnosis_value

2,5(4)

1,3
test

5,1
required_context

1,6
repair

1,6
repair

2,3(4)
(INV) implemented_by S[1:?]

includes_function S[1:?]

tested_by S[0:?]

standard_diagnosis_value

*name

description

confidence

standard_test_value

repaired_by S[0:?]

*name description

members S[0:?]
(INV) parents S[0:?] at_indenture_level

*name

description

successor
(INV) predecessor

must_occur_in S[0:?]

Figure 8—Common Element Model EXPRESS-G: Diagram 2 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 51 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1

1,1
name_type

1,2
description_type

(ABS)
*cost

*cost_rate

cost_type

time_cost

3,1(1)

time_unit

3,2(1)

cost_value

bound

non_time_cost

REAL

non_time_unit

cost_category

time_cost_unit non_time_cost_unit

rate

time_cost_unit

denominator

cost_element

upper

lower

predicted_value

criterion S[1:?]

description

*name

Figure 9—Common Element Model EXPRESS-G: Diagram 3 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 52 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1

1

1

1,1
name_type

1,1
name_type

1,1
name_type

1,1
name_type

1,2
description_type

1,2
description_type

1,2
description_type

*diagnosis

(ABS)
atom

failure_rate

failure

4,2(1)

2,2
func

variable

failure_mode 2,5
diagnosis_outcome

const

1,4
action

order_operator

2,3
repair_item

4,1(2)

fault

predicate

logic_function

(ABS)
logic_element

time_basis

severity_category

failed_item

(INV) for_diagnosis
has_outcome S[2:?]

(INV) implements_action FOR order_constraint

*name description

precondition S[0:?] constant_value

*label argument L[0:?]

effect S[0:?]

failed_item

has_rate

description basis

mechanism S[1:?]

*name

description

severity

Figure 10—Common Element Model EXPRESS-G: Diagram 4 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 53 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.2 Diagnostic Inference Model

The AI-ESTATE Diagnostic Inference Model (DIM) schema is defined below. The constructs of this
model were originally derived from the approach to system test and diagnosis known as information
flow modeling or dependency modeling. The model utilizes many of the constructs defined in the
AI-ESTATE Common Element Model.

An inference is a logical relationship between two tests or between a test and a diagnosis. Given a
particular test outcome, inferences about other tests and/or diagnoses of the system can be made. Tests
offer a view of the associated fault, function, or diagnosis.

In the AI-ESTATE DIM, test outcomes are limited to pass or fail outcomes. Inferences are identified
between a particular test outcome and other test outcomes and asserted conditions of diagnostic units.

A particular test outcome that is inferred from another outcome is represented as a test_
inference within the DIM. Analogously, a diagnostic_inference within the DIM asserts a
condition of ‘‘good’’ or ‘‘candidate’’ on a particular diagnostic unit. These two inference elements are
the terms that compose the inference associated with a test outcome. Both test_inference and
diagnostic_inference are SUBTYPES of inference.

The set of inferences associated with a particular test outcome are limited either to a list of conjuncted
inferences or a list of disjuncted inferences (not both). This representation limits the scope of the model
to facilitate mapping to existing model-based reasoning tools.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_DIAGNOSTIC_INFERENCE_MODEL;

REFERENCE FROM AI_ESTATE_COMMON_ELEMENT_MODEL
(diagnostic_model,
test_outcome,
confidence_value,
diagnosis_outcome);

(*

&

1,1
name_type

1,1
name_type

1,2
description_type

1,2
description_type

1,2
description_type

required_context

5,1(2)

purpose

required_test_context

mode_of_operation

required_diagnosis_context

goal

required_repair_context

role

*name

description
occurs_in S[0:?]

*name

description

has_purpose
has_role S[1:?]

optimizer S[1:?]

description

Figure 11—Common Element Model EXPRESS-G: Diagram 5 of 5
*)
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 54 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.2.1 diagnostic_inference

Entity diagnostic_inference represents an inference of a diagnosis as good or still a candidate
from a particular test outcome (as identified by outcome_inference). Uncertainty associated
with this inference can be specified in the confidence attribute that has been inherited from the inference
entity.

EXPRESS specification:

*)
ENTITY diagnostic_inference

SUBTYPE OF(inference);
diagnostic_assertion : diagnosis_outcome;

WHERE
no_user_defined : diagnostic_assertion.standard_diagnosis_value <>

USER_DEFINED_DIAGNOSIS_OUTCOME;
END_ENTITY;

(*

Attribute definitions:

diagnostic_assertion : The condition of the diagnosis to which the inference applies. The
condition of the unit is asserted to be either good or still a
candidate. Since this is a diagnosis outcome, additional values can
be assigned as well.

Formal propositions:

no_user_defined : Requires that the diagnostic outcome be one of the basic standard values as
defined in the Common Element Model.

5.2.2 diagnostic_inference_model

This entity represents the constituents of the DIM. This construct also identifies the diagnoses, tests,
and, optionally, required resources for the system under test being modeled.

EXPRESS specification:

*)
ENTITY diagnostic_inference_model

SUBTYPE OF(diagnostic_model);
inference : SET [2:?] OF outcome_inference;

END_ENTITY;
(*

Attribute definitions:

inference : This attribute identifies the set of outcome_inference that comprises the
model of the system under test. To be useful, a model shall consist of at least two
inferences, corresponding to inferences from the minimum number of outcomes
for the minimum number of tests in the model.

5.2.3 inference

This entity is a supertype of the entities diagnostic_inference and test_inference.
Inference is either a test inference or a diagnosis inference, but not both.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 55 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY inference

ABSTRACT SUPERTYPE OF (ONEOF(diagnostic_inference, test_inference));
confidence : OPTIONAL confidence_value;

END_ENTITY;
(*

Attribute definitions:

confidence : An entity that identifies the statistical confidence in the inference association from
the outcome in outcome_inference to the following:

(a) The particular outcome identified in this entity if this entity is a
test_inference.

(b) The particular diagnosis identified in this entity, in the condition identified in
diagnostic_assertion, if this entity is a diagnostic_inference.

5.2.4 outcome_inference

This construct pairs a particular outcome of a particular test with a set of inferences represented in a
conjunct/disjunct form. Each inference entity of the set is a single inference of type test_
inference or diagnostic_inference. Since inference information is specific to the
Diagnostic Inference Model (DIM), it is necessary to identify the test outcomes from the Common
Element Model (CEM) with which the inferences are associated. Hence, the constructs for
representing inferences are found in the DIM, along with a pairing of these inference constructs with
test outcomes from the CEM.

EXPRESS specification:

*)
ENTITY outcome_inference;

disjuncts : OPTIONAL SET OF inference;
conjuncts : OPTIONAL SET OF inference;
associated_test_outcome : test_outcome;

UNIQUE
one_outcome : associated_test_outcome;

WHERE
conjunct_or_disjunct :NOT(EXISTS(conjuncts))OR

NOT(EXISTS(disjuncts));
no_user_defined: associated_test_outcome.standard_test_value <>

USER_DEFINED_TEST_OUTCOME
;

END_ENTITY
(*

Attribute definitions:

disjuncts : This attribute is required, but the set can be empty. If the set
is empty, then no inference can be drawn from the outcome.
The set is interpreted as an ORed set of inferences to be
drawn.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 56 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

conjuncts : This attribute is required, but the set can be empty. If the set
is empty, then no inference can be drawn from the outcome.
The set is interpreted as an ANDed set of inferences to be
drawn.

associated_test_outcome : This attribute identifies a particular outcome of the value of
the test_outcome.for_test attribute to which the value
of the outcome_inference attribute applies, where
the test_outcome.for_test attribute identifies a parti-
cular test.

Formal propositions:

conjunct_or_disjunct : Constrains the outcome inference list to be a set of conjuncts or a
set of disjuncts, but not both. The inference list can also be empty.

no_user_defined : Requires that the test outcome be one of the basic standard values
as defined in the Common Element Model.

5.2.5 test_inference

Entity test_inference represents an inference about a test made from a test outcome. In other
words, a test outcome that references this entity can depend on the particular outcome, identified in
the outcome_inference, of the test identified in outcome_inference.for_test. Uncertainty
associated with this inference can be specified in the confidence attribute that has been inherited from
the inference entity.

EXPRESS specification:

*)
ENTITY test_inference

SUBTYPE OF(inference);
outcome_inference : test_outcome;

WHERE
no_user_defined : outcome_inference.standard_test_value <>

USER_DEFINED_TEST_OUTCOME;
END_ENTITY;

(*

Attribute definitions:

outcome_inference : This attribute identifies the test and associated outcome to be inferred.
The test is identified by the for_test attribute of the test outcome.

Formal propositions:

no_user_defined : Requires that the test outcome be one of the basic standard values as
defined in the Common Element Model.

*)
END_SCHEMA;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 57 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.2.6 Diagnostic Inference Model EXPRESS-G diagram

5.3 Dynamic Context Model

The following information model captures the relevant dynamic information that may be used in any
diagnostic context by an adequate abstraction of widely used diagnostic principles. The Dynamic
Context Model (DCM) enables several important functions of an AI-ESTATE conformant reasoner.
The functions relate to the state of the reasoning process at each step of a diagnostic session. The
DCM data and knowledge are developed during a diagnostic session, unlike those of the Common
Element Model (CEM), Fault Tree Model (FTM), Diagnostic Inference Model (DIM), and Enhanced
Diagnostic Inference Model (EDIM) (which consist of static diagnostic data and knowledge).

A diagnostic session is initiated by identifying the model or models to be used for determining the
existence of a fault in the unit undergoing test, and for isolating to a sufficient level to effect a
maintenance action that will restore the system to a known functioning condition. The session is
performed in a series of steps. At each step, one or more tests are performed. The DCM is used to
record the state existing prior to performing any test at each of the following steps:

1) The model(s) currently in use
2) The status of all resources associated with the active models
3) The status of all tests associated with the active models
4) The status of all diagnoses associated with the active models
5) Optionally, the current fault hypothesis

The DCM is also used to record the tests performed at each step and any associated actual test
outcome and outcome confidence values. The reasoner makes diagnostic and test inferences from the
actual test outcome and associated confidence values.

1

diagnostic_inference_model

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnostic_model

AI_ESTATE_COMMON_
ELEMENT_MODEL.test_outcome

AI_ESTATE_COMMON_
ELEMENT_MODEL.

confidence_value

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnosis_outcome

(ABS)
inference

*diagnostic_inference

*outcome_inference

*test_inference

inference S[2:?]

disjuncts S[0:?]

diagnostic_assertion

outcome_inference

confidence

conjuncts S[0:?]

*associated_test_outcome

Figure 12—Diagnostic Inference Model EXPRESS-G: Diagram 1 of 1
*)
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 58 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
SCHEMA AI_ESTATE_DYNAMIC_CONTEXT_MODEL;

USE FROM AI_ESTATE_COMMON_ELEMENT_MODEL
(name_type,
diagnostic_model,
diagnosis,
test,
confidence_value,
test_outcome,
resource,
cost_value,
time_cost,
non_time_cost,
diagnosis_outcome,
logic_element,
description_type,
repair_item,
action,
cost_category,
required_context,
non_negative_integer);

(*

5.3.1 availability_type

Type availability_type defines a type that enables the availability of a test, model, or resource
to be set. This is a logical type that indicates the associated entity is available if the value is set to
TRUE. If the value is set to FALSE, then the entity is not available. An UNKNOWN indicates that
the availability of the entity could not be determined.

EXPRESS specification:

*)
TYPE availability_type ¼ BOOLEAN;
END_TYPE;

(*

5.3.2 calendar_year

Type calendar_year captures the calendar year in four-digit format.

EXPRESS specification:

*)
TYPE calendar_year ¼ STRING (4) FIXED;
END_TYPE;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 59 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.3 day_stamp

Captures the day of the week.

EXPRESS specification:

*)
TYPE day_stamp ¼ non_negative_integer;
END_TYPE;

(*

5.3.4 degree

This defines a type for a numeric value capturing the amount of degradation associated with the
diagnosis. A higher value indicates an amount of degradation less than that of a lower value.

EXPRESS specification:

*)
TYPE degree ¼ REAL;
WHERE

standard_value : (0 <¼ SELF) AND (SELF <¼ 1);
END_TYPE;

(*

Formal propositions:

standard_value : Constraint standard_value forces a degree to take on a value
between zero (0) and one (1).

5.3.5 fraction_of_second

The fraction of a second to a precision of hundreths of a second.

EXPRESS specification:

*)
TYPE fraction_of_second ¼ non_negative_integer;
WHERE

hundreths: SELF <¼ 99;
END_TYPE;

(*

Formal Propositions:

hundredths : Ensures that the fraction of a second is kept to a precision of hundredths of a
second.

5.3.6 hour

Captures in coordinated universal time (UCT) the hour of the day.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 60 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
TYPE hour ¼ non_negative_integer;
WHERE

twenty_four_hour : SELF <¼ 23;
END_TYPE;

(*

Formal propositions:

twenty_four_hour : Ensures that the legal hours for the day are between 0 and 23, in
accordance with UCT.

5.3.7 minute

EXPRESS specification:

*)
TYPE minute ¼ non_negative_integer;
WHERE

sixty_minute_hour : SELF <¼ 59;
END_TYPE;

(*

Formal propositions:

sixty_minute_hour : Ensures that the minute stamp is between 0 and 59.

5.3.8 month

Identifies the month.

EXPRESS specification:

*)
TYPE month ¼ legal_month;
END_TYPE;

(*

5.3.9 optimal_failure_rate

Type optimal_failure_rate defines a type by which a step can determine whether or not the
optimization process is dependent on failure rates.

EXPRESS specification:

*)
TYPE optimal_failure_rate ¼ BOOLEAN;
END_TYPE;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 61 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.10 second

EXPRESS specification:

*)
TYPE second ¼ non_negative_integer;
WHERE

sixty_second_minute : SELF <¼ 59;
END_TYPE;

(*

Formal propositions:

sixty_second_minute : Ensures that the number of seconds lies between 0 and 59.

5.3.11 hypothesis_direction

Enumerated type hypothesis_direction differentiates between the reasoner and the user in
terms of relationship to a hypothesis.

EXPRESS specification:

*)
TYPE hypothesis_direction ¼ ENUMERATION OF

(REASONER_DIRECTED,
USER_DIRECTED);

END_TYPE;
(*

5.3.12 legal_month

Identifies the enumerated set of legal months.

EXPRESS specification:

*)
TYPE legal_month ¼ ENUMERATION OF

(JANUARY,
FEBRUARY,
MARCH,
APRIL,
MAY,
JUNE,
JULY,
AUGUST,
SEPTEMBER,
OCTOBER,
NOVEMBER,
DECEMBER);

END_TYPE;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 62 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.13 status_code

Enumerated type status_code identifies legal status codes to be returned by a service specified by
this standard.

EXPRESS specification:

*)
TYPE status_code ¼ ENUMERATION OF

(OPERATION_COMPLETED_SUCCESSFULLY,
NONEXISTENT_DATA_ELEMENT_REQUESTED,
MISSING_OR_INVALID_ARGUMENT,
OPERATION_OUT_OF_SEQUENCE,
INVALID_MODEL_SCHEMA,
SERVICE_NOT_AVAILABLE,
UNKNOWN_EXCEPTION_RAISED);

END_TYPE;
(*

5.3.14 assigned_element

Type assigned_element is a SELECT type that selects between active_test and
active_diagnosis.

EXPRESS specification:

*)
TYPE assigned_element ¼ SELECT

(active_test,
active_diagnosis);

END_TYPE;
(*

5.3.15 cause

Select type cause captures information on root cause events that spawn a particular diagnostic
session. As a select type, it results in selection of one of the associated entities for the actual cause
(or causes). It is expected that the cause shall be used when performing postmortem analysis for the
purpose of generating and using diagnostic histories or for computing field-based diagnosability
metrics.

EXPRESS specification:

*)
TYPE cause ¼ SELECT

(trigger,
alarm);

END_TYPE;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 63 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.16 active_action

Entity active_action corresponds to actions being taken in the test and diagnosis of a system.
Active actions have actual costs that are tied back to the associated tests and resources.

EXPRESS specification:

*)
ENTITY active_action;

corresponds_to : action;
time_incurred : SET OF active_time_cost;
cost_incurred : SET OF active_cost;
resources_used : OPTIONAL SET OF active_resource;

WHERE
resources_valid : resources_available(resources_used);
active_resource_is_resource : set_of_resource(resources_used) <¼

corresponds_to.required_resource;
END_ENTITY;

(*

Attribute definitions:

corresponds_to : Attribute corresponds_to identifies the action that is being instantiated
by this entity.

time_incurred : Attribute time_incurred records the actual time associated with taking
this action in the current step of the session trace.

cost_incurred : Attribute cost_incurred records the actual costs associated with taking
this action in the current step of the session trace.

resources_used : Attribute resources_used lists the resources used in performing this
action. Since the cardinality of the set begins at zero, this set can be empty.
It is also an optional attribute indicating whether the reasoner cares if
resources are used or not.

Formal propositions:

resources_valid : Constraint resources_valid uses function
resources_available. This constraint prevents
unavailable resources being listed as having been used.

active_resource_is_resource : Constraint active_resource_is_resource
ensures that the set of resources_used is a subset
of the required_resource attribute set of this
entity’s corresponds_to action attribute.

5.3.17 active_cost

Entity active_cost references a non_time_cost entity being used by some test or resource in the
current diagnostic session. Several attributes are obtained by examining the referenced entity (e.g.,
units) and that entity’s abstract supertype cost.

EXPRESS specification:

*)
ENTITY active_cost;

actual_value : cost_value;
corresponds_to : non_time_cost;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 64 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

INVERSE
action_cost : SET OF active_action FOR cost_incurred;

WHERE
value_is_valid: (NOT(EXISTS(corresponds_to.lower)) AND

NOT(EXISTS(corresponds_to.upper))) XOR
((corresponds_to.lower <¼ actual_value) AND
(actual_value <¼ corresponds_to.upper));

END_ENTITY;
(*

Attribute definitions:

actual_value : Attribute actual_value is used to store the actual cost incurred
rather than the expected cost.

corresponds_to : Attribute corresponds_to identifies the non_time_cost that is
being ‘‘instantiated’’ by this entity.

action_cost : Inverse attribute action_cost indicates the specific active_
action to which this active_cost belongs.

Formal propositions:

value_is_valid : Constraint value_is_valid ensures that actual_value lies
between legal bounds, given that bounds have been defined.

5.3.18 active_diagnosis

Entity active_diagnosis corresponds to a diagnosis used by the reasoner. It is assumed that the
outcome of the diagnosis can only take on a single value representing the current value. Since the
session trace instantiates the diagnoses at each step, multiple values for the same diagnosis can be
determined by traversing the trace.

EXPRESS specification:

*)
ENTITY active_diagnosis;

corresponds_to : diagnosis;
actual_outcome : OPTIONAL diagnosis_outcome;
actual_confidence : OPTIONAL confidence_value;

WHERE
confidence_with_outcome : (NOT(EXISTS(actual_confidence)) AND

NOT(EXISTS(actual_outcome))) OR
(EXISTS(actual_confidence) AND
EXISTS(actual_outcome));

END_ENTITY;
(*

Attribute definitions:

corresponds_to : Attribute corresponds_to identifies the diagnosis in the diagnostic
model that is actively evaluated or inferred in the session.

actual_outcome : Attribute actual_outcome provides the current actual outcome
associated with this diagnosis. This attribute is optional since the
outcome may be tied to a diagnosis group.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 65 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

actual_confidence : Attribute actual_confidence provides the current actual con-
fidence value associated with the actual_outcome of the
diagnosis. This attribute is optional since it is tied to the outcome,
which is also optional.

Formal propositions:

confidence_with_outcome : Constraint confidence_with_outcome ensures that either an
actual_outcome is paired with an actual_confidence or
the active_diagnosis has neither an active_outcome
nor an active_confidence. In other words, both active_
outcome and active_confidence must be present simulta-
neously, if they exist at all.

5.3.19 active_model

Entity active_model references one of the models used in the current knowledge base. The name of
the entity is obtained by examining the referenced model.

EXPRESS specification:

*)
ENTITY active_model;

availability : availability_type;
corresponds_to : diagnostic_model;
pathname : STRING;

END_ENTITY;
(*

Attribute definitions:

availability : Attribute availability is a logical attribute indicating whether this
model is available for the current session.

corresponds_to : Attribute corresponds_to identifies the diagnostic model that is
actively loaded and processed in the session.

pathname : Attribute pathname is a string providing the complete path to the file
containing the model.

5.3.20 active_resource

Entity active_resource corresponds to a resource used as part of a test. Throughout the model,
sets of active_resources are nonoptional but have initial cardinality of zero.

EXPRESS specification:

*)
ENTITY active_resource;

availability : availability_type;
corresponds_to : resource;
resource_action : LIST [1:?] OF active_action;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 66 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

INVERSE
associated_step : step FOR resource_status;

END_ENTITY;
(*

Attribute definitions:

availability : Attribute availability is a logical attribute indicating whether this
resource is available for the current step. In this case, entities need to be
instantiated in each step of the session trace.

corresponds_to : Attribute corresponds_to identifies the resource in the diagnostic
model that is actively used in the session.

resource_action : Attribute resource_action identifies the action or actions required to
use the given resource. Cost information from the resource can be derived
by examining the costs of the associated actions.

associated_step : Inverse attribute associated_step provides a pointer back to the step
referring to this active_resource entity.

5.3.21 active_test

Entity active_test corresponds to a test used by the reasoner at a given step. The outcome of a test
can only take on a single value representing the current value. Since the session trace instantiates the
tests at each step, multiple values for the same test (e.g., if a test is repeated) can be determined by
traversing the trace.

EXPRESS specification:

*)
ENTITY active_test;

actual_confidence : OPTIONAL confidence_value;
actual_outcome : OPTIONAL test_outcome;
corresponds_to : test;
test_action : LIST [1:?] OF active_action;

WHERE
confidence_with_outcome: (NOT(EXISTS(actual_confidence)) AND

NOT(EXISTS(actual_outcome))) OR
(EXISTS(actual_confidence) AND
EXISTS(actual_outcome));

END_ENTITY;
(*

Attribute definitions:

actual_confidence : Attribute actual_confidence provides the current actual con-
fidence value associated with the actual_outcome of the test. This
attribute is optional since it is tied to the outcome, which is also
optional.

actual_outcome : Attribute actual_outcome provides the current actual outcome
associated with this test. This attribute is optional since the outcome
could be tied to a test group.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 67 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

corresponds_to : Attribute corresponds_to identifies the test in the diagnostic
model that is actively executed or inferred in the session.

test_action : Attribute test_action identifies the action or actions required to
perform the given test. Cost information from the test can be derived
by examining the costs of the associated actions.

Formal propositions:

confidence_with_outcome : Constraint confidence_with_outcome ensures that either
an actual_outcome is paired with an actual_confidence
or the active_test has neither an active_outcome
nor an active_confidence. In other words, both active_
outcome and active_confidence must be present simulta-
neously, if they exist at all.

5.3.22 active_time_cost

Entity active_time_cost references a time_cost entity being used by some test or resource in
the current diagnostic session. Several attributes are obtained by examining the referenced entity
(e.g., units) and that entity’s abstract supertype cost.

EXPRESS specification:

*)
ENTITY active_time_cost;

actual_value : cost_value;
corresponds_to : time_cost;

INVERSE
action_time : SET OF active_action FOR time_incurred;

WHERE
value_is_valid : (NOT(EXISTS(corresponds_to.lower)) AND

NOT(EXISTS(corresponds_to.upper))) XOR
((corresponds_to.lower <¼ actual_value) AND
(actual_value <¼ corresponds_to.upper));

END_ENTITY;
(*

Attribute definitions:

actual_value : Attribute actual_value is used to store the actual cost incurred rather
than the expected cost.

corresponds_to : Attribute corresponds_to identifies the time_cost that is being
instantiated by this entity.

action_time : Inverse attribute action_time indicates the specific active_action
to which this active_time_cost belongs.

Formal Propositions:

value_is_valid : Constraint value_is_valid ensures that actual_value lies between
legal bounds, given that bounds have been defined.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 68 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.23 alarm

Entity alarm captures information on automatic notifications of a problem within a system that
results in the initiation of a diagnostic session. Alarms could, e.g., result from visual or audible alarms
presented to a user, built-in test (BIT) indications, or network management traps [as from simple
network management protocol (SNMP)].

EXPRESS specification:

*)
ENTITY alarm

SUBTYPE OF(active_test);
END_ENTITY;

(*

5.3.24 diagnosis_context

Entity diagnosis_context is a subtype of step_context and specifies the diagnosis context for
a particular diagnosis (or group of diagnoses) within a model.

EXPRESS specification:

*)
ENTITY diagnosis_context

SUBTYPE OF(step_context);
time_to_test : OPTIONAL active_time_cost;

END_ENTITY;
(*

Attribute definitions:

time_to_test : Attribute time_to_test specifies the amount of time available within a
diagnostic session to complete testing and return a diagnosis. This is an
optional attribute since time constraints may not be specified in all cases.

5.3.25 exception

Entity exception captures information on status codes and exceptions that could be raised with a
particular step in the diagnostic session.

EXPRESS specification:

*)
ENTITY exception;

status : status_code;
description : description_type;
associated_service : description_type;

END_ENTITY;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 69 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

status : Attribute status identifies the status code associated with a given
exception raised at the current step.

description: : Attribute description provides a textual description for the
exception raised and its associated step in the session.

associated_service: : Attribute associated_service identifies the service called that
resulted in the raised exception.

5.3.26 gripe

Entity gripe captures information on user complaints about the performance of the system.
Typically, such complaints spawn some sort of diagnostic session to isolate the cause of the gripe.

EXPRESS specification:

*)
ENTITY gripe

SUBTYPE OF(trigger);
END_ENTITY;

(*

5.3.27 history

Entity history captures maintenance history information on the unit or system under test. This
history is in terms of previous test/diagnosis/repair sessions.

EXPRESS specification:

*)
ENTITY history;

past_session : LIST OF session;
END_ENTITY;

(*

Attribute definitions:

past_session : Attribute past_session identifies a list of diagnostic sessions capturing
historical maintenance information. A list is used to indicate a chronological
sequence of events.

5.3.28 inferred_diagnosis

Entity inferred_diagnosis corresponds to a diagnosis that can be inferred by the reasoner. The
diagnosis can only take on a single value representing the current value. Since the session trace
instantiates the diagnoses at each step, the set of diagnoses is maintained at each step. Therefore, value
changes for a diagnosis can be determined by traversing the trace.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 70 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY inferred_diagnosis;

corresponds_to : SET [1:?] OF diagnosis;
inferred_confidence : confidence_value;
inferred_outcome : diagnosis_outcome;
grade : OPTIONAL degree;
availability : availability_type;

INVERSE
associated_step : step FOR diagnoses;

WHERE
consistent_outcome :check_diagnosis_out(corresponds_to,

inferred_outcome);
END_ENTITY;

(*

Attribute definitions:

corresponds_to : Attribute corresponds_to identifies the set of diagnoses in the
diagnostic model that is available to be inferred in the session. If
the cardinality of the set is greater than one, then it is expected that
this will be treated as a multiple fault.

inferred_confidence : Attribute inferred_confidence indicates the current confi-
dence in the value associated with this diagnosis.

inferred_outcome : Attribute inferred_outcome indicates the current value for the
diagnosis. The type of this attribute is referenced from the EDIM.
Further, if diagnostic outcomes are provided and the cardinality of
the set is greater than one, then the outcomes correspond with the
associated members of the diagnosis set.

grade : Attribute grade identifies the level of degradation for the given
diagnosis, inferred from the test information received so far. This
attribute is optional since current AI-ESTATE models provide no
direct basis for performing the needed inference.

availability : Attribute availability indicates whether or not this diagnosis
is available for the current step.

associated_step : Inverse attribute associated_step provides a pointer back to
the step referring to this inferred_diagnosis entity.

Formal propositions:

consistent_outcome : Constraint consistent_outcome ensures that the inferred
outcomes exist in the set of legal outcomes associated with the
diagnoses.

5.3.29 inferred_test

Entity inferred_test corresponds to a test whose outcome is inferred by the reasoner. The
outcome of a test can only take on a single value representing the current value. Since the session trace
instantiates the tests at each step, multiple values for the same test (e.g., if a test is repeated) can be
determined by traversing the trace.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 71 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY inferred_test;

corresponds_to : SET [1:?] OF test;
availability : availability_type;
inferred_confidence : confidence_value;
inferred_outcome : test_outcome;

INVERSE
associated_step : step FOR test_status;

WHERE
consistent_outcome :check_test_out(corresponds_to,

inferred_outcome);
END_ENTITY;

(*

Attribute definitions:

corresponds_to : Attribute corresponds_to identifies the set of tests in the
diagnostic model that is available to be inferred in the session. If
the cardinality of the set is greater than one, then it is expected that
this will be treated as a conjunction of tests.

availability : Attribute availability indicates whether this test is available for
the current step.

inferred_confidence : Attribute inferred_confidence provides the current confidence
value associated with the inferred_outcome of the test. It is re-
quired that this attribute be the same size as the corresponds_to
attribute, and that there exists a one-to-one correspondence between
confidences and tests.

inferred_outcome : Attribute inferred_outcome provides the current outcome
associated with this test. It is required that this attribute be the
same size as the corresponds_to attribute, and that there exists a
one-to-one correspondence between outcomes and tests.

associated_step : Inverse attribute associated_step provides a pointer back to the
step referring to this inferred_test entity.

Formal propositions:

consistent_outcome : Constraint consistent_outcome ensures that the inferred out-
comes exist in the set of legal outcomes associated with the tests.

5.3.30 logic_term

Entity logic_term captures the current logical state for purposes of ordering constraints. Since not
all diagnostic reasoners are capable of doing partial-order planning, this information is optional within
the Dynamic Context Model.

EXPRESS specification:

*)
ENTITY logic_term;

corresponds_to : logic_element;
END_ENTITY;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 72 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

corresponds_to : Attribute corresponds_to identifies the specific logical element
within the Common Element Model to which this term corresponds.

5.3.31 notice

Entity notice captures details on manufacturer or maintainer notices to a user that some sort of
maintenance or diagnostics needs to be done on the system.

EXPRESS specification:

*)
ENTITY notice

SUBTYPE OF(trigger);
END_ENTITY;

(*

5.3.32 repair_context

Entity repair_context is a subtype of step_context and specifies the repair context for a
particular repair item (or group of repair items) within a model.

EXPRESS specification:

*)
ENTITY repair_context

SUBTYPE OF(step_context);
available_repair_item : SET OF repair_item;

END_ENTITY;
(*

Attribute definitions:

available_repair_item : Attribute available_repair_items specifies those repair
items that can be repaired in the current context.

5.3.33 session

Entity session provides a session trace for the current diagnostic session.

EXPRESS specification:

*)
ENTITY session;

trace : LIST OF step;
caused_by : OPTIONAL SET [1:?] OF cause;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 73 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

updates_history : OPTIONAL history;
WHERE
no_tests_last :NOT(EXISTS(

trace[SIZEOF(trace)].outcomes_collected));
END_ENTITY;

(*

Attribute definitions:

trace : Attribute trace provides an ordered list of states (represented as steps)
through which the diagnostic reasoner traverses during a session. It is
expected that actions such as backing up would be recorded as a new
step in the trace rather than having a step deleted from the trace.

caused_by : Attribute caused_by identifies the event or events that caused the
diagnostic session to occur.

updates_history : Attribute updates_history identifies the specific history for the unit
or system diagnosed by this session.

Formal propositions:

no_tests_last : Ensures that the last step in the traces has no associated outcomes or tests
that have just been collected. To have collected this information indicates
that the state must be updated, and a new step must be created.

5.3.34 step

Entity step instantiates a step in the session trace and includes all information related to a specific
step in the test process, including the current state of the reasoner. This state information reflects the
status of all the attributes at the beginning of the step (creation of step).

EXPRESS specification:

*)
ENTITY step;

model_status : SET [1:?] OF active_model;
reasoner_hypothesis : OPTIONAL SET OF inferred_diagnosis;
test_status : SET [1:?] OF inferred_test;
diagnoses : SET [2:?] OF inferred_diagnosis;
resource_status : SET OF active_resource;
logic_state : OPTIONAL SET OF logic_term;
optimized_by_failure_rate : optimal_failure_rate;
optimized_by_cost : SET OF cost_category;
user_hypothesis : OPTIONAL SET [1:?] OF diagnosis;
reason_by : hypothesis_direction;
occurs_within : step_context;
service_result : OPTIONAL LIST [1:?] OF exception;
time_occurred : OPTIONAL time_stamp;
outcomes_collected : OPTIONAL SET [1:?] OF assigned_element;

INVERSE
part_of : session FOR trace;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 74 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

WHERE
test_active: NOT(EXISTS(outcomes_collected)) XOR

active_tests_available(outcomes_collected,test_status);
resource_active: (SIZEOF(QUERY(temp <* resource_status |

NOT(temp.availability ¼ FALSE)))¼0) AND
(set_of_resource(resource_status) <¼
resource_set_union(model_status));

diagnosis_in_state: (reasoner_hypothesis <¼ diagnoses);
all_tests: (set_of_test(test_status) ¼

test_set_union(model_status));
all_diagnoses: (set_of_diagnosis(diagnoses) ¼

diagnosis_set_union(model_status));
diagnosis_active: NOT(EXISTS(outcomes_collected)) XOR

active_diagnoses_available(outcomes_collected,diagnoses);
END_ENTITY;

(*

Attribute definitions:

model_status : Attribute model_status lists all of the models asso-
ciated with the current session and indicates their status at
the current step.

reasoner_hypothesis : Attribute hypothesis is an optional attribute consisting
of the set of inferred_diagnosis making up the
current hypothesis. This attribute is optional since some
reasoners might not generate a hypothesis in mid-process;
however, it is expected that the hypothesis will be
determined before the active tests are performed and will
be used to report the final diagnosis.

test_status : Attribute test_status lists all of the tests used by the
available models and is used to capture their status prior
to running the active tests. For the first step in the session,
the test_status corresponds to the set of symptoms
used to start the diagnostic process.

diagnoses : Attribute diagnoses lists all of the diagnoses used by the
available models and is used to capture their status prior
to running the active tests.

resource_status : Attribute resource_status lists all of the resources
used by the available models and is used to capture their
status prior to running the active tests.

logic_state : Attribute logic_state provides the current list of
facts within the logic state of the diagnostic session.
This state is compared to a set of preconditions in the
Common Element Model to assist in determining appro-
priate ordering of actions.

optimized_by_failure_rate : Attribute optimized_by_failure_rate specifies that
test selection is dependent on failure rate when this
Boolean attribute is TRUE.

optimized_by_cost : Attribute optimized_by_cost identifies the set of cost
criteria (if any) used to optimize test selection at a given
step in the diagnostic process.

user_hypothesis : Attribute user_hypothesis identifies a set (possibly
empty) of diagnoses in the diagnostic model to be used as
a hypothesis. This hypothesis would be used to guide test

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 75 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

selection to verify/deny that hypothesis. Note this is an
optional attribute since a user might not have a hypothesis
at all steps in the process.

reason_by : Attribute reason_by identifies whether or not reasoning
is to be centered at a given step on a user-based hypothesis
or a reasoner-based hypothesis.

occurs_within : Attribute occurs_within identifies the specific context
for a given step during a diagnostic session. An initial
context shall be used to start the diagnostic process for a
particular session. Context can change as diagnosis
proceeds, and this change in context is captured via the
remainder of the dynamic context model. Once a context is
set for a given step, that context will persist through
subsequent steps in a session until changed.

service_result : Attribute service_result indicates the list of excep-
tions (if any) raised as a result of executing a service.

time_occurred : Attribute time_occurred records a time step at which
the step began.

outcomes_collected : Attribute outcomes_collected indicates the set of
active tests and diagnoses evaluated at this step in the
process.

part_of : Inverse attribute part_of indicates the specific session
trace to which this step belongs.

Formal propositions:

test_active : Constraint test_active ensures that the active tests recorded in
the step are members of the set of all tests and are available to be
performed.

resource_active : Constraint resource_active evaluates two predicates to ensure
that the elements of the resource_status set are valid. The first
predicate verifies all of the resources are available, and the second
predicate verifies all of the resources are defined by the available
models.

diagnosis_in_state : Constraint diagnosis_in_state ensures that the diagnoses in
the hypothesis have been specified by the set of diagnoses given by
the current state.

all_tests : Constraint all_tests uses function test_set_union. This
constraint verifies that the union of the test sets from the available
models equals the set listed in test_status.

all_diagnoses : Constraint all_diagnoses uses function diagnosis_set_
union. This constraint verifies that the union of the diagnosis sets
from the available models equals the set listed in diagnoses.

diagnosis_active : Constraint diagnosis_active ensures that the active diagnoses
recorded in the step are members of the set of all diagnoses and are
available to be evaluated.

5.3.35 step_context

Entity step_context specifies the current context for a diagnostic problem. Diagnostic models are
generally created with a particular context (or contexts) in mind. This entity is a supertype of
test_context AND diagnosis_context AND repair_context.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 76 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY step_context

SUPERTYPE OF (test_context AND diagnosis_context AND repair_context);
available_resources : SET OF resource;
description : description_type;
name : name_type;
corresponds_to : required_context;

UNIQUE
one_context : name;

END_ENTITY;
(*

Attribute definitions:

available_resources : Attribute available_resources identifies the test and repair
resources available for use during the diagnostic session.

description : Attribute description provides a textual description of contextual
information related to the current step.

name : Attribute name provides a unique identifier to provide a means to
reason over contextual information.

corresponds_to : Attribute corresponds_to identifies the required context against
which an actual context is compared to determine if the context is
consistent.

5.3.36 test_context

Entity test_context is a subtype of step_context and specifies the test context for a particular
test (or group of tests) within a model.

EXPRESS specification:

*)
ENTITY test_context

SUBTYPE OF(step_context);
available_tests : SET OF active_test;

END_ENTITY;
(*

Attribute definitions:

available_tests : Attribute available_tests identifies the tests that are available for
use in diagnosis at the beginning of the diagnostic session.

5.3.37 time_stamp

Entity time_stamp provides a means of associating a time stamp to elements within the DCM.
The time basis for capturing the time element within the time stamp shall be coordinated universal
time (UCT).

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 77 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY time_stamp;

year_stamp : calendar_year;
month_stamp : month;
day_stamp : day_stamp;
hour_stamp : hour;
minute_stamp : minute;
second_stamp : second;
fraction_stamp : fraction_of_second;

END_ENTITY;
(*

Attribute definitions:

year_stamp : Attribute year_stamp captures the four-digit year for the time stamp.
month_stamp : Attribute month_stamp captures the month for the time stamp.
day_stamp : Attribute day_stamp identifies the particular date within a month for

the time stamp.
hour_stamp : Attribute hour_stamp captures the hour of the day in UCT for the

time stamp.
minute_stamp : Attribute minute_stamp captures the minute of the hour in UCT

according to UCT.
second_stamp : Attribute second_stamp captures the number of seconds in accor-

dance with UCT.
fraction_stamp : Attribute fraction_stamp captures the fraction of a second to the

hundreths of a second in accordance with UCT.

5.3.38 trigger

Entity trigger defines a type of event corresponding to a report of some kind that results in a
diagnostic session being initiated. Typically, triggers correspond to human-generated or organization-
generated events such as manufacturing notices/recalls or user ‘‘gripes.’’ As such, a trigger is defined to
be an abstract supertype of these two types of entities.

EXPRESS specification:

*)
ENTITY trigger

ABSTRACT SUPERTYPE OF (ONEOF(notice, gripe));
description : description_type;
name : name_type;

UNIQUE
one_name : name;

END_ENTITY;
(*

Attribute definitions:

description : Attribute description provides a means for associating descriptive text to
characterize the trigger.

name : Attribute name provides a unique name for identifying the trigger.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 78 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.39 active_diagnoses_available

EXPRESS specification:

Function active_diagnoses_available determines whether each active diagnosis is a member
of all diagnoses and whether the active_diagnoses are available by checking the corresponding
inferred_diagnosis availability attributes.

*)
FUNCTION active_diagnoses_available

(active: SET [1:?] OF active_diagnosis;
inferred: SET [1:?] OF inferred_diagnosis): LOGICAL;

LOCAL
member: LOGICAL;
result: LOGICAL:¼ TRUE;

END_LOCAL;

REPEAT i:¼ LOINDEX(active) TO HIINDEX(active);
member:¼ FALSE;
REPEAT j: ¼ LOINDEX(inferred) TO HIINDEX(inferred);

IF (active[i].corresponds_to IN
inferred[j].corresponds_to) THEN
member:¼ TRUE;
IF (inferred[j].availability ¼ FALSE) THEN

result:¼ FALSE;
END_IF;

END_IF;
END_REPEAT;
IF (member ¼ FALSE) THEN

result:¼ FALSE;
END_IF;

END_REPEAT;
RETURN (result);

END_FUNCTION;
(*

5.3.40 active_tests_available

EXPRESS specification:

Function active_tests_available determines whether each active test is a member of all tests
and whether the active_tests are available by checking the corresponding inferred_test
availability attributes.

*)
FUNCTION active_tests_available

(active: SET [1:?] OF active_test;
inferred: SET [1:?] OF inferred_test) : LOGICAL;

LOCAL
member: LOGICAL;
result: LOGICAL:¼ TRUE;

END_LOCAL;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 79 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

REPEAT i:¼ LOINDEX(active) TO HIINDEX(active);
member:¼ FALSE;
REPEAT j:¼ LOINDEX(inferred) TO HIINDEX(inferred);

IF (active[i].corresponds_to IN
inferred[j].corresponds_to) THEN
member:¼ TRUE;
IF (inferred[j].availability ¼ FALSE) THEN

result:¼ FALSE;
END_IF;

END_IF;
END_REPEAT;
IF (member ¼ FALSE) THEN

result:¼ FALSE;
END_IF;

END_REPEAT;
RETURN (result);

END_FUNCTION;
(*

5.3.41 check_diagnosis_out

EXPRESS specification:

Function check_diagnosis_out checks the set of diagnostic outcomes against the set of legal
outcomes of the diagnosis passed in to ensure that they are consistent. This is done by checking to see
that the set of inferred outcomes are members of the set of available outcomes.

*)
FUNCTION check_diagnosis_out

(diag:SET [1:?] OF diagnosis; dout:diagnosis_outcome):BOOLEAN;
LOCAL

flag: BOOLEAN:¼ TRUE;
END_LOCAL;
REPEAT i:¼ LOINDEX(diag) TO HIINDEX(diag);

IF (NOT(dout IN diag[i].has_outcome)) THEN
flag:¼ FALSE;

END_IF;
END_REPEAT;
RETURN(flag);

END_FUNCTION;
(*

5.3.42 check_test_out

EXPRESS specification:

Function check_test_out checks the set of test outcomes against the set of legal outcomes of the
test passed in to ensure that they are consistent. This is done by checking to see that the set of inferred
outcomes are members of the set of available outcomes.

*)
FUNCTION check_test_out

(tst:SET [1:?] OF test; tout:test_outcome):BOOLEAN;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 80 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

LOCAL
flag: BOOLEAN :¼ TRUE;

END_LOCAL;
REPEAT i:¼ LOINDEX(tst) TO HIINDEX(tst);

IF (NOT(tout IN tst[i].has_outcome)) THEN
flag:¼ FALSE;

END_IF;
END_REPEAT;
RETURN(flag);

END_FUNCTION;
(*

5.3.43 diagnosis_set_union

EXPRESS specification:

Function diagnosis_set_union constructs a set of inferred_diagnosis by taking the union
of all of the inferred_diagnosis entities associated with each member of a set of
active_model.

*)
FUNCTION diagnosis_set_union

(mdl: SET [1:?] OF active_model): SET [1:?] OF diagnosis;

LOCAL
diagnosis_set : SET [1:?] OF diagnosis:¼ [];

END_LOCAL;

REPEAT i :¼ LOINDEX(mdl) TO HIINDEX(mdl);
diagnosis_set :¼ diagnosis_set þ

QUERY(tmp <* mdl[i].corresponds_to.model_element|
'AI_ESTATE_COMMON_ELEMENT_MODEL.diagnosis' IN TYPEOF(tmp));

END_REPEAT;
RETURN(diagnosis_set);

END_FUNCTION;
(*

5.3.44 resource_set_union

EXPRESS specification:

Function resource_set_union constructs a set of active_resource by taking the union of all
of the active_resource entities associated with each member of a set of active_model.

*)
FUNCTION resource_set_union

(mdl: SET [1:?] OF active_model): SET [1:?] OF resource;

LOCAL
resource_set: SET [1:?] OF resource:¼ [];

END_LOCAL;

REPEAT i:¼ LOINDEX(mdl) TO HIINDEX(mdl);

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 81 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

resource_set:¼ resource_set þ
QUERY(tmp <* mdl[i].corresponds_to.model_element |
'AI_ESTATE_COMMON_ELEMENT_MODEL.resource' IN TYPEOF(tmp));

END_REPEAT;
RETURN(resource_set);

END_FUNCTION;
(*

5.3.45 resources_available

EXPRESS specification:

Function resources_available samples a set of resources to determine whether all of the
resources in that set are currently available.

*)
FUNCTION resources_available

(resources: SET [0:?] OF active_resource): BOOLEAN;

LOCAL
result: BOOLEAN:¼ TRUE;

END_LOCAL;

IF SIZEOF(resources) > 0 THEN
REPEAT i :¼ LOINDEX(resources) TO HIINDEX(resources);

IF resources[i].availability ¼ FALSE THEN
result:¼ FALSE;

END_IF;
END_REPEAT;

END_IF;
RETURN(result);

END_FUNCTION;
(*

5.3.46 set_of_diagnosis

EXPRESS specification:

Function set_of_diagnosis constructs a set of diagnoses as defined in the CEM when given a set
of inferred_diagnosis from the DCM.

*)
FUNCTION set_of_diagnosis

(diag: SET [0:?] OF inferred_diagnosis): SET [0:?] OF diagnosis;

LOCAL
diagnosis_set : SET [0:?] OF diagnosis:¼ [];

END_LOCAL;

REPEAT i:¼ LOINDEX(diag) TO HIINDEX(diag);
diagnosis_set:¼ diagnosis_set þ diag[i].corresponds_to;

END_REPEAT;
RETURN(diagnosis_set);

END_FUNCTION;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 82 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.47 set_of_resource

EXPRESS specification:

Function set_of_resource constructs a set of resources as defined in the CEM when given a set of
active_resources from the DCM.

*)
FUNCTION set_of_resource

(rsrc: SET [0:?] OF active_resource): SET [0:?] OF resource;

LOCAL
resource_set: SET [0:?] OF resource: ¼ [];

END_LOCAL;

REPEAT i: ¼ LOINDEX(rsrc) TO HIINDEX(rsrc);
resource_set: ¼ resource_set þ rsrc[i].corresponds_to;

END_REPEAT;
RETURN(resource_set);

END_FUNCTION;
(*

5.3.48 set_of_test

EXPRESS specification:

Function set_of_test constructs a set of tests as defined in the CEM when given a set of
inferred_tests from the DCM.

*)
FUNCTION set_of_test

(tst: SET [0:?] OF inferred_test): SET [0:?] OF test;

LOCAL
test_set: SET [0:?] OF test: ¼ [];

END_LOCAL;

REPEAT i: ¼ LOINDEX(tst) TO HIINDEX(tst);
test_set: ¼ test_set þ tst[i].corresponds_to;

END_REPEAT;
RETURN(test_set);

END_FUNCTION;
(*

5.3.49 test_set_union

EXPRESS specification:

Function test_set_union constructs a set of tests by taking the union of all of the test entities
associated with each member of a set of active_model.

*)
FUNCTION test_set_union

(mdl: SET [1:?] OF active_model): SET [1:?] OF test;

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 83 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

LOCAL
test_set: SET [1:?] OF test:¼ [];

END_LOCAL;

REPEAT i:¼ LOINDEX(mdl) TO HIINDEX(mdl);
test_set:¼ test_set þ

QUERY(tmp <* mdl[i].corresponds_to.model_element |
'AI_ESTATE_COMMON_ELEMENT_MODEL.test' IN TYPEOF(tmp));

END_REPEAT;
RETURN(test_set);

END_FUNCTION;
END_SCHEMA;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 84 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.3.50 Dynamic Context Model EXPRESS-G diagrams

*session

2,4
inferred_test

4,4
cause

*step

hypothesis_direction

active_model

3,2
active_resource

availability_type

2,6
assigned_element

BOOLEAN

1,1(2,3)

logic_term

4,2
step_context

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnostic_model

2,1
diagnosis

AI_ESTATE_COMMON_ELEMENT_
MODEL.logic_element

4,1
description_type

4,1
description_type

AI_ESTATE_COMMON_
ELEMENT_MODEL.cost_category

history

STRING

optimal_failure_rate

2,3
inferred_diagnosis

exception

BOOLEAN

2,3
inferred_diagnosis

5,1
time_stamp

status_code

trace L[0:?]

(INV) part_of

model_status S[1:?]

availability

corresponds_to

pathname

reasoner_hypothesis S[0:?]

(INV) associated_step
diagnoses S[2:?]

test_status S[1:?]

(INV) associated_step

resource_status S[0:?]

(INV) associated_step

logic_state S[0:?]

corresponds_to

optimized_by_failure_rate

optimized_by_cost S[0:?]

user_hypothesis S[1:?]

reason_by

occurs_within

service_result L[1:?]
status

description

associated_service

time_occurred

outcomes_collected S[1:?]

caused_by S[1:?]

updates_history

past_session L[0:?]

Figure 13—Dynamic Context Model EXPRESS-G: Diagram 1 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 85 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1,1
availability_type

1,1
availability_type

AI_ESTATE_COMMON_
ELEMENT_MODEL.diagnosis

2,1(1)

*inferred_test AI_ESTATE_COMMON_
ELEMENT_MODEL.test

AI_ESTATE_COMMON_
ELEMENT_MODEL.confidence_

value

2,2(2)

2,6(1)

2,2
confidence_value

2,2
confidence_value

AI_ESTATE_COMMON_ELEMENT_
MODEL.test_outcome

AI_ESTATE_COMMON_ELEMENT_MODEL.
diagnosis_outcome

*inferred_diagnosis

4,3
alarm

2,5(4)

*active_diagnosis

2,4(1)

*degree

assigned_element

REAL

3,3
active_action

2,3(1)

*active_test

corresponds_to S[1:?]

inferred_confidence

inferred_outcome

grade

availability

corresponds_to S[1:?]

availability

inferred_confidence inferred_outcome

actual_confidence actual_outcome

corresponds_to

test_action L[1:?]

corresponds_to

actual_outcome actual_confidence

Figure 14—Dynamic Context Model EXPRESS-G: Diagram 2 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 86 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1,1
availability_type

AI_ESTATE_COMMON_
ELEMENT_MODEL.resource

3,1(4)

3,3(2,3)

AI_ESTATE_COMMON_
ELEMENT_MODEL.cost_value

AI_ESTATE_COMMON_ELEMENT_
MODEL.time_cost

AI_ESTATE_COMMON_ELEMENT_
MODEL.non_time_cost

AI_ESTATE_COMMON_
ELEMENT_MODEL.action

active_resource

*active_time_cost

3,2(1,3)

*active_cost

3,3
active_action

*active_action

3,4(4)

3,2
active_resource

availability corresponds_to

resource_action L[1:?]

corresponds_to

time_incurred S[0:?]
(INV) action_time S[0:?]

actual_value

corresponds_to

cost_incurred S[0:?]

(INV) action_cost S[0:?]

actual_value

corresponds_to

resources_used S[0:?]

Figure 15—Dynamic Context Model EXPRESS-G: Diagram 3 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 87 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

1

&

AI_ESTATE_COMMON_
ELEMENT_MODEL.name_type

3,1
resource

AI_ESTATE_COMMON_ELEMENT_
MODEL.description_type

4,1(1,4)

4,2(1)

4,1
description_type

AI_ESTATE_COMMON_
ELEMENT_MODEL.repair_item

AI_ESTATE_COMMON_ELEMENT_
MODEL.required_context

3,4
active_time_cost

step_context

repair_context

4,4(1)

test_context

cause

2,5
active_test

alarm

4,3(2)gripenotice

diagnosis_context

(ABS)
trigger

available_tests S[0:?] time_to_test available_repair_item S[0:?]

available_resources S[0:?]

description

*name
corresponds_to

description

*name

Figure 16—Dynamic Context Model EXPRESS-G: Diagram 4 of 5

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 88 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.4 Enhanced Diagnostic Inference Model

The AI-ESTATE Enhanced Diagnostic Inference Model (EDIM) schema is defined below. The
constructs of this model were originally derived from the approach to system test and diagnosis known
as information flow modeling or dependency modeling (Simpson and Sheppard [B6, B7, B8]). The model
utilizes many of the constructs defined in the AI-ESTATE Common Element Model.

An inference is a logical relationship between two tests or between a test and a diagnosis. Given a
particular test outcome, inferences about other tests and/or diagnoses of the system can be made. Tests
offer a view of the associated fault, function, or diagnosis.

In the AI-ESTATE EDIM, test outcomes have been generalized beyond pass or fail outcomes to
multiple outcomes for a test. Inferences are therefore identified between a particular test outcome and
other test outcomes and asserted conditions of diagnostic units.

A particular test outcome that is inferred from another outcome is represented as a test_
inference within the EDIM. Analogously, a diagnostic_inference within the EDIM asserts
a condition of good, candidate, or some user-defined diagnosis outcome on a particular diagnostic
unit. These two inference elements are the terms that compose the inference associated with a test
outcome. Both test_inference and diagnostic_inference are subtypes of inference.

AI_ESTATE_COMMON_ELEMENT_MODEL.non_
negative_integer

time_stamp

*minute

calendar_year

*fraction_of_second

*STRING

*hour

month

5,1(1)

legal_month

*second

day_stamp

year_stamp

month_stamp

day_stamp

hour_stamp

minute_stamp

second_stamp

fraction_stamp

Figure 17—Dynamic Context Model EXPRESS-G: Diagram 5 of 5
*)
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 89 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

The set of inferences associated with a particular test outcome are represented in sum of products form
(a disjunction of conjunctive terms). This representation provides flexibility and consistency in the
logical expression of the inferences.

EXPRESS specification:

*)
SCHEMA ENHANCED DIAGNOSTIC INFERENCE MODEL;

REFERENCE FROM AI_ESTATE_COMMON_ELEMENT_MODEL
(diagnostic_model,
test_outcome,
confidence_value,
diagnosis_outcome);

(*

5.4.1 inference_type

This type specifies whether or not an inference has been negated. This is intended to serve as a NOT
operator. If an inference is considered NEGATIVE, it has been negated. If it is POSITIVE, it has not.

EXPRESS specification:

*)
TYPE inference_type ¼ ENUMERATION OF

(POSITIVE,
NEGATIVE);

END_TYPE;
(*

5.4.2 diagnostic_inference

Entity diagnostic_inference represents an inference of a diagnosis as ‘‘good’’ or still a
‘‘candidate’’ from a particular test outcome (as identified by outcome_inference). Uncertainty
associated with this inference can be specified in the confidence attribute that has been inherited from
the inference entity.

EXPRESS specification:

*)
ENTITY diagnostic_inference

SUBTYPE OF(inference);
diagnostic_assertion : diagnosis_outcome;

END_ENTITY;
(*

Attribute definitions:

diagnostic_assertion : The condition of the diagnosis to which the inference applies.
The condition of the unit is asserted to be either ‘‘good’’ or still
a ‘‘candidate.’’ Since this is a diagnosis outcome, additional
values can be assigned as well.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 90 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.4.3 enhanced_diagnostic_inference_model

This entity represents the constituents of the EDIM. This construct also identifies the diagnoses, tests,
and, optionally, required resources for the system under test being modeled.

EXPRESS specification:

*)
ENTITY enhanced_diagnostic_inference_model

SUBTYPE OF(diagnostic_model);
inference : SET [2:?] OF outcome_inference;

END_ENTITY;
(*

Attribute definitions:

inference : This attribute identifies the set of outcome_inference that comprises the
model of the system under test. To be useful, a model shall consist of at least two
inferences corresponding to inferences from the minimum number of outcomes
for the minimum number of tests in the model.

5.4.4 inference

This entity is a supertype of the entities diagnostic_inference and test_inference.
Inference is either a test inference or a diagnosis inference, but not both.

EXPRESS specification:

*)
ENTITY inference

ABSTRACT SUPERTYPE OF (ONEOF(diagnostic_inference, test_inference));
pos_neg : inference_type;
confidence : OPTIONAL confidence_value;

END_ENTITY;
(*

Attribute definitions:

pos_neg : A particular inference can either be a positive inference or negative inference. A
positive inference is one that is TRUE. A negative inference is an inference that is
FALSE. Thus, the negative inference is a positive inference with a NOT in front of
it. In the EDIM, all inferences are treated as if they are asymmetric, meaning that
nothing can be assumed about the inference from a particular outcome of a test
because of another outcome of the same test. Thus, all outcome_inferences
shall be explicitly defined.

confidence : A confidence entity that identifies the statistical confidence in the inference
association from the outcome in outcome_inference to the following:

(a) The particular outcome identified in this entity if this entity is a
test_inference.

(b) The particular diagnosis identified in this entity, in the condition identified in
diagnostic_assertion, if this entity is a diagnostic_inference.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 91 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.4.5 outcome_inference

This construct pairs a particular outcome of a particular test with a set of inferences represented in a
conjunct/disjunct form. Each inference entity of the set is a single inference of type test_inference
or diagnostic_inference. Since inference information is specific to the Enhanced Diagnostic
InferenceModel (EDIM), it is necessary to identify the test outcomes from the Common ElementModel
(CEM) with which the inferences are associated. Hence, the constructs for representing inferences are
found in the EDIM, along with a pairing of these inference constructs with test outcomes from the CEM.

EXPRESS specification:

*)
ENTITY outcome_inference;

disjuncts : SET OF inference;
conjuncts : SET OF inference;
associated_test_outcome : test_outcome;

UNIQUE
one_outcome : associated_test_outcome;

END_ENTITY;
(*

Attribute definitions:

disjuncts : This attribute is required, but the set can be empty. If the set is
empty, then no inference can be drawn from the outcome. The
set is interpreted as an ORed set of inferences to be drawn.

conjuncts : Each inference entity of the set is a single inference of
type diagnostic_inference or test_inference. This
attribute is required, but the set can be empty. If the set is
empty, then no inference can be drawn from the outcome. The
set is interpreted as an ANDed set of inferences to be drawn.

associated_test_outcome : This attribute identifies a particular outcome of the value of
the test_outcome.for_test attribute to which the value
of the outcome_inference attribute applies, where the
test_outcome.for_test attribute identifies a
particular test.

5.4.6 test_inference

Entity test_inference represents an inference about a test made from a test outcome. In other
words, a test outcome that references this entity can depend on the particular outcome, identified in
the outcome_inference, of the test identified in outcome_inference.for_test. Uncertainty
associated with this inference can be specified in the confidence attribute that has been inherited from
the inference entity.

EXPRESS specification:

*)
ENTITY test_inference

SUBTYPE OF(inference);
outcome_inference : test_outcome;

END_ENTITY;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 92 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

outcome_inference : This attribute identifies the test and associated outcome to be inferred.
The test is identified by the for_test attribute of the test outcome.

*)
END_SCHEMA;
(*

5.4.7 Enhanced Diagnostic Inference Model EXPRESS-G diagram

5.5 Fault Tree Model

This clause defines the AI-ESTATE Fault Tree specification. The constructs defined here are specific
to the fault tree approach to system test and diagnosis. In this diagnostic method, a decision tree with
fixed fault isolation strategies is constructed a priori and remains static during the diagnosis. The fault
tree provides a test strategy that can be used without the aid of a reasoning system. This specification is
included in the AI-ESTATE standard, since it is frequently used as the primary diagnostic strategy or
in conjunction with other test generation strategies.

The structure of a fault tree can be viewed as a decision tree or table. The rows of the table correspond
to the different tests to be run during the fault isolation procedure. Each column of a particular row
corresponds to one of the possible outcomes for that test. The contents of a particular row and column

1

enhanced_diagnostic_inference_model

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnostic_model

AI_ESTATE_COMMON_
ELEMENT_MODEL.test_outcome

AI_ESTATE_COMMON_
ELEMENT_MODEL.

confidence_value

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnosis_outcome

test_inference

inference_type

outcome_inference

diagnostic_inference

(ABS)
inference

inference S[2:?]

disjuncts S[0:?]

diagnostic_assertion

outcome_inference

pos_neg confidence

conjuncts S[0:?]

*associated_test_outcome

Figure 18—Enhanced Diagnostic Inference Model EXPRESS-G: Diagram 1 of 1
*)
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 93 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

in the table identify the test result to be taken when the outcome identified occurs as the result of
executing the test. The test result can identify the next row of the table to which to proceed, signal the
diagnostic conclusion that is faulty, or simply provide information on the status of the fault isolation.

The Fault Tree Model draws on elements of the AI-ESTATE Common Element Model. The test entity
corresponds to a row in the table such as that described previously. Each column position of a particular
row in the table corresponds to the test_result entity in the model. The fault tree is processed by
starting at the first step, executing the test associated with that test, and proceeding with the actions
prescribed for the outcome that results. When another step of the fault tree appears in the column entry
for the resulting test outcome, execution of the fault tree proceeds to that fault tree step. Eventually, the
column entry for the resulting test outcome should identify the diagnosis and at this point (when no
other fault tree steps appear in the column entry), processing of the fault tree is complete. As an option,
running lists of suspected diagnoses can be included at any or all steps of the fault tree.

EXPRESS specification:

*)
SCHEMA AI_ESTATE_FAULT_TREE_MODEL;

REFERENCE FROM AI_ESTATE_COMMON_ELEMENT_MODEL
(diagnostic_model,
test,
test_outcome,
diagnosis_outcome);

(*

5.5.1 fault_tree_model

The fault_tree_model entity represents the fault tree at the highest level of abstraction. Thus, it
defines an entry point into the fault tree by identifying the first step (i.e., the root) of the tree. Multiple
entry points can be defined but, to maintain acceptable form, they should be treated as separate
models.

EXPRESS specification:

*)
ENTITY fault_tree_model

SUBTYPE OF(diagnostic_model);
entry_point : fault_tree_step;

END_ENTITY;
(*

Attribute definitions:

entry_point : Attribute entry_point identifies the first fault_tree_step in the fault
tree. This is normally the starting point of the fault tree, but can represent any
entry point into the tree.

5.5.2 fault_tree_step

This construct represents a row of the fault tree table. Its entries identify the test to be run at this step
in the fault tree and which test result/action pairs to follow. The test_step attribute uses the test
entity of the AI-ESTATE Common Element Model.

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 94 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

EXPRESS specification:

*)
ENTITY fault_tree_step;

result : SET [2:?] OF test_result;
test_step : test;

INVERSE
previous_result : test_result FOR next_step;

WHERE
outcomes_are_valid : result_outcomes(result) ¼

test_step.has_outcome;
END_ENTITY;

(*

Attribute definitions:

result : A set of at least two test_result entities that comprise the
outcome/action pairs for the test identified in the test_step
attribute. There should be a test_result entity in the result set for
each possible outcome of the test in test_step.

test_step : Identifies the test that is to be run for this step of the fault tree.
previous_result : Identifies the result in the fault tree that leads to the new step in the

fault tree.

Formal propositions:

outcomes_are_valid : This rule verifies that there exists a legal outcome for the test for every
test_result specified at this step in the fault tree. The rule is
satisfied when the set of outcomes equals the set returned by the
function result_outcomes.

5.5.3 test_result

Entity test_result provides the outcome associated with a test. That outcome is then paired with
the corresponding test result, indicating the next step in the tree by pointing to that step. If
appropriate, the next step of the fault tree to which execution should proceed is identified in the
next_step attribute.

EXPRESS specification:

*)
ENTITY test_result;

next_step : OPTIONAL fault_tree_step;
test_out : test_outcome;
current_diagnosis_outcome : SET OF diagnosis_outcome;

INVERSE
associated_step : fault_tree_step FOR result;

WHERE
leaves_have_diagnoses : (EXISTS(next_step)) OR

(SIZEOF(current_diagnosis_ outcome) > 0);
END_ENTITY;

(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 95 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

Attribute definitions:

next_step : Identifies which fault_tree_step to execute next
when the outcome in test_outcome results from the
execution of the test of this fault_tree_step. This
attribute is optional. When no fault_tree_step
is identified, the test_result entity is a leaf of the
fault tree.

test_out : Identifies the outcome of the test of this fault_tree_
step to which this construct applies.

current_diagnosis_outcome : Identifies the diagnosis elements in the model that
are indicted (i.e., accused) by the sequence of tests leading
up to this point in the fault tree. This attribute is used to
report the diagnosis resulting from traversing the tree.

associated_step : Identifies the step with which the current result
is associated. Since this is not a set, it enforces the
tree structure of the fault tree (i.e., it is not a decision
graph).

Formal propositions:

leaves_have_diagnoses : This rule constrains the current_diagnosis_outcomes
attribute that is a required attribute such that the associated
list can be empty if associated with an internal node of the
tree, but if the node is a leaf (i.e., a terminal step in the tree),
then the current_diagnosis_outcomes list cannot be
empty.

5.5.4 result_outcomes

EXPRESS specification:

Function result_outcomes takes a set of test results and returns the corresponding set of test
outcomes to ensure that the outcomes listed correspond to the outcomes available at the step in
the tree.

*)
FUNCTION result_outcomes

(results:SET [0:?] OF test_result) : SET [0:?] OF test_outcome;

LOCAL
t_out: SET [0:?] OF test_outcome :¼ [];

END_LOCAL;

REPEAT i :¼ LOINDEX(results) TO HIINDEX(results);
t_out :¼ t_out þ results[i].test_out;

END_REPEAT;
RETURN(t_out);

END_FUNCTION;
END_SCHEMA;
(*

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 96 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

5.5.5 Fault Tree Model EXPRESS-G diagram

6. Services

This clause specifies a set of services for model management and reasoner manipulation, The
services are specified using EXPRESS notation and reference entities in the information models
specified in Clause 5. The identification of an entity is provided within a service call via an ID
parameter.

The name of the ID parameter in the service call will identify the entity type. The standard specifies a
format for the ID parameter name; for example,

ID_hentitytypei : entity_id

where hentitytypei is the type of the entity that the ID references. For the service definitions that
follow, hattributetypei indicates the type of an attribute in the model and hattributenamei
indicates the specific attribute identifier from the model.

NOTE—entity_id uniquely identifies an entity of type hentitytypei. Further, a particular entity_id is unique to the

state of the reasoner and will persist through the corresponding reasoning session.

fault_tree_model AI_ESTATE_COMMON_ELEMENT_MODEL.
diagnostic_model

AI_ESTATE_COMMON_ELEMENT_MODEL.test

AI_ESTATE_COMMON_ELEMENT_MODEL.
test_outcome

AI_ESTATE_COMMON_ELEMENT_
MODEL.diagnosis_outcome

*fault_tree_step

*test_result

entry_point

result S[2:?]
(INV) associated_step

next_step
(INV) previous_result

test_out

current_diagnosis_outcome S[0:?]

test_step

Figure 19—Fault Tree Model EXPRESS-G: Diagram 1 of 1
*)

IEC 62243:2005(E)
IEEE 1232-2002(E)

– 97 –

 Published by IEC under licence from IEEE. © 2005 IEEE. All rights reserved.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IE
C 62

24
3:2

00
5

https://iecnorm.com/api/?name=e767a8aed38c81fb1cfed60e8a1809de

	CONTENTS
	FOREWORD
	IEEE Introduction
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Conventions used in this standard

	2. References
	3. Definitions and acronyms
	3.1 Definitions
	3.2 Acronyms

	4. Description of AI-ESTATE
	4.1 AI-ESTATE architecture
	4.2 Interchange format
	4.3 Binding strategy
	4.4 Extensibility
	4.5 Status codes
	4.6 Conformance
	4.7 Service order dependence

	5. Models
	5.1 Common Element Model
	5.2 Diagnostic Inference Model
	5.3 Dynamic Context Model
	5.4 Enhanced Diagnostic Inference Model
	5.5 Fault Tree Model

	6. Services
	6.1 Model management services
	6.2 Reasoner manipulation services

	Annex A (informative) Bibliography
	Annex B (informative) Overview of EXPRESS
	Annex C (informative) List of Participants

